微波技术与天线复习提纲终极整理
微波技术与天线》复习提纲
《微波技术与天线件》复习提纲绪论:01、微波波段的波长和频率。
02、微波波段的特点。
第一章:1、传输线的概念。
2、传输线的分类及其传输电磁波的类型。
3、长线和电长度的概念。
4、传输线的等效电路模型。
5、传输线单位长度的串联阻抗和并联导纳,特性阻抗。
6、均匀传输线方程的定解。
7、传输线的特性参数:特性阻抗,传播常数,相速度和相波长。
8、传输线的输入阻抗,四分之一波长变换性,半波长的重复性。
9、长线上的阻抗能否直接测量?10、反射系数,终端反射系数。
11、驻波系数和行波系数,波腹点和波节点的位置,相邻波节(腹)点的距离,相邻波节点与波腹点的距离。
12、反射系数与驻波比的关系,反射系数的测量。
13、无耗长线的行波工作状态:条件,电压和电流的分布,输入阻抗,反射系数,驻波比,传输功率,在反射系数圆上的位置。
14、无耗长线的驻波工作状态:条件,电压和电流的分布,阻抗的分布,波腹(节)点位置,反射系数,驻波比,传输功率,在反射系数圆上的位置。
15、行驻波工作状态:条件,电压和电流的分布,阻抗的分布,在反射系数圆上的位置。
16、长线上传输功率与效率。
17、阻抗匹配的概念,共轭匹配和无反射匹配。
18、在圆波导中存在的波型和不存在的波型。
19、圆波导中的最低波型和该模式应用的场合。
20、带状线和微带线的结构及其传输的波型。
21、课堂上讲过的例题。
第二章:1、微波传输系统的组成。
2、端口和参考面。
3、归一化阻抗,归一化电压和归一化电流的概念,单位。
4、微波网络的特性。
5、双端口网络的Z和Y参数矩阵,性质(无耗,互易,对称)。
6、双端口网络的A参数矩阵,性质(无耗,互易,对称),应用。
7、S参数矩阵,各参数含义,性质。
8、各参数间的关系。
9、双端口网络S参数的讨论。
10、输入反射系数和负载反射系数的关系。
11、S参数的简单测量。
12、双口网络的功率增益。
13、双端口网络的工作特性参数。
14、矩形波导中的不连续性:膜片(电容和电感),谐振窗,销钉(电容和电感),波导阶梯(E面和H面)的结构及等效元件。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义: 微波就是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率范围:300MHz~3000GHz ,其对应波长范围就是1m~0、1mm●微波的特点(要结合实际应用) :似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压与输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Zin(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态( 要会判断 )1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压与电流振幅不变▪电压与电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:就是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源与传输线就是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15与P17)●阻抗圆图的应用(*与实验结合)史密斯圆图就是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|ej(Φ1-2βz)= |Γ1|ejΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz就是z处反射系数的幅角。
微波技术复习提纲
微波技术与天线复习提纲第一章 绪论第二章 传输线理论1 无损耗传输线方程解的表达式及物理意义。
2 长线理论中,有哪三套参量来描述传输状态?它们之间有何关系?3 传输线的三种工作状态及其特点。
4 相速和相波长的计算公式。
5 用阻抗圆图(或导纳圆图)计算传输线的输入阻抗、反射系数、驻波系数等参量,使用圆图应注意的问题。
6 什么是特性阻抗0Z 、波阻抗η、输入阻抗i Z ?第三章 微波传输系统1 TE 波、TM 波、TEM 波的特点及波阻抗表达式。
2 色散波与无色散波的特性比较,以及填充介质后公式的修改。
3 在色散系统中,例如波导中,什么叫工作波长λ、截止波长c λ和波导波长g λ?它们之间有何区别和联系?4 矩形波导中的波形如何标法?波型指数m 、n 有何意义?TE 、TM 波的m 、n 有何规定?5 简要说明矩形波导中,10TE 波场结构的特点及传输参量。
6 矩形波导的传输条件是什么?7 圆波导中波型指数n 、i 的意义及截止波长表达式。
8 同轴线中主型波是什么?为保证单模传输,应如何选择同轴线尺寸?第四章 微波网络1矩形波导10TE 波的等效阻抗公式。
2 S 矩阵、A 矩阵是如何定义的?S 矩阵各矩阵元的物理意义是什么?3 互易网络、无损耗网络、互易无损耗网络的S 矩阵的性质。
4 表4-2,简单双口网络的A 矩阵、[]A 矩阵。
5 当n 口网络参考面移动时,网络[S]的矩阵如何变化?6 n 级双口网络的[A]有何性质?第五章 微波元件1 匹配负载的功能及传输。
