函数的单调性·典型例题精析
函数的单调性知识点汇总及典型例题(高一必备)
第二讲:函数的单调性一、定义:1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0)()(0)]()()[(21212121>--⇔>--x x x f x f x f x f x x ;难点突破:(1)所有函数都具有单调性吗?(2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个?2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间.注意:(1)减函数的等价式子:0)()(0)]()()[(21212121<--⇔<--x x x f x f x f x f x x ;(2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有.0)()(2121>--x x x f x f 则( )A.)(x f 在这个区间上为增函数B.)(x f 在这个区间上为减函数C.)(x f 在这个区间上的增减性不变D.)(x f 在这个区间上为常函数变式训练:定义在R 上的函数)(x f 对任意120x x <<都有1)()(2121<--x x x f x f ,且函数)(x f y =的图象关于原点对称,若,2)2(=f 则不等式0)(>-x x f 的解集为___.例3.证明:函数x x x f +=3)(在R 上是增函数.变式训练:讨论)0()(>+=a xax x f 的单调性.并作出当1=a 时函数的图象.变式训练:已知上的单调性,在判断函数)1,0()()(,2)1(2xx f x g x x x f =-=+并用定义证明.题型二:函数的单调区间难点突破:(1)函数在某个区间上是单调函数,那么它在整个定义域上也是单调函数吗? (2)函数x x f 1)(=的单调减区间是),0()0,(+∞-∞ 上吗?例1.(图像法)求下列函数的单调区间(1)|2||1|)(-++=x x x f . (2)3||2)(2++-=x x x f .(3)|54|)(2+--=x x x f .例2.(直接法)求函数xxx f +-=11)(的单调区间.例3.(复合函数)(2017全国二)函数2()ln(28)f x x x =-- 的单调递增区间是( )A.)2,(--∞B. )1,(--∞C.),1(+∞D. ),4(+∞变式训练:求下列函数的单调区间.(1)312+-=x x y (2)652+-=x x y(3)22311xx y ---=题型三:抽象函数的单调性问题例1.设函数)(x f 是实数集R 上的增函数,令)2()()(x f x f x F --=. (1) 证明:)(x F 是R 上的增函数; (2) 若,0)()(21>+x F x F 求证:221>+x x .例2定义在),0(+∞上的函数)(x f 满足下面三个条件: ①对任意正数b a ,,都有)()()(ab f b f a f =+; ②当1>x 时,0)(<x f ; ③1)2(-=f . (1)求)1(f 的值;(2)使用单调性的定义证明:函数)(x f 在),0(+∞上是减函数; (3)求满足2)13(>+x f 的x 的取值集合.题型四:函数单调性的应用(1)利用函数的单调性比较大小在解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上. ①正向应用:②逆向应用:例1.()x f 在()+∞,0上单调递减,那么()12+-a a f 与⎪⎭⎫⎝⎛43f 的大小关系是__________.变式训练:已知函数),1()1()(x f x f x f -=+满足且对任意的)(1,2121x x x x ≠>,有.0)()(2121>--x x x f x f 设),3(),2(),21(f c f b f a ==-=则c b a ,,的大小关系_________.(2)利用函数的单调性解不等式例2.设)(x f 是定义在]1,1[-上的增函数,且)1()2(x f x f -<-成立,求x 的取值范围.变式训练.①设)(x f 是定义在]3,3[-上的偶函数,当30≤≤x 时,)(x f 单调递减,若)()21(m f m f <-成立,求m 的取值范围.②(2015全国二)设函数)12()(,11)1ln()(2->+-+=x f x f x x x f 则使得成立的x 的取值范围是( )A. )1,31(B. ),1()31,(+∞-∞C. )31,31(-D. ),31()31,(+∞--∞③(2018全国一)设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围 是( ) A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,(3)根据函数的单调性求参数的取值范围例1.如果函数1)1(42)(2+--=x a x x f 在区间),3[+∞上是增函数,则实数a 的取值范围是( )A.(1,2)B.(0,2)C.(0,1)D.[)+∞-,2变式训练:如果函数2)1(2)(2+--=x a x x f 在区间)4,[-∞上是减函数,求实数a 的取值范围.例2.若函数⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f 在R 上为增函数,则实数b 的取值范围是__________.例3.若函数||a x y -=在区间]4,(-∞上是减函数,求实数a 的取值范围.第三节:函数的奇偶性一、知识梳理1.函数的奇偶性 例1(2014全国二)偶函数)(x f y =的图象关于直线2=x 对称,3)3(=f ,则=-)1(f ___________.例2(2017全国二) 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时, 32()2f x x x =+,则(2)f =__________.例3(2012全国二)设函数1sin )1()(22+++=x xx x f 的最大值为M ,最小值为m ,则M +m =______.2. 函数的图象(1)平移变换:“上加下减,左加右减”例4(2010全国二)设偶函数)(x f 满足)0(42)(≥-=x x f x ,则=>-}0)2(|{x f x ( )A.}42|{>-<x x x 或B.}40|{><x x x 或C.}22|{>-<x x x 或D.}42|{>-<x x x 或 (2)对称变换①)()(x f y x f y x -=−−−−→−=轴对称关于; ②)()(x f y x f y y -=−−−−→−=轴对称关于; ③)()(x f y x f y --=−−−−→−=关于原点对称; ④)10(log )10(≠>=−−−−→−≠>==a a x y a a a y a x y x 且且对称关于;⑤奇函数的图象关于坐标原点对称;偶函数的额图象关于y 轴对称. (3)翻折变换★★①|)(|)(x f y x f y x x =−−−−−−−−−−−→−=轴下方图象翻折上去轴上方图象,将保留. 例5(2010全国二)已知函数⎪⎩⎪⎨⎧+-≤<=621100|,lg |)(x x x x f , 若c b a ,,均不相等,且),()()(c f b f a f ==则c b a ⋅⋅的取值范围是( )A.)10,1(B.)6,5( C )12,10( D.)24,20(例6(2011全国二)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那 么函数()y f x =的图象与函数|lg |y x =的图象的交点共有( ) A .10个 B .9个 C .8个D .1个★★★②)||()()(x f y x f y y x f y y =−−−−−−−−−−−−−−−−−−−→−=轴左侧的图象)在轴对称的图象(去掉原于轴右边图象,并作其关保留. 例7(2011全国二)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A. 3y x =B .||1y x =+C .21y x =-+D .||2x y -=例8(2010大纲)直线1=y 与曲线a x x y +-=||2有四个交点,则a 的取值范围是____________.(4)函数图象的几种对称关系★①R x x f ∈),(满足)()()(x f y x a f x a f =⇔-=+图象关于直线a x =为轴对称; 例9(2018全国二)已知)(x f 是定义域为),(+∞-∞的奇函数,满足)1()1(x f x f +=-,若)1(f =2,则=++++)50(...)3()2()1(f f f f ( )A .﹣50B .0C .2D .50②)()()(x f x b f x a f ⇔-=+图象关于2ba x +=为轴对称; ③函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ab x -=对称.如:)(x f y =和)1(x f y -=的图象,关于直线21=x 为轴对称.例10(2015全国二)已知函数),的图像过点(4,1-2)(3x ax x f -=则a =________.二、真题演练1.(2014全国一)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数2.(2015全国一)已知函数⎩⎨⎧>+-≤-=-1),1(log 1,22)(21x x x x f x 错误!未找到引用源。
函数的单调性知识点及例题解析
函数的单调性知识点及例题解析知识点一:基本概念(增减函数、增减区间、最大最小值)知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取D x x ∈21,,且21x x <;②作差:()()21x f x f -;③变形:通常是因式分解或配方;④定号:即判断差()()21x f x f -的正负;⑤下结论:即指出函数()x f 在给定区间D 上的单调性.(2) 利用已知函数的单调性;(现所知道的一次函数,一元二次函数,反比例函数,能够画出图像的函数)(3) 利用函数的图像;x y =,2-=x y ,212-+=x y . (4) 依据一些常用结论及复合函数单调性的判定方法;①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数; 如果)()(x g u u f y ==和单调性相同,那么)]([x g f y =是增函数;如果)()(x g u u f y ==和单调性相反,那么)]([x g f y =是减函数.对于复合函数的单调性,列出下表以助记忆.上述规律可概括为“同增,异减”知识点三:函数单调性的应用利用函数的单调性可以比较函数值的大小;利用函数的单调性求参数的取值范围;附加:①()0≠+=a b ax y 的单调性:0>a 增函数,0<a 减函数;②()0≠=k xk y 的单调性:0>k 减区间()()+∞∞-,0,0,;0<k 增区间()()+∞∞-,0,0,; ③()02≠++=a c bx ax y 的单调性:0>a ,减区间⎥⎦⎤ ⎝⎛-∞-a b 2,,增区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; 0<a ,增区间⎥⎦⎤ ⎝⎛-∞-a b 2,,减区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; ④()x f 在区间A 上是增(减)函数,则0>k 时,()x kf 在A 上是增(减)函数;0<k 时则相反; ⑤若()x f 、()x g 是区间A 上的增(减)函数,则()()x g x f +在区间A 上是增(减)函数;⑥若()0>x f 且在区间A 上是增(减)函数,则()x f 1在A 上是减(增)函数,()x f 在A 上是增(减)函数;1.函数y=x2+4x﹣1的递增区间是什么?分析:根据二次函数的开口方向和对称轴可判断出在对称轴右侧单调递增解:∵函数y=x2+4x﹣1的图象开口向上,对称轴为x=﹣2,∴y=x2+4x﹣1在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增.故答案为(﹣2,+∞).2.函数y=x2﹣6x+5在区间(0,5)上是()A递增函数B递减函数C先递减后递增D先递增后递减分析:本题考察函数单调性的判断与证明,根据二次函数的图象与性质直接进行求解即可解:∵y=x2﹣6x+5⇒y=(x﹣3)2﹣4,∴对称轴为x=3,根据函数y=x2﹣6x+5可知a=1>0,抛物线开口朝上,∴函数图象在(﹣∞,3]上单调递减,在(3,+∞)上单调递增,∴在函数在(0,5)上先递减后递增,故选C3.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.分析:本题考察函数单调性的性质,根据函数单调性和图象之间的关系进行求解即可解:(1)由图象知函数在[﹣2,﹣1],[0,1]上为减函数,则[-1,0],[1,2]上为增函数,即函数的单调递增区间为[-1,0],[1,2],函数单调递减区间为[-2,-1],[0,1]2)由图象知函数在[-3,-1.5],[1.5,3]上为减函数,则[﹣1.5,1.5]上为增函数,即函数的单调递增区间为[-3,-1.5],[1.5,3],函数单调递减区间为[﹣1.5,1.5]4.