2020年海南省高考数学试卷(新课标Ⅱ)
2020年海南省高考数学试卷(新高考全国Ⅱ卷)(解析版)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A. {x|2<x≤3}B. {x|2≤x≤3}C. {x|1≤x<4}D. {x|1<x<4}【答案】C【解析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B==,故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.2.2i12i-=+()A. 1B. −1C. iD. −i 【答案】D【解析】根据复数除法法则进行计算.【详解】2(2)(12)512(12)(12)5i i i iii i i----===-++-.故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A. 120种B. 90种C. 60种D. 30种【答案】C【解析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【答案】B【解析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46% D. 42%【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C. 【点睛】本题考查了积事件的概率公式,属于基础题.6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天【答案】B【解析】根据题意可得()0.38rttI t e e==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,根据10.38()0.382t t t e e +=,解得1t 即可得结果. 【详解】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==, 设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天, 则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B. 【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A【解析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( ) A. [)1,1][3,-+∞ B. 3,1][,[01]-- C. [1,0][1,)-⋃+∞ D. [1,0][1,3]-⋃【答案】D【解析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线22:1C mx ny +=.( )A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny =±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.10.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D. 5πcos(2)6x - 【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭,故选:BC. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 11.已知a >0,b >0,且a +b =1,则( ) A. 2212a b +≥B. 122a b ->C. 22log log 2a b +≥-D.≤【答案】ABD【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b -->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确; 对于D,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B. 若n =2,则H (X )随着1p 的增大而增大C. 若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D. 若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )【答案】AC【解析】对于A 选项,求得()H X ,由此判断出A 选项的正确性;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项的正确性;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项的正确性.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅⎪⎝⎭, 当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m jP Y j p p +-==+(1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.故选:AC 【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.三、填空题:本题共4小题,每小题5分,共20分。
2020年海南省高考数学试卷(新高考全国Ⅱ卷)(原卷版)
心,A 是圆弧 AB 与直线 AG 的切点,B 是圆弧 AB 与直线 BC 的切点,四边形 DEFG 为矩形,BC⊥DG,垂
足为 C,tan∠ODC= 3 , BH∥DG ,EF=12 cm,DE=2 cm,A 到直线 DE 和 EF 的距离均为 7 cm,圆孔半 5
径为 1 cm,则图中阴影部分的面积为________cm2.
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成
一个球(球心记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面所成角,点 A 处的水平面是指过点
A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平面平行,点 A 处的纬度为北纬 40°,则
数据估计出 R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间约为(ln2≈0.69) ()
A. 1.2 天
B. 1.8 天
C. 2.5 天
D. 3.5 天
7.已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则 AP AB 的取值范用是( )
三、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.斜率为 3 的直线过抛物线 C:y2=4x 的焦点,且与 C 交于 A,B 两点,则 AB =________.
14.将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前 n 项和为________. 15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧 AB 所在圆的圆
i 1
i 1
A. 若 n=1,则 H(X)=0
B. 若 n=2,则 H(X)随着 p1 的增大而增大
2020年普通高等学校招生全国统一考试(新高考全国卷Ⅱ)(海南卷)数学试题(解析版)
绝密★启用前 考试时间:2020年7月7日15:00-17:00 2020年普通高等学校招生全国统一考试(海南卷)(新高考全国卷Ⅱ)数学试题(解析版)试卷总分150分, 考试时间120分钟1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B ⋃=( )A.{|23}x x <≤B.{|23}x x ≤≤C.{|14}x x ≤<D.{|14}x x <<答案:C解析:由题可知{|14}A B x x ⋃=≤<,∴选C. 2.212i i-=+( ) A.1B.1-C.iD.i -答案:D解析:2(2)(12)512(12)(12)5i i i i i i i i ----===-++-. 3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种答案:C解析:126560C C ⋅=.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A.20︒B.40︒C.50︒D.90︒答案:B解析:如图所示,由题意可知直线l 与AC 夹角α,即为所求角,∴40DAO α=∠=︒,故选B.。
2020年海南省高考数学试卷(新课标Ⅱ)