2 分析同轴线S 型扼流活塞的工作原理。
3 什么叫E-T 、H-T 接头,有何特性?4 什么叫魔T ,有哪些特性?魔T 的散射矩阵的推导,有何应用?5 微波电桥、同轴S 型扼流活塞、旋转极化式衰减器的工作原理。
微波技术复习提纲
微波技术与天线复习提纲第一章均匀传输线1、微波传输线微波传输线试用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定的方向传输,因此又称为导波系统,其所引导的电磁波又成为导行波。
2、均匀传输线一般将截面尺寸、形状、媒质分介、材料及边界条件都不变的导行波系统称为规则导行系统,又称为均匀传输线。
微波传输线的分类:①双导体传输线②波导③介质传输线3、均匀传输线方程4、均匀传输线方程的解传输线边界条件通常有以下三种:5、传输线工作特性参数传输线工作特特性参数主要有特性阻抗,传播常数,相速与波长。
特性阻抗:将传输线上导行波的电压和电流值比定义为传输线的特性阻抗,用Z0来表示。
它与工作频率有关,由传输线自身分布参数决定,与负载和电源无关。
传播常数:相速Vp与波长:传输线上相速定义为电压电流入射波(或反射波)等相位面沿传播方向的传输速度,6、传输状态参量传输线状态参量主要有输入阻抗,反射系数,驻波比等。
反射系数:定义传输线上任意一点z处的反射波电压(或电流)与入射电压(或电流)之比为电压(电流)反射系数。
入射阻抗与反射系数的关系:当z=0时,Γ(0)=Γ1,则终端负载阻抗Z1与终端反射系数Γ1的关系为:Γ1=(Z1-Z0)/(Z1+Z0)驻波比:ρ=|U|max /|U|min其行波系数为:K=1/ρ7、行波状态行波状态就是反射系数的传输状态,此时的反射系数Γ1=0,而负载阻抗等于传输线的特性阻抗,即Z1=Z0,也可以称此时的负载为匹配负载。
8.纯驻波状态纯驻波状态就是全反射状态,即终端反射系数Γ1=1。
9.行驻波状态10.传输线上的损耗可分为回波损耗和插入损耗回波损耗:(α=0),插入损耗:(α=0)..11.阻抗匹配分别是负载阻抗匹配,源阻抗匹配,共轭阻抗匹配。
负载阻抗匹配是负载阻抗等于传输线的特性阻抗的情形;电源内阻等于传输线特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
微波技术与天线复习要点
第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 300M Hz ~3000GHz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
2.微波具有如下主要特点:1) 似光性;2) 穿透性;3) 宽频带特性与与信息性;4) 热效应特性;5)散射特性;6)非电离特性;7)抗低频干扰特性;8)视距传输特性;9)分布参数的不确定性;10)电磁兼容和电磁环境污染。
3.微波技术的主要应用:1) 在雷达上的应用;2) 在通讯方面的应用;3) 在科学研究方面的应用;4) 在生物医学方面的应用;5) 微波能的应用。
4.长线与短线长线:指几何长度L 与工作波长λ可相比拟的传输线,采用分布参数电路描述。
电长度满足L/λ≥0.05的传输线 称为长线。
短线:指几何长度L 与工作波长λ相比可以忽略的传输线,采用集总参数电路描述。
电长度满足L/λ<0.05的传输线 称为短线。
5.传输线分类:双导体传输线;封闭金属波导;介质传输线。
6.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
微波技术与天线复习提纲终极整理
微波技术与天线”课程复习提纲一、微波基本概念21.了解微波的基本概念:频率、波长等32.了解微波的主要特性3二、传输线基本理论41.了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等)传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。
42.掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。
63.熟悉圆图的基本特点(特殊点、线、半圆、圆)64.掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。
6三、微波传输线71.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。
72.掌握各种传输线特性参量及其运用。
83.了解波导传输线的截止波长分布图及其应用。
9四、微波网络参量101.了解散射参量S 参量和转移参量A 参量的基本概念102.了解S 散射矩阵和A 转移矩阵各参量的意义103.了解S 参量和A 参量的基本特性及应用114.掌握简单双端口网络S 参量和A 参量的确定11五、微波谐振器111.了解微波谐振腔的基本概念及基本参数112.了解三种同轴腔的结构和特点以及谐振波长的确定113.掌握矩形腔和圆柱腔的特点及谐振波长的确定。
124.了解的环行腔的特点及谐振波长的确定。
15六、微波元器件171.了解阻抗与连接分支元件的结构,特点及工作原理。
172.了解波的激励与耦合的基本方法,熟练掌握激励和耦合元件的结构与工作原理。