已知函数f(x)=x2﹣2ax+1在(-∞,1〕上是减函数,求实数a的取值范围分析:如图,先求出对称轴方程,利用开口向上的二次函数在对称轴右边递增,左边递减,比较区间端点和对称轴的大小即可解:因为开口向上的二次函数在对称轴右边递增,左边递减;而其对称轴为x=a,又在(-∞,1〕上是减函数,故须a≥15.已知函数f(x)=x2+4(1﹣a)x+1在[1,+∞)上是增函数,求a的取值范围分析:通过二次函数的解析式观察开口方向,再求出其对称轴,根据单调性建立不等关系,求出a的范围即可解:函数f(x)=x2+4(1﹣a)x+1是开口向上的二次函数,其对称轴为x=2(a﹣1),根据二次函数的性质可知在对称轴右侧为单调增函数,所以2(a﹣1)≤1,解得a≤1.56.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,6)上递减,求a的取值范围分析:由f(x)在区间(﹣∞,6]上递减知:(﹣∞,6]为f(x)减区间的子集,由此得不等式,解出即可.解:f(x)的单调减区间为:(﹣∞,1﹣a],又f(x)在区间(﹣∞,6]上递减,所以(﹣∞,6]⊆(﹣∞,1﹣a],则1﹣a≥6,解得a≤﹣5,所以a的取值范围是(﹣∞,﹣5]7.如图,分析函数y=|x+1|的单调性,并指出单调区间分析:去掉绝对值,根据基本初等函数的图象与性质,即可得出函数y的单调性与单调区间.解:∵函数y=|x+1|=;∴当x>﹣1时,y=x+1,是单调增函数,单调增区间是(0,+∞);当x<﹣1时,y=﹣x﹣1,是单调减函数,单调减区间是(﹣∞,0)8.求函数f (x )=x 4﹣2x 2+5在区间[﹣2,2]上的最大值与最小值分析:本题考察二次函数在闭区间上的最值,菁令t=x 2,可得0≤t ≤4,根据二次函数g (t )=f (x )=x 4﹣2x 2+5=(t ﹣1)2+4 的对称轴为t=1,再利用二次函数的性质求得函数g (t ) 在区间[0,4]上的最值.解:令t=x 2,由﹣2≤x ≤2,可得0≤t ≤4,由于二次函数g (t )=f (x )=x 4﹣2x 2+5=t 2﹣2t+5=(t ﹣1)2+4 的对称轴为t=1,则函数g (t ) 在区间[0,4]上的最大值是g (4)=13,最小值为 g (1)=4,故答案为 13,4.9.证明函数在[﹣2,+∞)上是增函数分析:本题考查的是函数单调性的判断与证明,在解答时要根据函数单调性的定义,先在所给的区间上任设两个数并规定大小,然后通过作差法即可分析获得两数对应函数值之间的大小关系,结合定义即可获得问题的解答 证明:任取x 1,x 2∈[﹣2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=21+x -22+x =22)22)(22(212121+++++++-+x x x x x x =222121+++-x x x x ,因为x 1-x 2<0,21+x +22+x >0,得f (x 1)<f (x 2)所以函数在[﹣2,+∞)上是增函数. 10.函数f (x )=,①用定义证明函数的单调性并写出单调区间;②求f (x )在[3,5]上最大值和最小值分析:①分离常数得到f (x )=,根据反比例函数的单调性便可看出f (x )的单调递增区间为(﹣∞,﹣1),(﹣1,+∞),根据单调性的定义证明:设任意的x 1,x 2≠﹣1,且x 1<x 2,然后作差,通分,说明x 1,x 2∈(﹣∞,﹣1),或x 1,x 2∈(﹣1,+∞)上时都有f (x 1)<f (x 2),这样即可得出f (x )的单调区间; ②根据f (x )的单调性便知f (x )在[3,5]上单调递增,从而可以求出f (x )的值域,从而可以得出f (x )在[3,5]上的最大、最小值.解:①f (x )=112++x x =11)1(2+-+x x =2-11+x ; 该函数的定义域为{x|x ≠﹣1},设x 1,x 2∈{x|x ≠﹣1}, 且x 1<x 2,则:f (x 1)- f (x 2)=112+x -111+x =)1)(1(2121++-x x x x ; ∵x 1<x 2;∴x 1﹣x 2<0;∴x 1,x 2∈(﹣∞,﹣1)时,x 1+1<0,x 2+1<0;x 1,x 2∈(﹣1,+∞)时,x 1+1>0,x 2+1>0;∴(x 1+1)(x 2+1)>0;∴f (x 1)<f (x 2);∴f (x )在(﹣∞,﹣1),(﹣1,+∞)上单调递增,即f (x )的单调增区间为(﹣∞,﹣1),(﹣1,+∞); ②由上面知f (x )在[3,5]上单调递增;∴f (3)≤f (x )≤f (5);∴7/4≤f (x )≤11/6;∴f (x )在[3,5]上的最大值为11/6,最小值为7/411.已知f (x )+2f (x1)=3x .(1)求f (x )的解析式及定义域;(2)指出f (x )的单调区间并加以证明 解:(1)由 f(x)+2f(x 1)=3x ①,用x 1代替x ,得 f(x 1)+2f(x)=x 3 ②;②×2-①,得 3f(x)=x6-3x ,所以 f(x)=x2-x (x ≠0) (2)由(1),f(x)=x 2-x (x ≠0)其递减区间为(-∞,0)和(0,+∞),无增区间. 事实上,任取x 1,x 2∈(-∞,0)且x 1<x 2,则f(x 1)-f(x 2)=12x -x 1-22x +x 2=2121)(2x x x x --(x 1-x 2)=(x 2-x 1)• 21212x x x x +, ∵x 1<x 2<0∴x 2-x 1>0,x 1x 2>0,2+x 1x 2>0,所以 (x 2-x 1)• 21212x x xx +>0,即f (x 1)>f (x 2)故f (x )在(-∞,0)上递减. 同理可证其在(0,+∞)上也递减 12.证明:f (x )=x+21-x 在(3,+∞)上是增函数,在(2,3]上是减函数 分析:利用函数单调性的定义证明.证明:设任意的x 1,x 2∈(3,+∞),且x 1<x 2,则f (x 1)﹣f (x 2)=(x 1+211-x )-(x 2+212-x )=(x 1﹣x 2)•)2)(2(1)2)(2(2121-----x x x x , ∵x 1,x 2∈(3,+∞),且x 1<x 2,∴x 1﹣x 2<0,x 1﹣2>1,x 2﹣2>1,(x 1﹣2)(x 2﹣2)>1,∴(x 1﹣x 2)•)2)(2(1)2)(2(2121-----x x x x <0,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=x+21-x 在(3,+∞)上是增函数. 同理可证,f (x )=x+21-x 在(2,3]上是减函数 【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x 解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2. ∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221-∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2) ∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2), ∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2, 当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出图像。
高一 函数的单调性及其最值知识点+例题+练习 含答案
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。
函数的单调性与极值点例题和知识点总结
函数的单调性与极值点例题和知识点总结在数学的世界里,函数的单调性与极值点是非常重要的概念。
它们不仅在数学理论中有着关键地位,还在实际问题的解决中发挥着巨大作用。
接下来,让我们通过一些具体的例题来深入理解这两个概念,并对相关知识点进行总结。
一、函数单调性的定义函数的单调性指的是函数在其定义域内的增减性。
如果对于定义域内的某个区间内的任意两个自变量的值\(x_1\)、\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就称函数在这个区间上是增函数;反之,如果当\(x_1 < x_2\)时,都有\(f(x_1) >f(x_2)\),那么就称函数在这个区间上是减函数。
二、函数单调性的判定方法1、定义法设\(x_1\)、\(x_2\)是给定区间上的任意两个自变量,且\(x_1 < x_2\),函数\(f(x)\)在给定区间上具有单调性,作差\(f(x_2) f(x_1)\),然后判断差的正负。
2、导数法对函数\(f(x)\)求导,如果\(f'(x) > 0\),则函数在相应区间上为增函数;如果\(f'(x) < 0\),则函数在相应区间上为减函数。
三、函数极值点的定义设函数\(f(x)\)在点\(x_0\)附近有定义,如果对\(x_0\)附近的所有点,都有\(f(x) < f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极大值,记作\(y_{极大值}=f(x_0)\);如果对\(x_0\)附近的所有点,都有\(f(x) > f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极小值,记作\(y_{极小值}=f(x_0)\)。
极大值点和极小值点统称为极值点。
四、函数极值点的判定方法1、第一充分条件设函数\(f(x)\)在\(x_0\)处连续,且在\(x_0\)的某去心邻域内可导。
(1)若当\(x\)在\(x_0\)的左侧邻近时,\(f'(x) > 0\);当\(x\)在\(x_0\)的右侧邻近时,\(f'(x) < 0\),则\(f(x_0)\)为极大值。
函数单调性经典题目含解析及答案
答案: (3,)或[3,)
3、已知 f (x) x2 2x 3, g(x) f (5 x2 ) ,试求 g(x) 的单调区间
解析:复合函数的单调性,当复合函数内外层单调区间不同时,以外
层函数为界限。
答案:单调减区间为 (,2), (0,2) ,单调增区间 (2,0), (2,) 4、函数 y 2 在区间[2,4] 上的最大值和最小值
答案:[0, 1]
5
8、已知 f (x) | x a |在 (,1) 上是单调函数,则 a 的取值范围 解析: f (x) | x |是偶函数,可以画图像利用图像平移的特点来判断 答案: (,1] 9、若 y (2k 1)x b 是 R 上的减函数,则 K 的取值范围。 解析:利用一元一次函数的图像 答案: (, 1)
x2 2x 1, x [0,)
解析:利用函数图像法求单调区间及最小值
答案:函数的单调增区间为 (,0), (0,) ,最小值为 f (0) 1
7、函数 f (x) ax2 2(a 1)x 2 在区间 (,4] 为减函数,则 a 的取值范围
解析:利用一元两次函数的开口方向及对称轴或一元一次函数
x
解析:利用函数单调性
答案:20。 20、函数 f (x) 2x2 mx 1在区间[1,4]上是单调函数,则实数 m 的取值
范围
解析:二次函数对称轴与区间关系
答案: m 4或m 16
21、若 f (x) x2 bx c , f (1) 0, f (3) 0
(1)求 b,c 的值
ax 5, a,x 1 x
x
1
是
R
上的增函数,则
a
的取值范围
函数的单调区间典例精讲
函数的单调区间典例精讲例1:下列函数中,在()0,+∞上为增函数的是()A.()sin 2f x x= B.()xf x xe= C.()3f x x x =- D.()ln f x x x=-+思路:本题只需分析各个函数在()0,+∞上的单调性即可。
A 选项()sin 2f x x =通过其图像可知显然在()0,+∞不单调;B 选项()()'1x x x fx e xe x e =+=+,当()0,x ∈+∞时,()'0f x >,所以()f x 在()0,+∞单调递增;C 选项()23331=333f x x x x ⎛⎫⎛=--+ ⎪⎝⎭⎝⎭‘可得()f x 在3⎛ ⎝⎭单调递减,在,3⎛⎫+∞ ⎪⎝⎭单调递增;D 选项()'111x f x x x -=-+=,可得()f x 在()0,1单调递增,在()1,+∞单调递减。
综上,B 符合条件答案:B例2:函数()()212log 4f x x =-的单调递增区间是()A.()0,+∞ B.(),0-∞ C.()2,+∞ D.(),2-∞-思路:先分析()f x 的定义域:()()240,22,x x ->⇒∈-∞-+∞ ,再观察解析式可得()f x 可视为函数212log ,4y t t x ==-的复合函数,根据复合函数单调性同增异减的特点,可分别分析两个函数的单调性,对于12log y t =而言,y 对t 是减函数。
所以如要求得增区间,则24t x =-中t 对x 也应为减函数。
