立体几何平行证明题复习过程
202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析
第四节直线、平面平行的判定及其性质课标要求考情分析1。
以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.2.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.知识点一直线与平面平行的判定定理和性质定理应用判定定理时,要注意“内”“外"“平行”三个条件必须都具备,缺一不可.知识点二平面与平面平行的判定定理和性质定理1。
平面与平面平行还有如下判定:如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.2.平面与平面平行还有如下性质:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a与平面α内无数条直线平行,则a∥α。
(×)(3)若直线a∥平面α,P∈平面α,则过点P且平行于a 的直线有无数条.(×)(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)2.小题热身(1)如果直线a∥平面α,那么直线a与平面α的(D) A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交(2)下列命题中正确的是(D)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α(3)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)如图,在正方体ABCD。
立体几何线面平行证明
立体几何线面平行证明要证明两个线面平行,一般可以通过以下几种方法来进行证明:方法一:使用平行线的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设线面A和线面B不平行,即存在一条线a与线面A不平行,又与线面B相交于一点P。
2.假设在线面A上存在一点Q,它与直线a上相交于一点R。
3.由于线a与线面B相交于P,所以线段PR必然属于线面B。
4.由于线a与线面A相交于R,所以线段PR必然属于线面A。
5.由于线面A和线面B都包含线段PR,所以它们必然相交。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法二:使用支撑面的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.过直线a作平行于线面B的平面,该平面与线面A相交于线段QR。
3.由于直线a与线面B相交于点P,所以线段PR必然属于线面B。
4.由于平面上的任意两点可以确定一条直线,所以线段QR也属于线面B。
5.因此,线段QR同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法三:使用平行四边形的性质假设我们有线面A和线面B,要证明A和B平行1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.在线面A上选择一点Q,并通过P点作一条平行于线面A的直线b。
3.连接直线a和直线b,得到平行四边形PQRD。
4.由于平行四边形的特性,相邻两边平行且长度相等,所以线段PD也是平行于线面A的,并且它必然属于线面B。
5.因此,线段PD同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
以上三种方法是一些常用的证明线面平行的方法,根据实际问题的具体情况,可以选择适合的方法进行证明。
完整版)立体几何中平行与垂直证明方法归纳
完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。
以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。
二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。
三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。
二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
1.利用空间几何体的特性:例如长方体侧棱垂直于底面。
2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。
3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。
4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。
5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
立体几何平行问题证明方法秘笈:
DE B 1A 1C 1CABFM PEDC B A立体几何平行问题证明方法秘笈:专题一:线线平行与线面平行:1、两直线平行的判定方法:①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,③平行于同一直线的两直线平行.④垂直于同一平面的两直线平行⑤两平行平面与同一个平面相交,那么两条交线平行。
