2017概率论与数理统计

合集下载

概率论与数理统计第17讲 9.11

概率论与数理统计第17讲 9.11

概率论与数理统计第17讲(夜大)第二节 抽样分布定义:设n X X ,,1 是来自总体X 的一个样本,),,(1n X X g 是n X X ,,1 的函数,若g 中不含有未知参数,则称),,(1n X X g 是一统计量。

因为n X X ,,1 都是随机变量,而统计量),,(1n X X g 是随机变量的函数,因此统计量是一个随机变量,设n x x ,,1 是相应于样本n X X ,,1 的样本值,则称),,(1n x x g 是),,(1nXX g 的观察值。

下面列出几个常用的统计量。

设n X X ,,1 是来自总体X 的一个样本,n x x ,,1 是这一样本的观察值。

定义样本均值 ∑==ni iXnX 11样本方差 ()⎪⎭⎫ ⎝⎛--=--=∑∑==2121221111Xn X n XXn Sni ini i样本标准差 ()∑=--==ni iXXn S S 12211样本k 阶(原点)矩 ,2,111==∑=k XnA ni k ik样本k 阶中心矩 ()3,211=-=∑=k XX nB ni kik它们的观察值分别为(大写字母变成小写)…。

这些观察值仍然分别称为样本均值、样本方差、样本标准差、样本k 阶(原点)矩以及样本k 阶中心矩。

我们指出,若总体X 的k 阶矩k kEXμ∆存在,则当∞→n 时, ,2,1,=−→−k A k pk μ。

这是因为n X X ,,1 独立且与X 同分布,所以kn k X X ,,1 独立且与kX同分布。

故有k k n k EXEXμ=== 1由大数定律(辛钦定理)知道: ,2,111=−→−=∑=k XnA kpni k ik μ进而由依概率收敛的序列的性质,有:()()k pk g A A g μμ,,,,11 −→−其中g 为连续函数。

