立体几何平行证明题复习过程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体证明题(2)

1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥

平面ACE.

(1)求证:AE⊥平面BCE;

(2)求二面角B﹣AC﹣E的余弦值.

2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=.

(1)求证:平面EFP⊥平面ABFE;

(2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且

PA=PD=AD,若E、F分别为PC、BD的中点.

(Ⅰ)求证:EF∥平面PAD;

(Ⅱ)求证:EF⊥平面PDC.

4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.

(1)求证:AB⊥CD;

(2)求二面角D﹣AB﹣C的正切值.

5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD.

(1)求证:平面PAD⊥平面PBD;

(2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ;

(Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值.

7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点.

(Ⅰ)证明:AB ⊥平面BEF ;

(Ⅱ)若PA=,求二面角E ﹣BD ﹣C .

8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点.

(1)求证:DM ⊥平面PBC ;

(2)若点E 为BC 边上的动点,且

λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为3

2?若存在,求出实数λ的值;若不存在,请说明理由.

9.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点(Ⅰ)求证:AM⊥平面BEC;

(Ⅱ)求三棱锥B﹣ACE的体积;

(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.

10.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB

(1)求证:EA⊥平面EBC

(2)求二面角C﹣BE﹣D的余弦值.

11.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.

(1)求证:平面POB⊥平面PAD;

12.如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠

BAC=90°,且AB=AA1,E、F分别是CC1,BC的中点.

(1)求证:平面AB1F⊥平面AEF;

(2)求二面角B1﹣AE﹣F的余弦值.

13.如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.

( I)求证:BD⊥平面ACFE;

( II)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦角.

14.如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.

(1)证明:平面PAD⊥平面ABFE;

(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.

15.如图,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1.

(Ⅰ)求证:AC1⊥平面A1BC;

(Ⅱ)求二面角A﹣A1B﹣C的平面角的余弦值.

试卷答案

1.

【考点】与二面角有关的立体几何综合题;直线与平面垂直的判定.

【分析】(1)由已知中直二面角D﹣AB﹣E中,四边形ABCD是正方形,且BF⊥平面ACE,我们可以证得BF⊥AE,CB⊥AE,进而由线面垂直的判定定理可得AE⊥平面BCE.

(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,由三垂线定理及二面角的平面角的定义,可得∠BGF是二面角B﹣AC﹣E的平面角,解Rt△BFG即可得到答案.【解答】证明:(1)∵BF⊥平面ACE

∴BF⊥AE…

∵二面角D﹣AB﹣E为直二面角,且CB⊥AB,

∴CB⊥平面ABE

∴CB⊥AE…

∴AE⊥平面BCE.…

解:(2)连接BD与AC交于G,连接FG,设正方形ABCD的边长为2,

∴BG⊥AC,BG=,…

∵BF垂直于平面ACE,由三垂线定理逆定理得FG⊥AC

∴∠BGF是二面角B﹣AC﹣E的平面角…

由(1)AE⊥平面BCE,得AE⊥EB,

∵AE=EB,BE=.

∴在Rt△BCE中,EC==,…

由等面积法求得,

∴在Rt△BFG中,

故二面角B﹣AC﹣E的余弦值为.…

相关文档
最新文档