22 3.了解微波铁氧体的三种主要效应(铁磁谐振、场移效应、法拉第旋转)及其相应器件(隔离器、环行器)的结构和工作原理。
23七、天线251.理解、掌握天线的常用参量及计算252.了解常见天线的基本类型,结构和特点27八、微波测量(实验)291.了解微波基本实验测量系统组成292.了解微波基本参量的测量方法。
29附录301.作业30、微波基本概念1.了解微波的基本概念:频率、波长等⑴微波常用单位:frequency : (频率单位) GHz / kMHz ,wavelength : (波长单位) M-mm2 .了解微波的主要特性⑴类光性可见光--电磁波-- 直线传播,反射,侥射,折射等微波-- 电磁波-- 基本直线传播,较强的反射能力,较弱的侥射能力,直线传播,较强反射定向、定位、现代大多数雷达均为微波雷达⑵穿透性微波有几个特殊波段(8mm,3mm )的电磁波不受高空大气游历层的反射,可穿透电离层进出外层空间-------------------- 宇宙窗口⑶量子特性⑷High Power Microwave / HPM ( 高功率微波 /射频,电磁,微波弹)⑸宽频特性⑹渡越时间效应与传播延时效应 ⑺类声性⑻热效应 Heat Efect ⑼非热效应二、传输线基本理论1 . 了解传输线的特性参量 (反射系数、驻波比、驻波相位、输入阻抗、输入导纳等)输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。
电子科大微波技术与天线复习
微波技术与天线复习1.微波的频率范围2.传输线方程3.传输线方程在终端条件下的解4.色散特性的定义5.传输线上波长的表达式6.输入阻抗与反射系数的关系式7.电压驻波比语电压反射系数的关系式8.电压驻波比与电压反射系数的取值范围9.无耗均匀传输线的三种工作状态及特点10.四分之一波长阻抗的变换性11.二分之一波长的重复性12.输入电阻,反射系数(包括终端电压反射系数),驻波系数,传播常数,衰减常数,相位常数,功率,相速,相波长,特性阻抗的定义及计算(无耗状态下的)13.会用圆图分析阻抗匹配(终端负载为纯电阻和非纯电阻。
)14.阻抗圆图中及导纳圆图中特殊的点线面,及旋向15.会用圆图求12中的参数(步骤)16.平行双线的主模,同轴线的主模及场结构,相速,相波长,特性阻抗与真空中的不同处17.矩形波导主模,主模传播条件,截止波长,截止波数,相速,波阻抗的计算公式,判定波导中存在的模式,相速,相波长,特性阻抗与真空中的不同处,这种传输线的特点,TE10模的场结构及主模工作时波导表面电流的结构图。
18.圆波导主模(及其截止波长)及主模传播条件,相速,相波长,波阻抗的计算公式,三种主要模式及其截止波长。
19.模式简并和极化间并。
20.带状线、微带线主模及结构图。
21.二端口微波网络参数的定义及物理意义及简单网络的参数求解。
22.各种元器件的结构图及原理。
波导连接元件:抗流连接的原理及结构图,分支接头:E-T分支,H-T分支,双T分支的结构,场结构及特性,匹配负载的原理及结构,衰减器的原理及结构,电抗元件的作用及结构图,短路活塞的结构及原理,定向耦合器的指标定义及公式,波导双孔定向耦合器的结构图及工作原理23.电流元的定义及远区场辐射特性,电流元的方向图函数及方向图,半功率波瓣宽度及方向性系数,半波振子及其全波振子天线的方向图函数及方向图,半功率波瓣宽度及方向性系数、辐射电阻24.方向图函数,方向图,主向,主瓣,副瓣电平,栅瓣,主瓣宽度,主瓣张角,方向性系数和增益的定义及计算方法25.极化定义及分类26.辐射功率,辐射电阻的定义27.振子的粗细对天线特性的影响28.波长缩短效应,末端效应29.天线的有效长度的定义及计算方法30.方向图乘积原理31.由半波振子所构成的阵列天线的分析与计算(包括含地面的情况),例题及作业32.端射阵、侧射阵及斜射阵的定义及原理,相控阵天线的概念及原理33.平行于地面线天线的镜像,垂直于地面天线的镜像34.引向天线、对数周期天线、螺旋天线、缝隙天线、微带贴片天线、旋转场天线、抛物面天线、双反射面天线、单脉冲天线的结构及工作原理及优缺点。
微波技术与天线复习提纲 简答题及答案
1. 为什么空心的金属波导内不能传播TEM 波?空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
2. 说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
3. 列出微波等效电路网络常用有 5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