结合定义域可得()f x 的单调增区间为(),2-∞-答案:D例3:求函数()()32333xf x x x x e-=+--的单调区间(2009宁夏,21题(1))思路:第一步:先确定定义域,()f x 定义域为R ,第二步:求导:()()'232()363333xxf x x x ex x x e --=+--+--()()()3933x x x x e x x x e --=--=--+,第三步:令'()0f x >,即()()330xx x x e---+>第四步:处理恒正恒负的因式,可得()()330x x x -+<第五步:求解()()3,03,x ∈-+∞ ,列出表格x (),3-∞-()3,0-()0,3()3,+∞'()f x -+-+()f x 减增减增例4:求函数()()ln ln 2f x x x x =+-+的单调区间解:定义域()0,2x ∈()()()()(()2'221121=2222x x x x x x x f x x x x x x x x x -+-++--=++==----()0,2x ∈ 20,0x x ∴-<+∴令导数()'0f x >解得:0xx -<⇒<(通过定义域大大化简解不等式的过程)∴例5:求函数()2f x =的单调区间解:()()122'32112ln ln ln 4ln 122x x xx x x f x x x -⋅-==令()'0fx >,即解不等式()ln ln 40x x -<,解得40ln 41x x e <<⇒<<()f x ∴的单调区间为x ()0,1()41,e ()4,e +∞()'f x -+-()f x ↘↗↘例6:求函数()1ln f x x x =--的单调区间思路:函数还有绝对值,从而考虑先通过分类讨论去掉绝对值,在求导进行单调性分析解:()1ln ,11ln ,01x x x f x x x x -->⎧=⎨--<<⎩,当()0,1x ∈时,()1ln f x x x =--为减函数当()1,x ∈+∞时,()'111x f x x x-=-=1x > ()'0f x ∴>()f x ∴在()1,+∞单调递增综上所述:()f x 在()0,1单调递减,在()1,+∞单调递增(1)对于含绝对值的函数,可通过对绝对值内表达式的符号进行分类讨论可去掉绝对值,从而将函数转变为一个分段函数。
高三函数的单调性和最值典型例题解析之一
函数的单调性和最值典型例题解析1. 已知函数()log (2)log (4)a a f x x a a x =-+-(0a >且1a ≠). (1)当1a >时,写出函数()f x 的单调区间,并用定义法证明;(2)当01a <<时,若11()log 48a f x a ⎛⎫≥+ ⎪⎝⎭恒成立,求实数a 的取值范围.【答案】(1)增区间为()2,3a a ,减区间为()3,4a a ;证明见解析;(2)10,2⎛⎤⎥⎝⎦.【解析】(1)求得()f x 的定义域,运用复合函数的单调性,结合对数函数和二次函数的单调性,可得所求单调区间,再由单调性的定义证明;(2)由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.2.已知定义域为R 的函数12()12xxf x -=+.(1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明; (2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【解析】(1)利用证明函数单调性的步骤,取值、作差、变形、等号、下结论即可证明()f x 在R 上的单调性; (2)首先利用定义证明()f x 的奇偶性,再根据奇偶性和单调性脱掉f ,转化为关于t 的一元二次不等式恒成立,分离t 转化为最值问题即可求解. 【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减.(2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数, 所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.3.下列函数中是偶函数,且在区间(0,1)上单调递增的是()A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【解析】利用函数的奇偶性的定义判断奇偶性,根据函数解析式判断单调性. 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意; D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD4. 定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;【公众号:一枚试卷君】 (2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号: ∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 5.已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
函数的单调性典型例题精析
2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==xx x x x 2221123-----+||解 (1)令f(x)=x 2+2x -3=(x +1)2-4.先作出f(x)的图像,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图像翻到x 轴就得到y =|x 2+2x -3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解 当x -1≥0且x -1≠1时,得x ≥1且x ≠2,则函数y =-x . 当x -1<0且x -1≠-1时,得x <1且x ≠0时,则函数y =x -2. ∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x 2-2x +3≥0,得-3≤x ≤1.令u ==g(x)=-x 2-2x +3=-(x +1)2+4.在x ∈[-3,-1]上是在x∈[-1,1]上是. 而=在≥上是增函数.y u 0u∴函数y 的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围.解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪ 若a <0时,无解.∴a 的取值范围是0≤a ≤1.【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4)(2)f(2)f(15)与解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15 时为减函数.∴>,即>.f(15)f(4)f(15)f(2)【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.∵-=∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()()()()()()()12211222121212211222111111+---+---当a >0时,f(x)在(-1,1)上是减函数.当a <0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数.证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2.∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 02112221212121212221221212121222证法一又∵x 1-x 2<0,∴f(x 2)<f(x 1)故f(x)在(-∞,+∞)上是减函数.证法二()x x x x (x x )x x x x 0x x 0x 0x 0x x x x x x 012122212222122122112121222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.12341212得f(x)在(-∞,+∞)上是减函数.证法三()t x x x x x 4x 3x 00x 0x 0t x 03x 0t 0x x x x 0f(x )f(x )f(x)(22121212121212221222121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,+∞上是减函数.)【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2.∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221 ∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2,当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出=+的图像如图.-.y x 2321x说明 1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.。
(精华)函数的单调性经典题型归纳总结讲义老师版(含答案)
课时一:函数的单调性一、单调性定义1、图形描述:对于函数)(x f 的定义域I 内某个区间D 上,若其图像为从左到右的一条上升的曲线,我们就说函数)(x f 在区间D 上为单调递增函数;若其图像为从左到右的一条下降的曲线,我们就说函数)(x f 在区间D 上为单调递减函数。
2、定量描述对于函数)(x f 的定义域I 内某个区间D 上的任意两个自变量的值21,x x , (1)若当___1x <2x 时____,都有_____1()f x <)(2x f ,______则说)(x f 在区间D 上是增函数;(2)若当____1x <2x 时_____,都有___)(1x f >)(2x f ,_______则说)(x f 在区间D 上是减函数。
3、单调性与单调区间若函数y =)(x f 在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)____单调性____,这一区间叫做函数)(x f 的____单调区间____。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
特别提醒:1、函数是增函数还是减函数,是对定义域内某个区间而言的。
有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2x y =(图1),当[)0,x ∈+∞时是增函数,当(],0x ∈-∞时是减函数。
而有的函数在整个定义域上都是单调的。
2、函数的单调区间是其定义域的子集;3、21,x x 应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数)。
二、常见函数的单调性 (1)一次函数:)0(,≠+=k b kx y{上单调递增时,函数在上单调递减时,函数在R k R k 00><(2)反比例函数:xk y ={)上单调递减,),(,时,函数在()上单调递增,),(,时,函数在(∞+∞>∞+∞<00-000-0k k(3)一元二次函数:)0(,2≠++=a c bx ax y上单减,时,在(]2--0aba ∞>上单增在),2[+∞-ab上单增,时,在(]2--0aba ∞<上单减在),2[+∞-ab(4)对勾函数:xa x y +=上单增,时,在),[],a --(0+∞∞>a a上单减在),0(),0,(a a -三、证明函数单调性步骤:⑴设元:设21,x x 是给定区间上任意两个值,且21x x <; ⑵作差:)()(21x f x f -; ⑶变形:(如因式分解、配方等);⑷定号:即0)()(0)()(2121<->-x f x f x f x f 或; ⑸根据定义下结论。
专题09 导数与函数的单调性(解析版)