2、直线与平面平行的判定方法:①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.③两个平面平行,其中一个平面内的直线平行于另一个平面.方法1、做平行四边形 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, 求证:C 1D ∥平面B 1FM.3、如图所示, 四棱锥P ABCD 底面是直角梯形, CD=2AB, E 为PC 的中点, 证明: ;4.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,求证: D 1O//平面A 1BC 15、在四棱锥P-ABCD 中,AB ∥CD ,AB=DC ,.求证:AE ∥平面PBC ;6、如图,平面平面,四边形与都是直角梯形,,,分别为的中点 证明:CH//面ABEF方法2、利用三角形中位线的性质。
1、如图,已知、、、分别是四面体的棱、、、的中点,求证:∥平面。
-,,AD CD AD BA ⊥⊥//EB PAD 平面21中点为PD E ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC∠=∠=//=12AD BE //=12AF ,G H ,FA FD E F G M AD CD BD BC AM EFG EFACDP(第1题2、如图,ABCD 是正方形,E 是PC 的中点。
总结证明线面平行的常用方法
BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:
立体几何证明方法——证面面平行
立体几何证明方法——证面面平行立体几何中,证明面面平行是一个常见的问题,可以通过多种方法进行证明。
下面将介绍几种常用的证明方法。
1.使用直线面法相交性质证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,选择平面ABCD上的两条相交直线AE和BF,然后分别在这两条直线上选择两个点C和D。
根据直线面法相交性质,直线AE与平面ABCD相交于点E,直线AE与平面CDH相交于点C,同理,直线BF与平面ABCD相交于点F,直线BF与平面CDH相交于点D。
连接线段AD和BC,可以得到四边形ABCD。
然后,考察四边形ABCD,如果四边形ABCD是平行四边形,则线段AD与线段BC互相平行。
由直线平行与面平行的性质可知,平面ABCD与平面EFHG平行。
因此,我们只需要证明四边形ABCD为平行四边形即可。
接下来,通过证明线段AD与线段BC互相平行来证明四边形ABCD为平行四边形。
可采用向量法、等距向量法等方法进行证明,具体方法根据题目要求来选择。
2.使用距离法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,在平面ABCD上选择一点P,在平面EFGH上选择一点Q。
然后,构造线段PQ,并将其延长,过点P和Q分别作平行于平面ABCD和EFGH的直线。
两条直线与平面ABCD和EFGH的交点分别为A、B和E、F。
由于点P、Q到平面ABCD的距离相等,点A、B到平面EFGH的距离相等,利用距离的定义可以推出直线AE与直线BF互相平行。
同理可以证明直线BE与直线AF互相平行。
因此,根据平行四边形的性质可知线段AD与线段BC平行。
由于线段AD与线段BC平行,所以平面ABCD与平面EFGH平行。
3.使用垂线法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。
首先,选择平面ABCD上的两条垂线,可以是两个相交直线的垂线或两个平行直线的垂线。
然后,在平面EFGH中分别找到与这两条垂线相交的直线段,并将其延长。
专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习
的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,
令
x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,
立体几何中平行与垂直证明方法归纳
a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b
微专题3 立体几何中的平行与垂直问题(解析版)
微专题3 立体几何中的平行与垂直问题(解析版)题型一、线面平行与垂直证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线。
例1、如图,在四棱锥P ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面P AB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.又MD⊂侧面P AD,所以AB⊥MD.因为DA=DP,又M为AP的中点,从而MD⊥P A.又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB【类比训练】如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例2、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)【类比训练】三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
高中数学中的立体几何证明案例详细步骤与演绎
高中数学中的立体几何证明案例详细步骤与演绎立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和变换关系。
在高中数学中,立体几何的证明是一个重要的部分,它既考察了学生对几何图形性质的理解,同时也培养了学生的逻辑推理和分析问题的能力。
本文将以几个典型的立体几何证明案例为例,详细介绍其步骤与演绎。
