电磁感应 交变电流(一)
选修3-2 《电磁感应》《 交变电流》 测试卷(含答案)
2012—2013年(I I)第一次月考高二物理试题命题人:许玉天一、选择题(本题共21小题,每小题3分。
共63分。
四个选项中,至少有一个选项是正确的,全部选对的得3分,选不全的得2分,有选错或不答的得0分。
请将正确选项转涂到答题卡上,否则不计分)1.如图-1所示,老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是( )A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动2.如图-2所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成边长为l的正方向右运动,当运动到关于OO’形闭合回路abcd,回路在纸面内以恒定速度vo对称的位置时()A.穿过回路的磁通量为零2BlvB.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同3.如图-3所示为地磁场磁感线的示意图。
在北半球地磁场的竖直分量向下。
飞机在我国上空匀速巡航,机翼保持水平,飞行高度不变.由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为U1,右方机翼末端处的电势为U2,则( )A.若飞机从西往东飞,U1比U2高B.若飞机从东往西飞,U2比U1高C.若飞机从南往北飞,U1比U2高D.若飞机从北往南飞,U2比U1高4. 如图-4所示,AOC是光滑的金属轨道,AO沿竖直方向,OC沿水平方向,PQ是一根金属直杆如图立在导轨上,直杆从图示位置由静止开始在重力作用下运动,运动过程中Q端始终在OC上,P端始终附在AO轨道上,直到完全落在OC上,空间存在垂直纸面向外的匀强磁场,则在PQ棒滑动的过程中,下列判断正确的 ( )A.感应电流的方向始终是由P→QB.感应电流的方向先是由P→Q,再是Q→PC.PQ受磁场力的方向垂直棒向左D.PQ受磁场力的方向垂直于棒先向左后向右5.如图-5所示,铁路上使用一种电磁装置向控制中心传输信号以确定火车的位置.能产生匀强磁场的磁铁,被安装在火车首节车厢下面,如图(甲)所示(俯视图).当它经过安放在两铁轨间的线圈时,便会产生一电信号,被控制中心接收.当火车通过线圈时,若控制中心接收到的线圈两端的电压信号为图(乙)所示,则说明火车在做()A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.加速度逐渐增大的变加速直线运动6.如图-6所示,螺线管B置于闭合金属圆环A的轴线上,当B中通过的电流I减小时()A.环A有缩小的趋势B.环A有扩张的趋势C.螺线管B有缩短的趋势D.螺线管B有身长的趋势7.1931年英国物理学家狄拉克从理论上预言:存在只有一个磁极的粒子,即“磁单极子”,1982年,美国物理学家卡布莱设计了一个寻找磁单极子的实验,他设想,如果一个只有N极的磁单极子从上向下穿过如图-7所示的超导线圈,那么,从上向下看,超导线圈上将出现( )A.磁单极子穿过超导线圈的过程中,线圈中产生的感应电流的方向变化B.N磁单极子,与S磁单极子分别穿过超导线圈的过程中,线圈中感应电流方向相同C.磁单极子穿过超导线圈的过程中,线圈中感应电流方向不变D.假若磁单极子为N磁单极子,穿过超导线圈的过程中,线圈中感应电流方向始终为顺时针(从上往下看)8.如图-8所示是测定自感系数很大的线圈L直流电阻的电路,L两端并联一只电压表,用来测自感线圈的直流电压,在测量完毕后,将电路解体时应先( )A.断开S1B .断开S 2C .拆除电流表D .拆除电阻R9、一只氖管的起辉电压与交流电u=50sin314t (V) 的有效值相等,若将这交流电接到氖管的两极,在一个周期内,氖管的发光时间为 ( )A 、0.02sB 、0.015sC 、0.05sD 、0.01s10.如图-9所示半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0 。
电磁感应现象与交变电流频率的关系分析
电磁感应现象与交变电流频率的关系分析近年来,随着科技的快速发展,电磁感应现象正逐渐引起人们的广泛关注。
在电磁学领域中,电磁感应现象是一种重要的现象,它描述了导体受到磁场影响时所产生的电流。
在电磁感应现象的研究中,交变电流频率是一个非常关键的因素。
交变电流是指在指定时间内,电流方向和大小都不断变化的电流。
频率则表示在一秒钟内变化的次数。
因此,交流电的频率是描述交替方向的快慢程度,频率越高,方向变化的速度越快。
交变电流频率对电磁感应现象有着重要的影响。
首先,交变电流频率的改变会对电磁感应产生不同的效果。
根据法拉第电磁感应定律,磁场的变化会产生感应电流。
当交变电流频率较低时,磁场的变化较为缓慢,感应电流产生的速度相对较慢。
随着频率的增加,磁场的变化速度也会加快,因此感应电流产生的速度也会增加。
这一现象使得电磁感应现象在不同频率下具有不同的特性。
其次,交变电流频率对电磁感应的产生和传导也有一定的影响。
电磁感应现象的产生需要磁场和导体之间的相对运动。
当交变电流频率较低时,导体与磁场的相对运动相对较慢,因此电磁感应现象的传导速度相对较慢。
随着频率的增加,相对运动速度也随之增加,从而加快了电磁感应现象的传导速度。
这一特性在电磁感应技术中具有重要的应用价值。
交变电流频率还会对电磁感应现象的强度产生一定的影响。
根据法拉第电磁感应定律,感应电动势与导体中感应电流的大小成正比。
当交变电流频率较低时,感应电流产生的速度相对较慢,因此感应电动势较小。
当频率增加时,感应电流产生的速度加快,从而使得感应电动势增大。
因此,随着频率的增加,电磁感应的强度也会增大。
此外,在实际应用中,交变电流频率还会对传输和利用电能的效率产生一定的影响。
交变电流的频率越高,电能的传输效率也越高。
这是因为高频交流电在导线中的传输损耗较低,能更有效地传输电能。
因此,现代电力系统中采用的交流电频率通常为几十到几百赫兹,以及低于一千赫兹范围内。
总结起来,电磁感应现象与交变电流频率之间存在紧密的关系。
电磁感应交变电流习题
a b 电磁感应交变电流习题1. 用电阻为18Ω的均匀导线弯成图中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为60°。
将圆环垂直于磁感线方向固定在磁感应强度B =0.50T 的匀强磁场中,磁场方向垂直于纸面向里。
一根每米电阻为1.25Ω的直导线PQ ,沿圆环平面向左以3.0m /s 的速度匀速滑行(速度方向与PQ 垂直),滑行中直导线与圆环紧密接触(忽略接触处电阻),当它通过环上AB 位置时,求:(1)直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向. (2)此时圆环上发热损耗的电功率.2. 如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场; 一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框。
在t=0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。
以i 表示导线框中感应电流的强度,取逆时针方向为正。
下列表示i -t 关系的选项中,可能正确的是( )3. 如图所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。
一导线框abcdef 位于纸面内,各邻边都相互垂直,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始,线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中的电动势E 的正方向,以下四个E -t 关系示意图中正确的是( )A B CD4. 如图所示,EOF 和E ′O ′F ′为空间一匀强磁场的边界,其中EO ∥E ′O ′,FO ∥F ′O ′,且EO ⊥OF ;OO ′为∠EOF 的角平分线,OO ′ 间的距离为l ;磁场方向垂直于纸面向里。
一边长为l 的正方形导线框沿OO ′方向匀速通过磁场,t =0时刻恰好位于图示位置。
规定导线框中感应电流沿逆时针方向时为正,则感应电流i 与时间t 的关系图线可能正确的是( )5. 矩形导线框abcd 放在匀强磁场中,在外力控制下处于静止状态,如图甲所示,磁感线方向与导线框所在平面垂直,磁感应强度B 随时间变化的图象如图乙所示。
高中物理-交变电流 说课
教学重难点
重点:运用电磁感应的基本知识,配合相应 的演示实验,分析交变电流的产生过程,认 识交变电流的特点及其规律 .