专题09 导数与函数的单调性一、选择题1.(求导得单调性判断图象)已知是R 上的奇函数,时, ,则函数()f x 0x >()ln 1f x x x =-+()y f x =的大致图象是( )A .B .C .D .【答案】A【解析】由题得当x >0时,, 1xf x x x-'1()=-1=所以函数f(x)在(0,1)单调递增,在(1,+∞)单调递减. 所以排除选项B,C.因为函数是奇函数,所以其图像关于原点对称, 故选A2.(求导得单调性解不等式)若函数,则满足的的取值范()sin 2x x f x e e x -=-+2(21)()0f x f x -+>x 围为( ) A . B . 1(1,2-1(,1)(,)2-∞-+∞ C . D .1(,1)2-1(,(1,)2-∞-⋃+∞【答案】B【解析】函数,定义域为,()sin2xxf x e ex -=-+R 且满足 ,()()sin 2xx f x ee x --=-+-()()sin2x x e e xf x -=--+=-∴为上的奇函数; ()f x R 又恒成立,()'2cos222cos20xxf x e ex x x -=++≥+≥∴为上的单调增函数; ()f x R 又,()()2210f x f x -+>得,()()()221f x f x f x ->-=-∴, 221x x ->-即, 2210x x +->解得或, 1x <-12x >所以的取值范围是. x ()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭故选B .3.(求导得单调性求字母范围)若函数存在单调递增区间,则的取值范围是f (x )=12ax 2+x ln x ―x a ( ) A .B .C .D .(―1e ,1)(―1e ,+∞)(―1,+∞)(―∞,1e )【答案】B【解析】f ′(x )ax+,=ln x ∴f ′(x )>0在x ∈上成立, (0,+∞)即ax+0,在x ∈上成立, ln x >(0,+∞)即a 在x ∈上成立.>―lnxx(0,+∞)令g (x ),则g ′(x ),=―lnxx=―1―lnx x 2∴g (x ),在(0,e )上单调递减,在(e ,+∞)上单调递增, =―lnxx∴g (x )的最小值为g (e )==―lnxx―1e ∴a >.―1e 故选:B .4.(由单调区间求字母范围)若函数,在区间和上均为增函数,()22f x x a x =++x ∈R [)3,+∞[]2,1--则实数的取值范围是( )aA .B . 11,33⎡⎤--⎢⎥⎣⎦[]6,4--C .D .3,⎡--⎣[]4,3--【答案】B【解析】由于函数为上的偶函数, ()y f x =R 因此只需考虑函数在上的单调性即可. ()y f x =()0,∞+由于函数在区间和上均为增函数,()y f x =[)3,+∞[]2,1--所以,函数在区间上为减函数,在区间上为增函数,()y f x =[]1,2[)3,+∞,解得,因此,实数的取值范围是,故选B. 232a∴≤-≤64a -≤≤-a []6,4--5.(构造函数得不等式)已知函数满足条件:当时,,则下列不等式正确的()f x 0x >1()()12f x xf x '+>是()A .B . ()()1342f f +>()()2344f f +>C .D .()()1893f f +<()()2434f f +<【答案】C【解析】构造函数.在恒成立,()()22g x x f x x =- ()2g x x '=⋅()()1102f x x f x ⎛⎫+⋅-> ⎪⎝⎭'x ∈()0,∞+在上是增函数, ∴()g x ()0,∞+ 13<得,∴()()13g g <()()1893f f +<故选.C 6.(单调性与充分必要条件的综合)函数上不单调的一个充分不必要条件()()212ln 132f x ax ax x =-+在,是()A .B .C .D . 1,2a ⎛⎫∈-∞- ⎪⎝⎭11,26a ⎛⎫∈-⎪⎝⎭11,62a ⎛⎫∈⎪⎝⎭1,2a ⎛⎫∈+∞⎪⎝⎭【答案】A【解析】 ()212ln 2f x ax ax x =-+函数所以 2121'()2ax ax f x ax a x x-+=-+=令2()21g x ax ax =-+因为函数上不单调 ()()13f x 在,即在上由实数根 2()21g x ax ax =-+()13,a=0时,显然不成立,a≠0时,只需 ,解得或()()0130g g ∆≥⎧⎨⋅<⎩1a ≥13a <-即a ∈ [)1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭它的充分不必要条件即为一个子集 所以选A7.(构造函数得不等式)定义域为的奇函数,当时,恒成立,若R ()f x (),0x ∈-∞()()0f x xf x '+<,,则( )()()33,1a f b f ==()22c f =--A . B . a b c >>c b a >>C . D .c a b >>a c b >>【答案】D【解析】构造函数()()g x xf x =因为是奇函数,所以为偶函数()f x ()()g x xf x =当时,恒成立,即,所以(),0x ∈-∞()()0f x xf x '+<()'0g x <在时为单调递减函数 ()()g x xf x =(),0x ∈-∞在时为单调递增函数()()g x xf x =()0,x ∈+∞根据偶函数的对称性可知,()()33,1a f b f ==()22c f =--所以 a c b >>所以选D 二、填空题8.(利用导数求单调区间)函数的单调递减区间是_________. 2()2ln f x x x =-【答案】()0,1【解析】,其中,()2212'2x y x x x-=-=0x >令,则,故函数的单调减区间为,填. '0y <()0,1x ∈22ln y x x =-()0,1()0,19.(构造函数得不等式).在单调递增,则的范围是()cos 2(sin cos )f x x a x x =+-0,2π⎡⎤⎢⎥⎣⎦a __________.【答案】)+∞【解析】,则, ()cos 2sin cos f x x a x a x =+-'()2sin 2cos sin f x x a x a x =-++因为函数在上单调增,可得在上恒成立,()f x [0,]2π'()0f x ≥[0,]2π即,令,则,,(sin cos )2sin 2a x x x +≥sin cos x x t +=2sin 21x t =-t ∈所以,因为在上是增函数, 22212()t a t t t-≥=-1t t -t ∈所以其最大值为 a ≥=所以实数的取值范围是. α)+∞三、解答题10.(含参函数求导得单调区间)已知函数. 2()ln ,(0)f x ax x x x x =-->(1)设时,求的导函数的递增区间; 1a =()f x ()f x '=()h x (2)设 ,求的单调区间; ()()f x g x x=()g x (3)若 对 恒成立,求的取值范围.()0f x ≥()0,x ∈+∞a【答案】(1);1(,)2+∞(2)当时,的单调递减区间为,无单调递增区间, 0a ≤()g x (0,)+∞当时,的单调递减区间为,单调递增区间为; 0a >()g x 1(0,)a 1(,)a+∞(3)[1,)+∞【解析】解:(1) 2()ln ,(0)f x ax x x x x =--> 时,,1a =2()ln f x x x x x =--,()21ln 12ln 2f x x x x x '=---=--令, ()()2ln 2h x f x x x '==--则, 121()2x h x x x-'=-=令,得, ()0h x '>12x >的单调递增区间为;()h x ∴1(,)2+∞(2) ()()1ln ,(0)f x g x ax x x x==-->,11()ax g x a x x'-=-=若,则恒成立,在单调递减; 0a ≤()0g x '<()g x (0,)+∞若,令,得,单调递增, 0a >()0g x '>1x a>()g x 令,得,单调递减. ()0g x '<10x a<<()g x 综上所述,当时,的单调递减区间为,无单调递增区间; 0a ≤()g x (0,)+∞当时,的单调递减区间为,单调递增区间为; 0a >()g x 1(0,)a 1(,)a+∞(3)对恒成立可转化为恒成立, ()0f x ≥()0,x ∈+∞ln 1x a x+≥设,,ln 1()x x xϕ+=2ln ()x x x ϕ-'=则当时,,单调递增,(0,1)x ∈()0x ϕ'>()x ϕ当时,,单调递减,(1,)x ∈+∞()0x ϕ'<()x ϕ,max ()(1)1x ϕϕ==,即的取值范围为.1a ∴≥a [1,)+∞。
函数的单调性·典型例题精析
函数的单调性·例题解析1 2.3.】求下列函数的增区间与减区间【例123|2x(1)y=|x-+2x2?x=(2)y|1x?1?|23xx??2(3)y=?224+1).x-+2x-3=(x(1)解令f(x)=轴轴下方的图像翻到x轴及x轴上方部分,把它在x先作出f(x)的图像,保留其在x2 1所示..3-+2x-3|的图像,如图2=就得到y|x 由图像易得:) [1,+∞,-1],递增区间是[-31],[,-1递减区间是(-∞,-3] 分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.(2) .=-xy且x≠2,则函数0≥且x-1≠1时,得x≥1解当x-1 .-2时,则函数y=x1≠-时,得x<1且x≠01当x-<0且x-11) (0,(-∞,0)和∴增区间是)(2,+∞[1,2)和减区间是2 .1≤x≤2x+3≥0,得-(3)解:由-x3-2在x∈[-1,-4.在x∈[3,-1]1]上是+xu令==g(x)=-+-2x3=-(x1)2+上是.而y=u在u≥0上是增函数.∴函数y的增区间是[-3,-1],减区间是[-1,1].22在[-1,+∞a1)x(3a=函数2【例】f(x)ax--+]上是增函数,求实数a的取值范围.上是增函数.,+∞)=0时,f(x)=x在区间[1解当a1?3a,=时,对称轴x当a≠0a2?0 >a ?.1a≤a>0时,由得0<若?1?3a,1≤?a2? 0时,无解.若a<1.∴a的取值范围是0≤a ≤的抛物线,=3=f(x)(x∈R)的图像是一条开口向下且对称轴为x【例3】已知二次函数y 试比较大小:f(4)(1)f(6)与15)(2)f(2)与f(6时,f(x)为减函数,又=3,∴x≥3解(1)∵y=f(x)的图像开口向下,且对称轴是xf(4)f(6)<>4>3,∴3在x≥<15<4,函数f(x)(2)∵对称轴x=3,∴f(2)=f(4),而3时为减函数.∴f(15)>f(4),即f(15)>f(2).ax(a≠0)在区间(-1,1)上的单调性.【例4】判断函数f(x)=2?1x解任取两个值x、x∈(-1,1),且x<x.2121a(xx?1)(x?x)1122=f(x))∵f(x-2212?1x)x?1)((2122∵-1<x<x<1,xx+1>0,x-x>0,x-1<0,x-1<0.11222111(xx?1)(x?x)1212>0∴22?1)(x)(x?121当a>0时,f(x)在(-1,1)上是减函数.当a<0时,f(x)在(-1,1)上是增函数.3+1在(-∞,+∞)上是减函数.x【例5】利用函数单调性定义证明函数f(x)=-证取任意两个值x,x∈(-∞,+∞)且x<x.211222+xx+x))=(x-x)(x这里有三种证法:∵f(x)-f(x11122221222=(x+x)-x+时,0x+xxxx>0x)证法(一当x<212122112122>x0x时,x+x+≥当xx0212121又∵x-x<0,∴f(x)<f(x) 1122 上是减函数.)-∞,+∞(在f(x)故.1312222=(x+x)++xx,这里x+x证法(二)∵x+xx2112122122241与x不会同时为0,否则若x+x=0且x=0,则x=0这与x<x2112122222.x0>矛盾,∴x+xx+2112上是减函数.(-∞,+∞)得f(x)在222223x=-x-4x+x,其判别式Δ(三)令t=x=+xx证法1122111223x =-,若=xΔ>0时,则x=0,那么x≠0,∴t≤0,若Δ=0112222+xx+x>0,从而f(x)<f(x),∴f(x)在(<0,则t>0,即x-∞,121212+∞)上是减函数.1的单调性,并画出它的大致图像.x+【例6】讨论函数f(x)=x解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x、x,且x<x.2211xx 121∵f(x)-f(x)=(x-x),又x-x<0,221211xx21∴当0<x<x≤1或-1≤x<x<0时,有xx-1<0,xx>0,f(x)>f(x) 2211221112∴f(x)在(0,1],[-1,0)上为减函数.当1≤x<x或x<x≤-1时,有xx-1>0,xx>0,f(x)>f(x),∴f(x)在(-2211112212∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)=f(1)=2,当x<0时,f(x)maxmin=f(-1)=-2.由上述的单调区间及最值可大致1的图像如图2.3+-2.x画出y=x说明1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)是分层讨论,要逐步培养.6°例4.例题:已知函数f(x)对任意x,y∈R均满足:f(x+y)=f(x)+f(y);f(1)=2;当且仅当x<0时,f(x)<0,求:当-3≤x≤3时,求f(x)的最大值与最小值。
单调性常考典例好题集含详解