一、案例1:平行四边形的性质证明平行四边形是一种特殊的四边形,它的对边是平行的。
我们来证明平行四边形的一个性质:对角线互相平分。
证明过程如下:1. 过平行四边形ABCD的顶点A和C分别作BD和AC的垂线,设分别交于点E和F;2. 由平行线性质,得到AE // CF和DE // AF;3. 观察△ADE和△CFE,可以发现它们是全等三角形;4. 因此,AE = CF,DE = AF,即对角线互相平分。
二、案例2:立体图形的相似性质证明相似是几何中一个重要的概念,它描述了两个图形在形状上的相似程度。
我们来证明两个立体图形相似的性质:对应边成比例。
证明过程如下:1. 设立体图形A和B,它们的形状相似,记作A ~ B;2. 假设A的一个边长为a,B对应的边长为b;3. 观察A和B的对应边,可以发现它们的长度比为a : b;4. 因此,对应边成比例,即A ~ B。
三、案例3:球的体积公式证明球是一种典型的立体图形,它表现了三维空间中的旋转对称性。
我们来证明球的体积公式:V = (4/3)πr³。
证明过程如下:1. 设球的半径为r;2. 将球划分为无数个小圆柱,每个小圆柱的截面都是圆;3. 假设一个小圆柱的高为h,半径为r;4. 计算小圆柱的体积,即V₁ = πr²h;5. 通过对所有小圆柱体积求和,得到球的体积,即V = ∑V₁;6. 由于球的位置对称性,每个小圆柱的高都是2r,即h = 2r;7. 求和化简得到V = ∑(πr²h) = ∑(πr²·2r) = 2πr³;8. 由于无数个小圆柱填满整个球,因此球的体积为V = 2πr³;9. 化简得到V = (4/3)πr³,即球的体积公式成立。
专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)
立体几何(平行垂直的证明及角)专题辅导
立体几何专题辅导(平行与垂直及角)空间中平行与垂直关系的证明及线面角、二面角的方法总结:(一)线线平行的证明方法:1.垂直于同一平面的两条直线平行2.平行于同一直线的两条直线平行3.三角形的中位线4.平行四边形对边平行5.一个平面与另外两个平行平面相交,那么两条交线也平行6.线面平行的性质7.面面平行的性质 6.向量法:两直线的方向向量共线(二)线面平行的证明方法:1.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行2.面面平行的性质:如果两个平面平行,那么在其中一个平面内的直线和另一个平面平行3.向量法:直线的方向向量与平面的法向量垂直(三)面面平行的证明方法:1.面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2.面面平行的推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行。
3.面面平行的传递性4.垂直于同一条直线的两个平面平行5.向量法(四)线线垂直的证明方法1、等腰三角形底边的中线 2.菱形对角线互相垂直 3.勾股定理 4.直径所对的圆周角为直角 5.三垂线定理及其逆定理 6.线面垂直的性质 7.向量法(五)线面垂直的证明方法1.线面垂直的判定定理2.面面垂直的性质3.向量法(六)面面垂直的证明方法1.面面垂直的判定定理2.证明二面角为直二面角3.向量法(七)空间中的角1.异面直线所成的角 范围是⎝ ⎛⎥⎤0,π2 解法:①定义法 ②向量法:设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.2.直线与平面所成的角:斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角. 范围是⎣⎢⎡⎦⎥⎤0,π2; 解法:①定义法 ②向量法:设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.3.二面角的平面角如图在二面角αl β的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则∠AOB 叫做二面角的平面角. 范围是[0,π].解法:①定义法 ②三垂线法 ③射影面积法 ④向量法:(ⅰ)如图①,AB 、CD 是二面角αl β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.典例分析:1、如图,四棱锥P−ABC D 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求直线AN 与平面PMN 所成角的正弦值.2、正△ABC 的边长为2, CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将△ABC 沿CD 翻成直二面角A -DC -B (如图(2)).在图(2)中(1)求证 AB ∥平面DEF ;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论;(3)求二面角E-DF-C的余弦值.3、如图,已知△DEF与△ABC分别是边长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,且DE∥BC,BC⊥CD,点G为△ABC的重心,N为AB的中点,AG⊥平面BCDE,M为线段AF上靠近点F的三等分点.(1)求证:GM∥平面DFN;(2)若二面角M-BC-D的余弦值为74,试求异面直线MN与CD所成角的余弦值.4、5、如图,在三棱锥P ABC -中,22ABBC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.6、如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明 平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7、.