难点:运用楞次定律、法拉第电磁感应定 律这些基本原理解决新情境下的问题,以及 运用数学图象对物理量随时间变化的情况 进行描述,深入理解交变电流的产生过程及 其规律与特点.
说课 教科版 选修3-2 第二章 交变电流 第一节 交变电流
教材分析
1.本节教学地位
本章《交变电流》的内容是刚刚学习 的《电磁感应》的知识的发展和应用,并与 生产和生活有着密切的关系.通过这些内 容的学习,将使学生进一步了解电磁学的核 心内容,完善高中阶段电磁学理论的知识结 构。
本节知识是全章知识的理论基础.本 节内容有承上启下的作用.
2.高考要求
交流发电机及其产生正弦式电流的原理, 正弦式电流的图像和三角函数表达。 Ⅱ
学情分析
学生前面刚学习了磁场和电磁感应,这部分 知识是本节课的知识基础;学生有三角函数的知 识基础,在合成与分解时也经常运用,但是还不能 做到很熟练,再有就是数学上导数刚学习过,学生 知道三角函数求导结果,这些都可以为本节课寻 找正弦交变电流的表达规律有很大的帮助。
4. 找出感应电动势大小随时间变化的关系。
ቤተ መጻሕፍቲ ባይዱ
E = Emcosωt
学生问题
研究方向变化情况
配合演示
示波器
简单介绍交流电在生活中的应用
小结: 1.产生 2.规律 3.特殊位置
谢谢, 请各位老师批评指导!
三维目标
1.知识与技能: 知道什么是交变电流、正弦交变电流;了解闭合线
交变电流的产生
交变电流的产生及描述基础知识归纳1、交变电流的产生(1)正弦交流电的产生当闭合矩形线圈在匀强磁场中,绕垂直于磁感线的轴线做匀角速转动时,闭合线圈中就有交流电产生.如图所示.设矩形线圈abcd 以角速度ω绕oo ' 轴、从线圈平面跟磁感线垂直的位置开始做逆时针方向转动.此时,线圈都不切割磁感线,线圈中感应电动势等于零.经过时间t 线圈转过ωt 角,这时ab 边的线速度v 方向跟磁感线方向夹角等于ωt ,设ab 边的长度为l ,bd 边的长度为l',线圈中感应电动势为t l Bl e ωωsin 22'=,对于N 匝线圈,有t NBS e .sin .ωω=或者写成t E e m .sin .ω=(ωωm m N NBS E Φ==. 叫做电动势的最大值。
)由上式,在匀强磁场中,绕垂直于磁感线的轴做匀角速转动的线圈里产生的感应电动势是按正弦规律变化的.根据闭合电路欧姆定t R E R e i m ωsin ==(2)中性面——线圈转动至线圈平面垂直于磁感线位置时,各边都不切割磁感线,线圈中没有感应电流,这个特定位置叫中性面.应注意:①中性面在垂直于磁场位置.②线圈通过中性面时,穿过线圈的磁通量最大.③线圈平面通过中性面时感应电动势为零.④线圈平面每转过中性面时,线圈中感应电流方向改变一次,转动一周线圈两次通过中性面,一周里线圈中电流方向改变两次.(3)正弦交流电的图象矩形线圈在匀强磁场中,绕垂直于磁感线的轴做匀角速转动,线圈里产生正弦交流电.当线圈从中性面开始转动,在一个周期中:在t(0,T/4)时间内,线圈中感应电动势从0达到最大值E m.在t(T/4,T/2)时间内,线圈中感应电动势从最大值E m减小到0.在t(T/2,3T/4)时间内,线圈中感应电动势从0增加到负的最大值-E m.在t(3T /4,T )时间内,线圈中感应电动势的值从负的最大值-E m 减小到0.电路中的感应电流、路端电压与感应电动势的变化规律相同,如图所示.2、描述交变电流的物理量(1)瞬时值:它是反映不同时刻交流电的大小和方向,正弦交流瞬时值表达式为:t e m ωεsin =,t I i m ωsin =.应当注意必须从中性面开始。
电磁感应与交变电流
Ff=μ FN
FN=mg
F0 解得μ = 2mg
(2)根据功能关系可知导体棒MN克服安培力做功将 机械能转化为电能,在电路中电能转化为电热,电路 1 F0 中的总电热Q总=x 2 设导体棒的电阻值为r,根据电路串联关系可知
r Q总 Q R Q总
解得r=R(1-
(3)两位同学画的图线都不正确. 设导体棒运动的速度大小为v,产生的感应电动势为E, 感应电流为I F安=BIl I= E=Blv
电磁感应中能量转化问题
例3 (2009·徐州市第三次调研)如图6-1-8所示,
正方形线框abcd放在光滑绝缘的
水平面上,其边长L=0.5m、质量m =0.5kg、电阻R=0.5Ω ,M、N分别 为线框ad、bc边的中点.图示两个 图6-1-8 虚线区域内分别有竖直向下和向上的匀强磁场,磁感
应强度均为B=1T,PQ为其分界线,线框从图示位置以
1 2 mvm +Q1+Q2 mgLsinθ = 2 解得vm=4m/s
(2分) (1分)
(3)棒到底端时回路中产生的感应电流
Bdvm Im= =2A Rr
(1分)
根据牛顿第二定律有mgsinθ -BImd=ma
解得a=3m/s2 答案 (1)0.6V (2)4m/s (3)3m/s2
(1分)
(1分)
3.线圈穿越方向相反的两磁场时,要注意有两条
边都切割磁感线产生感应电动势.