单调性好题一、单选题1.设a R ∈,函数()f x 在区间(0,)+∞上是增函数,则()A .()2724f a a f ⎛⎫++>⎪⎝⎭B .()2724f a a f ⎛⎫++<⎪⎝⎭C .()2724f a a f ⎛⎫++≥⎪⎝⎭D .()2724f a a f ⎛⎫++≤⎪⎝⎭2.设函数()22,2,2x x f x x x ⎧<=⎨≥⎩,若()()121f a f a +≥-,则实数a 的取值范围是()A .(],1-∞B .(],2-∞C .[]2,6D .[)2,+∞3.对任意x ∈R ,函数()f x 表示2313,,4322x x x x -++-+中较大者,则()f x 的最小值为()A .2B .3C .4D .54.若()2()21f x x a x =-+-与1()1a g x x -=+在区间[12],上都是减函数,则a 的取值范围是()A .B .(1,0)(0,2]-⋃C .(]1,2D .[)1,25.函数()23f x x a =+的单调增区间为[)1,+∞,则a 为()A .-1B .1C .23D .23-6.函数在闭区间上有最大值3,最小值为2,的取值范围是()A.B.C.D.7.已知函数,若对上的任意实数,恒有成立,那么的取值范围是()A.B.C.D.8.若函数()(31)5f x k x =-+在R 上是增函数,则k 的范围是()A .1(,)3-∞-B .1(,)3-+∞C .1(,)3+∞D .1(,)3-∞9.已知函数在区间上单调递减,则的取值范围是()A. B. C. D.10.已知函数f (x )=x 2-kx -6在[2,8]上是单调函数,则k 的取值范围是()A .B .C .D .11.函数在区间[2,-+∞)上是增函数,在区间(,2]-∞-上是减函数,则(1)f 等于A .-7B .1C .17D .2512.若函数213,22y x x =-+定义域和值域都是[1,b ],则b 的值为()A .1或3B .1或32C .32D .313.函数2()23f x x x =--在[1,]m -内的值域为[4,0]-,则实数m 需满足()A .3m =B .1m =C .m 1≥D .13m ≤≤14.已知,函数,若,则A .B .C .D .15.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图像可以近似地刻画出火车在这段时间内的速度变化情况的是()A .B .C .D .16.函数y =的单调减区间和图象的对称中心分别为A .(–∞,0),(0,+∞);(1,1)B .(–∞,–1),(–1,+∞);(1,0)C .(–∞,1),(1,+∞);(1,0)D .(–∞,1),(1,+∞);(1,1)17.已知函数()21f x x =-,若0a b <<且()()f a f b =,则b 的取值范围是()A .()0,+∞B .()1,+∞C .(D .()1,218.若函数y=f(x)的图象过点(1,-1),则y=f(x-1)-1的图像必过点()A .(2,-2)B .(1,-1)C .(2,-1)D .(-1,-2)19.已知函数的图象关于点对称,则()A.B .C.D .二、填空题20.函数()211,0128,30x f x x x x x ⎧-<≤⎪=⎨⎪+-≤≤⎩的值域是______.21.已知()()2212f x x a x =+-+在[1,5]上的最大值为()1f ,则a 的取值范围是_______.22.函数()f x =的单调递增区间是_________.23.函数()2f x x x =-的单调减区间为______.24.若一次函数()f x 的定义域为[3,2]-,值域为[2,7],则()f x =________.25.若函数()221f x ax ax =++在[1,2]上有最大值4,则a 的值为________.26.不等式2210x kx -->对一切13x ≤≤都成立.则k 的取值范围_______.27.若对任意[]x 1,3∈-,都有()2ax a 1x 20-++≥成立,则实数a 的取值范围用区间表示为:______________28.若二次函数()2f x mx x m =+-在区间(),l ∞-上是单调増函数,则实数m 的取值范围是______.29.已知函数满足关系:,则的大小关系为___________30.若函数y =f (x +3)的图象经过点P (1,4),则函数y =f (x )的图象必经过点________.三、解答题31.已知函数()(0)1axf x a x =≠-.(1)判断函数()f x 在(1,1)-上的单调性,并用单调性的定义加以证明;(2)若1a =,求函数()f x 在11,22⎡⎤-⎢⎥⎣⎦上的值域.32.已知函数()f x 的定义域是R ,对任意实数x y ,,均有()()()f x y f x f y +=+,。
函数单调性的七类经典题型(可编辑修改word版)
3 单调性类型一:三角函数单调区间⎛ ⎫1. 函数 y = tan x - ⎪ 的单调增区间为.⎝ ⎭⎛5⎫ 【答案】 k - 6 , k + 6 ⎪ , k ∈ Z⎝⎭【解析】试题分析: 因为 k - < x - 2 < k + 3 ,所以 k - 2 < x < k + 6 5, k ∈ Z ,故应填答 6⎛5⎫ 案 k - 6 , k + 6 ⎪ , k ∈ Z .⎝⎭2. 已知函数 f (x )= x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)解析:选 B 设 t =x 2-2x -3, 由 t ≥0, 即 x 2-2x -3≥0, 解 得 x ≤-1 或 x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数 t =x 2-2x -3 的图象的对称轴为 x =1,所以函数 t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数 f (x )的单调递增区间为[3,+∞).3. 设函数 f (x )=Error!g (x )=x 2f (x -1),则函数 g (x )的递减区间是.g (x )=Error!如图所示,其递减区间是[0,1). 答案:[0,1)22 2 2 2类型二:对数函数单调区间1. 函数 f(x)=ln(4+3x -x2)的单调递减区间是()A.(-∞,3] B.[3,+∞) C.(-1,3] D.[3,4)解析:函数 f(x)的定义域是(-1,4),u(x)=-x2+3x +4=-(x -3)2+25的减区间为[3,4), ∵e >1,∴函数 f(x)的单调减区间为[3,4).2 4 22. 函数 f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选 A 由于 f (x )=|x -2|x =Error! 结合图象可知函数的单调减区间是[1,2].类型三:分段函数单调性⎧(a - 2)x -1, x ≤ 11.已知函数 f(x)= ⎨⎩ log a x , x >1 ,若 f(x)在(-∞,+∞)上单调递增,则实数 a 的取值范 围为( ) A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)解析:要保证函数 f (x)在(-∞,+∞)上单调递增,则首先分段函数应该在各自定义域内分别单调递增.2 2 2 2 3若 f(x)=(a -2)x -1 在区间(-∞,1]上单调递增,则 a -2>0,即 a >2.若 f(x)=logax 在区间(1,+∞)上单调递增,则 a >1.另外,要保证函数 f(x)在(-∞,+∞)上单调递增还必须满足(a -2)×1-1≤loga1=0,即 a≤3. 故实数 a 的取值范围为 2<a≤3.答案:C类型四:利用单调性求参数范围1. 已知函数 f( x ) 为定义[2 - a , 3] 在上的偶函数,在[0, 3] 上单调递减,并且f ⎛-m 2 - a ⎫ > f (-m 2 + 2m - 2) ,则 m 的取值范围是 .5 ⎪ ⎝⎭【答案】1- ≤ m < 12【解析】试题分析: 由偶函数的定义可得2 - a + 3 = 0 ,则 a = 5 ,因为m 2 + 1 > 0, m 2 - 2m + 2 = (m - 1)2 + 1 > 0 ,且f (-m 2 - 1) = f (m 2 + 1), f (-m 2 + 2m - 2) = f (m 2 - 2m + 2) ,所以m 2 + 1 < m 2 - 2m + 2 ≤ 3 ,解之得1- ≤ m < 1 .故应填答案1- ≤ m < 1 .2 22. 已知 y =f(x)是定义在(-2,2)上的增函数,若 f(m -1)<f(1-2m),则 m 的取值范围是.1 2解析:依题意,原不等式等价于Error!⇒Error!⇒- <m < .2 3答案:(-1,2)3. 已知函数 f (x )=|x +a |在(-∞,-1)上是单调函数,则 a 的取值范围是.10 10 102 2解析:因为函数 f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得 a ≤1.答案:(-∞,1]a 4.若 f (x )=-x 2+2ax 与 g (x )= +在区间[1,2]上都是减函数,则a 的取值范围是 .x 1解析:∵函数 f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.a 又∵函数 g (x )= +在区间[1,2]上也是减函数,x1∴a >0.∴a 的取值范围是(0,1].5.若函数 f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数 a 的取值范围是.1 2解析:由于 f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有 0<a <3a -1≤1,解得 <a ≤ .2 3答案:(1,2]2 3类型五:范围问题1. 设函数 f (x )是定义在 R 上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式 f (1)<f (lgx )的 x 的取值范围是 .10押题依据 利用函数的单调性、奇偶性求解不等式是高考中的热点,较好地考查学生思维的灵活性.答案 (0,1)∪(100,+∞)xx x x解析 由题意得,f (1)<f (|lg 10|)⇒1<|lg |⇒lg >1 或 lg <-1⇒x >100 或 0<x <1.2. 已知 f (x )是定义在 R 上的偶函数,且在区间(-∞,0)上单调递增.若实数 a 满足 f (2|a -1|)>f (-2),则 a 的取值范围是 .答案(1,3)解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,22 ∴在(0,+∞)上单调递减,f(-2)=f( 2),∴f(2|a-1|)>f( 2),∴2|a-1|< 2=1,21 1 1 1 3 ∴|a-1|< ,即-<a-1< ,即<a< .2 2 2 2 23.设函数f(x)=x|x-a|,若对∀x1,x2∈[3,+∞),x1≠x2,不等式实数a 的取值范围是.答案(-∞,3] f(x1)-f(x2)x1-x2>0 恒成立,则解析由题意分析可知条件等价于f(x)在[3,+∞)上单调递增,又因为f(x)=x|x-a|,所以(a)(a )当a≤0 时,结论显然成立,当a>0 时,f(x)=Error!所以f(x)在-∞,上单调递增,在,a2上单调递减,在(a,+∞)上单调递增,所以0<a≤3.综上,实数a 的取值范围是(-∞,3].类型六:综合题1.(作图)已知f(x)是定义在实数集R 上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于( )A.{x|x≤0或1≤x≤4}B.{x|0≤x≤4}C.{x|x≤4}D.{x|0≤x≤1 或x≥4}解析:画出函数f(x)和g(x)的草图如图,由图可知当f(x)g(x)≥0 时,x 的取值范围是x≤0 或1≤x≤4,即{x|f(x)g(x)≥0}={x|x≤0 或1≤x≤4},故选A.1+1722.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f x(x-1)<0若f x(x-1)<0=f(1),∴Error!2 2 4 4f x(x-1)<0=f(-1),∴Error!( 2 )的解集.(数形结合)解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.又∵y=f(x)在(0,+∞)上是增函数,∴y=f(x)在(-∞,0)上是增函数,( 2 )1 1 1-17即0<x(x-)<1,解得<x< 或<x<0.( 2 )∴x(x-1)<-1,解得x∈∅.∴原不等式的解集是Error!.3.已知函数f(x)=Error!则不等式f(a2-4)>f(3a)的解集为( )A.(2,6) B.(-1,4)C.(1,4) D.(-3,5)解析:作出函数f(x)的图象如,图所示则,函数f(x)在R 上是单调递减的由.f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4,所以不等式的解集为(-1,4).答案:Bf(x)4.如果函数y=f(x)在区间I 上是增函数,且函数y=x在区间I 上是减函数,那么称函数y=3 3 1 3f (x )是区间 I 上的“缓增函数”,区间 I 叫作“缓增区间”.若函数 f (x )= x 2-x + 是区间 I 上2 2 的“缓增函数”,则“缓增区间”I 为() A .[1,+∞) B .[0, 3] C .[0,1]D .[1, 3]1 3解析:因为函数 f (x )= x 2-x + 的对称轴为 x =1,所以函数 y =f (x )在区间[1,+∞)上2 2 f (x ) 13 1 3 1 3是增函数,又当 x ≥1 时, = x -1+ ,令 g (x )= x -1+ (x ≥1),则 g ′(x )= - =x 2-3x 2 2x 2 2x f (x ) 1 3 2 2x 22x 2 ,由 g ′(x )≤0 得 1≤x ≤ ,即函数 x =2x -1+2x 在区间[1, ]上单调递减,故“缓增区间”I 为[1, 3].答案:D6. 若函数 f (x )=Error!(a >0,且 a ≠1)的值域是[4,+∞),则实数 a 的取值范围是.解析:因为 f (x )=Error!所以当 x ≤2 时,f (x )≥4;又函数 f (x )的值域为[4,+∞),所以Error! 解得 1<a ≤2,所以实数 a 的取值范围为(1,2].答案:(1,2]7. 已知函数 f (x )是定义在 R 上的奇函数,且当 x >0 时,f (x )=|x -a |-a (a ∈R ).若∀x ∈R ,f (x +2016)>f (x ),则实数 a 的取值范围是 . 数形结合当 a =0 时,f (x )=x ,x ∈R ,满足条件;当 a <0 时,f (x )=Error!为 R 上的单调递增函数,也满足条件;当 a >0 时,f (x )=Error!要满足条件,需 4a <2 016 ,即 0<a <504, 综上实数 a 的取值范围是 a <504.。