答:(1)阻抗参量当端口②开路时,I 2=0,网络阻抗参量方程变为:221111221112112111I I U Z I U Z I U U Z Z I I ======则当端口①开路时, I 1=0,网络阻抗参量方程变为:(2)导纳参量当端口②短路时,U 2=0,网络导纳参量方程变为:当端口①短路时,U 1=0,网络导纳参量方程变为:(3)转移参量当端口②开路时,I 2=0,网络转移参量方程变为:当端口②短路时,U 2=0,网络转移参量方程变为:A 11:端口②开路时,端口①到端口②电压传输系数的倒数; A 21:端口②开路时,端口①与端口②之间的转移导纳;111122222212122222I I U Z I U Z I U U Z Z I I ======则11122122Y Y Y Y Y ⎡⎤=⎢⎥⎣⎦2211112211121121110UUI Y U I Y U I I Y Y U U ======则11112222221212222200U U I Y U I Y U I I Y Y U U ======则11112221212222U A A U U A I A A I I ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦22111212121111212200I I U A U I A U U I A A U U ======则()()()()2211221222111222220UUU A I I A I U I A A I I ===-=-==--则A 22:端口②短路时,端口①到端口②电流传输系数的倒数; A 12:端口②短路时,端口①与端口②之间的转移阻抗。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率*围:300MHz~3000GHz ,其对应波长*围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)2、λ/4变换性:Z in(z)-Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)=|Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
微波技术与天线复习知识要点资料讲解
《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗【注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)、均匀无耗传输线的三种传输状态(要会判断)行波驻波行驻波参数0<|Γ|<1|Γ|0—11∞1<ρ<∞ρZ 1|匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.~2.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相3.4.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态5.行驻波状态:传输线上任意点输入阻抗为复数。
传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)@史密斯圆图是用来分析传输线匹配问题的有效方法。
微波技术与天线复习要点
微波技术与天线复习要点微波技术与天线是电子工程中非常重要的两个领域。
微波技术涉及了微波器件、微波电路和微波系统等方面的知识,而天线则涉及到电磁波传输和接收的技术。
下面将从微波技术和天线的基本原理、设计和应用等方面进行复习要点的总结。
一、微波技术的复习要点:1.微波的概念:微波是指频率在0.3GHz到300GHz之间的电磁波。
其特点是波长短、能量集中、穿透能力强。
2.微波器件:包括微波管、微波集成电路和微波半导体器件等。
微波管是一种用于产生、放大、调制和检波微波信号的器件。
微波集成电路是将微波器件集成在一块微波板上,实现微波信号的处理功能。
3.微波电路:包括微波传输线、微波滤波器和微波功率分配器等。
微波传输线用于在电路中传输微波信号,常用的微波传输线有阻抗线、共面波导和同轴线等。
微波滤波器用于选择性地通过或阻断特定频率范围内的微波信号。
微波功率分配器用于将微波信号分配到不同的传输线或输出端口。
4.微波系统:包括微波通信系统、微波雷达系统和微波遥感系统等。
微波通信系统是利用微波信号进行通信的系统,其特点是高速率、抗干扰性强。
微波雷达系统是利用微波信号检测目标的系统,其特点是高分辨率、远距离探测。
微波遥感系统是利用微波信号获取地球表面信息的系统,其特点是穿透云雾、对地物覆盖情况敏感。
二、天线的复习要点:1.天线的基本原理:天线是用于辐射电磁波或接收电磁波的装置。
其基本原理是由电流产生的电场和磁场辐射出去形成电磁波。
根据发射和接收的方式不同,天线分为发射天线和接收天线。
2.天线的参数:包括增益、方向性、波束宽度和极化等。
增益是指天线辐射能量的能力,方向性是指天线在不同方向上的辐射强度不同,波束宽度是指天线辐射的主瓣宽度,极化是指电场矢量的方向。
3.天线的设计:包括天线的结构设计和参数设计。
结构设计涉及到天线的形状和尺寸,参数设计涉及到天线的频率和阻抗匹配。
4.天线的应用:包括通信系统、雷达系统和无线电广播等。
微波技术与天线复习提纲(含答案)
微波技术与天线复习提纲一、思考题1. 什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ ,波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。
3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4. 均匀传输线方程通解的含义5. 如何求得传输线方程的解?6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数,相速及波长。