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .P O M(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判断棱P A 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?若存在,求出AE AP 的值;若不存在,请说明理由.8、如图,在四棱锥P ABCD -中,AD BC ∥,AD CD ⊥,3AD =,2CD BC ==,点P 在平面ABCD内的射影恰为BD 的中点,且3PB =.(1)求证:平面PAD ⊥平面PBC ;(2)求二面角A PB D --的正弦值.9、.如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,22AD =,M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r .(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBC 所成角的正弦值为255,求异面直线AD 与直线CN 所成角的余弦值.10、.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,2AB AC ==,22AD =,32PB =,PB AC ⊥. (1)求证:平面PAB ⊥平面PAC ;(2)若45PBA ∠=︒,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33,若存在, 求出AE AP的值;若不存在,请说明理由.11、如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.12、如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值13、如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.。
立体几何中平行和垂直问题的证明
摇生"攵浬化知识篇科学备考新指向高考数学2021年2月立"#何%&行直问题的证明■江苏省华罗庚中学李普红平行与垂直关系的证明是高考考查立体几何的高频考点,大部分问题都可以用传统的几何方法解决,有一部分问题需要建立空间直角坐标系利用空间向量解决。
用传统法解题时,应注重线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直等问题的性质定理和判定定理的灵活应用。
用向量法解题时,应建立恰当的空间直角坐标系,准确表示各点与相关向量的坐标。
考向一:证明线面平行!!如图1,已知空间几何体BACDE中,&BCD与&CDE均是边长为2的等边三角形,&ABC是腰长为3,底边为BC的等腰三角形,平面CDE丄平面BCD,平面ABC丄平面BCD"(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积。
解析:(1)如图2所示,取DC的中点为N,BD的中点为/,连接MN,则MN即为所求。
连接EM,EN,取BC的中点4,连接AH"因为&ABC是腰长为3的等腰三角形,H为BC的中点,所以AH丄BC。
又平面ABC丄平面BCD,平面ABC'平面BCD$BC,AH U平面ABC,所以AH 丄平面BCD"同理可证EN丄平面BCD"所以EN/AH"因为EN1平面ABC,AH U平面ABC,所以EN/平面ABC"又M,N分别为BD,DC的中点,所以MN/BC"因为MN1平面ABC,BC U平面ABC,所以MN/平面ABC"又MN'EN$N,MN U平面EMN,EN U平面EMN,所以平面EMN/平面ABC"又EF U平面EMN,所以EF/平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行°(2)连接DH,取CH的中点为G,连接NG,则NG/DH"由(1)可知EN/平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等°又&BCD是边长为2的等边三角形,所以DH丄BC。
空间立体几何中的平行问题
感 谢
感 谢
阅阅
读读
2023最新整理收集 do something
立体空间中的平行
复习定理
空间中的平行
解决空间直线与平面平行的相关问题,特别要注意下面的 转化关系:
空间平行之间的转化
⑤
② ①③ ④
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
CD / / AB, BC AB ,且 AB AE BE 2BC 2CD 2,动点 F 在棱 AE 上,且
EF FA.试探究 的值,使 CE / / 平面 BDF ,并给予证明;
E
●F
B
A
C
D
小结:
关键
高频 考点
线线平行-------- 线面平行------- 面面平行
转化思想:把空间问题转化为平面问题解决 证明推理过程要规范、严密,条件缺一不可!
a,b
a a
//
b
A
//
b //
☺ 简称:线面平行,面面平行.
复习定理
空间中的平行
4.平面与平面平行的判定与性质
➳性质:如果两个平面平行,那么其中一个平面内 的任何一条直线都平行于另外一个平面。
a
//
a
//
☺ 简称:面面平行,线面平行.
复习定理
空间中的平行
5.平面与平面平行的判定与性质