函数的单调性·典型例题精析
2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==xx x x x 2221123-----+||解 (1)令f(x)=x 2+2x -3=(x +1)2-4.先作出f(x)的图像,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图像翻到x 轴就得到y =|x 2+2x -3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解 当x -1≥0且x -1≠1时,得x ≥1且x ≠2,则函数y =-x . 当x -1<0且x -1≠-1时,得x <1且x ≠0时,则函数y =x -2. ∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x 2-2x +3≥0,得-3≤x ≤1.令u ==g(x)=-x 2-2x +3=-(x +1)2+4.在x ∈[-3,-1]上是在x∈[-1,1]上是. 而=在≥上是增函数.y u 0u∴函数y 的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围.解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪ 若a <0时,无解.∴a 的取值范围是0≤a ≤1.【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4)(2)f(2)f(15)与解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15 时为减函数.∴>,即>.f(15)f(4)f(15)f(2)【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.∵-=∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()()()()()()()12211222121212211222111111+---+---当a >0时,f(x)在(-1,1)上是减函数.当a <0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数.证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2.∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 02112221212121212221221212121222证法一又∵x 1-x 2<0,∴f(x 2)<f(x 1)故f(x)在(-∞,+∞)上是减函数.证法二()x x x x (x x )x x x x 0x x 0x 0x 0x x x x x x 012122212222122122112121222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.12341212得f(x)在(-∞,+∞)上是减函数.证法三()t x x x x x 4x 3x 00x 0x 0t x 03x 0t 0x x x x 0f(x )f(x )f(x)(22121212121212221222121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,+∞上是减函数.)【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2.∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221 ∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2,当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出=+的图像如图.-.y x 2321x说明 1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.。
高中数学《函数单调性》最全题型剖析——精品文档
高中数学《函数单调性》最全题型剖析1讨论单调性1.讨论函数f(x)=21xax- (a≠0)在区间(-1,1)内的单调性. 解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=2111x ax --2221x ax -=)1)(1()1)((22212121x x x x x x a --+- ∵x 1,x 2∈(-1,1),且x 1<x 2,∴x 1-x 2<0,1+x 1x 2>0,(1-x 21)(1-x 22)>0于是,当a >0时,f(x 1)<f(x 2);当a <0时,f(x 1)>f(x 2).故当a >0时,函数在(-1,1)上是增函数;当a <0时,函数在(-1,1)上为减函数.2单调性的判断和证明1.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数? 解:导数法就不详细解。
3已知简单简单函数单调性求复合函数单调性1设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.4已知单调性求参数范围1.函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值范围是( ) A.210<<a B.21>a C.a<-1或a>1 D.a>-2解:f (x )=ax +1x +2=a (x +2)+1-2a x +2=1-2ax +2+a . 任取x 1,x 2∈(-2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2a x 1+2-1-2ax 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2).∵函数f (x )=ax +1x +2在区间(-2,+∞)上为增函数,∴f (x 1)-f (x 2)<0.∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >12. 即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 上是单调递减的。
高中数学函数的单调性(解析版)
1.增函数、减函数的定高中数学函数的单调性(解析版)义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接,只能用“,”或“和”隔开.2.常用结论结论1:增函数与减函数形式的等价变形y=f(x)在区间D上是增函数⇔对∀x1<x2,都有f(x1)<f(x2)⇔(x1-x2)[f(x1)-f(x2)]>0⇔f(x1)-f(x2)x1-x2>0;y=f(x)在区间D上是减函数⇔对∀x1<x2,都有f(x1)>f(x2)⇔(x1-x2)[f(x1)-f(x2)]<0⇔f(x1)-f(x2)x1-x2<0.结论2:单调性的运算性质(1)函数y=f(x)与函数y=f(x)+C(C为常数)具有相同的单调性.(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)在公共定义域内,函数y=f(x)(f(x)>0)与()ny f x=和y(4)在公共定义域内,函数y=f(x)(f(x)≠0)与y=1f(x)单调性相反.(5)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(6)若f(x),g(x)均为区间A上的增(减)函数,且f(x)>0,g(x)>0,则f(x)•g(x)也是区间A上的增(减)函数.结论3:复合函数的单调性复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.简记:“同增异减”.结论4:奇函数与偶函数的单调性奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.结论5:对勾函数与飘带函数的单调性对勾函数:f(x)=ax+bx(ab>0)(1)当a >0,b >0时,f (x )在(-∞,-b a ],b a ,+∞)上是增函数,在[-b a ,0),(0b a ]上是减函数;(2)当a <0,b <0时,f (x )在(-∞,-b a ],b a ,+∞)上是减函数,在[-b a ,0),(0b a]上是增函数;飘带函数:f (x )=ax +bx(ab <0)(1)当a >0,b <0时,f (x )在(-∞,0),(0,+∞)上都是增函数;(2)当a <0,b >0时,f (x )在(-∞,0),(0,+∞)上都是减函数;考点一确定函数的单调性或单调区间【方法总结】确定函数的单调性或单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数确定函数的单调性或单调区间.(2)定义法:先求定义域,再利用单调性的定义确定函数的单调性或单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性确定函数的单调性或单调区间.【例题选讲】[例1](1)下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x -x答案A解析对于选项A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数,故选A .(2)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(3)函数f (x )=|x 2-3x +2|的单调递增区间是()A .32,+B .1,32和[2,+∞)C .(-∞,1]和32,2D ∞,32和[2,+∞)答案B解析y =|x 2-3x +2|2-3x +2,x ≤1或x ≥2,x 2-3x +2),1<x <2.如图所示,函数的单调递增区间是1,32和[2,+∞).(4)函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.答案[2,+∞)(-∞,-3]解析令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数.令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).(5)函数y =log 12(x 2-3x +2)的单调递增区间为__________,单调递减区间为____________.答案(-∞,1)(2,+∞)解析令u =x 2-3x +2,则原函数是y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.所以函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴为x =32,且开口向上,所以u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数,而y =log 12u 在(0,+∞)上是单调减函数,所以y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).【对点训练】1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是()A .①②B .②③C .③④D .①④1.答案B解析①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.下列四个函数中,在x ∈(0,+∞)上为增函数的是()A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |2.答案C解析当x >0时,f (x )=3-x 为减函数;当xf (x )=x 2-3x 为减函数,当x时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是()A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)3.答案C解析根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D .4.函数f (x )=|x -2|x 的单调减区间是()A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)4.答案A解析由于f (x )=|x -2|x2-2x ,x ≥2,x 2+2x ,x <2,结合图象可知函数的单调减区间是[1,2].5.设函数f (x ),x >0,,x =0,1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是()A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]5.