预测演练1 如图6-1-3所示,在MM′、NN′区域中 存在垂直纸面向里,宽为2L的匀 强磁场.一导线框abcdefg位于纸 面内,总电阻为R,其中ab、bc、
de、ga四边长度均为L,fg、cd 图6-1-3 1 边长度为 L ,ab边与磁场边界MM′重合.从t=0时 2 刻开始,线框以速度v匀速穿过磁场区域,以逆时针方
电磁感应与交变电流
十二、电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★ 4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsin θ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.十三、交变电流1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流.按正弦规律变化的电动势、电流称为正弦交流电.2.正弦交流电 ----(1)函数式:e=E m sinωt (其中★E m =NBSω)(2)线圈平面与中性面重合时,磁通量最大,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势最大,磁通量的变化率最大.(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=I m cosωt.. (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
人教版初中高中物理选修二第三章《交变电流》(含答案解析)(1)
一、选择题1.图甲所示是一台小型发电机,该发电机线圈的内阻为10 Ω,外接灯泡的电阻为90 Ω,图乙所示为该发电机产生的交变电流的电动势随时间变化的正弦规律图像。
下列说法正确的是()A.在t=0.01s时,电压表的示数为零B.在t=0.005s时,通过线圈的磁通量最大C.在1 s内,灯泡产生的焦耳热为108.9J D.电路中电流的有效值约为1.6 A2.交流发电机的输出电压为U,采用图示理想变压器输电,升压变压器原、副线圈匝数比为m,降压变压器原、副线圈匝数之比为n,输电导线电阻为r,用户的工作电压为U。
下列说法正确的是()A.mn=1 B.mn>1C.输电线上损失的功率为222(1)mn Um rD.输电线上损失的功率为2Umr3.如图所示,理想变压器原、副线圈匝数之比n1:n2=3∶1,正弦交流电压有效值为U0恒定,电路中四个电阻R1=R2=R3=R4,理想电压表示数为U,则下列说法正确的是()A.R1与R2的电流之比为1∶1B.R1与R2的电压之比为3∶1C.R1与R2的功率之比为1∶3D .R 1与R 2的功率之比为1∶94.如图所示,电路中的变压器为理想变压器,U 为正弦式交变电压,R 为变阻器,R 1、R 2是两个定值电阻,A 、V 分别是理想电流表和理想电压表,则下列说法正确的是( )A .闭合开关S ,电流表示数变大、电压表示数变大B .闭合开关S ,电流表示数变小、电压表示数变大C .开关S 保持闭合,变阻器滑片向左移动的过程中,电流表、电压表示数均变小D .开关S 保持闭合,变阻器滑片向左移动的过程中,电流表、电压表示数均变大 5.如图所示,某旋转磁极式发电机的转子有两对磁极,将定子线圈的输出端接在一理想变压器的原线圈上,不计定子线圈的电阻。
当转子以25r/s 的转速匀速转动时,在定子绕组中产生频率为50Hz 的正弦交流电。
若使转子以50r/s 的转速转动,则( )A .电流表A 的示数变为原来两倍B .电压表V 的示数不变C .电阻R 上交流电的频率为25HzD .变压器铁芯中磁通量变化率的最大值变为原来4倍6.下列说法正确的是( )A .导体做切割磁感线运动,导体内一定会产生感应电流B .电磁感应现象中,感应电流的磁场总是跟原来的磁场方向相反C .交流电设备上所标的电压和电流值都是交变电流的最大值D .穿过闭合线圈的磁通量发生变化,线圈中一定有感应电流7.如图所示为远距离交流输电的简化电路图。
3-1 交变电流 教案
3.1交变电流〖教材分析〗本节内容承接前面学习过的法拉第定律的内容。
交变电流在生产生活中扮演着十分重要的角色。
而正弦式电流又是最简单和最基本的,它的产生原理是在电磁感应的基础上进一步提升的。
本节知识是全章的理论基础,由于与直流电不同,会出现许多新的名词来描述它。
本节通过实验来分析交变电流的产生过程。
〖教学目标与核心素养〗物理观念∶知道交流电产生过程、以及交流电的瞬时值的表达式并能够解决相关问题。
科学思维∶通过交变电流瞬时值的推导,体会物理模型建立在物理规律形成中的作用。
科学探究:通过对交变电流产生过程及变化规律的探究,尝试用科学探究及数学分析的方法研究物理问题,认识数学工具在物理学中的应用。
科学态度与责任∶有将物理知识应用于生活和生产实践的意识,勇于探索日常生活有关的物理问题。
〖教学重难点〗教学重点:对产生交变电流的物理过程的分析。
教学难点:交变电流的变化规律及应用。
〖教学准备〗多媒体课件、示教发电机模型。
〖教学过程〗公路旁、旷野上,坚实的钢架托着、吊着粗大的金属线,仿佛由天际而来,向天际而去……这些由发电厂、变电站而来的输电线,将电能输送到乡村、工厂,输送到千家万户。
电,每时每刻都在为人类作着巨大的贡献。
(动图展示发电厂发电过程)来自发电厂的电有什么特性?我们怎样才能更好地利用它?这一章我们就来学习与此相关的内容。
一、新课引入实验演示:用示波器或电压传感器先观察电池供给的电压的波形,再观察学生电源交流挡供给的电压的波形。
这两种波形各有什么特点?二、新课教学(一)交变电流如图所示,在显示屏上显示的电压(或电流)随时间变化的图像,在电工技术和电子技术中常常叫作波形图。
通过刚才的演示实验我们可以看到,电池的电压并不随时间变化,它是一条平行于t轴的直线。
而学生电源交流档的电压呈现出波浪线型,大小和方向是不断变化的,有一定的周期性。
①交流电:方向随时间周期性变化的电流。
简称交流电或交流用AC表示,其中最常见的是咱们家里用的交流电。
交变电流知识点
交变电流知识点一、交变电流的产生1、原理:电磁感应2、中性面:线圈平面与磁感线垂直的平面。
3、两个特殊位置的比较①线圈平面与中性面重合时(S⊥B),磁通量Φ最大,∆Φ=0,e=0,i=0,t∆感应电流的方向将发生改变。
②线圈平面平行与磁感线时(S∥B),Φ=0,∆Φ最大,e最大,i最大,电流t∆方向不变。
4、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的:取中性面为计时平面:注:对中性面的理解交流电瞬时值表达式的具体形式是由开始计时的时刻和正方向的规定共同决定的。
若从中性面开始计时,虽然该时刻穿过线圈的磁通量最大,但线圈两边的运动方向恰与磁场方向平行,不切割磁感线,电动势为零,故其表达式为;但若从线圈平面和磁场平行时开始计时,虽然该时刻穿过线圈的磁通量为零,但由于此时线圈两边的速度方向和磁场方向垂直,电动势最大,故其表达式为。
例:矩形线框绕垂直于匀强磁场且在线框平面的轴匀速转动时产生了交变电流,下列说法正确的是()A.当线框位于中性面时,线框中感应电动势最大B.当穿过线框的磁通量为零时,线框中的感应电动势也为零C.每当线框经过中性面时,感应电动势或感应电流方向就改变一次 D.线框经过中性面时,各边切割磁感线的速度为零答案:CD【变式训练】一单匝闭合线框在匀强磁场中绕垂直于磁场方向的轴匀速转动,在转动过程中,线框中的最大磁通量为m ,最大感应电动势为m E,则下列说法中正确的是()当穿过线框的磁通量为零时,A.感应电动势也为零当穿过线框的磁通量减小时,B.感应电动势在增大C.当穿过线框的磁通量等于mϕ5.0时,感应电动势等于m E5.0D.线框转动的角速度m m Eϕω/=答案:BD A二、对交变电流图像的理解交变电流的图像包括φ-t、e-t、i-t、u-t等,具体图像见上页,现只研究e-t图像从图像上可得到信息:1、线圈平面与中性面平行时为计时平面2、电流最大值3、周期T和频率f4、不同时刻交流电的瞬时值5、线圈处于中性面和电流最大值对应的时刻6、任意时刻线圈的位置和磁场的夹角周期和频率的计算公式:f=50 Hz,例:如图a所示,一矩形线圈abcd放置在匀强磁场中,并绕过ab、cd中点的轴OO′以角速度ω逆时针匀速转动。