2020年海南省高考数学试卷(新课标Ⅱ)一、选择题1. 设集合A ={2,3,5,7}, B ={1,2,3,5,8},则A ∩B =( ) A.{2,3,5} B.{1,8} C.{1,2,3,5,8} D.{2,5}2. (1+2i)(2+i)=( ) A.−5 B.−5i C.5 D.5i3. 如果D 为△ABC 的边AB 的中点,则向量CB →=( ) A. 2CD →+CA →B.2CD →−CA →C. 2CA →+CD →D.2CA →−CD →4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40∘,则晷针与点A 处的水平面所成角为( )A.50∘B.20∘C.90∘D.40∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A.46% B.62%C.42%D.56%6. 3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A.6种 B.4种C.8种D.5种7. 已知函数f (x )=log 2(x 2−4x −5)在(a,+∞)单调递增,则a 的取值范围是( )A.[2,+∞)B.(−∞,−1]C.[5,+∞)D.(−∞,2]8. 若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是( ) A.[−1,0]∪[1,+∞) B. [−1,1]∪[3,+∞) C.[−1,0]∪[1,3] D.[−3,−1]∪[0,1]二、多选题9. 我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A.第3天至第11天复工复产指数均超过80%;B.这11天复工指数和复产指数均逐日增加;C.第9天至第11天复产指数增量大于复工指数的增量;D.这11天期间,复产指数增量大于复工指数的增量;10. 已知曲线C:mx 2+ny 2=1.( )A.若mn <0,则C 是双曲线,其渐近线方程为y =±√−mn x B.若m >n >0,则C 是椭圆,其焦点在y 轴上 C.若m =0,n >0,则C 是两条直线 D.若m =n >0,则C 是圆,其半径为√n11. 如图是函数y =sin (ωx +φ)的部分图象,则sin (ωx +φ)=( )A.cos (2x +π6) B.sin (x +π3)C.cos (5π6−2x)D.sin (π3−2x)12. 已知a >0,b >0,且a +b =1,则( ) A.log 2a +log 2b ≥−2 B.a 2+b 2≥12C.√a +√b ≤√2D.2a−b >12三、填空题13. 棱长为2的正方体ABCD −A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1−D 1MN 的体积为________.14. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=_________.15. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.16. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC=35,BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6,________? 注:如果选择多个条件分别解答,按第一个解答计分.18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)求a 1a 2−a 2a 3+⋯+(−1)n−1a n a n+1.19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位: μg/m 3),得下表:((1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过$150"$的概率;(2)根据所给数据,完成下面的2×2列联表:(0,75] (3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附: K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d )20. 如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB=√2,求PB与平面QCD所成角的正弦值.21. 已知椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为12.(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.22. 已知函数f(x)=ae x−1−ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.参考答案与试题解析2020年海南省高考数学试卷(新课标Ⅱ)一、选择题1.【答案】此题暂无答案【考点】交集根助运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】复验热数术式工乘除运算【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】向量在于何中侧应用向量的明角轮法则【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】解三角使的实际爱用在实三问葡中建湖三量函数模型【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】互三事实清概西加法公式【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】已知都数环单梯遗求参数问题【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】函数奇明性研性质函较绕肠由的判断与证明【解析】此题暂无解析【解答】此题暂无解答二、多选题9.【答案】此题暂无答案【考点】频率验热折视图、发度曲线【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】双曲根气渐近线椭圆较标准划程圆的射纳方程【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】基来雨等式【解析】此题暂无解析【解答】此题暂无解答三、填空题13.【答案】此题暂无答案【考点】柱体三锥州、台到的体建计算【解析】此题暂无解析【解答】此题暂无解答14.【答案】此题暂无答案【考点】与抛较绕有肠军中点弦及弦长问题【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】等差数常的占n项和等差都升的确定【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】解三角使的实际爱用在实三问葡中建湖三量函数模型扇形常积至式【解析】此题暂无解析【解答】此题暂无解答四、解答题17.【答案】此题暂无答案【考点】余于视理正因归理【解析】此题暂无解析【解答】此题暂无解答18.【答案】此题暂无答案【考点】等比数使的前n种和等比数表的弹项公式【解析】此题暂无解析【解答】此题暂无解答19.【答案】此题暂无答案【考点】独根性冬验古典因顿二其比率计算公式【解析】此题暂无解析【解答】此题暂无解答20.【答案】此题暂无答案【考点】用空根冬条求才面间的夹角直线与平正垂直的判然【解析】此题暂无解析【解答】此题暂无解答21.【答案】此题暂无答案【考点】直线常椭圆至合业侧值问题椭圆较标准划程【解析】此题暂无解析【解答】此题暂无解答22.【答案】此题暂无答案【考点】利用都数资究不长式化成立问题利用三数定究曲纵上迹点切线方程【解析】此题暂无解析【解答】此题暂无解答。
2020年新高考数学全国卷2(海南)-答案
2020年普通高等学校招生全国统一考试·全国Ⅱ卷(海南)数学答案解析一、选择题 1.【答案】C【解析】根据集合交集的运算可直接得到结果. 因为{}2,3,5,7A =,{}1,2,3,5,8B =, 所以{}2,3,5A B = . 故选:C【考点】集合交集的运算 2.【答案】B【解析】直接计算出答案即可.()()212i 2i 2i 4i 2i 5i ++=+++=故选:B【考点】复数的计算 3.【答案】C 【解析】根据向量的加减法运算法则算出即可.()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-=故选:C【考点】向量的加减法 4.【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知m CD ∥、根据线面垂直的定义可得AB m ⊥.由于40AOC =︒∠,m CD ∥,所以40OAG AOC ==︒∠∠, 由于90OAG GAE BAE GAE +=+=︒∠∠∠∠,所以40BAE OAG ==︒∠∠,也即晷针与点A 处的水平面所成角为40BAE =︒∠. 故选:B【提示】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点、A 处的纬度,计算出晷针与点A 处的水平面所成角. 【考点】中国古代数学文化,球体有关计算 5.【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ,然后根据积事件的概率公式()()()()P A B P A P B P A B =+-+ 可得结果.记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ,则()P A 0.6=,()P B 0.82=,()P A B 0.96+=, 所以()()()()P A B P A P B P A B 0.60.820.960.46=+-+=+-= ,所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C【考点】积事件的概率公式 6.【答案】C【解析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.第一步,将3名学生分成两个组,有12323C C =种分法, 第二步,将2组学生安排到2个村,有222A =种安排方法,所以,不同的安排方法共有326⨯=种. 故选:C7.【答案】D【解析】首先求出()f x 的定义域,然后求出()()2lg 45f x x x =--的单调递增区间即可.由2450x x -->得5x >或1x -<, 所以()f x 的定义域为()(),15,-∞-+∞ , 因为245y x x =--在()5,+∞上单调递增,所以()()2lg 45f x x x =--在()5,+∞上单调递增,所以5a ≥. 故选:D 8.