解方程练习题【经典】

合集下载

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)【1】兰波儿广超一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=614.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2 (3)[3(x﹣)+]=5x﹣115.(A 类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x )(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7 (2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

六年级解方程练习题

六年级解方程练习题

经典人教版六年级解方程应用题1、X - 27 X=432、 2X + 25 = 353、70%X + 20%X = 3.64、X ×53=20×41 5、25% + 10X = 54 6、X - 15%X = 687、X +83X =121 8、5X -3×215=75 9、32X ÷41=1210、6X +5 =13.4 11、834143=+X 12、3X=8313、X ÷72=167 14、X +87X=43 15、4X -6×32=216、125 ÷X=310 17、53 X = 7225 18、98 X = 61×511619、X ÷ 356=4526×2513 20、4x -3 ×9 = 29 21、21x + 61x = 422、103X -21×32=4 23、6X +5 =13.4 24、25 X-13 X=31025、4χ-6=38 26、5X=1915 27、218X=15428、X ÷54=281529、32X ÷41=12 30、53X=7225 31、98X=61×511632、X ÷356=4526÷2513 33、 X-0.25=41 34、4X =30%35、4+0.7X=102 36、32X+21X=42 37、X+41X=10538、X-83X=400 39、X-0.125X=8 40、X36 = 4341、X+37 X=18 42、X ×( 16 + 38 )=1312 43、x -0.375x=6544、x ×32+21=4×83 45、X -73X =12 46、5 X -2.4×5=847、0.36×5- 34 x = 35 48、23 (x- 4.5) = 7 49、12 x- 25%x = 1050、x- 0.8x = 16+6 51、20 x – 8.5= 1.5 52、x- 45 x -4= 2153、X +25%X=90 54、 X -37 X= 89方程(1)53χ+2.4χ=6 (2)3.5: χ=5:4.2 (3)1.8χ-χ=2.4(4)x10=8.05.2 (5)6×3-1.8χ=7.2 (6)17-5χ=2.4+351(7)4x =52.1 (8) χ-41χ=83 (9)12.6×65-2χ=8(10)2.1x =6.05.1 (11)53×21-χ=51 (12)32 χ+50%=42(13)4χ-13=31 (14)4.5+8χ=2721 (15)2χ+4.3×3=1421(16) χ×(1-83)=132 (17)χ-41χ=83 (18)321÷4χ=2.5(19)4.0x=65.1 (20)1.6:χ=52:103 (21)3χ-16×3=102(22)x :197=201:31 (23)4χ+7.1=12.5 (24)χ:0.6=31:4 (25)32:73=97:χ (26) 0.3χ-2=9.1 (27)7x =5.36.0(28)21x -41=81 (29) χ: 21=41:81 (30)21: χ=41:81(31)3χ+41χ=2132(32)145:75=0.3: χ (33)131-χ=89.2(34)31:0.25=80%: χ (35)4χ+7.1=12.5 (36)43-21χ=51(37)32χ-21χ+51=32 (38)43:53=χ:12 (39) χ-21χ=107(40) χ:43=12:3 (41)2.4χ-0.45×2=0.3 42)41:81=χ:0.1(43)6.3-5χ=4.1 (44)1.25:5=0.75:χ (45)21:χ=43:6(46)53×2.5-χ=0.6 (47) χ-61χ=125(48)31: χ=51:76列方程解应用题综合练习题(50道)1、 运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