答案B解析由题知,g (x )2,x >1,,x =1,x 2,x <1,可得函数g (x )的单调递减区间为[0,1).故选B .6.函数y =22311(3x x -+的单调递增区间为()A .(1,+∞)B ∞,34CD .34,+6.答案B 解析令u =2x 2-3x+1=-18.因为u =-18在∞,34上单调递减,函数y在R 上单调递减.所以yx 2-3x +1∞,34上单调递增,即该函数的单调递增区间为∞,34.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)7.答案B 解析设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).8.函数f (x )=ln(x 2-2x -8)的单调递增区间是()A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)8.答案D解析由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).又函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).考点二比较函数值或自变量的大小【方法总结】比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.【例题选讲】[例2](1)设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)答案A 解析因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).(2)已知奇函数f (x )在R 上是增函数.若a =-f b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .c <b <aD .c <a <b答案C解析由f (x )是奇函数可得a =-f f (log 25).因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .(3)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案B解析因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.故选B .(4)已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案C解析由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).(5)若2x +5y ≤2-y +5-x ,则有()A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0答案B解析设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.【对点训练】9.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =b =f (2),c =f (3),则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >c >bD .b >a >c9.答案D解析由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .10.已知函数f (x )在R 上单调递减,且a =33.1,b ,c =ln 13,则f (a ),f (b ),f (c )的大小关系为()A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )10.答案D解析因为a =33.1>30=1,0<b =1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ),故选D .考点三解函数不等式【方法总结】含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.【例题选讲】[例3](1)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是()A B .13,C D .12,答案D解析因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<0≤2x -1<13,解得12≤x <23.(2)已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R )()A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)答案D解析由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).(3)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.答案[0,1)解析因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1.(4)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是()A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)答案B解析2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)>0,-8>0,(x-8)≤9,解得8<x≤9.(5)设函数f(x)=ln(1+|x|)-11+x2,则使得f(x)>f(2x-1)成立的x的取值范围是()AB∞(1,+∞)C-13,D∞答案A解析∵f(-x)=ln(1+|-x|)-11+(-x)2=f(x),∴函数f(x)为偶函数.∵当x≥0时,f(x)=ln(1+x)-11+x2,在(0,+∞)上y=ln(1+x)递增,y=-11+x2也递增,根据单调性的性质知,f(x)在(0,+∞)上单调递增.综上可知:f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔13<x<1.故选A.【对点训练】11.定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且0,则满足f log19x>0的x的集合为________.11.答案(1,3)解析由题意,y=f(x)为奇函数且0,所以0,又y=f(x)在(0,+∞)上单调递增,则y=f(x)在(-∞,0)上单调递增,于是x>0,x>或x<0,x>x>0,x>12x<0,x>-12,解得0<x<13或1<x<3.12.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.12.答案(3,+∞)解析因为f(x)=ln x+x在(0,+∞)上是增函数,2-a>a+3,2-a>0,+3>0,解得-3<a<-1或a>3.又a>0,所以a>3.13.设函数f(x)x,x<2,2,x≥2.若f(a+1)≥f(2a-1),则实数a的取值范围是(B)A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)13.答案B解析易知函数f(x)在定义域(-∞,+∞)上是增函数,∵f(a+1)≥f(2a-1),∴a+1≥2a-1,解得a≤2.故实数a的取值范围是(-∞,2].14.设函数f(x)-x,x≤0,,x>0,则满足f(x+1)<f(2x)的x的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)14.答案D解析因为f (x )-x ,x ≤0,,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D .15.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.15.答案(-∞,-2)解析作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.考点四求参数的取值范围【方法总结】求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.求参数时需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子区间上也是单调的.【例题选讲】[例4](1)如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,那么a 的取值范围是________.答案(-∞,-2]解析二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2.(2)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案[-1,+∞)解析设1<x 1<x 2,∴x 1x 2>1.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-2-a x 2+(x 1-x 2.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1.∴a 的取值范围是[-1,+∞).(3)若函数f (x )=a |b -x |+2的单调递增区间是[0,+∞),则实数a ,b 的取值范围分别为__________.答案(0,+∞),0解析因为|b -x |=|x -b |,y =|x -b |的图象如下:因为f (x )的单调递增区间为[0,+∞),所以b =0,a >0.(4)已知函数f (x )ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是()A .14,12B .14,12C .0,12D .12,1答案B解析由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 0<<1,12a ≥1,a ×12-1-14≥log a 1-1,即0<a <1,0<a ≤12,a ≥14.所以a ∈14,12.(5)已知函数f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是________.答案-12,2解析令t =g (x )=x 2-ax +3a ,易知f (t )=log 12t 在其定义域上单调递减,要使f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,--a 2≤1,g 1>0,a ≤2,a >-12,即-12<a ≤2.【对点训练】16.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()A -14,+∞B .-14,+∞C .-14,0D .-14,016.答案D解析当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,得-14≤a <0.综上所述,得-14≤a ≤0.故选D .17.若f (x )=x +a -1x +2(-2,+∞)上是增函数,则实数a 的取值范围是________.17.答案(-∞,3)解析f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.18.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是(D)A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]18.答案D解析函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].19.已知f (x )-a )x +1,x <1,x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.19.答案32,解析由已知条件得f (x )为增函数,-a >0,>1,2-a×1+1≤a ,解得32≤a <2,∴a 的取值范围是32,20.已知函数f (x )x 2-ax -5,x ≤1,x >1是R 上的增函数,则实数a 的取值范围是()A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)20.答案C解析若f (x )是R -a2≥1,<0,12-a ×1-5≤a1,解得-3≤a ≤-2.21.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)21.答案D解析作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a≥4或a +1≤2,即a ≤1或a ≥4,故选D .22.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.22.解析(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)内单调递增.(2)任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).因为a>0,x2-x1>0,又由题意知f(x1)-f(x2)>0,所以(x1-a)(x2-a)>0恒成立,所以a≤1.所以0<a≤1.所以a的取值范围为(0,1].23.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数.(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.23.解析(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。