【答案】D【解析】因为定义在R 上的奇函数()f x 在(),0-∞上单调递减,且()20f =, 所以()f x 在()0,+∞上也是单调递减,且()20f -=,()00f =,所以当()(),20,2x ∈-∞- 时,()0f x >,当()()2,02,x ∈-+∞ 时,()0f x <,所以由()10xf x -≥可得:021012x x x ⎧⎨---⎩<≤≤或≥或001212x x x ⎧⎨---⎩>≤≤或≤或0x =,解得10x -≤≤或13x ≤≤,所以满足()10xf x -≥的x 的取值范围是[][]1,01,3- . 故选:D【提示】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果. 【考点】利用函数奇偶性与单调性解抽象函数不等式 二、选择题 9.【答案】CD【解析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确. 由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确; 【考点】折线图表示的函数的认知与理解 10.【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0m =,0n >时表示两条直线.对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0m =,0n >,则221mx ny +=可化为21y n=,y =C 表示平行于x 轴的两条直线,故D 正确. 故选:ACD【考点】曲线方程的特征 11.【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.由函数图像可知:2πππ2362T =-=,则2π2π2πT ω===,所以不选A, 当2ππ5π36212x +==时,1y =-()5π3π22π122k k ϕ⨯+=+∈Z ∴, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2ππππsin 2π2πsin 2cos 2sin 236263y x k x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而π5πcos 2cos 266x x ⎛⎫⎛⎫+=-- ⎪⎪⎝⎭⎝⎭. 故选:BC 12.【答案】ABD 【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 对于A ,()22222211112221222a b a a a a a +=+-=-+⎛⎫- ⎪⎝=+⎭≥,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=-->,所以11222a b --=>,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+===- ⎪⎝⎭≤, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b +=+++=,12a b ==时,等号成立,故D 正确. 故选:ABD【考点】不等式的性质 三、填空题 13.【答案】13【解析】利用11A NMD D AMN V V --=计算即可.因为正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13 14.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. ∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为()1,0F ,又∵直线AB 过焦点F ,∴直线AB 的方程为:)1y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得113x =,23x =,所以1211633AB x =-=-= 解法二:10036640=-=△> 设()11,A x y ,()22,B x y 则12103x x +=, 过A ,B 分别作准线1x =-的垂线,设垂足分别为C ,D 如图所示.12121611+2=3AB AF BF AC BD x x x x =+=+=+++=+故答案为:163. 【考点】抛物线焦点弦长 15.【答案】232n n -【解析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为()2116322n n n n n -+=- ,故答案为:232n n -. 【考点】有关数列的问题16.【答案】54π2+ 【解析】利用3tan 5ODC =∠求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.设OB OA r ==,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=,因为BH DG ∥,所以45AHO ︒=∠, 因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =-,因为3tan 5OQ ODC DQ ==∠,所以2125-=,解得r =;等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213π3π24S =⨯⨯=, 所以阴影部分的面积为1215ππ422S S +-=+. 故答案为:5π42+.【考点】三角函数在实际中应用四、解答题17.【答案】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tan A 的值,得到角A ,B ,C 的值,然后根据选择的条件进行分析判断和求解. 解法一:由sin A B 可得:ab=不妨设a =,()0b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯=,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件c 矛盾,则问题中的三角形不存在.解法二:∵sin A B =,π6C =,()πB A C =-+∴()πsin 6A A C A ⎛⎫=+=+ ⎪⎝⎭,()1sin 2A A C A A =+= ,∴sinA =,∴tanA =,∴23A π=,∴6B C π==,若选①,ac =,∵a ,2,∴1c =;若选②,sin 3c A =,3=,c =;若选③,与条件c 矛盾.18.【答案】(1)设等比数列{}n a 的公比为()1q q >,则32411231208a a a q a q a a q ⎧+=+=⎪⎨==⎪⎩, 整理可得:22520q q -+=,1q >,2,q =,12a =数列的通项公式为:1222n nn a -== .(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:()1122311n n n a a a a a a -+-+⋯+-()1357921222212n n -+=-+-+⋯+-()()()322322128215512nn n+⎡⎤--⎢⎥⎣⎦==----.19.【答案】(1)由表格可知,该市100天中,空气中的PM 2.5浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的PM 2.5浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; ((3)根据22⨯列联表中的数据可得()()()()()()2221006410161036007.4844 6.63580207426481n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯>, 因为根据临界值表可知,有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关. 【考点】古典概型的概率公式 20.【答案】(1)证明:在正方形ABCD 中,AD BC ∥, 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊄平面P AD ,平面PAD 平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以AD DC ⊥,l DC ∴⊥, 且PD ⊥平面ABCD ,所以AD PD ⊥,l PD ∴⊥ 因CD PD D = 所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有()0,0,0D ,()0,1,0C ,()1,0,0A ,()0,0,1P ,()1,1,0B设(),0,1Q m ,则有()0,1,0,DC = ,(),0,1DQ m = ,()1,1,1PB =-,因为QB =1m ==设平面QCD 的法向量为(),,n x y z =,则00DC n DQ n ⎧=⎪⎨=⎪⎩,即00y x z =⎧⎨+=⎩, 令1x =,则1z =-,所以平面QCD 的一个法向量为()1,0,1n =-,则cos ,n PB n PB n PB ⋅<>====. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于cos ,n PB <>= . 为所以直线PB 与平面QCD . 【考点】立体几何 21.【答案】(1)由题意可知直线AM 的方程为:()1322y x -=-,即24x y -=-. 当0y =时,解得4x =-,所以4a =, 椭圆()2222:10x y C a b a b+=>>过点()2,3M ,可得249116b +=, 解得212b =.所以C 的方程:2211612x y +=. (2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时AMN △的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=, 可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m =-⨯-=△,即264m =,解得8m =±, 与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24x y -=-,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==由两点之间距离公式可得AM =所以AMN △的面积的最大值:1182⨯=. 