1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0R jwL Z G jwC+=+,它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为()()R jwL G jwC γ=++;3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即;4)传输线上电磁波的波长λ与自由空间波长0λ的关系02rλπλβε==。
7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ zββ+=+ p v ωβ=反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率围:300MHz~3000GHz ,其对应波长围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)..●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)..▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
微波技术与天线考试重点复习归纳
微波技术与天线考试重点复习归纳第⼀章1.均匀传输线(规则导波系统):截⾯尺⼨、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线⽅程,也称电报⽅程。
3.⽆⾊散波:对均匀⽆耗传输线, 由于β与ω成线性关系, 所以导⾏波的相速v p 与频率⽆关, 称为⽆⾊散波。
⾊散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为⾊散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Z φ-Γ==Γ+ 终端反射系数均匀⽆耗传输线上, 任意点反射系数Γ(z)⼤⼩均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波⽐其倒数称为⾏波系数, ⽤K 表⽰5.⾏波状态就是⽆反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对⽆耗传输线的⾏波状态有以下结论: ①沿线电压和电流振幅不变, 驻波⽐ρ=1;②电压和电流在任意点上都同相; ③传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意⼀点z 处的输⼊阻抗为0()tan in Z Z jZ zβ=①沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为⽆功功率, 即⽆能量传输; ②在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最⼤且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最⼤且等于2|A 1|, ⽽电流为零, 称这些位置为电压波腹点。
《微波技术与天线》复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“微波技术与天线”课程复习提纲一、微波基本概念..............................................错误!未定义书签。
1.了解微波的基本概念:频率、波长等..................错误!未定义书签。
2.了解微波的主要特性................................错误!未定义书签。
二、传输线基本理论............................................错误!未定义书签。
1.了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等),传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。
错误!未定义书签。
2.掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。
........................................错误!未定义书签。
3.熟悉圆图的基本特点(特殊点、线、半圆、圆)........错误!未定义书签。
4.掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。
.........................................错误!未定义书签。
三、微波传输线................................................错误!未定义书签。
1.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。
..................错误!未定义书签。
2.掌握各种传输线特性参量及其运用。
..................错误!未定义书签。
3.了解波导传输线的截止波长分布图及其应用。
..........错误!未定义书签。