专题06 电磁感应、交变电流(第01期)-2014年高考总复习物理选择题百题精练
1.关于电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是()A.穿过线圈的磁通量不变,感应电动势不为零且不变B.穿过线圈的磁通量增大,感应电动势也一定增大C.穿过线圈的磁通量减小,感应电动势也一定减小D.穿过线圈的磁通量增大,感应电动势可能不变2.物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环,闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动,对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.直流电源的正负极接反了D.所用套环的材料与老师的不同3.如图所示,虚线表示a、b两个相同圆形金属线圈的直径,圆内的磁场方向如图所示,磁感应强度大小随时间的变化关系B=kt(k为常量)。
当a中的感应电流为I时,b中的感应电流为()A. 0B. 0.5IC.ID.2I4.如图所示,矩形闭合线圈放置在水平薄板上,薄板左下方有一条形磁铁,当磁铁匀速自左向右通过线圈下方时,线圈始终保持静止,那么线圈中产生感应电流的方向(从上向下看) 和线圈受到薄板的摩擦力方向分别是()A.感应电流的方向先逆时针方向,后顺时针方向B.感应电流的方向先顺时针方向,后逆时针方向C.摩擦力方向先向左、后向右D.摩擦力方向先向右、后向左5.如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。
使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流;现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应()A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π考点:本题考查电磁感应。
交变电流的产生原理
交变电流的产生原理
交变电流的产生原理是通过改变导体中的电场和磁场来实现的。
当导体在磁场中运动时,导体中的自由电子受到磁场力的作用而产生电流。
这个过程可以通过法拉第电磁感应定律进行解释。
根据法拉第电磁感应定律,当导体通过磁场的变化时,导体中会产生感应电动势。
当导体形成闭合回路时,这个感应电动势会驱动自由电子在导体内部流动,形成一定方向的电流。
交变电流的产生是通过使导体在磁场中运动来实现的。
如果一个导体在磁场中运动,并且运动的速度或导体与磁场的相对运动速度发生变化,那么导体中的自由电子就会感受到不断变化的磁场,从而产生交变电动势。
具体来说,当导体移动时,导体中的自由电子会感受到磁场力的作用而受到一定方向的力。
这个力会将自由电子推向导体的一端,使得该端电荷的分布变得不均匀。
而根据库伦定律,不均匀电荷分布会产生电场。
因此,导体的一端就会出现电场。
当导体移动的方向改变时,自由电子会受到相反方向的磁场力作用,导致电荷分布发生相反的变化,从而产生相反方向的电场。
这一过程不断重复,使得导体的两端交替出现电场变化,从而产生了交变电动势和交变电流。
总结起来,交变电流的产生原理是通过改变导体中的电场和磁场来实现的。
当导体在磁场中运动时,导体中的自由电子受到磁场力的作用,从而产生交变电动势和交变电流。
高考物理大一轮复习 第十一章 交变电流 传感器 1 第一节 交变电流的产生和描述课件
(1)感应电动势的最大值; (2)从图示位置起转过14周的时间内负载电阻 R 上产生的热量; (3)从图示位置起转过14周的时间内通过负载电阻 R 的电荷量; (4)电流表的示数. [审题指导] 线圈转动产生感应电动势,最大值为 NBSω,热 量按有效值进行计算,电流表示数也为有效值,而电荷量用平 均值计算即 q=ΔRΦ.
第二十六页,共六十一页。
迁移 3 交变电流的图象分析 3.(多选)(2017·高考天津卷)在匀强磁场中,一个 100 匝的闭合 矩形金属线圈,绕与磁感线垂直的固定轴匀速转动,穿过该线 圈的磁通量随时间按图示正弦规律变化.设线圈总电阻为 2 Ω,则( )
第二十七页,共六十一页。
A.t=0 时,线圈平面平行于磁感线 B.t=1 s 时,线圈中的电流改变方向 C.t=1.5 s 时,线圈中的感应电动势最大 D.一个周期内,线圈产生的热量为 8π2 J 解析:选 AD.t=0 时,磁通量为零,磁感线与线圈平面平行, A 正确;当磁感线与线圈平面平行时,磁通量变化率最大,感 应电动势最大,画出感应电动势随时间变化的图象如图,由图 可知,t=1 s 时,感应电流没有改变方向,B 错误;t=1.5 s
【迁移题组】 迁移 1 交变电流的产生过程分析 1.(2019·南京、盐城模拟)图甲是小型交流发电机的示意图, 在匀强磁场中,一矩形金属线圈绕与磁场方向垂直的轴匀速转 动,产生的电动势随时间变化的正弦规律图象如图乙所示.发 电机线圈内阻为 10 Ω,外接一只电阻为 90 Ω 的灯泡,不计电 路的其他电阻,则( )
第十七页,共六十一页。
பைடு நூலகம்
[审题指导] 从线圈平面经过中性面开始计时,则线圈在时间 t 内转过角度 ωt,瞬时感应电动势 e=Em·sin ωt,其中 Em= NBSω.线圈平面处于与中性面成 φ0 夹角位置时开始计时,要 注意此时线圈的初相位.计算线圈转动一周电阻 R 上产生的 焦耳热,要用有效值进行计算.
高中物理电磁感应和交变电流
2、中性面:与磁场方向垂直的平面
特点:
①线圈通过中性面时,穿过线圈的磁通 量最大,但磁通量的变化率为零,感应 电动势为零;
②线圈平面每次转过中性面时,线圈中 感应电流方向改变一次,线圈转动一周 两次通过中性面,故线圈转动一周,线 圈中电流方向改变两次
• 3、交流电的图象
练习1.一个按正弦规律变化的交流电流,如图 所示,根据图像可以知道
瞬时值 有效值
周期、频率 电感、电容的作用
交流电路
变压器
远距离输电
专题一 交变电流的产生及其变化规律
一、交变电流的产生
1、产生:闭合矩形线圈在匀强磁场中,绕垂直 于磁感线的轴线做匀角速转动时,闭合线圈中就 有交流电产生
A
L1
L2
D
B
C
L2
线圈平面 与磁感线 垂直位置 开始计时
e=NBωSsinωt
d
上海高考题例4:在绕制变压器时,某人误将两个线圈
一、感应电动势
(影响感应电动势大小的因素)
⒈在电磁感应现象中产生的电动势叫做感应电动势。
说明
①电路闭合时有感应电动势,感应电流。 ②电路断开时有感应电动势,但无感应电流。
问2、题大2量:试影验响表感明应:电穿动过线势圈大的小磁的通因量素变?化越快感
应电动势越大
实验结论:感应电动势ΔE的φ大小与磁通量的变化快慢 有3、关。磁通量的变化率Δt
问题3:磁通量大,磁通量变化一定大吗? 磁通量变化大,磁通量的变化率一定大吗?
磁通量的变化率和磁通量、磁通量的变化不 同。磁通量为零,磁通量的变化率不一定为零;磁 通量的变化大,磁通量的变化率也不一定大。
(可以类比速度、速度的变化和加速度.)
交变电流的产生及其变化规律
交变电流的描述ppt-示范课件1
(1)求该处地磁场的磁感应强度 B; (2)从铜芯线所在平面与该处地磁场平行开始计时,求其转 过四分之一周的过程中,通过电流表的电荷量 q; (3)求铜芯线转动一周的过程中,电路产生的焦耳热 Q.
答案:(1)2×10-5 T (2)4×10-6 C (3)7.2×10-9 J
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版)
也相等,即f甲=f乙,C正确;ΔΦ=Φ甲-Φ乙=
π 3
,频率相同,相
位差不变,D正确.