《一元二次方程》经典60题

《一元二次方程》经典60题

中考数学提分冲刺真题精析:一元二次方程一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k 的值.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)7.(2014•遂宁)解方程:x2+2x﹣3=0.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.14.(2014•黄石)解方程:.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)20.(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.21.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.23.(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.24.(2013•漳州)解方程:x2﹣4x+1=0.25.(2013•义乌市)解方程(1)x2﹣2x﹣1=0(2)=.26.(2013•徐州)(1)解方程:x2﹣2x=1;(2)解不等式组:.27.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.28.(2013•无锡)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.29.(2013•上海)解方程组:.30.(2013•山西)解方程:(2x﹣1)2=x(3x+2)﹣7.31.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.32.(2013•日照)(1)计算:.(2)已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.33.(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?34.(2013•乐山)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.35.(2013•兰州)(1)计算:(﹣1)2013﹣2﹣1+sin30°+(π﹣3.14)0(2)解方程:x2﹣3x﹣1=0.36.(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.37.(2013•黄石)解方程组:.38.(2013•杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.39.(2013•广州)解方程:x2﹣10x+9=0.40.(2013•防城港)已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.41.(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2;②选取二次项和常数项配方:,或③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2﹣8x+4的两种不同形式的配方;(2)已知x2+y2+xy﹣3y+3=0,求x y的值.42.(2013•北京)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.43.(2012•淄博)一元二次方程的某个根,也是一元二次方程的根,求k的值.44.(2012•永州)解方程:(x﹣3)2﹣9=0.45.(2012•无锡)(1)解方程:x2﹣4x+2=0(2)解不等式组:.46.(2012•温州)(1)计算:;(2)解方程:x2﹣2x=5.47.(2012•遂宁)解方程:x2+4x﹣2=0.48.(2012•绵阳)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.49.(2012•乐山)已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x1•x2﹣x12﹣x22的最大值.50.(2012•黄石)解方程组:.51.(2012•菏泽)(1)先化简,再求代数式的值.,其中a=(﹣1)2012+tan60°.(2)解方程:(x+1)(x﹣1)+2(x+3)=8.52.(2012•巴中)解方程:2(x﹣3)=3x(x﹣3).53.(2012•安徽)解方程:x2﹣2x=2x+1.54.(2011•武汉)解方程:x2+3x+1=0.55.(2011•无锡)(1)解方程:x2+4x﹣2=0;(2)解不等式组.56.(2011•遂宁)解方程:x(2x+1)=8x﹣3.57.(2011•上海)解方程组:.58.(2011•清远)解方程:x2﹣4x﹣1=0.59.(2011•聊城)解方程:x(x﹣2)+x﹣2=0.60.(2011•黄石)解方程:.真题精析:一元二次方程参考答案与试题解析一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提取公因式(x﹣2),对等式的左边进行因式分解.解答:解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.点评:本题考查了解一元二次方程﹣﹣因式分解法.因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.考点:一元二次方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的3倍”,列出不等式求解即可;(2)根据“自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,且总集资额为20000元”列出方程求解即可.解答:解:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,根据题意得:30000﹣x≥3x,解得:x≤7500.答:最多用7500元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a2+10a﹣3000=0,解得:a=50或a=﹣60(舍去),所以a的值是50.点评:本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.专题:应用题.分析:设AB的长度为x,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.解答:解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.考点:解一元二次方程-因式分解法;解一元一次不等式组.专题:计算题.分析:(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)方程变形得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1;(2),由①得:x≥3;由②得:x>5,则不等式组的解集为:x>5.