这就是矩估计法的理论基础。

统计量的分布称为抽样分布。

在使用统计量进行统计推断时常需要知道它的分布。

当总体的分布函数已知时,抽样分布是确定的,然而要求出统计量的精确分布,一般来说是困难的。

2017-2018概率论与数理统计期末试题(A)答案

2017-2018概率论与数理统计期末试题(A)答案

第1页(共3页)中国矿业大学(北京) 2017-2018 学年 第1 学期《概率论与数理统计》试卷( A 卷)答案和评分标准一、填空题(每小题3分,共30分)1、设,A B 为两个事件,()0.4,()0.8,()0.5P A P B P AB ===,则(|)P B A =____0.75__________ 2、设随机变量X 在(3,3)-上服从均匀分布,关于t 的方程24420t Xt X +++=有实根的概率为______21_________ 3、设随机变量X 的概率密度函数为)(x f X ,则随机变量X e Y 3=的概率密度函数为=)(y f Y _____⎪⎩⎪⎨⎧+∞<<⎪⎭⎫ ⎝⎛其他,00,13ln y y y f X ___________4、如果随机变量X 在)10,0(上服从均匀分布,现在对X 进行4次独立重复观测,至少有3次观测值大于5的概率为____516__________ 5、设随机变量X 服从参数为(0)λλ>的泊松分布,且[(1)(2)]1E X X --=,则λ=______1_________6、设随机变量,X Y 相互独立,且都服从参数2θ=的指数分布,则{max{,}2}P X Y ≤=_____12(1)e --_________7、设随机变量X 的方差为2.5,由切比雪夫不等式估计概率{|()|7.5P X E X -≥≤____245_______ 8、设总体2~(,)X N μσ,12,,,n X X X 是该总体X 的一个样本,1211()n i i i c X X -+=-∑为2σ的无偏估计,则c =_______)1(21-n ___________9、设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129,,X X X 和129,,,Y Y Y 分别来自正态总体X 和Y 的简单随机样本,则统计量Y服从____)9(t ________分布10、设总体),(~2σμN X ,抽取容量16n =的样本n x x x ,,,21 ,经计算得均值,2.5=x 样本标准方差2=s ,则未知参数μ的置信度为0.95的置信区间为_____)266.6,134.4(____________二、(10分)设工厂A 和工厂B 的产品次品率分别为1%和2%.现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属于工厂A 生产的概率.解:设事件A 表示产品来自工厂A ,事件B 表示产品来自工厂B ,事件C 表示抽取到的产品是次品,则%1)|(=A C P ,%2)|(=B C P ,%60)(=A P ,%40)(=B P 5分从而73%2%40%1%60%1%60)|()()|()()|()()|(=∙+∙∙=+=B C P B P A C P A P A C P A P C A P 5分第2页(共3页)三、(12分)学生完成一道作业的时间X 是一个随机变量,单位为小时.它的概率密度函数为21,0()20,cx x x f x ⎧+≤≤⎪=⎨⎪⎩其他(1)确定常数c ;(2)写出X 的分布函数;(3)试求出在20分钟以内完成一道作业的概率.解:(1)由概率密度函数的性质()122011()248c f x dx cx x dx +∞-∞==+=+⎰⎰ 解得21c = 4分(2)由2121,0()20,x x x f x ⎧+≤≤⎪=⎨⎪⎩其他,则()2230001()()217022112xxx x F x f t dt t t dt x x x -∞⎧<⎪⎪⎪==+=+≤≤⎨⎪⎪>⎪⎩⎰⎰ 4分 (3)1117()()3354P X F ≤==4分 四、(10分)设,X Y 是两个相互独立的随机变量,其概率密度函数分别是1,01()0,X x f x ≤≤⎧=⎨⎩其他 ,0()0,y Y e y f y -⎧>=⎨⎩其他 求随机变量Z X Y =+的概率密度函数.解:由卷积公式()()()X Y X Y f z f x f z x dx +∞+-∞=-⎰3分易知仅当010x z x ≤≤⎧⎨->⎩ 即 01x x z≤≤⎧⎨<⎩时被积函数不为零 2分()01()00,0()011zz x X Y z x z f z e dx z e dx z --+--⎧<⎪⎪=≤<⎨⎪⎪≥⎩⎰⎰ 3分即0,0()101(1)1zX Y z z f z ez e e z -+-<⎧⎪=-≤<⎨⎪-≥⎩2分 五、(10分)设(Y X ,)具有概率密度为26,01,01(,),0,xy x y f x y ⎧<<<<=⎨⎩其它 (1)求边缘概率密度(),()X Y f x f y ,并判断,X Y 是否独立; (2) 求条件概率密度)(y x f YX.解:(1)1206201()(,)0X xy dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他12206301()(,)0Y xy dx y y f y f x y dx +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他 显然,(,)()()X Y f x y f x f y =,所以,X Y 相互独立 6分(2)当10<<y 时,⎩⎨⎧<<==取其他值x x x y f y x f y x f Y Y X ,010,2)(),()( 4分第3页(共3页)六、(10分)设二维随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<=其他,010,3),(x y x y x f (1)求随机变量),(Y X 的协方差cov(,)X Y ; (2)求随机变量),(Y X 的相关系数. 解:(1)⎰⎰⎰⎰⎰+∞∞-+∞∞-====103233),()(1040210dx x ydy x dx dxdy y x xyf XY E x4333),()(1030210====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x xf dx X E x83233),()(103010====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x yf dx Y E x则3cov(,)=()()()160X Y E XY E X E Y -= 5分(2)5333),()(104031022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x f x dx X E x513),()(104021022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x f y dx Y E x8034353)()()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D320198351)()()(222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D 193)()(),(==Y D X D Y X Cov ρ 5分 七、(8分)一个复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须84个部件正常工作,求整个系统起作用的概率.解:设X 表示正常工作的部件个数,则~(100,0.9)X B ,由棣莫弗-拉普拉斯定理,近似服从(0,1)N 分布, 4分则()()908490(84)1(84)11220.977233X P X P X P --⎛⎫≥=-<=-<≈-Φ-=Φ= ⎪⎝⎭4分八、(10分)设总体X 的概率密度函数为23,0,(,)0,.x e x f x x θθθ-⎧>⎪=⎨⎪⎩其他其中θ为未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本,(1)求θ的矩估计量;(2)求θ的最大似然估计量.解:(1)由于22320()xxx E X xe dx e dx e d x x x θθθθθθθθ---+∞+∞+∞⎛⎫===-= ⎪⎝⎭⎰⎰⎰, 令X θ=,解得θ的矩估计量为11=ni i X X n θ==∑ 5分(2)似然函数为2311,0(1,2,,)()(,)0,.i n xni i i ii e x i n L f x x θθθθ-==⎧>=⎪==⎨⎪⎩∏∏其他当0(1,2,,)i x i n >=时,()L θ=231inx i iexθθ-=∏,两边取对数31ln ()2ln ln ni i i L x x θθθ=⎡⎤=--⎢⎥⎣⎦∑令11ln ()21210n n i i i i d L n d x x θθθθ==⎡⎤=-=-=⎢⎥⎣⎦∑∑,解得θ的最大似然估计量为12=1ni inX θ=∑ 5分第4页(共3页)。