22.【答案】【解析】(1)()e ln 1x f x x =-+ ,()1e x f x x'∴=-,()1e 1k f '∴==-. ()1e 1f =+ ,∴切点坐标为()1,1e +,∴函数()f x 在点()()1,1f 处的切线方程为()()e 1e 11y x --=--,即()e 12y x =-+,∴切线与坐标轴交点坐标分别为()0,22,0e 1-⎛⎫ ⎪-⎝⎭, ∴所求三角形面积为1222=2e 1e 1-⨯⨯--; (2)解法一:()1e ln ln x f x a x a -=-+ ,()11e x f x a x-'∴=-,且0a >. 设()()g x f x =',则()121e 0x g x a x -'=+>, ∴()g x 在()0,+∞上单调递增,即()f x '在()0,+∞上单调递增,当1a =时,()01f '=,∴()()min 11f x f ==,∴()1f x ≥成立.当1a >时,11a ,11e 1a -∴<,()()1111e 110a f f a a a -⎛⎫⎛⎫''∴=-- ⎪ ⎪⎝⎭⎝⎭<, ∴存在唯一00x >,使得()01001e 0x f x a x -'=-=,且当()00,x x ∈时()0f x '<,当()0,x x ∈+∞时()0f x '>,0101e x a x -∴=,00ln 1ln a x x ∴+-=-, 因此()()0100min e ln ln x f x f x a x a -==-+001ln 1ln 2ln 12ln 11a x a a a x =++-+-+=+≥>, ∴()1f x >,∴()1f x ≥恒成立;当01a <<时,()1ln 1f a a a =+<<,∴()11f <,()1f x ≥不是恒成立.综上所述,实数a 的取值范围是[)1,+∞.解法二:()1ln 1e ln ln e ln ln 1x a x f x a x a x a -+-=-+=-+≥等价于ln 1ln e ln 1ln e ln a x x a x x x x +-++-+=+≥,令()e x g x x =+,上述不等式等价于()()ln 1ln g a x g x +-≥,显然()g x 为单调增函数,∴又等价于ln 1ln a x x +-≥,即ln ln 1a x x -+≥, 令()ln 1h x x x =-+,则()111x h x x x-=-=' 在()0,1上()0h x '>,()h x 单调递增;在()1,+∞上()0h x '<,()h x 单调递减, ∴()()max 10h x h ==,ln 0a ≥,即1a ≥,∴a 的取值范围是[)1,+∞.【考点】导数几何意义,利用导数研究不等式恒成立问题。
2020年新高考全国卷Ⅱ数学高考试题(海南)(无答案)
2020年普通高等学校招生全国统一考试数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}2.2i12i-=+ A .1 B .−1 C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为 A .20° B .40° C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
精品解析:2020年新高考全国卷Ⅱ数学试题(海南卷)(解析版)
2020 年普通高等学校招生全国统一考试数学(海南)一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项符合题目要求的)1. 设集合A ={2,3,5,7},B ={1,2,3,5,8},则A ∩B =( ) A. {1,3,5,7} B. {2,3}C. {2,3,5}D. {1,2,3,5,7,8}【答案】C 【解析】 【分析】根据集合交集的运算可直接得到结果.【详解】因为A ={2,3,5,7},B ={1,2,3,5,8}, 所以A ∩B ={2,3,5} 故选:C【点睛】本题考查的是集合交集的运算,较简单. 2. (1+2i)(2+i) =( ) A. 4+5i B. 5iC. -5iD. 2+3i【答案】B 【解析】 【分析】直接计算出答案即可.【详解】(1+2i)(2+i)=2+i +4i +2i 2=5i 故选:B【点睛】本题考查的是复数的计算,较简单.3. 在△ABC 中,D 是AB 边上的中点,则CB ⃗⃗⃗⃗⃗ =( ) A. 2CD ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ B. CD⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ C. 2CD⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ D. CD ⃗⃗⃗⃗⃗ +2CA⃗⃗⃗⃗⃗ 【答案】C 【解析】 【分析】根据向量的加减法运算法则算出即可.【详解】CB⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +2(CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=2CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ 故选:C【点睛】本题考查的是向量的加减法,较简单.4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【答案】B 【解析】 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA ⊥l ;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知m //CD 、根据线面垂直的定义可得AB ⊥m .. 由于∠AOC =40°,m //CD ,所以∠OAG =∠AOC =40°, 由于∠OAG +∠GAE =∠BAE +∠GAE =90°,所以∠BAE =∠OAG =40°,也即晷针与点A 处的水平面所成角为∠BAE =40°.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46% D. 42%【答案】C 【解析】 【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B ,然后根据积事件的概率公式P(A ⋅B)=P(A)+P(B)−P(A +B)可得结果. 【详解】记“该中学学生喜欢足球”事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B , 则P(A)=0.6,P(B)=0.82,P (A +B )=0.96,所以P(A ⋅B)=P(A)+P(B)−P(A +B)=0.6+0.82−0.96=0.46 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C【点睛】本题考查了积事件的概率公式,属于基础题.6. 要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A. 2种B. 3种C. 6种D. 8种.【解析】【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有C31C22=3种分法第二步,将2组学生安排到2个村,有A22=2种安排方法所以,不同的安排方法共有3×2=6种故选:C【点睛】解答本类问题时一般采取先组后排的策略.7. 已知函数f(x)=lg(x2−4x−5)在(a,+∞)上单调递增,则a的取值范围是()A. (2,+∞)B. [2,+∞)C. (5,+∞)D. [5,+∞)【答案】D【解析】【分析】首先求出f(x)的定义域,然后求出f(x)=lg(x2−4x−5)的单调递增区间即可.【详解】由x2−4x−5>0得x>5或x<−1所以f(x)的定义域为(−∞,−1)∪(5,+∞)因为y=x2−4x−5在(5,+∞)上单调递增所以f(x)=lg(x2−4x−5)在(5,+∞)上单调递增所以a≥5故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.8. 若定义在R的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A. [−1,1]∪[3,+∞)B. [−3,−1]∪[0,1]C. [−1,0]∪[1,+∞)D. [−1,0]∪[1,3]【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数f(x)在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,所以f(x)在(0,+∞)上也是单调递减,且f(−2)=0,f(0)=0,所以当x∈(−∞,−2)∪(0,2)时,f(x)>0,当x∈(−2,0)∪(2,+∞)时,f(x)<0,所以由xf(x−1)≥0可得:{x<0−2≤x−1≤0或{x>00≤x−1≤2或x=0解得−1≤x≤0或1≤x≤3,所以满足xf(x−1)≥0的x的取值范围是[−1,0]∪[1,3],故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.二、选择题(本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5 分,有选错的得0 分,部分选对的得3 分)9. 我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是()A. 这11天复工指数和复产指数均逐日增加;B. 