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体证明题(2)1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求二面角B﹣AC﹣E的余弦值.2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=.(1)求证:平面EFP⊥平面ABFE;(2)求二面角B﹣AP﹣E的大小.3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:EF⊥平面PDC.4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.(1)求证:AB⊥CD;(2)求二面角D﹣AB﹣C的正切值.5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ;(Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值.7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点.(Ⅰ)证明:AB ⊥平面BEF ;(Ⅱ)若PA=,求二面角E ﹣BD ﹣C .8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点.(1)求证:DM ⊥平面PBC ;(2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为32?若存在,求出实数λ的值;若不存在,请说明理由.9.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点(Ⅰ)求证:AM⊥平面BEC;(Ⅱ)求三棱锥B﹣ACE的体积;(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.10.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB(1)求证:EA⊥平面EBC(2)求二面角C﹣BE﹣D的余弦值.11.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;12.如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分别是CC1,BC的中点.(1)求证:平面AB1F⊥平面AEF;(2)求二面角B1﹣AE﹣F的余弦值.13.如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.( I)求证:BD⊥平面ACFE;( II)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦角.14.如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.15.如图,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1.(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求二面角A﹣A1B﹣C的平面角的余弦值.试卷答案1.【考点】与二面角有关的立体几何综合题;直线与平面垂直的判定.【分析】(1)由已知中直二面角D﹣AB﹣E中,四边形ABCD是正方形,且BF⊥平面ACE,我们可以证得BF⊥AE,CB⊥AE,进而由线面垂直的判定定理可得AE⊥平面BCE.(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,由三垂线定理及二面角的平面角的定义,可得∠BGF是二面角B﹣AC﹣E的平面角,解Rt△BFG即可得到答案.【解答】证明:(1)∵BF⊥平面ACE∴BF⊥AE…∵二面角D﹣AB﹣E为直二面角,且CB⊥AB,∴CB⊥平面ABE∴CB⊥AE…∴AE⊥平面BCE.…解:(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,∴BG⊥AC,BG=,…∵BF垂直于平面ACE,由三垂线定理逆定理得FG⊥AC∴∠BGF是二面角B﹣AC﹣E的平面角…由(1)AE⊥平面BCE,得AE⊥EB,∵AE=EB,BE=.∴在Rt△BCE中,EC==,…由等面积法求得,则∴在Rt△BFG中,故二面角B﹣AC﹣E的余弦值为.…2.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)用分析法找思路,用综合法证明.取EF中点O,连接OP、OC.等腰三角形CEF中有CO⊥EF,即OP⊥EF.根据两平面垂直的性质定理,平面PEF和平面ABFE的交线是EF,且PO⊥EF,分析得PO⊥平面ABFE.故只需根据题中条件证出PO⊥平面ABFE,即可利用面面垂直的判定定理证得平面EFP⊥平面ABFE.(2)根据第一问分析空间位置关系,可建立空间直角坐标线求得平面ABP和平面AEP的法向量的所成角,利用向量角和二面角关系,确定二面角大小.【解答】解:(1)证明:在△ABC中,D为AB中点,O为EF中点.由AC=BC=,AB=2.∵E、F分别为AC、BC的中点,∴EF为中位线,得CO=OD=1,CO⊥EF∴四棱锥P﹣ABFE中,PO⊥EF,…2分∵OD⊥AB,AD=OD=1,∴AO=,又AP=,OP=1,∴四棱锥P﹣ABFE中,有AP2=AO2+OP2,即OP⊥AO,…4分又AO∩EF=O,EF、AO⊂平面ABFE,∴OP⊥平面ABFE,…5分又OP⊂平面EFP,∴平面EFP⊥平面ABFE.…6分(2)由(1)知OD,OF,OP两两垂直,以O为原点,建立空间直角坐标系(如图):则A(1,﹣1,0),B(1,1,0),E(0,,0),P(0,0,1)…7分∴,,设,分别为平面AEP、平面ABP的一个法向量,则⇒取x=1,得y=2,z=﹣1∴.