《概率论与数理统计》 作业解答

《概率论与数理统计》 作业解答

1
,
0, x −3 ≤
< −3 x<1
F
(X
)
=
3
5 6
,
1
≤ 1,
x 2
< ≤
2 x
11、设随机变量 X 的分布函数为 F(X),用 F(X) 表示下述概率: (1)P {X ≤ a} ;(2)P {X = a} ;(3)P {X ≥ a} ;(4)P {X > a} . 解:(1)P {X ≤ a} = F (a) (2)P {X = a} = F (a − 0) (3)P {X ≥ a} = 1 − P {X < a} = 1 − F (a − 0) (4)P {X > a} = 1 − P {X ≤ a} = 1 − F (a)
X ∼ B(4, 0.2)
(2)
P {X
=
0}
=
C240 C245
,
P
{X
=
1}
=
C51C230 C245
,
P
{X
=
2}
=
C52C220 C245
,
统一可写为:
P {X
=
3}
=
C53C210 C245
,
P
{X
=
4}
=
C54 C245
P {X
=
k}
=
C5k C240−k C245
,
k
=
0, 1, 2, 3, 4
3、设随机变量 X 的分布律为
P {X = k} = C · ( 2 )k, k = 1, 2, 3. 3
求 C 的值.
解:由
P {X
=

深圳大学《概率论与数理统计》2017-2018学年第一学期期末试卷A

深圳大学《概率论与数理统计》2017-2018学年第一学期期末试卷A

深圳大学2017-2018学年第一学期期末试卷开/闭卷闭卷课程名称概率论与数理统计A/B卷A 学分3课程编号02811命题人(签字)审题人(签字)年月日题号得分评卷人一二三四五六七八九十基本题总分附加题第一部分基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1.事件表达式A B的意思是()(A)事件A与事件B同时发生(B)事件A发生但事件B不发生(C)事件B发生但事件A不发生(D)事件A与事件B至少有一件发生答:选D,根据A B的定义可知。

2.假设事件A与事件B互为对立,则事件A B()(A)是不可能事件(B)是可能事件(C)发生的概率为1(D)是必然事件答:选A,这是因为对立事件的积事件是不可能事件。

3.已知随机变量X,Y相互独立,且都服从标准正态分布,则X2+Y2服从()(A)自由度为1的χ2分布(B)自由度为2的χ2分布(C)自由度为1的F分布(D)自由度为2的F分布答:选B,因为n个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n的χ2分布。