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版)
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版)
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版)
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版) 交变电流的描述ppt-示范课件1PPT-ห้องสมุดไป่ตู้ 品课件 (实用 版)
交变电流的描述ppt-示范课件1PPT-精 品课件 (实用 版)
1.在下列四幅交流电的图象中,能正确反映我国居民生活
(1)电气设备的铭牌上标出的电压值、电流值;(2)交流电压 表测量的数值;(3)电容器上的标称电压值分别指的是有效值还 是最大值.
提示:(1)有效值 (2)有效值 (3)最大值
考点一
交变电流的周期和频率
1.周期 交变电流完成一次周期性变化所需的时间,叫做它的周期, 通常用 T 表示,单位是秒(s). 2.频率 交变电流在 1 s 内完成周期性变化的次数叫做它的频率,通 常用 f 表示,单位是赫兹,简称赫,符号是 Hz.
3.周期 T、频率 f 及角速度 ω 之间的关系 T=1f或 f=T1,ω=2Tπ=2πf. 4.物理意义 交变电流的周期和频率都是描述交变电流变化快慢的物理 量.周期越大,电流变化越慢;频率越高,电流变化越快.
高中物理选修3-2电磁感应第五章《交变电流》(人教版)
物理选修3-2第五章交变电流第一节交变电流肥城市第六高级中学汪顺安●教学目标一、知识目标1.使学生理解交变电流的产生原理,知道什么是中性面.2.掌握交变电流的变化规律及表示方法.3.理解交变电流的瞬时值和最大值及中性面的准确含义.二、技能目标1.掌握描述物理量的三种基本方法(文字法、公式法、图象法).2.培养学生观察能力,空间想象能力以及将立体图转化为平面图形的能力.3.培养学生运用数学知识解决物理问题的能力.三、情感态度目标培养学生理论联系实际的思想.●教学重点交变电流产生的物理过程的分析.●教学难点交变电流的变化规律及应用.●教学方法演示法、分析法、归纳法.●教学用具手摇单相发电机、小灯泡、示波器、多媒体教学课件、示教用大的电流表.●课时安排1课时●教学过程一、引入新课[师]出示单相交流发电机,引导学生首先观察它的主要构造.[演示]将手摇发电机模型与小灯泡组成闭合电路.当线框快速转动时,观察到什么现象?[生]小灯泡一闪一闪的.[师]再将手摇发电机模型与示教电流表组成闭合电路,当线框缓慢转动(或快速摆动)时,观察到什么?[生]电流表指针左右摆动.[师]线圈里产生的是什么样的电流?请同学们阅读教材后回答.[生]转动的线圈里产生了大小和方向都随时间做周期性变化的交变电流.[师]现代生产和生活中大都使用交流电.交流电有许多优点,今天我们学习交流电的产生和变化规律.二、新课教学1.交变电流的产生[师]为什么矩形线圈在匀强磁场中匀速转动时线圈里能产生交变电流?[生]对这个问题有浓厚的兴趣,讨论热烈.[师]多媒体课件打出下图.当abcd线圈在磁场中绕OO′轴转动时,哪些边切割磁感线?[生]ab与cd.[师]当ab边向右、cd边向左运动时,线圈中感应电流的方向如何?[生]感应电流是沿着a→b→c→d→a方向流动的.[师]当ab边向左、cd边向右运动时,线圈中感应电流的方向如何?[生]感应电流是沿着d→c→b→a→d方向流动的.[师]正是这两种情况交替出现,在线圈中产生了交变电流.当线圈转到什么位置时,产生的感应电动势最大?[生]线圈平面与磁感线平行时,ab边与cd边线速度方向都跟磁感线方向垂直,即两边都垂直切割磁感线,此时产生感应电动势最大.[师]线圈转到什么位置时,产生的感应电动势最小?[生]当线圈平面跟磁感线垂直时,ab边和cd边线速度方向都跟磁感线平行,即不切割磁感线,此时感应电动势为零.[师]利用多媒体课件,屏幕上打出中性面概念:(1)中性面——线框平面与磁感线垂直位置.(2)线圈处于中性面位置时,穿过线圈Φ最大,但=0.(3)线圈越过中性面,线圈中I感方向要改变.线圈转一周,感应电流方向改变两次.2.交变电流的变化规律设线圈平面从中性面开始转动,角速度是ω.经过时间t,线圈转过的角度是ωt,ab边的线速度v的方向跟磁感线方向间的夹角也等于ωt,如右图所示.设ab边长为L1,bc边长L2,磁感应强度为B,这时ab边产生的感应电动势多大?[生]e ab=BL1vsinωt=BL1·ωsinωt=BL1L2sinωt[师]cd边中产生的感应电动势跟ab边中产生的感应电动势大小相同,又是串联在一起,此时整个线框中感应电动势多大?[生]e=e ab+e cd=BL1L2ωsinωt[师]若线圈有N匝时,相当于N个完全相同的电源串联,e=NBL1L2ωsinωt,令E m=NBL1L2ω,叫做感应电动势的最大值,e叫做感应电动势的瞬时值.请同学们阅读教材,了解感应电流的最大值和瞬时值.[生]根据闭合电路欧姆定律,感应电流的最大值I m=,感应电流的瞬时值i=I m s i nωt.[师]电路的某一段上电压的瞬时值与最大值等于什么?[生]根据部分电路欧姆定律,电压的最大值U m=I m R,电压的瞬时值U=U m sinωt.[师]电动势、电流与电压的瞬时值与时间的关系可以用正弦曲线来表示,如下图所示:3.几种常见的交变电波形三、小结本节课主要学习了以下几个问题:1.矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式交变电流.2.从中性面开始计时,感应电动势瞬时值的表达式为e=NBSωs i nω t,感应电动势的最大值为E m=NBSω.3.中性面的特点:磁通量最大为Φm,但e=0.六、本节优化训练设计1.一矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势E随时间t的变化如图所示,则下列说法中正确的是A.t1时刻通过线圈的磁通量为零B.t2时刻通过线圈的磁通量的绝对值最大C.t3时刻通过线圈的磁通量变化率的绝对值最大D.每当电动势E变换方向时,通过线圈的磁通量的绝对值都为最大2.一台发电机产生的按正弦规律变化的感应电动势的最大值为311 V,线圈在磁场中转动的角速度是100π rad/s.(1)写出感应电动势的瞬时值表达式.(2)若该发电机只与含电阻的负载组成闭合电路,电路中的总电阻为100 Ω,试写出通过负载的电流强度的瞬时表达式.在t= s时电流强度的瞬时值为多少?3.一个矩形线圈在匀强磁场中转动产生交流电压为u=220s i n100πt V,则A.它的频率是50 HzB.当t=0时,线圈平面与中性面重合C.电压的平均值是220 VD.当t= s时,电压达到最大值4.交流发电机工作时的电动势的变化规律为e=E m s i nωt,如果转子的转速n提高1倍,其他条件不变,则电动势的变化规律将变化为A.e=E m s in2ωtB.e=2E m s in2ωtC.e=2E m s in4ωtD.e=2E m s inωt参考答案:1.D2.解析:因为电动势的最大值E m=311 V,角速度ω=100 π rad/s,所以电动势的瞬时值表达式是e=311s in100πt V.根据欧姆定律,电路中电流强度的最大值为I m= A=3.11 A,所以通过负载的电流强度的瞬时值表达式是i=3.11s in100πt A.当t= s时,电流的瞬时值为i=3.11s in(100π·)=3.11×A=1.55 A.3.ABD4.B四、作业问题与练习第3、4题五、板书设计●教后记注重与电磁感应的联系,重视交变电流产生的原理,多与现实生活和生产联系,并注重知识的灵活应用。
1.交变电流
Im
0 T/2 3T/4 T/4 3T/2 2T T 5T/4 7T/4
-Im
t
规律分析:在中性面位置,电流为0,经过此位置 前后电流方向相反,可见: (1)每经过中性面一次,电流都要改变方向一次 (2)在一个周期内经过中性面两次,故电流一周 期变化两次。 (3)1s内有50个周期,则电流变化100次。
1.交变电流
知识回顾
原磁场磁通 量发生变化
1.楞次定律
感应电流
感应电流的磁场
增反减同S Nv来自I IAI v
I
2.法拉第电磁感应定律 (1)内容:电路中感应电动势的大小E,跟穿 ΔΦ 过这一电路的磁通量的变化率 Δt 成正比。 (2)公式:
ΔΦ Ⅰ感生电动势:E n . Δt Ⅱ.动生电动势: E BLv sin ( B v)
ωt
(C)D
A(B)
v
B
(其中Em NBS )
三、正弦式交流电
1.产生条件: (1)线圈在匀强磁场中绕垂直磁场方向的轴匀速转动 (2)线圈从中性面位置开始转动(计时起点在中性面) 2.规律:
(1)电动势:e NBS sin t Em sin t ( Em NBS ) Em e NBS (2)电流:i sin t I m sin t ( I m ) Rr Rr Rr (3)某一电阻上电压: R u iR I m R sin t U m sin t (U m NBS ) Rr
2 2f 2n T
思考:如果线圈从垂直中性面位置开始计时, 则其变化规律是怎样的?