…9分同理可得,…11分由于=0,所以二面角B﹣AP﹣E为90°.…12分3.【考点】空间中直线与平面之间的位置关系.【专题】证明题.【分析】对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证;对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD=AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD,由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证.【解答】证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA(3分)且PA⊂平面PAD,EF⊊平面PAD,∴EF∥平面PAD(6分)(Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,又CD⊥AD,所以CD⊥平面PAD,∴CD⊥PA(9分)又PA=PD=AD,所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD(12分)而CD∩PD=D,∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC(14分)【点评】本题考查线面平行的判定及线面垂直的判定,而其中的转化思想的应用值得注意,将线面平行转化为线线平行;证明线面垂直,转化为线线垂直,在证明线线垂直时,往往还要通过线面垂直来进行.4.【考点】与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系.【分析】(1)利用平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,可得DC⊥平面ABC,利用线面垂直的性质,可得DC⊥AB;(2)过C作CE⊥AB于E,连接ED,可证∠CED是二面角D﹣AB﹣C的平面角.设CD=a,则BC==,从而EC=BCsin60°=,在Rt△DEC中,可求tan∠DEC.【解答】(1)证明:∵DC⊥BC,且平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴DC⊥平面ABC,又AB⊂平面ABC,∴DC⊥AB.…(2)解:过C作CE⊥AB于E,连接ED,∵AB⊥CD,AB⊥EC,CD∩EC=C,∴AB⊥平面ECD,又DE⊂平面ECD,∴AB⊥ED,∴∠CED是二面角D﹣AB﹣C的平面角,…设CD=a,则BC==,∵△ABC是正三角形,∴EC=BCsin60°=,在Rt△DEC中,tan∠DEC=.…5.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(1)令AD=1,求出BD=,从而AD⊥BD,进而BD⊥平面PAD,由此能证明平面PAD⊥平面PBD.(2)以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣PB﹣C的余弦值.【解答】证明:(1)在平行四边形ABCD中,令AD=1,则BD==,在△ABD中,AD2+BD2=AB2,∴AD⊥BD,又平面PAD⊥平面ABCD,∴BD⊥平面PAD,BD⊂平面PBD,∴平面PAD⊥平面PBD.解:(2)由(1)得AD⊥BD,以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,令AD=1,则A(1,0,0),B(0,,0),C(﹣1,,0),P(,0,),=(﹣1,,0),=(﹣),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则,取y=1,得=(),设平面PBC的法向量=(a,b,c),,取b=1,得=(0,1,2),∴cos<>===,由图形知二面角A﹣PB﹣C的平面角为钝角,∴二面角A﹣PB﹣C的余弦值为﹣.6.【考点】直线与平面垂直的判定;直线与平面所成的角.【分析】(Ⅰ)由ABC﹣A1B1C1是直三棱柱,可知CC1⊥AC,CC1⊥BC,∠ACB=90°,AC⊥BC.建立空间直角坐标系C﹣xyz.则A,B1,E,A1,可得,,,可知,根据,,推断出AB1⊥CE,AB1⊥CA1,根据线面垂直的判定定理可知AB1⊥平面A1CE.(Ⅱ)由(Ⅰ)知是平面A1CE的法向量,,进而利用向量数量积求得直线A1C1与平面A1CE所成角的正弦值【解答】(Ⅰ)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥AC,CC1⊥BC,又∠ACB=90°,即AC⊥BC.如图所示,建立空间直角坐标系C﹣xyz.A(2,0,0),B1(0,2,2),E(1,1,0),A1(2,0,2),∴,,.又因为,,∴AB1⊥CE,AB1⊥CA1,AB1⊥平面A1CE.(Ⅱ)解:由(Ⅰ)知,是平面A1CE的法向量,,∴|cos<,>|==.设直线A1C1与平面A1CE所成的角为θ,则sinθ=|cos<,>|=.所以直线A1C1与平面A1CE所成角的正弦值为.7.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)只需证明AB⊥BF.AB⊥EF即可.(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,求出平面CDB的法向量为,平面EDB的法向量为,设二面角E﹣BD﹣C的大小为θ,则=,【解答】解:(Ⅰ)证:由已知DF∥AB且∠DAB为直角,故ABFD是矩形,从而AB⊥BF.