4.已知随机变量X,Y相互独立,X~N(2,4),Y~N(-2,1),则()(A)X+Y~P(4)(B)X+Y~U(2,4)(C)X+Y~N(0,5)(D)X+Y~N(0,3)答:选C,因为相互独立的正态变量相加仍然服从正态分布,而E(X+Y)=E(X)+E(Y)=2-2=0, D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。

5.样本(X1,X2,X3)取自总体X,E(X)=μ,D(X)=σ2,则有()(A)X1+X2+X3是μ的无偏估计(B)X1+X2+X3是μ的无偏估计322(C)X2是σ2的无偏估计⎛X+X2+X3⎫2(D) 1⎪是σ的无偏估计3⎝⎭答:选B,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率论与数理统计

概率论与数理统计

概率论与数理统计概率论与数理统计概率论与数理统计是研究随机现象数量规律的一门学科。

◆第一章概率论的基本概念1.1 随机试验1.2 样本空间1.3 概率和频率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性◆第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布◆第三章多维随机变量及其分布3.1 二维随机变量3.2 边缘分布3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布◆第四章随机变量的数字特征4.1 数学期望4.2 方差4.3 协方差及相关系数4.4 矩、协方差矩阵◆第五章大数定律和中心极限定理5.1 大数定律5.2 中心极限定理◆第六章数理统计的基本概念6.1 总体和样本6.2 常用的分布◆第七章参数估计7.1 参数的点估计7.2 估计量的评选标准7.3 区间估计◆第八章假设检验8.1 假设检验8.2 正态总体均值的假设检验8.3 正态总体方差的假设检验8.4 置信区间与假设检验之间的关系8.5 样本容量的选取8.6 分布拟合检验8.7 秩和检验概率论第一章概率论的基本概念关键词:样本空间随机事件频率和概率条件概率事件的独立性概率统计中研究的对象:随机现象的数量规律确定性现象:结果确定不确定性现象:结果不确定对随机现象的观察、记录、试验统称为随机试验。

它具有以下特性:可以在相同条件下重复进行事先知道可能出现的结果进行试验前并不知道哪个试验结果会发生§2 样本空间?¤随机事件(一)样本空间定义:随机试验E的所有结果构成的集合称为E的样本空间,记为S={e},称S中的元素e为基本事件或样本点.(二) 随机事件一般我们称S的子集A为E的随机事件A,当且仅当A 所包含的一个样本点发生称事件A发生。

(三)事件的关系及运算事件的关系(包含、相等)例:记A={明天天晴},B={明天无雨}记A={至少有10人候车},B={至少有5人候车}一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}事件的运算交换律:§3频率与概率(一)频率定义:记其中—A发生的次数(频数);n?a总试验次数。

概率论与数理统计

概率论与数理统计

《概率论与数理统计》姓名:黄淑芹学号:1543201000276班级:数学与应用数学E时间:2017年6月概率论与数理统计摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。

生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。

数理统计在人们的生活中也不断的发挥重要的作用,假如没有统计学,人们在收集资料和进行各项的大型的数据收集工作是特别困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,因此统计也是一门特别实用的科学,应该受到大伙儿的重视。

关键词:概率、统计、数学期望、方差、实际问题、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。

随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断差不多成为现代社会一种普遍适用同时强有力的考虑方式。

目前,概率论与数理统计的特别多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中能够看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。

(一)、概率要学习与概率有关的知识,首先要明白事件的定义与分类及与它们有关的运算性质:随机事件在抛掷一枚均匀硬币的试验中,“正面向上”是一个随机事件,可用A={正面向上}表示、【1】随机试验中的每一个估计出现的试验结果称为这个试验的一个样本点,记作ωi。