e Em cos t
e Em T/4 T/2 3T/4 T t
0
-Em
练习1.某线圈在匀强磁场中绕垂直磁场的转轴匀速转动, 产生如图所示的交流电,由图可知( )D A.在A和C时刻线圈处于中性面位置 B.在B和D时刻穿过线圈的磁通量为零 C.从A到D线圈转过的角度为2π D.若从O到D历时0.02s,则在1s内电流方向改变100次 i B C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合试卷(一)(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共计48分.1~8题为单选题,9~12题为多选题,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述不符合史实的是( )A .奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B .安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C .法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D .楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化答案 C解析 奥斯特通过著名的奥斯特实验,证明了电流周围存在磁场,安培提出分子电流假说,揭示了磁现象的电本质.楞次通过实验总结出感应电流的方向所遵循的规律——楞次定律.2.一定值电阻接到电压为u 0的方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q正.该电阻上电压的峰值为2u 0,周期为T ,如图1所示.则Q 方∶Q 正等于( )图1A .1∶ 2 B.2∶1 C .1∶2D .2∶1答案 C解析 根据题图图像可知,方波交流电的有效值U 方=u 0,正弦交流电的有效值U 正=2u 02= 2u 0,一个周期内产生的热量分别为Q 方=u 0 2R T ,Q 正=2u 0 2R T ,所以Q 方∶Q 正=1∶2,C 正确.3.如图2所示,A 为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A 的正上方用绝缘丝线悬挂一个金属环B ,使B 的环面水平且与圆盘面平行,其轴线与胶木圆盘A 的轴线OO′重合,现使胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()图2A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大答案 B解析胶木圆盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,形成环形电流,环形电流的大小增大,根据右手螺旋定则知,通过金属环B的磁场方向向下,且磁通量增大,根据楞次定律知,感应电流引起的效果阻碍原磁通量的增大,则金属环B的面积有缩小的趋势,且有向上的运动趋势,所以丝线受到的拉力减小,故选项B正确,A、C、D错误.4.如图3所示,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法不正确的是()图3A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动答案 C解析由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项A正确;根据E =BL v可知所加磁场越强,则感应电动势越大,感应电流越大,产生的阻碍圆盘转动的安培力越大,则圆盘越容易停止转动,选项B正确;若所加磁场反向,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍将减速转动,选项C错误;若所加磁场穿过整个圆盘,则圆盘中无感应电流,不产生安培力,故圆盘将匀速转动,选项D正确.5.(2019·北京101中学高二期末)如图4甲所示,一理想变压器原、副线圈匝数之比为55∶6,其原线圈两端接入如图乙所示的正弦交流电,副线圈通过电流表与负载电阻R相连.若交流电压表和交流电流表都是理想电表,则下列说法中正确的是()图4A.变压器输入电压的最大值是220 VB.若电流表的示数为0.5 A,变压器的输入功率是12 WC.原线圈输入的正弦交变电流的频率是100 HzD.电压表的示数是24 2 V答案 B解析由题图乙可知交流电压最大值U m=220 2 V,故A错误;输入电压的有效值为220 V,根据变压器电压与匝数成正比知电压表示数为U=655×220 V=24 V,即电压表的示数是24 V,若电流表的示数为0.5 A,变压器的输入功率是P入=P出=UI=24×0.5 W=12 W,故B正确,D错误;变压器不改变频率,由题图乙可知交流电的周期T=0.02 s,根据f=1T可知原线圈输入的正弦交变电流的频率是50 Hz,故C错误.6.(2018·溧水高级中学高二上期中)如图5所示,直角三角形导线框abc以速度v匀速进入匀强磁场区域,从图示位置开始计时,则此过程中导线框内感应电流随时间变化的规律为下列四个图像中的哪一个()图5答案 A解析 在线框进入磁场的过程中磁通量增加,根据楞次定律判断电流方向始终为abca ,进入磁场过程中切割的有效长度先变大后变小,所以线框内感应电流先变大后变小,A 正确.7. (2018·阳泉市第十一中学高二下月考)如图6所示为远距离输电示意图,图中两变压器均为理想变压器,升压变压器原、副线圈的匝数分别为n 1、n 2,降压变压器原、副线圈的匝数分别为n 3、n 4,输电线的总电阻为r .将原线圈接到u =U m sin ωt 的交流电源上,若输送的电功率为P ,不考虑其他因素的影响,则( )图6A .输电线上通过的电流为2P U mB .输电线上损失的电压为n 2U m 2n 1C .输电线上损失的电功率为2(n 1n 2)2(P U m)2r D .仅增大输送的电功率即可提升输电的效率答案 C解析 由u =U m sin ωt 可知输入的交流电的有效值U 1=U m 2,升压变压器副线圈中的电压U 2=n 2n 1U 1,故输电线上通过的电流为I =P U 2=2n 1P n 2U m,A 错误;输电线上损失的电压为ΔU =Ir =2n 1rP n 2U m ,B 错误;输电线上损失的电功率为ΔP =I 2r =2(n 1n 2)2(P U m)2r ,C 正确;输电的效率为η=P -ΔP P =1-2(n 1n 2)2·r U m2P ,则仅增大输送的电功率,将会降低输电的效率,故D 错误. 8.如图7所示,在匀强磁场中圆形线圈匀速转动的周期为T ,匝数为10匝,转轴O 1O 2垂直于磁场方向,线圈总电阻为2 Ω,从线圈平面与磁场方向垂直时开始计时,线圈转过30°时的瞬时电流为1 A ,下列说法正确的是( )图7A .