四、微波网络参量..............................................错误!未定义书签。
1.了解散射参量S参量和转移参量A参量的基本概念......错误!未定义书签。
2.了解S散射矩阵和A转移矩阵各参量的意义............错误!未定义书签。
3.了解S参量和A参量的基本特性及应用................错误!未定义书签。
4.掌握简单双端口网络S参量和A参量的确定............错误!未定义书签。
五、微波谐振器................................................错误!未定义书签。
1.了解微波谐振腔的基本概念及基本参数................错误!未定义书签。
2.了解三种同轴腔的结构和特点以及谐振波长的确定......错误!未定义书签。
3.掌握矩形腔和圆柱腔的特点及谐振波长的确定。
........错误!未定义书签。
4.了解的环行腔的特点及谐振波长的确定。
..............错误!未定义书签。
六、微波元器件................................................错误!未定义书签。
1.了解阻抗与连接分支元件的结构,特点及工作原理。
....错误!未定义书签。
2.了解波的激励与耦合的基本方法,熟练掌握激励和耦合元件的结构与工作原理。
..................................................错误!未定义书签。
3.了解微波铁氧体的三种主要效应(铁磁谐振、场移效应、法拉第旋转)及其相应器件(隔离器、环行器)的结构和工作原理。
..............错误!未定义书签。
七、天线......................................................错误!未定义书签。
1.理解、掌握天线的常用参量及计算....................错误!未定义书签。
2.了解常见天线的基本类型,结构和特点................错误!未定义书签。
八、微波测量(实验)............................................错误!未定义书签。
1.了解微波基本实验测量系统组成......................错误!未定义书签。
2.了解微波基本参量的测量方法。
......................错误!未定义书签。
附录 .........................................................错误!未定义书签。
1.作业..............................................错误!未定义书签。
一、微波基本概念1.了解微波的基本概念:频率、波长等⑴微波常用单位:frequency : (频率单位) GHz / kMHz ,wavelength : (波长单位) M - mm⑵常用微波段的划分⑶微波工程上的常用波段2.了解微波的主要特性⑴类光性可见光--电磁波--直线传播,反射,侥射,折射等微波-----电磁波--基本直线传播,较强的反射能力,较弱的侥射能力,直线传播,较强反射定向、定位、现代大多数雷达均为微波雷达⑵穿透性微波有几个特殊波段(8mm,3mm)的电磁波不受高空大气游历层的反射,可穿透电离层进出外层空间---------宇宙窗口⑶量子特性⑷High Power Microwave / HPM ( 高功率微波/射频,电磁,微波弹) ⑸宽频特性⑹渡越时间效应与传播延时效应 ⑺类声性⑻热效应 Heat Efect ⑼非热效应二、传输线基本理论1. 了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等),传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。
⑴反射系数① 定义:(同一横截面上)反射波电压与入射波电压之比 ② 代号:()z Γ③一般表示式:21()z zUU z U U γγρρ--+Γ==&&&&④ 无耗传输线任一处反射系数与终端反射系数()()j z z θρΓ=Γ21()(0)U z U Γ=Γ=02Z θθβ=-⑵驻波比① 定义:电压最大值与电压最小值之比 ② 代号:ρ③ 驻波比与反射系数的关系maxmin 1(0)1(0)U U ρ+Γ==-Γ&& 驻波比与反射系数的模有关 ⑶驻波相位由 min U min 2(1)Z Zn βψπ-=-指出: 第一个波节点 即n=1 (不是0)min 2Z βψπ-=min 2Z ψβπ=-2/βπλ=min 4/Z ψπλπ=-⑷输入阻抗① 定义:参考面上的总电压与总电流之比 ② 代号:Z inZ in (z)③ 反射系数与输入阻抗和导纳的关系由 1()1()in c z Z Z z +Γ=-Γ得 |()|in c in c Z Z z Z Z -Γ=+()c inc inY Y z Y Y -Γ=+④终端反射系数与终端阻抗和导纳的关系:由 ()in cin cZ Z z Z Z -Γ=+ 和 (0)in Z Z =得 (0)|(0)(0)|c c Z Z Z Z -Γ=+ = (0)(0)c c Y Y Y Y -+⑤输入阻抗的周期性(重复性)与倒置性(变换性)及其应用/Z λ的重复性00c in cc Z jZ tg z Z Z Z jZ tg z ββ+=+将/2z λ=代入=000cc Z Z Z Z +=+22z πλβπλ==/4λ的倒置性00c in cc Z jZ tg zZ Z Z jZ tg zββ+=+ 将/4z λ=代入242z πλπβλ==∞∞⑸输入导纳2. 掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。