点评:此题考查了解一元二次方程﹣因式分解法,以及一元一次不等式组,熟练掌握运算法则是解本题的关键.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)设每月的增长率为x,那么2月份的生产收入为100(1+x),三月份的生产收入为100(1+x)2,根据1至3月份的生产收入累计可达364万元,可列方程求解.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,根据不等关系可列不等式求解.解答:解:(1)设每月的增长率为x,由题意得:100+100(1+x)+100(1+x)2=364,解得x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,依题意有364+100(1+20%)2(y﹣3)﹣640≥(90﹣5)y,解得y≥12.故使用新设备12个月后,该厂所得累计利润不低于使用旧设备的累计利润.点评:本题考查理一元二次方程的应用和解题能力,关键是找到1至3月份的生产收入累计可达100万元和不等量关系可列方程和不等式求解.7.(2014•遂宁)解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)考点:一元二次方程的应用;分段函数.专题:销售问题.分析:(1)根据分段函数可以表示出当0<x≤5,5<x≤30时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价﹣进价,由(1)的解析式建立方程就可以求出结论.解答:解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.点评:本题考查了分段函数的运用,一元二次方程的解法的运用,解答时求出分段函数的解析式是关键.9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.专题:判别式法.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.考点:一元二次方程的解;一次函数综合题;正方形的性质;相似三角形的判定.专题:综合题.分析:(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,即可得到A、B两点的坐标;(2)先在Rt△AOB中利用勾股定理求出AB==10,根据线段垂直平分线的性质得到AC=AB=5.再由两角对应相等的两三角形相似证明△ACD∽△AOB,由相似三角形对应边成比例得出=,求出AD=,得到D点坐标(﹣,0),根据中点坐标公式得出C(3,4),然后利用待定系数法即可求出直线CD的解析式;(3)分两种情况进行讨论:①当点Q与点B重合时,先求出BM的解析式为y=x+8,设M (x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点Q与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.解答:解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);(2)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB==10,∵线段AB的垂直平分线CD交AB于点C,∴AC=AB=5.在△ACD与△AOB中,,∴△ACD∽△AOB,∴=,即=,解得AD=,∵A(6,0),点D在x轴上,∴D(﹣,0).设直线CD的解析式为y=kx+b,由题意知C为AB中点,∴C(3,4),∵D(﹣,0),∴,解得,∴直线CD的解析式为y=x+;(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.∵AC=BC=AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点Q与点B或点A重合.分两种情况:①当点Q与点B重合时,易求BM的解析式为y=x+8,设M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点Q与点A重合时,易求AM的解析式为y=x﹣,设M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=10,∴M3(2,﹣3),M4(10,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(10,3).点评:本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,相似三角形的判定与性质,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根与系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解;根与系数的关系.专题:判别式法.分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.解答:解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.14.(2014•黄石)解方程:.考点:高次方程.专题:计算题.分析:先把方程组的第二个方程进行变形,再代入方程组中的第一个方程,即可求出x,把x的值代入方程组的第二个方程,即可求出y.解答:解:,由方程x﹣2y=2得:4y2=15x2﹣60x+60(3),将(3)代入方程5x2﹣4y2=20,化简得:x2﹣6x+8=0,解此方程得:x=2或x=4,代入x﹣2y=2得:y=0或,即原方程组的解为或.点评:本题考查了解高次方程的应用,解此题的关键是能得出关于x定的一元二次方程,题目比较好,难度适中.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m 的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)考点:解一元二次方程-配方法.专题:阅读型.分析:(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.解答:解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.点评:本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设这两年的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.解答:解:设这两年的年平均增长率为x,根据题意得:5000(1+x)2=7200,即(1+x)2=1.44,开方得:1+x=1.2或x+1=﹣1.2,解得:x=0.2=20%,或x=﹣2.2(舍去).答:这两年的年平均增长率为20%.点评:考查了一元二次方程的应用,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法.专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;。