线圈中电流的最大值为 2 AB .线圈中电流的最大值为2 AC .线圈消耗的电功率为8 WD .从图示位置开始计时,感应电流的瞬时值表达式为i =2cos (2πTt ) A 答案 B解析 从线圈平面与磁场方向垂直时开始计时,感应电动势的表达式为e =E m sin ωt ,则感应电流i =e R =E m R sin ωt ,由题给条件有1 A =E m 2 Ω×12,解得E m =4 V ,则I m =2 A ,I 有效= 2 A ,线圈中消耗的电功率为P =I 有效 2R =4 W ,选项A 、C 错误,B 正确;从题图所示位置开始计时,感应电流的瞬时值表达式为i =I m sin ωt =2sin (2πTt ) A ,选项D 错误. 9.(2019·济南外国语学校高二检测)在如图8甲、乙所示电路中,自感线圈L 的电阻很小,接通S ,使电路达到稳定,灯泡A 发光,下列说法正确的是( )图8A .在电路甲中,断开S ,A 将立即熄灭B .在电路甲中,断开S ,A 将逐渐变暗C .在电路乙中,断开S ,A 将逐渐变暗D .在电路乙中,断开S ,A 将先变得更亮,然后渐渐变暗答案 BD解析 由题图甲可知,灯泡A 与自感线圈L 在同一个支路中,流过的电流相同,断开S 时,线圈L 中的自感电动势的作用使得支路中的电流瞬间不变,之后逐渐变小,则A 将逐渐变暗,A 错误,B 正确;由题图乙可知,灯泡A 所在支路的电流比自感线圈所在支路的电流要小(因为自感线圈的电阻很小),断开S时,自感线圈的自感电动势要阻碍电流变小,此瞬间自感线圈中的电流不变,自感线圈相当于一个电源给灯泡A供电.因此反向流过A的电流瞬间要变大,然后逐渐变小,所以A将先更亮一下,然后渐渐变暗,C错误,D正确.10.为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L1、L2,电路中分别接了理想交流电压表V1、V2和理想交流电流表A1、A2,导线电阻不计,如图9所示.当开关S闭合后()图9A.A1示数变大,A1与A2示数的比值不变B.A1示数变大,A1与A2示数的比值变大C.V2示数变小,V1与V2示数的比值变大D.V2示数不变,V1与V2示数的比值不变答案AD解析电源电压有效值不变,所以V1示数不变,原、副线圈的电压之比等于原线圈与副线圈的匝数之比,因匝数之比不变,故V2示数不变,V1与V2示数的比值也不变,所以C项错误,D项正确;当开关S闭合后,副线圈电路中的电阻减小,因为电压不变,所以副线圈电路中的总电流增大,即A2的示数增大,原、副线圈的电流之比等于匝数反比,因匝数之比不变,故A1示数变大,且A1与A2示数的比值不变,所以A项正确,B项错误.11.在如图10甲所示的虚线框内有匀强磁场,设图示磁场方向为正,磁感应强度随时间变化规律如图乙所示.边长为l、电阻为R的正方形均匀线框abcd有一半处在磁场中,磁场方向垂直于线框平面,此时线框ab边的发热功率为P,则下列说法正确的是()图10A.磁感应强度B0=T2l2PRB.线框中感应电流为I=2P RC.线框cd边的发热功率为PD .a 端电势高于b 端电势答案 BC解析 由题图乙可知,线框中产生的感应电动势恒定,线框ab 边的发热功率为P =E 24R ,感应电动势E =ΔB Δt S =2B 0T ·l 22=B 0l 2T ,所以磁感应强度B 0=2T l 2PR ,A 错误;由P =14I 2R 可得线框中感应电流为I =2P R,B 正确;cd 边电阻等于ab 边电阻,且两边流过的电流相等,因此发热功率相等,C 正确;由楞次定律可知,线框中感应电流方向为adcba 方向,磁场中线框部分为等效电源,因此a 端电势比b 端电势低,D 错误.12.如图11所示,两电阻可忽略不计的光滑平行长金属导轨相距为d ,导轨与水平面的夹角为30°,上端ab 处接有阻值为R 的定值电阻,磁感应强度为B 的匀强磁场垂直轨道平面向上.现有质量为m 、电阻为R 的金属杆从轨道上端ab 处由静止释放,向下运动的距离为x 时达到最大速度,重力加速度为g ,则下列说法正确的是( )图11A .金属杆运动的最大速度为mgRB 2d2 B .金属杆从静止释放至达到最大速度过程中,通过电阻R 的电荷量为Bdx RC .金属杆从静止释放至达到最大速度过程中,电阻R 上产生的热量为mgx 2-m 3g 2R 22B 4d4 D .金属杆运动的最大加速度为g 2答案 AD解析 金属杆刚刚释放时只受重力和支持力,此时加速度最大,由mg sin 30°=ma 得,a =g 2,D 项正确;对金属杆受力分析可得mg sin 30°-F 安=ma ′,当金属杆的加速度为零时,金属杆运动的速度最大,此时的感应电动势E =Bd v ,感应电流I =E 2R,金属杆受到的安培力F 安=BId ,则金属杆运动的最大速度为v =mgR B 2d2,A 项正确;金属杆从静止释放至达到最大速度过程中,由法拉第电磁感应定律得,通过电阻R 的电荷量为q =ΔΦ2R =Bdx 2R,B 项错误;金属杆从静止释放至达到最大速度过程中,由能量守恒可得mgx sin 30°=12m v 2+2Q ,则电阻R 上产生的热量为Q =mgx 4-m 3g 2R 24B 4d4,C 项错误. 二、非选择题(本题共6小题,共计52分)13.(6分)在图12甲中,不通电时电流计指针停在正中央,当闭合开关时,观察到电流计指针向左偏.现按图乙连接方式将电流计与螺线管B 连成一个闭合回路,将螺线管A 与电池、滑动变阻器和开关S 串联成另一个闭合回路.图12(1)将开关S 闭合后,将螺线管A 插入螺线管B 的过程中,螺线管B 的________端(选填“上”或“下”)为感应电动势的正极;(2)螺线管A 放在B 中不动,开关S 突然断开的瞬间,电流计的指针将________(选填“向左”“向右”或“不发生”)偏转; (3)螺线管A 放在B 中不动,滑动变阻器的滑片向左滑动,电流计的指针将________(选填“向左”“向右”或“不发生”)偏转.答案 (1)下(2分) (2)向右(2分) (3)向左(2分)14.(6分)(2018·三明市高二下期末)如图13甲所示为热敏电阻的R -t 图像,图乙为用此热敏电阻和继电器组成的一个简单恒温箱温控电路,继电器的电阻为100 Ω.当线圈的电流大于或等于20 mA 时,继电器的衔铁被吸合.为继电器线圈供电的电池的电动势E =9.0 V ,内阻不计.图中的“电源”是恒温箱加热器的电源.图13 (1)应该把恒温箱内的加热器接在________(选填“A 、B 端”或“C 、D 端”);(2)若恒温箱系统要保持温度为50 ℃,则需把滑动变阻器调节到________ Ω;为了实现调节滑动变阻器到此阻值进行了下列步骤:①电路接通前,滑动变阻器阻值调节为最大,需将电阻箱调到一固定的阻值,根据实验要求,这一阻值应为________ Ω;②将单刀双掷开关向________(选填“c ”或“d ”)端闭合,缓慢移动滑动变阻器的滑片,直至继电器的衔铁被吸合;③保持滑动变阻器的位置不变,将单刀双掷开关向另一端闭合,恒温箱系统即可正常使用. 