这11天期间,复产指数增量大于复工指数的增量;C. 第3天至第11天复工复产指数均超过80%;D. 第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.10. 已知曲线C:mx2+ny2=1.()A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为√nC. 若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD. 若m=0,n>0,则C是两条直线【答案】ACD【解析】【分析】结合选项进行逐项分析求解,m>n>0时表示椭圆,m=n>0时表示圆,mn<0时表示双曲线,m=0,n> 0时表示两条直线【详解】对于A,若m>n>0,则mx2+ny2=1可化为x 21 m +y21n=1,因为m>n>0,所以1m <1n,即曲线C表示焦点在y轴上的椭圆,故A正确;对于B,若m=n>0,则mx2+ny2=1可化为x2+y2=1n,此时曲线C表示圆心在原点,半径为√nn的圆,故B不正确;对于C,若mn<0,则mx2+ny2=1可化为x 21 m +y21n=1,此时曲线C表示双曲线,由mx2+ny2=0可得y=±√−mnx,故C正确;对于D,若m=0,n>0,则mx2+ny2=1可化为y2=1n,y=±√nn,此时曲线C表示平行于x轴的两条直线,故D正确;故选:ACD. .【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.11. 下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ()A. sin(x+π3) B. sin(π3−2x) C. cos(2x+π6) D. cos(5π6−2x)【答案】BC【解析】【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:T2=23π−π6=π2,则ω=2πT=2ππ=2,所以不选A,当x=23π+π62=5π12时,y=−1∴2×5π12+φ=3π2+2kπ(k∈Z),解得:φ=2kπ+23π(k∈Z),即函数的解析式为:y=sin(2x+23π+2kπ)=sin(2x+π6+π2)=cos(2x+π6)=sin(π3−2x).而cos(2x+π6)=−cos(5π6−2x)故选:BC.【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2πT即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.12. 已知a >0,b >0,且a +b =1,则( ) A. a 2+b 2≥12B. 2a−b >12C. log 2a +log 2b ≥−2D. √a +√b ≤√2【答案】ABD 【解析】 【分析】根据a +b =1,结合基本不等式及二次函数知识进行求解.详解】对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.三、填空题(本题共 4 小题,每小题 5 分,共 20 分)13. 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【解析】 【分析】利用V A−NMD 1=V D 1−AMN 计算即可.【【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以V A−NMD1=V D1−AMN=13×12×1×1×2=13故答案为:1 3【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.14. 斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.【答案】163【解析】【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为y2=4x,∴抛物线的焦点F坐标为F(1,0),又∵直线AB过焦点F且斜率为√3,∴直线AB的方程为:y=√3(x−1)代入抛物线方程消去y并化简得231030x x-+=,解法一:解得x1=13,x2=3所以|AB|=√1+k2|x1−x2|=√1+3⋅|3−13|=163解法二:Δ=100−36=64>0设A(x1,y1),B(x2,y2),则x1+x2=103,过A,B分别作准线x=−1的垂线,设垂足分别为C,D如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x1+1+x2+11216 +2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.15. 将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.【答案】3n2−2n【解析】【分析】首先判断出数列{2n−1}与{3n−2}项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列{2n−1}是以1为首项,以2为公差的等差数列,数列{3n−2}是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n}是以1为首项,以6为公差的等差数列,⋅6=3n2−2n,所以{a n}的前n项和为n⋅1+n(n−1)2故答案为:3n2−2n.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.16. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂,BH//DG,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径足为C,tan∠ODC=35为1 cm,则图中阴影部分的面积为________cm2.【答案】4+52π【解析】【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角△OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH 的面积为S 1=12×2√2×2√2=4; 扇形AOB 的面积S 2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S 1+S 2−12π=4+5π2.故答案为:4+5π2.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.四、解答题(本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角,,A B C 的对边分别为a,b,c ,且sin A =√3sin B ,C =π6,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角A,B,C 的值,然后根据选择的条件进行分析判断和求解. 【详解】解法一:由sin A =√3sin B 可得:ab =√3, 不妨设a =√3m,b =m (m >0),则:c 2=a 2+b 2−2ab cos C =3m 2+m 2−2×√3m ×m ×√32=m 2,即c =m选择条件①的解析:据此可得:ac =√3m ×m =√3m 2=√3,∴m =1,此时c =m =1. 选择条件②的解析: 据此可得:cos A =b 2+c 2−a 22bc =m 2+m 2−3m 22m 2=−12,则:sin A =√1−(−12)2=√32,此时:c sin A =m ×√32=3,则:c =m =2√3.选择条件③的解析:.可得c b =mm =1,c =b ,与条件c =√3b 矛盾,则问题中的三角形不存在. 解法二:∵sinA =√3sinB,C =π6,B =π−(A +C ), ∴sinA =√3sin (A +C )=√3sin (A +π6), sinA =√3sin (A +C )=√3sinA ·√32+√3cosA ·12 ,∴sinA =−√3cosA ,∴tanA =−√3,∴A =2π3,∴B =C =π6, 若选①,ac =√3,∵a =√3b =√3c ,∴√3c 2=√3,∴c=1; 若选②,csinA =3,则√3c 2=3,c =2√3;若选③,与条件c =√3b 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)a n =2n ;(2)85−(−1)n22n+35【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式; (2)首先求得数列{(−1)n−1a n a n+1}的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{a n }的公比为q (q >1),则{a 2+a 4=a 1q +a 1q 3=20a 3=a 1q 2=8,整理可得:2q 2−5q +2=0, ∵q >1,q =2,a 1=2,数列的通项公式为:1222n nn a -=⋅=.(2)由于:(−1)n−1a n a n+1=(−1)n−1×2n ×2n+1=(−1)n−122n+1,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础.19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且SO 2浓度不超过150”的概率; (2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)0.64;(2)答案见解析;(3)有. 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果; (2)根据表格中数据可得2×2列联表; (3)计算出K 2,结合临界值表可得结论.