七年级一元一次方程经典题型计算题100道

七年级一元一次方程经典题型计算题100道

七年级一元一次方程经典题型计算题100道解方程(等式的性质)1.x-2=3-2x2.3x-1.3x+5x-2.7x=-12*3-6*43.-x=1-2x4.5=5-3x5.x-5=16.5-3x=8x+17.7x=3+2x8.x-3x-1.2=4.8-5x9.3x-7+4x=6x-210.11x+64-2x=100-9x11.x-7+8x=9x-3-4x12.2x-x+3=1.5-2x13.0.5x-0.7=6.5-1.3x14.-4x+6x-0.5x=-315.-x=-2/5x+116.x-6=-3/5x+317.3/2x=2/318.x=1+x^2/2-x^4/8+1619.x^4/2-1/2=x^2/2+3/420.-x^2/3+x=1解方程(去括号)1.2x-2=42.10x-10=53.-x+3=5x+94.3x-6+1=x-2x+15.5x+10=10x-26.2x-2-x-2=12-3x7.4x+3=2x-2+18.4x+2x-4=12-x9.2x-4-24x+6=3-3x10.4x-8-15x+3=9-x11.1-4x-6=-6x-312.x+1-2x+2=1-3x13.4x-60-3x+21=6x-63-7x14.2x-4=-x-315.4x-8+2x=7+x16.2x-5x-16=3-6x+817.-3x+6+1=4x-2x+118.4x+2x-4=12-x-419.2x-4-12x+3=9-9x20.2y+4-12y+3=9-9y21.4x-60-3x+21=6x-63-7x22.2{3[4(5x-1)-8]-20}-7=123.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-224.x-(x-1)/(2)=(x-1)/(2)25.2x-x-(x-1)=(x-1)/(2)26.(x-1)/3-2[x-1(1/4/5)]+4=127.(x-1)^(-1)=1/21、解方程:1128、6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/82、解方程:1/5x-(1/2)(3-2x)=1/23 化简得:2x+15=46-5x移项得:7x=31解得:x=31/73、解方程:2-(2/3)x=4化简得:(2/3)x=-2移项得:x=-34、解方程:|x+5|=5分两种情况讨论:当x+5=5时,解得:x=0当x+5=-5时,解得:x=-10 5、解方程:6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/86、解方程:(3x-6)/(2/5x-3)=1 化简得:(3x-6)/(2/5x-3)=1移项得:3x-6=2/5x-3移项得:13/5x=3解得:x=15/137、解方程:(x+1)/2-(x+1)/6=1 化简得:(3/6)x+1/2-1=1化简得:(3/6)x=1/2解得:x=18、解方程:2x-11/(0.5x-3)=-6 化简得:(2x-11)/(0.5x-3)=-6 移项得:2x-11=-3x+18移项得:5x=29解得:x=29/59、解方程:0.1x+0.2x/(1-0.3x)=1/0.5-0.2 化简得:0.1x+0.2x/(1-0.3x)=1.25移项得:0.1x(1-0.3x)+0.2x=1.25(1-0.3x) 化简得:0.1x+0.26x-0.375x^2=1.25移项得:-0.375x^2+0.36x-1.25=0解得:x=5/310、解方程:(5-3x)^2=3(3+5x)化简得:25-30x+9x^2=9+15x移项得:9x^2-45x+16=0解得:x=(45±√(45^2-4*9*16))/(2*9)化简得:x=(15±(33))/6解得:x=8/3或x=1/311、解方程:(x-3)/0.2-(2x+5)/0.3=1.6 化简得:1.5x-7.5-6.667x-11.667=1.6 移项得:-5.167x=20.767解得:x=-412、解方程:(2x+1)/4-(x+1)/2=2化简得:0.5x-0.25=2移项得:0.5x=2.25解得:x=4.513、解方程:(y+4)/3-y+5=2-(y-2)/2 化简得:(y+4)/3-y+5=2-(y-2)/2移项得:(y+4)/3+(y-2)/2=3化简得:(2y+8+3y-6)/6=3解得:y=214、解方程:(y-1)/2=2-(y+2)/5化简得:5(y-1)=2(10-3y-6)移项得:8y=33解得:y=33/815、解方程:(x-1)/4+1=2-(x+3)/6化简得:(x-1)/4+(x+3)/6=1化简得:3(x-1)+2(x+3)=12移项得:5x=13解得:x=13/516、解方程:(x-1)/3=(x+1)/5化简得:5(x-1)=3(x+1)移项得:2x=8解得:x=417、解方程:(x-1)/3+1=2-(x+1)/5 化简得:(x-1)/3+(x+1)/5=1化简得:5(x-1)+3(x+1)=15移项得:8x=28解得:x=7/218、解方程:(x-2)/3=(x+2)/4 化简得:4(x-2)=3(x+2)移项得:x=1419、解方程:(1-x^4)-1=(x+1)/2 