又PA⊥底面ABCD,∴平面PAD⊥平面ABCD,∵AB⊥AD,故AB⊥平面PAD,∴AB⊥PD,在△PCD内,E、F分别是PC、CD的中点,EF∥PD,∴AB⊥EF.由此得AB⊥平面BEF…(Ⅱ)以A为原点,以AB,AD,AP为x轴,y轴,z轴正向建立空间直角坐标系,则设平面CDB的法向量为,平面EDB的法向量为,则可取设二面角E﹣BD﹣C的大小为θ,则=,所以,…8.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)取PB中点N,连结MN,AN.由三角形中位线定理可得四边形ADMN为平行四边形.由AP⊥AD,AB⊥AD,由线面垂直的判定可得AD⊥平面PAB.进一步得到AN⊥MN.再由AP=AB,得AN⊥PB,则AN⊥平面PBC.又AN∥DM,得DM⊥平面PBC;(2)以A为原点,方向为x轴的正方向,方向为y轴的正方向,方向为z轴的正方向,建立如图所示的空间直角坐标系.设E(2,t,0)(0≤t≤4),再求得P,D,B的坐标,得到的坐标,求出平面PDE的法向量,再由题意得到平面DEB的一个法向量,由两法向量夹角的余弦值得到实数λ的值.【解答】(1)证明:如图,取PB中点N,连结MN,AN.∵M是PC中点,∴MN∥BC,MN=BC=2.又∵BC∥AD,AD=2,∴MN∥AD,MN=AD,∴四边形ADMN为平行四边形.∵AP⊥AD,AB⊥AD,AP∩AB=A,∴AD⊥平面PAB.∵AN⊂平面PAB,∴AD⊥AN,则AN⊥MN.∵AP=AB,∴AN⊥PB,又MN∩PB=N,∴AN⊥平面PBC.∵AN∥DM,∴DM⊥平面PBC;(2)解:存在符合条件的λ.以A为原点,方向为x轴的正方向,方向为y轴的正方向,方向为z轴的正方向,建立如图所示的空间直角坐标系.设E(2,t,0)(0≤t≤4),P(0,0,2),D(0,2,0),B(2,0,0),则,.设平面PDE的法向量=(x,y,z),则,令y=2,则z=2,x=t﹣2,取平面PDE的一个法向量为=(2﹣t,2,2).又平面DEB即为xAy平面,故其一个法向量为=(0,0,1),∴cos<>==.解得t=3或t=1,∴λ=3或.9.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)推导出BE⊥AM,BC⊥AM,由此能证明AM⊥平面BEC.(Ⅱ)由V B﹣ACE=V E﹣ABC,能求出三棱锥B﹣ACE的体积.(Ⅲ)在平面QEC内作QN⊥EC,QN交CE于点N.QN与AM共面,设该平面为a,推导出四边形AMNQ是平行四方形,由此能求出AQ.【解答】证明:(Ⅰ)∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,BE⊥AB,BE⊂平面ABED,∴BE⊥平面ABC,又AM⊂平面ABC,∴BE⊥AM.又AB=AC,M是BC的中点,∴BC⊥AM,又BC∩BE=B,BC⊂平面BEC,BE⊂平面BEC,∴AM⊥平面BEC.解:(Ⅱ)由(Ⅰ)知,BE⊥平面ABC,∴h=BE=6.在Rt△ABM中,,又,∴.(Ⅲ)在平面QEC内作QN⊥EC,QN交CE于点N.∵平面QEC⊥平面BEC,平面QEC∩平面BEC﹣EC,∴QN⊥平面BEC,又AM⊥平面BEC.∴QN∥AM.∴QN与AM共面,设该平面为a,∵ABED是长方形,∴AQ∥BE,又Q⊄平面BEC,BE⊂平面BEC,∴AQ∥平面BEC,又AQ⊂α,α∩平面BEC=MN,∴AQ∥MN,又QN∥AM,∴四边形AMNQ是平行四方形.∴AQ=MN.∵AQ∥BE,AQ∥MN,∴MN∥BE,又M是BC的中点.∴,∴AQ=MN=3.10.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理即可证明EA⊥平面EBC;(2)求出平面的法向量,利用向量法进行求解即可.【解答】(1)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE∵EA⊂平面ABE,∴EA⊥BC,∵EA⊥EB,EB∩BC=B,∴EA⊥平面EBC(2)取AB中O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵平面ABE⊥平面ABCD,∴EO⊥平面ABCD∵AB=2CD,AB∥CD,AB⊥BC,∴DO⊥AB,建立如图的空间直角坐标系O﹣xyz如图:设CD=1,则A(0,1,0),B(0,﹣1,0),C(1,﹣1,0),D(1,0,0),E(0,0,1),由(1)得平面EBC的法向量为=(0,1,﹣1),设平面BED的法向量为=(x,y,z),则,即,设x=1,则y=﹣1,z=1,则=(1,﹣1,1),则|cos<,>|===,故二面角C﹣BE﹣D的余弦值是.11.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明四边形BCDO是平行四边形,得出OB⊥AD;再证明BO⊥平面PAD,从而证明平面POB⊥平面PAD;(2)解法一:由,M为PC中点,证明N是AC的中点,MN∥PA,PA∥平面BMO.解法二:由PA∥平面BMO,证明N是AC的中点,M是PC的中点,得.【解答】解:(1)证明:∵AD∥BC,,O为AD的中点,∴四边形BCDO为平行四边形,∴CD∥BO;又∵∠ADC=90°,∴∠AOB=90°,即OB⊥AD;又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴BO⊥平面PAD;又∵BO⊂平面POB,∴平面POB⊥平面PAD;(2)解法一:,即M为PC中点,以下证明:连结AC,交BO于N,连结MN,∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,又点M是棱PC的中点,∴MN∥PA,∵PA⊄平面BMO,MN⊂平面BMO,∴PA∥平面BMO.