【详解】(1)由表格可知,该市100天中,空气中的PM2.5浓度不超过75,且2SO 浓度不超过150的天数有32+6+18+8=64天,所以该市一天中,空气中的PM2.5浓度不超过75,且2SO 浓度不超过150的概率为64100=0.64; (2)由所给数据,可得2×2列联表为:(3)根据2×2列联表中的数据可得 K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100×(64×10−16×10)280×20×74×26=3600481≈7.4844>6.635,因为根据临界值表可知,有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.【点睛】本题考查了古典概型的概率公式,考查了完善2×2列联表,考查了独立性检验,属于中档题. 20. 如图,四棱锥P ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =√2,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;(2)√63.【解析】 【分析】(1)利用线面平行的判定定理以及性质定理,证得AD //l ,利用线面垂直的判定定理证得AD ⊥平面PDC ,从而得到l ⊥平面PDC ;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点Q(m,0,1),之后求得平面QCD 的法向量以及向量PB ⃗⃗⃗⃗⃗ 的坐标,求得cos <n ⃗ ,PB ⃗⃗⃗⃗⃗ >,即可得到直线PB 与平面QCD 所成角的正弦值. 【详解】(1)证明:在正方形ABCD 中,AD //BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD ∩平面PBC =l , 所以AD //l ,因为在四棱锥P −ABCD 中,底面ABCD 是正方形,所以AD ⊥DC,∴l ⊥DC, 且PD ⊥平面ABCD ,所以AD ⊥PD,∴l ⊥PD, 因为CD ∩PD =D 所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D −xyz ,因为PD =AD =1,则有D(0,0,0),C(0,1,0),A(1,0,0),P(0,0,1),B(1,1,0), 设Q(m,0,1),则有DC ⃗⃗⃗⃗⃗ =(0,1,0),DQ ⃗⃗⃗⃗⃗⃗ =(m,0,1),PB ⃗⃗⃗⃗⃗ =(1,1,−1), 因为QB =√2,所以有√(m −1)2+(0−1)2+(1−0)2=√2⇒m =1 设平面QCD 的法向量为n ⃗ =(x,y,z), 则{DC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0DQ ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0,即{y =0x +z =0,令x =1,则1z =-,所以平面QCD 的一个法向量为n⃗ =(1,0,−1),则 cos <n ⃗ ,PB⃗⃗⃗⃗⃗ >=n ⃗ ⋅PB ⃗⃗⃗⃗⃗ |n ⃗ ||PB⃗⃗⃗⃗⃗ |=1+0+1√12+02+(−1)2⋅√12+12+12=2√2×√3=√6. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos <n ⃗ ,PB ⃗⃗⃗⃗⃗ >|=√63所以直线PB 与平面QCD 所成角的正弦值为√63.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目. 21. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【答案】(1)x 216+y 212=1;(2)18. 【解析】 【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值.【详解】(1)由题意可知直线AM 的方程为:y −3=12(x −2),即x −2y =−4. 当y =0时,解得x =−4,所以a =4, 椭圆C:x 2a2+y 2b 2=1(a >b >0)过点M (2,3),可得249116b+=, 解得b 2=12. 所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x −2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x −2y =m 与椭圆方程x 216+y 212=1, 可得:3(m +2y )2+4y 2=48,化简可得:2216123480y my m ++-=,所以Δ=144m 2−4×16(3m 2−48)=0,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:x −2y =−4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==由两点之间距离公式可得||AM ==.所以△AMN 的面积的最大值:12×3√5×12√55=18.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22. 已知函数f(x)=ae x−1−ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围. 【答案】(1)2e−1(2)[1,+∞) 【解析】【分析】(1)先求导数,再根据导数几何意义得切线斜率,根据点斜式得切线方程,求出与坐标轴交点坐标,最后根据三角形面积公式得结果;(2)解法一:利用导数研究,得到函数f (x )得导函数f’(x )的单调递增,当a=1时由f’(1)=0得f (x )min =f (1)=1,符合题意;当a>1时,可证1()(1)0f f a''<,从而f′(x )存在零点x 0>0,使得f ′(x 0)=ae x 0−1−1x 0=0,得到f(x)min ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得(x )≥1恒成立;当0<a <1时,研究f (1).即可得到不符合题意.综合可得a 的取值范围. 解法二:利用指数对数的运算可将f (x )≥1转化为e lna+x−1+lna +x −1≥e lnx +lnx ,令g (x )=e x +x ,上述不等式等价于g (lna +x −1)≥g (lnx ),注意到g (x )的单调性,进一步等价转化为lna ≥lnx −x +1,令ℎ(x )=lnx −x +1,利用导数求得ℎ(x )max ,进而根据不等式恒成立的意义得到关于a 的对数不等式,解得a 的取值范围. 【详解】(1)()ln 1x f x e x =-+,1()x f x e x'∴=-,(1)1k f e '∴==-. (1)1f e =+,∴切点坐标为(1,1+e ),∴函数f(x)在点(1,f (1)处的切线方程为y −e −1=(e −1)(x −1),即y =(e −1)x +2, ∴切线与坐标轴交点坐标分别为(0,2),(−2e−1,0), ∴所求三角形面积为12×2×|−2e−1|=2e−1; (2)解法一:∵f(x)=ae x−1−ln x +ln a ,11()x f x ae x-'∴=-,且a >0. 设g(x)=f ′(x),则121()0,x g x ae x-'=+> ∴g(x )在(0,+∞)上单调递增,即()f x '在(0,+∞)上单调递增,当1a =时,f ′(1)=0,∴f (x )min =f (1)=1,∴f (x )≥1成立. 当a >1时,1a <1 ,111ae-<∴,111()(1)(1)(1)0a f f a e a a -''∴=--<,∴存在唯一x 0>0,使得f ′(x 0)=ae x 0−1−1x 0=0,且当x ∈(0,x 0)时f ′(x)<0,当x ∈(x 0,+∞)时f ′(x)>0,011x aex -∴=,00ln 1ln a x x ∴+-=-, 因此f(x)0x 0−1ln x 0ln a min=1x 0+ln a +x 0−1+ln a ≥2ln a −1+2√1x 0⋅x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时, f(1)=a +ln a <a <1,∴f(1)<1,f(x)≥1不是恒成立. 综上所述,实数a 的取值范围是[1,+∞).解法二:f (x )=ae x−1−lnx +lna =e lna+x−1−lnx +lna ≥1等价于 e lna+x−1+lna +x −1≥lnx +x =e lnx +lnx ,令g (x )=e x +x ,上述不等式等价于g (lna +x −1)≥g (lnx ),显然g (x )为单调增函数,∴又等价于lna +x −1≥lnx ,即lna ≥lnx −x +1, 令ℎ(x )=lnx −x +1,则ℎ′(x )=1x −1=1−x x在(0,1)上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减, ∴ℎ(x )max =ℎ(1)=0,lna ≥0,即a ≥1,∴a 的取值范围是[1,+∞).【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。
2020年高考数学海南卷(新高考II卷)(附答案)
A. (2, +)
B.2, +)
C. (5, +)
D. 5, +)
8.若定义在 R 的奇函数 f ( x) 在 (−,0) 单调递减,且 f (2) = 0 ,则满足 xf ( x −1) 0 的 x 的取值范围
是( )
A.−1,1 3, +)
B.−3,−1 0,1
C.−1,0 1, +)
D.−1,0 1,3
第4页(共17 页)
SO 2 PM2.5
0, 75 (75,115
0,150
(150, 475
(3)根据( 2 )中的列联表,判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与 SO2 浓 度有关?