状态条件行波(无反射) Z 0=Z C ,Γ=0,ρ=1纯驻波(全反射) 终端开路、短路,纯电抗(jx ),Γ=1,ρ=∞行驻波(部分反射)Z 0=R+jx ,0<|Γ|<1,1<ρ<∞3. 熟悉圆图的基本特点(特殊点、线、半圆、圆) 特殊点:开路点(B 点)短路点(A 点) 匹配点(O 点)特殊线: 纯电阻线 (AB 线)电压波腹线(OA 线) 电压波节线 (OB 线)特殊半圆: 感性半圆(上半圆)容性半圆(下半圆)特殊圆: 可调匹配圆 (过O 点的圆)纯电抗圆 (外圆)4. 掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。
波源方向负载方向附录课后题三、微波传输线1.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。
TE01TE10TE11TE21TE22矩形圆柱形TM01TM10TM11TM21TM22矩形圆柱形□TE:除10,20,n个凹和m个凹nm□TM:横向n个圆,纵向m个圆nmOTE:m为圆周方向变化(整数),n为径向方向变化(半驻波,圆心向外)nm2. 掌握各种传输线特性参量及其运用。
① 截止波长c λ矩形波导:c λ=m,n 代表工作模式,TE mn ,TM mn ,a,b 代表波导模截面尺寸 圆形波导:(对TM mn 模)(对TE mn 模) ② 波导波长/相波长 g λp g v f λ===③相速度V p2p cdz v dt πωβ===c λλ<Q1< pv c >原因:视在速度 l t tα>mn mncaχλλπ2==mn mn c a χλλ'==π2不同模式c λ不同,p v 不同④群速度v g(v g :信号或能量沿于轴方向传输速度)211gc d v c c d d d ωλββλω⎛⎫===-< ⎪⎝⎭⑤ 三种波长(与波源模式,波导()λλλλλλλλλλ>>-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=<<=C g C g C b n a m a C 22212)2(a f /3. 了解波导传输线的截止波长分布图及其应用。
TEM 截止波长无限长,TE ,TM 截止波长有限,让输入电磁波波长大于TE 、TM 截止波长最长的即可只激发TEM 。
其中:TE 11截止波长最长,因此只须11|c TEλλ>波源 模式 波导尺寸 λ √ x x λc x √ √ λg√√√11()()2|TEc Dd b a ππλ=+=+单模传输条件min ()a b λπ>+四、微波网络参量1. 了解散射参量S 参量和转移参量A 参量的基本概念S: 归一化入射波和归一化发射波间的关系A:以网络输出端口的电压和电流作为自变量,而用其输入端口的电压和电流作为因变量2. 了解S 散射矩阵和A 转移矩阵各参量的意义S: ()()()()⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧==========)(210021120122102222011111212记忆反向传输系数正向传输系数反射系数端口反射系数端口m a n m mn a a a a a b S a b S a b S a b S a b SA: ()()()()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧-==⎩⎨⎧-==⎩⎨⎧===-==-=======UI N IUN LIN UN nIM UM mN M A A I U A AU I A A I I A A U U A L mn U I U I 212121212121021120211221021212202122110211122222短路时的转移导纳端口开路时的转移阻抗端口短路时的电流转移系数端口开路时的电压转移系数端口 3. 了解S 参量和A 参量的基本特性及应用S:()()()[][][][][]()⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⇒===的转置共轭矩阵为无耗网络:对称网络:互易网络:S S S S S S S S S S S S SS S S *22211211*22*12*21*11*22112112~10011~321A: ()()()()[][][][][]⎪⎪⎩⎪⎪⎨⎧===-=-nA A A A A A A A A A A A a a a A A A A ......4,,321a 143212112221122112112221121122211总为虚数为实数;无耗网络:对称网络:互易网络:4. 掌握简单双端口网络S 参量和A 参量的确定附录课后题五、微波谐振器1. 了解微波谐振腔的基本概念及基本参数概念:微波谐振腔相当于低频集中参数的LC 振荡回路,具有储能和选频特性。