全体样本点组成的集合称为这个试验的样本空间,记作Ω、即Ω={ω1,ω2,…,ωn,…}。

仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。

《概率论与数理统计 B》习题四答案

《概率论与数理统计 B》习题四答案
2
E Y 2 02 0.7 12 0.3 0.3,D Y 0.3 0.3 0.21
2
E X 2Y E X 2 E Y 0.5 2 0.3 0.1 E 3 XY 3E XY 3 0 0 0.3 0 1 0.2 1 0 0.4 11 0.1 3 0.1 0.3 cov X , Y E XY E X E Y 0.1 0.5 0.3 0.05 cov X , Y D X D Y 0.05 21 21 0.25 0.21
E ( XY ) , E ( X 2 Y 2 ) , D( X ) , D(Y ) 。
4
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 4 3 x 4 x3dx , E Y y 12 y 2 1 y dy , 0 0 5 5 1 X 1 E XY xy 12 y 2 dydx , 0 0 2
Y Pr
0.5
0.5
0 0.7
1 0.3
E X 0 0.5 1 0.5 0.5,E X 2 02 0.5 12 0.5 0.5 ,
D X 0.5 0.5 0.。
1 1 1 2 2 (2) E X x 2(1 x)dx , x 2(1 x)dx ; 0 0 3 6 1 1 2 1 2 2 故 D( X ) E ( X ) ( E ( X )) ( ) 。 6 3 18
解: (1) E X
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案

概率论与数理统计 作业

概率论与数理统计 作业

10、设甲船在 24 小时内随机到达码头,并停留 2 小时;乙船也在 24 小时内独立地随机到达,并停 留 1 小时,试求:(1)甲船先到达的概率 p1;(2)两船相遇的概率 P2. 解:(1)
p1 = P {X < Y } = 0.5
(2)阴影部分的面积除以总面积
p2 = P {X < Y < X + 2} ∪ P {Y < X < Y + 1} = P {X − 1 < Y < X + 2}
f (X, Y ) = 0, 其他
试求:(1)常数 C ;(2)P {0 < x ≤ 1/2} ; (3)P {X = Y 2};
解:(1)
(2)
1
=
∫ +∞
−∞
∫ +∞
−∞
f (X, Y
)dxdy
=
∫1
−1
∫ 1−x2 dx
0
C (x2
+
y)dy
=
∫1
−1
C [x2 y
+
y2 2
]10−x2
dx
=
解:(1)p1
=
4 16
=
1 4
(2)p2
=
10 16
=
5 8
12、设二维随机变量 (X, Y ) ∼ N (0, 1; 0, 1; 0),,计算概率 P {X2 + Y 2 < r}, r > 0
解:
φ(x, y) =
1 e , −
x2
+y2 2

∫ 2π

√ r
P {X2 + Y 2 < r} =

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

概率论与数理统计(完整版)

概率论与数理统计(完整版)
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定义 : 若B1,B2,,Bn一组事件 : 满足
(iB i) B j φ ,i ji,j, 12,.,.n .,,
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
A中 的 基 本 事k件 数 P(A)S中的基本事n件总数 15
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P(Bi |A)P(Bi |A.)
i1
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.

课程代码为04183的概率论与数理统计-试题及答案(2017年4月、10月)

课程代码为04183的概率论与数理统计-试题及答案(2017年4月、10月)

课程代码为04183的概率论与数理统计试题及答案(2017年4月、10月)《概率论与数理统计》2017年4月真题答案及解析一、单项选择题1.【正确答案】 D【答案解析】称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称A与B 的并,记作A∪B或A+B。

本题知识点:随机事件,2.【正确答案】 B【答案解析】由于P{x1<X<x2}=P{x≤x2}-P{x≤x1},所以,P{0.2<x<0.3}=P{x≤0.3}-P{x ≤0.2}=F(0.3)-F(0.2)=0.32-0.22=0.09-0.04=0.05。

本题知识点:分布函数,3.【正确答案】 D【答案解析】积分区域的面积为0.5×0.5=0.25,0.25c=1,得到c=4.本题知识点:二维连续型随机变量的概率,4.【正确答案】【答案解析】本题知识点:二维连续型随机变量的概率,5.【正确答案】【答案解析】本题知识点:期望的性质,6.【正确答案】 D【答案解析】 D(X-1)=D(X)=4。