化简得:-x^4+(x+3)/2=0移项得:x^4-(x+3)/2=0解得:x=-1或x=√220、解方程:(x-1)/3-1=3-(2-x)/2化简得:(x-1)/3+(2-x)/2=4化简得:2(x-1)+3(2-x)=24移项得:-x=5解得:x=-521、解方程:5x-13x^2/4=1/2-(2-x)/3 化简得:20x-39x^2=6-4+2x移项得:39x^2-18x=-2解得:x=2/3或x=-2/1322、解方程:5x+1/6=9x+1/8-(1-x)/3化简得:15x+2=72x+3-(8-24x)/3化简得:45x+6=216x+9+8-24x移项得:-24x=11解得:x=-11/2423、解方程:2x+1/3-(x+2)/6=1/4化简得:12x+4-2(x+2)=3移项得:10x=1解得:x=1/1024、解方程:3x+2(2x-1)/5-1=4-(x+1)/5 化简得:15x+4(2x-1)-5=20-x-1移项得:32x=31解得:x=31/3225、解方程:3x-(2x-1)^2/2=2-(x-2)/5 化简得:6x-(2x-1)^2=20-2(x-2)化简得:6x-4x^2+4x-1=20-2x+4移项得:4x^2-8x+15=0解得:无实数解26、解方程:x-(x-1)^2/2=2-(x+2)/3 化简得:6x-3(x-1)^2=12-(x+2)2化简得:6x-3x^2+6x-6=12-x^2-4x-4移项得:2x^2-16x+22=0解得:x=4-√6或x=4+√627、解方程:x-2=-2x+1/2化简得:3x=5/2解得:x=5/628、解方程:4x-1/3=5x+5/6化简得:3x=11/6解得:x=11/1829、解方程:3x+(x-1)/(x+1)=4-2(x-1) 化简得:3x+((x-1)(x+1))/(x+1)=4-2x+2化简得:3x+(x^2-1)/(x+1)=6-2x化简得:3x(x+1)+(x^2-1)=6x-2x(x+1)化简得:4x^2+5x-1=0解得:x=-1或x=1/430、解方程:x-2x/(x+5/3)=31/3化简得:(x^2+5x/3-2x)/x+5/3=31/3化简得:(x^2-1/3x-31)/x+5/3=0移项得:x^2-1/3x-31=0解得:x=(1/3+√397)/2或x=(1/3-√397)/2 31、解方程:2(x+2)/3-5(x+3)/6=2/3化简得:4(x+2)-5(x+3)=4移项得:-x=1解得:x=-132、解方程:x-2x/(x-2)=5/2化简得:(x^2-2x-5)/x-2=0移项得:x^2-2x-5=0解得:x=1+√6或x=1-√633、解方程:(0.8-9x)/(1.3-3x)+5x-0.4=1.3 化XXX:(0.8-9x)/(1.3-3x)+5x=1.7化简得:0.8-9x+5x(1.3-3x)=1.7(1.3-3x)化简得:-15x^2+10x+23=0解得:x=(-1±√(1-4*(-15)*23))/(2*(-15)) 化简得:x=(-1±√1381)/3034、解方程:(x-1)^2/4+(x-4)^3/27=2 化简得:27(x-1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x-1)^2解得:x=235、解方程:19x-2/x-6-2=0化简得:19x^2-2x-6=0解得:x=1/19或x=336、解方程:1.8-8x/1.2-1.3-3x/(5x-0.4)=1.3化简得:(1.8-8x)(5x-0.4)-(1.3-3x)(1.2-1.3)=1.3(1.2-1.3)(5x-0.4)化简得:-39x^2+31x+6=0解得:x=(1±√(1-4*(-39)*6))/(2*(-39))化简得:x=(1±√937))/7837、解方程:(x+1)^2/4+(x-4)^3/27=2化简得:27(x+1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x+1)^2解得:x=238、将分式化简:frac{0.1x-0.27x+0.18}{2.04}=\frac{x+4}{139}小幅度改写:化简分式得:frac{-0.17x+0.18}{2.04}=\frac{x+4}{139} 41、将方程移项并通分:frac{x^3-1}{2}+\frac{x-1}{2}=0小幅度改写:移项并通分得:frac{x^3+x-2}{2}=042、将方程通分并移项:frac{(y+1)^2}{2}=\frac{y(3-y)-3}{6}小幅度改写:通分并移项得:2y^2+2y-9=043、将方程通分并移项:frac{(x-2)^2}{2}-\frac{3(x-2)}{4}=-1小幅度改写:通分并移项得:2x^2-11x+12=044、将方程通分并移项:frac{x^5+112}{2}-\frac{6(x-4)}{3}=1小幅度改写:通分并移项得:2x^5-3x+70=045、将方程通分并移项:frac{x-4}{x-3}-\frac{2.5}{x-3000}=10\cdot\frac{60}{64}小幅度改写:通分并移项得:frac{-61x+}{64(x-3)(x-3000)}=7549、将方程通分并移项:frac{0.1x}{0.7}-\frac{0.03}{0.7}=\frac{0.9}{0.7}-0.2x-150小幅度改写:通分并移项得:14x+300=0。