20.(12 分)如图,四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面ABCD .设平面 PAD 与平面 PBC 的交线为 l . (1)证明: l ⊥ 平面PDC ; (2)已知 PD = AD = 1, Q 为 l 上的点, QB = 2 ,求 PB 与平面 QCD 所成角的正弦值.
一、单项选择题:本题共 8 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要 求的。
1.设集合 A = 2,3,5,7 , B = 1,2,3,5,8 ,则 A B = ( )
A. 1, 3, 5, 7
B. 2, 3
C. 2, 3, 5
D.1, 2,3,5,7,8
2. (1+ 2i)(2 + i) = ( )
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要 求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.
2020年海南省【数学真题】普通高等学校招生全国统一考试试卷(新全国Ⅱ卷)(原卷)
『高考真题·真金试炼』『知己知彼·百战不殆』2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A. {x |2<x ≤3}B. {x |2≤x ≤3}C. {x |1≤x <4}D. {x |1<x <4} 2.2i 12i-=+( ) A . 1B. −1 C iD. −i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A. 120种B. 90种C. 60种D. 30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A. 62%B. 56%C. 46%D. 42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A . 1.2天B. 1.8天C. 2.5天D. 3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( )A. ()2,6-B. (6,2)-C. (2,4)-D. (4,6)-8.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A. [)1,1][3,-+∞B. 3,1][,[01]--C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃ 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.。
2020年新高考数学全国卷2(海南)含答案(A4打印版)
绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷(海南)数学注意事项:1.答卷前,考生务必将自己的姓名、考生号填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求的)1.设集合{}2,3,5,7A =,{}1,2,3,5,8B =,则A B =( )A .{}1,3,5,7B .{}2,3C .{}2,3,5D .{}1,2,3,5,7,8 2.()()12i 2i ++=( )A .45i +B .5iC .5i -D .23i + 3.在ABC △中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA -D .2CD CA +4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面。
在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56%C .46%D .42%6.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种 7.已知函数()()2lg 45f x x x =--在(),a +∞上单调递增,则a 的取值范围是 ( ) A .()2,+∞B .[)2,+∞C .()5,+∞D .[)5,+∞ 8.若定义在R 的奇函数()f x 在(),0-∞单调递减,且()20f =,则满足()10xf x -≥的x 的取值范围是 ( )A .[][)1,13,-+∞B .[][]3,10,1--C .[][)1,01,-+∞D .[][]1,01,3-二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均超过80%D .第9天至第11天复产指数增量大于复工指数的增量 10.已知曲线22:1C mx ny +=.( )A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n =>,则CC .若0mn <,则C 是双曲线,其渐近线方程为y =D .若0m =,0n >,则C 是两条直线11.下图是函数()y sin x ωϕ=+的部分图像,则()sin x ωϕ+=( )A .πsin 3x ⎛⎫+ ⎪⎝⎭B .πsin 23x ⎛⎫- ⎪⎝⎭C .πcos 26x ⎛⎫+ ⎪⎝⎭D .5πcos 26x ⎛⎫- ⎪⎝⎭12.已知0a >,0b >,且1a b +=,则( )A .2212a b +≥B .12a b ->C .22log log 2a b +-≥D 三、填空题(本题共4小题,每小题5分,共20分)13.已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .14.2:4C y x =的焦点,且与C 交于A ,B 两点,则AB = . 15.将数列{}21n -与{}32n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和为 .16.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,35tan ODC =∠,BH DG ∥,12 cm EF =, 2 cm DE =,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为2cm .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为啊a ,b ,c ,且sin 3sin AB ,π6C =, ?注:如果选择多个条件分别解答,按第一个解答计分.18.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =. (1)求{}n a 的通项公式; (2)求()1122311n n n a a a a a a -+-+⋯+-.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关? 附:()()()()()22n ad bc K a b c d a c b d -=++++,20.如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =PB 与平面QCD 所成角的正弦值.21.已知椭圆()2222:10x y C a b a b+=>>过点()2,3M ,点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求AMN △的面积的最大值.22.已知函数()1e ln ln x f x a x a -=-+.(1)当e a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x ≥,求a 的取值范围.2020年普通高等学校招生全国统一考试·全国Ⅱ卷(海南)数学答案解析一、选择题 1.【答案】C【解析】根据集合交集的运算可直接得到结果. 因为{}2,3,5,7A =,{}1,2,3,5,8B =, 所以{}2,3,5A B =.故选:C【考点】集合交集的运算 2.【答案】B【解析】直接计算出答案即可.()()212i 2i 2i 4i 2i 5i ++=+++=故选:B【考点】复数的计算 3.【答案】C 【解析】根据向量的加减法运算法则算出即可.()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-=故选:C【考点】向量的加减法 4.【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知m CD ∥、根据线面垂直的定义可得AB m ⊥.由于40AOC =︒∠,m CD ∥,所以40OAG AOC ==︒∠∠, 由于90OAG GAE BAE GAE +=+=︒∠∠∠∠,所以40BAE OAG ==︒∠∠,也即晷针与点A 处的水平面所成角为40BAE =︒∠.故选:B【提示】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点、A 处的纬度,计算出晷针与点A 处的水平面所成角.