本题知识点:方差的性质,7.【正确答案】 C【答案解析】 Cov(X,Y)=E(XY)-E(X)E(Y)=-0.3-E(Y)=-0.5,得到E(Y)=0.2。

本题知识点:协方差,8.【正确答案】 A【答案解析】,若对作如下修正:则s2是总体方差的无偏估计。

本题知识点:点估计的评价标准——无偏性,9.【正确答案】 B【答案解析】本题知识点:点估计的评价标准——无偏性, 10.【正确答案】【答案解析】本题知识点:回归方程,。

东华大学《概率论与数理统计》2017-2018学年第二学期期末试卷 B卷

东华大学《概率论与数理统计》2017-2018学年第二学期期末试卷 B卷

东 华 大 学 试 卷2017—2018 学年第 2 学期 课号课程名称 概率论与数理统计 (期末; 闭卷) 适用班级(或年级、专业)一. 填空:(每小题3分,共15分) 1.设41)()()(===C p B p A p ,0)(=AB p ,61)()(==AC p BC p ,则 事件C B A ,,都不发生的概率为 。

2.随机变量T 在[0,6]上服从均匀分布,则方程 012=++x T x 有实根的概率为 。

3.随机变量X 服从参数为λ的泊松分布,且1)]2)(1[(=−−X X E , 则=λ 。

4.设总体X 服从参数为λ的指数分布)(λExp ,n X X X ,,,21 是来自 总体X 的简单随机样本,则=X D 。

5.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令 ∑==161161i i X X ,则统计量σ−164X 服从分布为 (必须写出分布的参数)。

二.选择(每小题3分,共15分)1.以A 表示“概率考试及格,英语不及格”,则A 表示( ))(A 概率考试不及格,英语考试及格;)(B 概率英语考试都及格; )(C 概率英语考试都不及格;)(D 概率不及格或英语及格。

2.如果),163(N ~X ,且43+=X Y ,则DY 等于( ))(A 144 )(B 25 )(C 27 )(D 433.设X 服从参数为91=λ的指数分布,)(x F 为其分布函数, 则=<<}93{X P ( ))(A )93()1(F F − )(B )11(913ee −)(C ee 113− )(D ⎰−93/dx e x4.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设: 216292821X X Y X X Z ++=++= ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F5.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=−n i i X n B 1211)(a X C +)( +10 131)(X a X D ++5三.计算(70分) 1、(8分)已知一批产品中,合格品占90%,检查时一个合格品被认为是次品的概率为0.02,而一个次品被认为是合格品的概率为0.05,现在任取一件检查,求该产品被认为是合格品的概率。

概率论与数理统计教学日历

概率论与数理统计教学日历
临沂大学
教学日历
2016—2017学年度第一学期
课程概率论与数理统计
理学院电子信息工程技术专业2017级专科1、2班
任课教师职称副教授
辅导教师职称
周数16周学时3
讲课48课时实习课时
实验0课时复习考试课时
其他课时总时数课时
采用教材《概率论与数理统计》,盛骤,谢式千等
考核方法考试
制定时间:2016年8月27日
第十七周
第十七周
第十八周
本 日 历 完 成
情 况
(7)
承 担 的 教 学
工 作 量 总 计
(ቤተ መጻሕፍቲ ባይዱ)
从 事 的 科 研 、
编 写 教 材 、实
验 室 建 设 工 作
(9)
其他(进修、外出
兼课、讲学、病修
等情况)
(10)
教研室检查
鉴定意见
(11)
系(院)检查
鉴 定 意 见
(12)
备注
附注:1、本日历一式两份,一份存系(院)办公室,一份由讲授者保存。
6.2 直方图和箱线图
6.3 抽样分布
重点:总体,统计量,卡方分布、t分布和F分布,正态分布的常用抽样定理
难点:卡方分布、t分布和F分布
第十二周
第七章 参数估计
7.1 点估计
重点:点估计的概念,矩估计法和最大似然估计法
难点:最大似然估计法
第十三周
7.2 基于截尾样本的最大似然估计
7.3 估计量的评选标准
重点:两个随机变量和的分布,
M=max(X,Y)及N=min(X,Y)的分布,数学期望定义和计算公式
难点:两个连续型随机变量和的分布,M=max(X,Y)及N=min(X,Y)的分布