五年级数学上册必考《解方程》经典应用题

五年级数学上册必考《解方程》经典应用题

五年级数学上册《解方程应用题》经典题型1.用汽车运一堆煤,原计划8小时运完。

实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。

原计划8小时运多少吨煤?解:设原计划每小时运x吨煤,8x+3=(x+1.5)×68x+3=6x+98x-6x=9-32x=6x=3,则原计划8小时运煤3×8=24(吨)答:原计划8小时运24吨煤。

2.机床厂生产一批机床,原计划每天生产15台,实际每天生产18台,这样比原计划提前3天完成了任务。

这批机床一共有多少台?解:设原计划用x天完成任务,15x=18×(x-3)15x=18x-543x=54x=18,则共有机床15×18=270(台)答:这批机床一共有270台。

3.汽车从甲地开往乙地,原计划10小时到达。

实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。

甲乙两地相距多少千米?解:设原计划每小时行x千米,10x+20=(x+15)×810x+20=8x+12010x-8x=120-202x=100x=50,则甲乙两地相距50×10=500(千米)答:甲乙两地相距500千米。

4.小明看一本书,原计划8天看完。

实际每天比原计划少看4页。

这样,用10天才看完了这本书。

这本书一共有多少页?解:设原计划每天看书x页,则实际每天看书(x-4)页,8x=(x-4)×108x=10x-402x=40x=20,则这本书一共20×8=160(页)答:这本书一共有160页。

5.食堂准备了一批煤,原计划每天烧0.8吨,实际每天比原计划节约了0.1吨,这样比原计划多烧了2天。

这批煤一共有多少吨?解:设原计划烧x天,0.8x=(0.8-0.1)×(x+2)0.8x=0.7×(x+2)0.1x=1.4x=14,则这批煤共有0.8×14=11.2(吨)答:这批煤一共有11.2吨。

人教版七年数学 一元一次方程经典习题

人教版七年数学 一元一次方程经典习题

人教版七年数学一元一次方程经典习题解一元一次方程题精选及答案1.解方程:2x + 1 = 72.解方程:3x - 4 = 2x + 13.解方程:4 - x = 3(2 - x)4.解方程:5x - 3 = 2(x + 4)5.解方程:1) 4(x - 1) - 3(20 - x) = 5(x - 2)2) x - 2 = 2x - 16.解方程:1) 3(x - 1) = 2x + 32) 2x + 5 = 3x + 17.- (1 - 2x) = 3x + 18.解方程:1) 5(x - 1) - 2(x + 1) = 3(x - 1) + x + 12) 4(x - 3) + 3(x + 2) = 2(x - 1)9.解方程:2(x - 3) = 3 - x10.解方程:1) 4x - 3(4 - x) = 22) x - 1 = 2 - (x + 2)11.计算:1) 3(4x - 2) - 2(x + 1) + 5x = 7x - 52) 4(3x - 2) + 3(x + 1) - 5(2x - 1) = 012.解方程:2(3x - 1) = 4x + 313.解方程:1) 2x + 3 = 3x - 22) 3(x - 2) + 2(x + 1) = 5x - 114.解方程:1) 5(2x + 1) - 2(2x - 3) = 6(2) + 22) 2x - 3 = x - 23) [3(x - 2) + 1] / 2 = 5x - 1115.解方程:A类) 5x - 2 = 7x + 8B类) (x - 1) - (x + 5) = -2C类) 2(x - 3) + 3(x + 1) = 5 - 4(x - 1)16.解方程:1) 3(x + 6) = 9 - 5(1 - 2x)2) 2x - 3(5 - x) = 417.解方程:1) 4x - 3(5 - x) = 132) x / 3 - 2 = 1 / 418.计算:1) -42 × (-3)2) 3 / 4 - (1 / 2 - 4 / 5)3) 4x - 3(5 - x) = 24) 2x - 3 = x + 419.计算:1) (1 - 2 - 4) × (-2)2) (3 / 4) ÷ (1 / 2)20.解方程:1) -0.2(x - 5) = 12) 2x + 1 = 3x - 421.解方程:4x - 5 = 3x + 1422.8x - 3 = 9 + 5x23.解下列方程:1) 0.5x - 0.7 = 5.2 - 1.3(x - 1)2) 3x - 2 = -2(x + 1)24.解方程:1) -0.5 + 3x = 102) 3x + 8 = 2x + 625.解方程:2(x + 1) - 3(x - 1) = 126.解方程:1) 10x - 12 = 5x + 152) 4x - 3 = 2x + 727.解方程:1) 8y - 3(3y + 2) = 72) 2(x - 1) + 3(x + 1) = 5 - 4(x - 1)28.当k为5时,式子3k - 2的值比2k + 1少329.解下列方程:I) 12y - 2.5y = 7.5y + 5II) 2(x - 1) + 3(x + 1) = 5 - 4(x - 1)30.解方程:3(x + 2) - 2(2x - 1) = 4 - x一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程。