解法二:连接AC,交BO于N,连结MN,∵PA∥平面BMO,平面BMO∩平面PAC=MN,∴PA∥MN;又∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,∴M是PC的中点,则.12.【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(1)连结AF,由已知条件推导出面ABC⊥面BB1C1C,从而AF⊥B1F,由勾股定理得B1F⊥EF.由此能证明平面AB1F⊥平面AEF.(2)以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系,利用向量法能求出二面角B1﹣AE﹣F的余弦值.【解答】(1)证明:连结AF,∵F是等腰直角三角形△ABC斜边BC的中点,∴AF⊥BC.又∵三棱柱ABC﹣A1B1C1为直三棱柱,∴面ABC⊥面BB1C1C,∴AF⊥面BB1C1C,AF⊥B1F.…设AB=AA1=1,则,EF=,.∴=,∴B1F⊥EF.又AF∩EF=F,∴B1F⊥平面AEF.…而B1F⊂面AB1F,故:平面AB1F⊥平面AEF.…(2)解:以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系如图,设AB=AA1=1,则F(0,0,0),A(),B1(0,﹣,1),E(0,﹣,),, =(﹣,,1).…由(1)知,B1F⊥平面AEF,取平面AEF的法向量:=(0,,1).…设平面B1AE的法向量为,由,取x=3,得.…设二面角B1﹣AE﹣F的大小为θ,则cosθ=|cos<>|=||=.由图可知θ为锐角,∴所求二面角B1﹣AE﹣F的余弦值为.…13.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】( I)只需证明DB⊥AC,BD⊥AE,即可得BD⊥平面ACFE;( II)取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z 轴,建立空间直角坐标系,则,D(0,﹣,0),F(﹣1,0,h),E (1,0,2),则,,利用向量法求解【解答】( I)证明:在菱形ABCD中,可得DB⊥AC,又因为AE⊥平面ABCD,∴BD⊥AE,且AE∩AC=A,BD⊥平面ACFE;( II)解:取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z 轴,建立空间直角坐标系,则,D(0,﹣,0),F(﹣1,0,h),E(1,0,2),则,,设平面BDE的法向量,由,可取,|cos|=,⇒h=3,故F(﹣1,0,3),,,设平面BFE的法向量为,由,可取,,设平面DFE的法向量为,由,可取,cos=,二面角B﹣EF﹣D的余弦值为.14.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)证明:AD⊥平面ABFE,即可证明平面PAD⊥平面ABFE;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P ﹣ABCD的高.【解答】(Ⅰ)证明:直三棱柱ADE﹣BCF中,AB⊥平面ADE,所以:AB⊥AD,又AD⊥AF,所以:AD⊥平面ABFE,AD⊂平面PAD,所以:平面PAD⊥平面ABFE….(Ⅱ)∵AD⊥平面ABFE,∴建立以A为坐标原点,AB,AE,AD分别为x,y,z轴的空间直角坐标系如图:设正四棱锥P﹣ABCD的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),=(2,2,0),=(2,0,2),=(1,﹣h,1),=(x,y,z)是平面AFC的法向量,则,令x=1,则y=z=﹣1,即=(1,﹣1,﹣1),设=(x,y,z)是平面ACP的法向量,则,令x=1,则y=﹣1,z=﹣1﹣h,即=(1,﹣1,﹣1﹣h),∵二面角C﹣AF﹣P的余弦值是.∴cos<,>===.得h=1或h=﹣(舍)则正四棱锥P﹣ABCD的高h=1.15.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】证明题;数形结合;综合法;空间位置关系与距离.【分析】(1)推导出BC⊥AC,BC⊥AC1,BA1⊥AC1,由此能证明AC1⊥平面A1BC.(2)推导出平面A1AB⊥平面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,求出CH=,过H作HG⊥A1B于G,连CG,则CG⊥A1B,从而∠CGH为二面角A﹣A1B﹣C的平面角,由此能求出二面角A﹣A1B﹣C的平面角的余弦值.【解答】证明:(1)因为A1D⊥平面ABC,所以,平面AA1C1C⊥平面ABC,又BC⊥AC,所以,BC⊥平面AA1C1C,得BC⊥AC1,又BA1⊥AC1,所以,AC1⊥平面A1BC.解:(2)因为AC1⊥A1C,所以四边形AA1C1C为菱形,故AA1=AC=2,又D为AC中点,知∠A1AC=60°,取AA1的中点F,则AA1⊥平面BCF,从而,平面A1AB⊥平面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,在Rt△BCF,BC=2,CF=,故CH=,过H作HG⊥A1B于G,连CG,则CG⊥A1B,从而∠CGH为二面角A﹣A1B﹣C的平面角,在Rt△A1BC中,A1C=BC=2,所以,CG=,在Rt△CGH中,sin∠CGH=,cosCGH==.故二面角A﹣A1B﹣C的平面角的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.。