概率统计教材(东华大学高教2017版)参考答案

概率统计教材(东华大学高教2017版)参考答案

《概率论与数理统计》(东华大学高教2017版)参考答案第1章1. (2) (4).2. (3).3. (1)不能,样本量过小. (2)样本量达到近200。

4.(1)不合理,总体中浅色衣服比例未知;(2)例如,总体中着深色和浅色衣服人数相同。

5. (2)(3)适当,每个个体被抽到可能性相同。

第2章4. 均值41.75,中位数32.9,标准差=21.955. 9,157. 均值27320.35, 中位数24487, 标准差6503.1, 方差42290357.1. 20000开始,每隔5000一组。

分组后计算,均值26693.55, 中位数22500。

8. 10%分位数 22307, 85%分位数 318279. 第一四分位8,中位数=10, 第三四分位17.510. 相关系数为0.94. 说明交通事故数和死亡人数呈明显的正相关11. R=--0.7638. 受教育年限与脉搏数负相关第3章1 (1) 0,1,2,3(2)000,001,010,011,100,101,110,111 (注:0正,1反)(3)2,3,4,5,6,7,8,9,10,11,12(4)0,1,2,……(5) {(x,y)|x^2+y^2<1}2.(1)7;(2)1,3,4,5,7;(3)3,5,7;(4)1,3,4,5;(5)4,6;(6)1,4 4. (1) 1234A A A A ;(2)41i i A =(3) 1234123412341234A A A A A A A A A A A A A A A A (4) 123412341234123412341234A A A A A A A A A A A A A A A A A A A A A A A A5. 根据加法公式证明6. 根据加法公式证明7. 0.78 . 0.15,0.5,0.1,0.5 9 . 2/9 10. 89/14411. 0.5815 , 0.9819 12. 0.125 , 0.1665 ,0.75 13. 0.04614 . 庄家赢的概率0.5177,0.491415. 一等 ; 二等 ; 三等。

概率论及数理统计

概率论及数理统计

概率论和数理统计是数学中的两个重要分支,它们涉及了随机性、概率、数据分析和模型建立等方面的内容。

以下是对概率论和数理统计的简要介绍:
1.概率论(Probability Theory):
概率论研究的是随机现象的规律和概率的数学基础。

它涉及事件发生的可能性、随机变量的分布、概率分布函数、期望值、方差等。

概率论的应用范围非常广泛,包括风险评估、统计推断、金融建模、物理学中的量子力学、通信系统、生物学中的遗传学等等。

重要的概念包括概率、条件概率、贝叶斯定理、随机变量、概率分布等。

2.数理统计(Mathematical Statistics):
数理统计研究的是如何从收集到的数据中提取信息和做出推断。

它包括描述统计和推断统计两个方面。

描述统计涉及对数据的整理、总结和可视化,例如平均数、中位数、标准差等。

推断统计涉及根据样本数据来推断总体的参数,通过估计和假设检验来进行。

数理统计在科学研究、社会调查、医学试验、工程设计等领域有着重要应用。

概率论和数理统计相互关联,统计分析通常基于概率模型,而概率论提供了数理统计的理论基础。

在现实应用中,概率论和数理统计经常一起被用来解决实际问题,如市场分析、风险评估、医学研究等。

这两个领域在现代科学和工程中具有广泛的应用,为人们从数据中获取有用信息、做出合理决策提供了重要的数学工具和方法。

(完整版)概率论与数理统计知识点总结

(完整版)概率论与数理统计知识点总结

第1章随机事件及其概率在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发生或A 不发生;n次试验是重复进行的,即 A 发生的概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发 生与否是互不影响的。