5年级数学解方程练习题

5年级数学解方程练习题

5年级数学解方程练习题一、一步方程1. 解方程:3x + 4 = 19解:首先,我们可以将方程式写成x的形式。

通过将两边减去4,我们得到:3x = 15接下来,我们可以使用除法,将等式两边都除以3,得到:x = 5所以,方程3x + 4 = 19的解为x = 5。

2. 解方程:7 - 2y = 25解:首先,我们可以将方程式写成y的形式。

通过将等式两边减去7,我们得到:-2y = 18接下来,我们可以使用除法,在等式两边都除以-2,得到:y = -9所以,方程7 - 2y = 25的解为y = -9。

二、两步方程1. 解方程:2x + 5 = 9解:首先,我们可以将方程式写成x的形式。

通过将等式两边减去5,我们得到:2x = 4接下来,我们可以使用除法,将等式两边都除以2,得到:x = 2所以,方程2x + 5 = 9的解为x = 2。

2. 解方程:3y - 4 = 10解:首先,我们可以将方程式写成y的形式。

通过将等式两边加上4,我们得到:3y = 14接下来,我们可以使用除法,在等式两边都除以3,得到:y = 4所以,方程3y - 4 = 10的解为y = 4。

三、多步方程1. 解方程:4x + 3 = 3x - 2解:首先,我们可以将方程式写成x的形式。

通过将等式两边都减去3x,我们得到:x + 3 = -2接下来,我们可以将等式两边都减去3,得到:x = -5所以,方程4x + 3 = 3x - 2的解为x = -5。

2. 解方程:2y + 5 = 3y - 1解:首先,我们可以将方程式写成y的形式。

通过将等式两边都减去2y,我们得到:5 = y - 1接下来,我们可以将等式两边都加上1,得到:6 = y所以,方程2y + 5 = 3y - 1的解为y = 6。

综上所述,这些练习题对于学生练习解方程是非常有帮助的。

解方程是数学中的重要概念之一,通过解这些方程,学生可以提高他们的逻辑思维和解决问题的能力。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

初中解方程经典练习题

初中解方程经典练习题

初中解方程经典练习题解方程是初中数学中的重要内容,也是数学思维能力的考察。

通过解方程,可以培养学生的逻辑思维、分析问题和解决问题的能力。

本文将针对初中解方程的经典练习题进行详细解答,帮助学生加深对解方程的理解和掌握。

以下是一些常见的解方程的类型和对应的练习题。

一元一次方程一元一次方程是最简单的方程类型,形如ax + b = 0。

下面是一些关于一元一次方程的经典练习题。

练习题1:求解方程2x + 10 = 0解析:将方程转化为标准形式:2x = -10,然后通过移项和化简可得x = -5。

练习题2:求解方程3x - 7 = 2x + 4解析:将方程转化为标准形式:3x - 2x = 7 + 4,然后通过合并同类项和化简可得x = 11。

一元一次方程的练习题可根据难易程度逐步增加,包括含有分数、小数和括号的方程等。

通过反复练习,学生对一元一次方程的解法和思路能够得到深刻的理解。

一元二次方程一元二次方程是相对复杂一些的方程类型,形如ax^2 + bx + c = 0。

下面是一些关于一元二次方程的经典练习题。

练习题1:求解方程x^2 - 4x + 3 = 0解析:将方程因式分解得到(x - 1)(x - 3) = 0,然后根据零乘法可得x = 1或x = 3。

练习题2:求解方程2x^2 + 5x - 3 = 0解析:可以使用求根公式x = (-b ± √(b^2 - 4ac)) / 2a来解这个方程。

代入a = 2,b = 5,c = -3后计算得到x = 0.5或x = -3。

一元二次方程的解法主要有因式分解法、配方法和求根公式法。

在解答练习题的过程中,可以适当引导学生选择合适的方法来解决问题,并注意解方程的正确性和求根的实数性质。

其他类型的方程除了一元一次方程和一元二次方程,还有其他类型的方程需要进行解答。

以下是一些常见的例子。

练习题1:求解方程|2x - 1| = 5解析:由绝对值的定义可得2x - 1 = 5或2x - 1 = -5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档