函数单调性常考题型含详解
函数单调性常考题型题型一:初等函数中含参数的单调性问题典例1、如果函数 在R 上是增函数,那么a 的取值范围______. 解:根据一次函数的性质,得到,即可求解实数a 的取值范围. 详解:由题意,函数 在R 上是增函数, 根据一次函数的性质,可得,解得即实数a【点睛】本题主要考查了函数的单调性的应用,以及一次函数的性质,其中解答中根据一次函数的性质,列出不等式是解答的关键,着重考查了推理与运算能力. 变式题:1、已知函数在区间上是增函数,则实数的取值范围是______.2、函数在上是增函数,在上是减函数,则_________.3、若函数在区间上是单调函数,则实数a的取值范围是________.4、若函数f (x [m,+∞)上为增函数,则实数m 的取值范围是_____. 题型二、函数单调性与不等式典例2、若函数f(x)为R 上的减函数,则满足f(1)的实数x 的取值范围为________.【解析】先根据单调性化简不等式,再解分式不等式得结果.详解:因为函数f(x)为R 上的减函数,所以由f(1)或故答案为:【点睛】本题考查利用函数单调性解不等式、解分式不等式,考查基本分析求解能力,属基础题.21()y a x b =-+210a ->21()y a x b =-+210a ->()223f x x ax =-++(),4-∞a 2()34f x x mx =-+[5,)-+∞(,5]-∞-(1)f -=2()(24)1f x ax a x =--+(1,5)0x <(,0)[1,)-∞⋃+∞变式题:已知是定义在上的增函数,若,则的取值范围是______________.题型三、复合函数的单调性典例3__________. 【解析】首先求出函数的定义域,令,分别求出的单调区间,再利用符合函数单调性的性质即可求出的单调递增区间. 详解:因为,得,得或, 解得函数的定义域为. 令,在单调递增. 因为函数在单调递增, 在单调递增. 故答案为:【点睛】本题主要考查符合函数的单调性,特别注意先求定义域,利用复合函数“同增异减”为解题的关键,属于容易题.变式题:1、若函数的单调递增区间是,则=________. 2在是增函数,则实数的取值范围是______.3、函数f (x )=x|x|-4x 的单调递增区间是______.题型四、函数单调性概念拓展应用典例4、已知满足对任意都有成立,则实数的取值范围是_________.【解析】由题意,函数在定义域R 上是增函数,故可得到,解出即可.【详解】 ()y f x =()2,2-112f m f m m ()f x 256t x x =-+256t x x =-+()f x 2560x x -+≥(2)(3)0x x --≥2x ≤3x ≥()f x (,2][3,)-∞⋃+∞256t x x =-+[0,)+∞256t x x =-+[3,)+∞[3,)+∞[3,)+∞()2f x x a =+a [)2,+∞a ()()2111a x x f x ax x ⎧-+<=⎨≥⎩12x x ≠a ()()2111a x x f x ax x ⎧-+<=⎨≥⎩02021a a a a ⎧⎪-⎨⎪-+≤⎩>>。
函数的单调性与最值(含例题详解)
函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________.解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5log y u =为()0,+∞ 上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k ⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即:(1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为120x x <<,所以210x x ->,120x x >.故当)12,x x ∈+∞时,()()12f x f x <,即函数在)+∞上单调递增.当(12,x x ∈时,()()12f x f x >,即函数在(上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,-∞单调递增,在()上单调递减. 综上,函数f (x )在(,-∞和)+∞上单调递增,在()和(上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2,则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R,总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x 1-x ,当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4. 三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数,∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1, 即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0, 且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或|m |≥2.温馨提示:最好仔细阅读后才下载使用,万分感谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 函数的单调性·例题解析
【例1】求下列函数的增区间与减区间 (1)y =|x 2+2x -3|
(2)y (3)y =
=x x x x x 2221123
-----+||
解 (1)令f(x)=x 2+2x -3=(x +1)2-4.
先作出f(x)的图像,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图像翻到x 轴就得到y =|x 2+2x -3|的图像,如图2.3-1所示.
由图像易得:
递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1]
(2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解 当x -1≥0且x -1≠1时,得x ≥1且x ≠2,则函数y =-x . 当x -1<0且x -1≠-1时,得x <1且x ≠0时,则函数y =x -2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞)
(3)解:由-x 2-2x +3≥0,得-3≤x ≤1.
令u ==g(x)=-x 2-2x +3=-(x +1)2+4.在x ∈[-3,-1]上是在x ∈[-1,1]
上是
.
而=在≥上是增函数.y u 0u
∴函数y 的增区间是[-3,-1],减区间是[-1,1].
【例2】函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范
围.
解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.
当≠时,对称轴=
,若>时,由>≤,得<≤.
a 0x a 0a 0 3a 10a 131
212a a
a
--⎧⎨⎪
⎩⎪ 若a <0时,无解. ∴a 的取值范围是0≤a ≤1.
【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:
(1)f(6)与f(4)
(2)f(2)f(15)与
解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)
(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15
时为减函数.
∴>,即>.f(15)f(4)f(15)f(2)
【例4】判断函数=
≠在区间-,上的单调性.f(x)(a 0)(11)ax
x 21
-
解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.
∵-=
∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()
()()
()()()()122112221212
122112
2
2111111+---+---
当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数.
【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2.
∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0
2112221212
121212221221212121222证法一
又∵x 1-x 2<0,∴f(x 2)<f(x 1) 故f(x)在(-∞,+∞)上是减函数.
证法二()x x x x (x x )x x x x 0x x 0x 0x 0x x x x x x 0121222122
221
2
2122112
12
1222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.
1234121
2
得f(x)在(-∞,+∞)上是减函数.
证法三()t x x x x x 4x 3x 00x 0x 0t x 03x 0t 0x x x x 0f(x )f(x )f(x)(22121212121
2
12221
2
22121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,
+∞上是减函数.)
【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1
x
解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2.
∵-=-,又-<,f(x )f(x )(x x )
x x x x 012121112x x 22
1
∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2) ∴f(x)在(0,1],[-1,0)上为减函数.
当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.
根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2,当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致
画出=+的图像如图.-.y x 2321
x
说明 1°要掌握利用单调性比较两个数的大小.
2°注意对参数的讨论(如例4).
3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)
4°例6是分层讨论,要逐步培养.
例题:已知函数f(x)对任意x,y∈R均满足:f(x+y)=f(x)+f(y);f(1)=2;当且仅当x<0时,f(x)<0,求:当-3≤x≤3时,求f(x)的最大值与最小值。
解:在方程f(x+y)=f(x)+f(y)中取x=0,y=0,可得f(0)=0,
取y=-x,可得f(x)=-f(-x),即函数f(x)是奇函数,
在f(x)的定义域R内任取x1,x2,使x1<x2,即x1-x2<0
则f(x1-x2)=f(x1)+f(-x2)=f(x1)-f(x2)<0,
故f(x)在定义域R内是单调递增函数,
因为f(1)=2,所以f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=6,f(-3)=-f(3)=-6,
因为f(x)在定义域R内是单调递增函数,故
当-3≤x≤3,求f(x)的最大值为6,最小值-6
证明函数单调性一般用的是定义法证明,
例:证明f(x)=x^m-2/x在(0,正无穷)的单调性
解:设:x1,x2属于(0,正无穷) 且x2>x1
f(x1)-f(x2)=x1-2/x1-x2+2/x2
=(x1-x2)-2/x1+2/x2
=(x1-x2)-2x2+2x1/x1x2
=(x1x2+2)(x1-x2)/x1x2
∵x2>x1
∴x1x2+2>0
x1-x2>0
x1x2>0
∴f(x1)>f(x2)
∴f(x)在(0,正无穷)上为增函数
奇偶性分为奇函数和偶函数
奇函数只需证明f(-x)=-f(x)
偶函数只需证明f(-x)=f(x)
(切记:在判断奇偶性之前要先看定义域,如果定义域关于y轴对称,那么就是奇函数,带入即可算出,如果关于原点对称,那么就是偶函数,带入即可算出,)。