这种试验称为伯努利概型,或称为 n 重伯努利试验。

用P 表示每次试验A 发生的概率,则A 发生的概率为1 p q ,用Pn (k ) 表示n 重伯努利试验中A 出现k (0 k n)次的概率,P n (k) C :P k q nkk 0,1,2, ,n5第二章随机变量及其分布(1)设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率, 即事件(X=X k )的概率为P(X=x k )=p k , k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。

有时也用分 布列的形式给出: X | x 1,x 2, , x k ,P(X x k ) p 1, p 2,, p k ,。

显然分布律应满足下列条件:p k 1(1 )宀 0 , k1,2,, ( 2 ) k1(14)伯努利 概型散 随变 的 布(2 ) 设F (x )是随机变量X 的分布函数,若存在非负函数f(x ),对任意实数X ,有XF(x) f (x)dx则称X 为连续型随机变量。

f (X )称为X 的概率密度函数或密度函数, 简称概率密度。

密度函数具有下面4个性质:分布仁 f(x) 03、P(X i X X 2) F(X 2)F(X J f (x)dxX i4、P(x=a)=O,a为常数,连续型随机变量取个别值的概率为 0连 型 机 量 续 随变 的 密度2、f(x)dx 1。

第三章二维随机变量及其分布如果二维随机向量 (X , Y )的所有可能取值为至多可 列个有序对(x,y ),则称 为离散型随机量。

设=(X ,Y )的所有可能取值为(人『)(门1,2,),且事 件{= (X i ,y j )}的概率为 p ij,,称P {(X,Y ) (X i ,y j )} P j (i,j 1,2,)为=(X ,Y )的分布律或称为 X 和Y 的联合分布律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛科技大学
二○一七年硕士研究生入学考试试题
考试科目:概率论与数理统计
注意事项:1.本试卷共9道大题(共计16个小题),满分150分;
2.本卷属试题卷,答题另有答题卷,答案一律写在答题卷上,写在该试题卷上或草纸上均无效。要注意试卷清洁,不要在试卷上涂划;
3.必须用蓝、黑钢笔或签字笔答题,其它均无效。
﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡
1、(10分)有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账.求以下事件的概率:
4、(15分)设连续随机变量 的密度函数 是一个偶函数, 为 的分布函数,
求证:对任意实数 ,有:
(1) ;
(2) ;
(3) .
5、(15分)设二维随机变量(X,Y)的概率密度函数为:
(1)求分布函数 ;(2)求概率
6、(15分)设随机变量(X,Y)的概率密度函数为:
(1)试确定常数b;
(2)求边缘概率密度fX(x),fY(y);
(1)进行到了第2轮确定了由谁来付账;
(2)进行了3轮还没有确定付账人.
2、(15分)某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?
3、(20分)甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7.飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.
(3)求函数U=1,X2)具有概率密度函数为:
,0≤x≤2,0≤y≤2
求:E(X1),E(X2),COV(X1,X2), .
8、(20分)设X1,X1,…,Xn为总体X的一个样本,总体的密度函数为:
,其中c>0为已知,θ>1,θ为未知参数.
求:(1)参数θ的矩估计量;(2)参数θ的极大似然估计量.
参考数据:

9、(15分)某化肥厂用自动包装机包装化肥,每包的质量服从正态分布,其平均质量为100 kg,标准差为1.2 kg.某日开工后,为了确定这天包装机工作是否正常,随机抽取9袋化肥,称得质量如下:
99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5.
设方差稳定不变,问这一天包装机的工作是否正常(取α= 0.05)?
相关文档
最新文档