答案 (1)A 、B 端(1分) (2)260(2分) ①90(2分) ②c (1分)解析 (1)由题图甲知,热敏电阻R 的阻值随温度的升高而减小,由闭合电路欧姆定律得,干路电流增大,当增大到继电器的衔铁被吸合的电流时,恒温箱内的加热器停止加热,故恒温箱内的加热器接在A 、B 端;(2)若恒温箱系统要保持温度50 ℃,则应调节滑动变阻器R ′的阻值使电流达到20 mA ,由闭合电路欧姆定律得r +R +R ′=E I ,即R ′=E I -r -R =90.02Ω-100 Ω-90 Ω=260 Ω,即滑动变阻器R ′的阻值应调节为260 Ω;①电路接通前,滑动变阻器阻值调节为最大,需将电阻箱调到一固定的阻值,根据实验要求,电阻箱的阻值应等于50 ℃热敏电阻的电阻,应为90 Ω;②将单刀双掷开关向c 端闭合,缓慢移动滑动变阻器的滑片,直至继电器的衔铁被吸合.15.(9分)(2019·北京人大附属中学期中)如图14所示,位于竖直平面内的矩形线圈两边边长分别为L 1、L 2,匝数为N ,线圈总电阻为r ,可绕与磁场方向垂直的固定对称轴O 1O 2转动;图14线圈处于磁感应强度为B 的匀强磁场中,线圈在转动时可以通过与两个彼此绝缘的铜环C 、D (集流环)保持与定值电阻R 相连接,在外力作用下线圈以恒定的角速度ω绕轴OO ′匀速转动.(不计转动轴及铜环与电刷的摩擦)(1)从线圈平面垂直磁场时刻开始计时,写出线圈中瞬时感应电动势e 随时间t 变化的表达式(不必推导);(2)从线圈通过中性面(即线圈平面与磁场方向垂直的位置)开始计时,求经过14周期的时间内通过电阻R 的电荷量q ; (3)在线圈转动一个周期的过程中,求电路中产生的总焦耳热Q . 答案 (1)e =NBωL 1L 2sin ωt (V) (2)NBL 1L 2R +r (3)πN 2B 2ωL 1 2L 2 2R +r解析 (1)线圈中感应电动势的最大值E m =NBSω=NBL 1L 2ω (1分) 从线圈平面垂直磁场时刻开始计时,线圈中瞬时感应电动势e 随时间t 变化的表达式e =NBωL 1L 2sin ωt (V) (1分)(2)设从线圈通过中性面开始计时,经过14周期的时间Δt =T 4=π2ω(1分) 此过程中线圈中的平均感应电动势:E =N ΔΦΔt =N BS Δt(1分) 通过电阻R 的平均电流:I =E R +r =NBS (R +r )Δt(1分) 通过电阻R 的电荷量:q =I Δt =NBS R +r =NBL 1L 2R +r(1分) (3)线圈中感应电动势的有效值E =E m 2=22NBωL 1L 2 (1分) 在线圈转动一个周期的过程中,电流通过整个回路产生的焦耳热Q =E 2R +rT (1分) 联立可得Q =πN 2B 2ωL 1 2L 2 2R +r. (1分) 16.(9分)(2019·江门市第二中学高二月考)如图15所示,某水电站发电机输出功率为200 kW ,发电机输出电压为400 V ,通过升压和降压变压器给用户供电,升压变压器原、副线圈的匝数之比为n 1∶n 2=1∶5,两变压器之间输电线的总电阻为R =1 Ω,降压变压器输出电压为U 4=220 V ,求:图15(1)升压变压器的输出电压U 2;(2)输送电能的效率η;(3)降压变压器原、副线圈匝数之比n 3∶n 4. 答案 (1)2 000 V (2)95% (3)95∶11解析 (1)由U 1U 2=n 1n 2可得:U 2=n 2n 1U 1=2 000 V (2分)(2)输电线上的电流为:I 2=PU 2=100 A (1分)输电线上损失的电功率为:ΔP =I 2 2R =1×104W (2分)输送电能的效率为:η=P -ΔP P ×100%=95% (1分)(3)输电线上损失的电压为:ΔU =I 2R =100 V (1分) 降压变压器的输入电压为:U 3=U 2-ΔU =1 900 V (1分) 降压变压器原、副线圈匝数比为:n 3n 4=U 3U 4=9511. (1分)17.(10分)如图16甲所示,间距为L 的足够长的光滑平行金属导轨MN 和PQ 放置在绝缘水平桌面上,M 、P 间接有电阻R 0,导体棒ab 垂直放置在导轨上且接触良好.导轨间直径为L 的圆形区域内有竖直向下的匀强磁场,磁感应强度B 的大小随时间t 变化的规律如图乙所示,导体棒和导轨的电阻不计,导体棒ab 静止.求:图16(1)在0~t 0时间内,回路中的感应电动势E ; (2)在0~t 0时间内,电阻R 0产生的热量Q ;(3)若从t =t 0时刻开始,导体棒始终以速度v 向右匀速运动,则导体棒通过圆形区域过程中,导体棒所受安培力F 的最大值. 答案 见解析解析 (1)在0~t 0时间内,回路中磁感应强度的变化率为ΔB Δt =B 0t 0, (1分)圆形区域的面积S =π⎝⎛⎭⎫L 22=πL24, (1分)回路中的感应电动势E =ΔB Δt S =πB 0L 24t 0. (1分)(2)在0~t 0时间内,电阻R0上的电流I=ER0=πB0L24t0R0(1分)电阻R0产生的热量Q=I2R0t0=π2B02L416t0R0. (2分) (3)导体棒进入圆形磁场区域,保持匀速直线运动状态,当有效切割长度为L时,安培力最大,电动势E′=B0L v,(1分)回路中的电流I′=E′R0,(1分) 导体棒受到的安培力最大值F m=B0I′L,(1分)联立可得F m=B02L2vR0. (1分) 18. (12分)如图17所示,两根足够长的平行光滑金属导轨MN、PQ间距为l=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,两棒两端都与导轨始终接触良好,已知两棒的质量均为0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g=10 m/s2,求:图17(1)通过cd棒的电流I及方向;(2)棒ab受到的力F;(3)棒cd每产生Q=0.1 J的热量,力F做的功W.答案(1)1 A方向由d到c(2)0.2 N(3)0.4 J解析(1)棒cd受到的安培力F cd=IlB棒cd受力平衡,则F cd=mg sin 30°(1分)联立并代入数据解得I=1 A (1分)电流方向由d到c. (1分) (2)棒ab与棒cd受到的安培力大小相等F ab=F cd (1分)对棒ab由平衡条件有F=mg sin 30°+IlB (2分)联立并代入数据解得F=0.2 N (1分)(3)设在时间t内棒cd产生Q=0.1 J的热量,由焦耳定律可知Q=I2R t (1分) 设ab棒匀速运动的速度大小为v,则产生的感应电动势E=Bl v (1分)由闭合电路欧姆定律知I=E2R(1分) 由运动学公式知,在时间t内,棒ab沿导轨的位移x=v t力F做的功W=Fx (1分) 联立并代入数据解得W=0.4 J.(1分)。