【考点】中国古代数学文化,球体有关计算 5.【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ,然后根据积事件的概率公式()()()()P A B P A P B P A B =+-+可得结果.记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ,则()P A 0.6=,()P B 0.82=,()P A B 0.96+=,所以()()()()P A B P A P B P A B 0.60.820.960.46=+-+=+-=,所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C【考点】积事件的概率公式 6.【答案】C【解析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.第一步,将3名学生分成两个组,有12323C C =种分法, 第二步,将2组学生安排到2个村,有222A =种安排方法,所以,不同的安排方法共有326⨯=种. 故选:C 7.【答案】D【解析】首先求出()f x 的定义域,然后求出()()2lg 45f x x x =--的单调递增区间即可.由2450x x -->得5x >或1x -<, 所以()f x 的定义域为()(),15,-∞-+∞,因为245y x x =--在()5,+∞上单调递增,所以()()2lg 45f x x x =--在()5,+∞上单调递增,所以5a ≥. 故选:D 8.【答案】D【解析】因为定义在R 上的奇函数()f x 在(),0-∞上单调递减,且()20f =, 所以()f x 在()0,+∞上也是单调递减,且()20f -=,()00f =, 所以当()(),20,2x ∈-∞-时,()0f x >,当()()2,02,x ∈-+∞时,()0f x <,所以由()10xf x -≥可得:021012x x x ⎧⎨---⎩<≤≤或≥或001212x x x ⎧⎨---⎩>≤≤或≤或0x =,解得10x -≤≤或13x ≤≤,所以满足()10xf x -≥的x 的取值范围是[][]1,01,3-.故选:D【提示】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果. 【考点】利用函数奇偶性与单调性解抽象函数不等式 二、选择题 9.【答案】CD【解析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误; 由图可知,第3天至第11天复工复产指数均超过80%,故C 正确. 由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确; 【考点】折线图表示的函数的认知与理解 10.【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0m =,0n >时表示两条直线.对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0m =,0n >,则221mx ny +=可化为21y n=,y =C 表示平行于x 轴的两条直线,故D 正确. 故选:ACD【考点】曲线方程的特征 11.【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.由函数图像可知:2πππ2362T =-=,则2π2π2πT ω===,所以不选A, 当2ππ5π36212x +==时,1y =-()5π3π22π122k k ϕ⨯+=+∈Z ∴, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2ππππsin 2π2πsin 2cos 2sin 236263y x k x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而π5πcos 2cos 266x x ⎛⎫⎛⎫+=-- ⎪⎪⎝⎭⎝⎭. 故选:BC 12.【答案】ABD 【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 对于A ,()22222211112221222a b a a a a a +=+-=-+⎛⎫- ⎪⎝=+⎭≥,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=-->,所以11222a b --=>,故B 正确;对于C,2222221log log log log log224a ba b ab+⎛⎫+===-⎪⎝⎭≤,当且仅当12a b==时,等号成立,故C不正确;对于D,因为2112a b=+++=,12a b==时,等号成立,故D正确.故选:ABD【考点】不等式的性质三、填空题13.【答案】13【解析】利用11A NMD D AMNV V--=计算即可.因为正方体1111ABCD A B C D-的棱长为2,M、N分别为1BB、AB的中点所以11111112323A NMD D AMNV V--==⨯⨯⨯⨯=故答案为:1314.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.∵抛物线的方程为24y x=,∴抛物线的焦点F坐标为()1,0F,又∵直线AB过焦点F AB的方程为:)1y x=-代入抛物线方程消去y并化简得231030x x-+=,解法一:解得113x=,23x=,所以121163333AB x=-=-=解法二:10036640=-=△>设()11,A x y,()22,B x y则12103x x+=,过A,B分别作准线1x=-的垂线,设垂足分别为C,D如图所示.12121611+2=3AB AF BF AC BD x x x x=+=+=+++=+故答案为:163. 【考点】抛物线焦点弦长 15.【答案】232n n -【解析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.因为数列{}21n -是以1为首项,以2为公差的等差数列,数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为()2116322n n n n n -+=-,故答案为:232n n -. 【考点】有关数列的问题16.【答案】54π2+ 【解析】利用3tan 5ODC =∠求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.设OB OA r ==,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=,因为BH DG ∥,所以45AHO ︒=∠,因为AG 与圆弧AB 相切于A 点,所以OAAG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ==∠,所以212522r -=-,解得r =等腰直角OAH △的面积为1142S =⨯;扇形AOB 的面积(2213π3π24S =⨯⨯=,所以阴影部分的面积为1215ππ422S S +-=+. 故答案为:5π42+.【考点】三角函数在实际中应用 四、解答题17.【答案】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tan A 的值,得到角A ,B ,C 的值,然后根据选择的条件进行分析判断和求解. 解法一:由sin 3sin AB 可得:ab不妨设a =,()0b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m ⨯=1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 22b c a m m m A bc m +-+-===-,则:sin A =sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件c =矛盾,则问题中的三角形不存在.解法二:∵sin A B =,π6C =,()πB A C =-+∴()πsin 6A A C A ⎛⎫=+=+ ⎪⎝⎭,()31sin 3cos 2AA C AA =+=+, ∴sinA =,∴tanA =∴23A π=,∴6BC π==,若选①,ac =,∵a =,2=∴1c =; 若选②,sin 3cA =,3=,c =; 若选③,与条件c =矛盾.18.【答案】(1)设等比数列{}n a 的公比为()1q q >,则32411231208a a a q a q a a q ⎧+=+=⎪⎨==⎪⎩, 整理可得:22520q q -+=,1q >,2,q =,12a =数列的通项公式为:1222n nn a -==.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:()1122311n n n a a a a a a -+-+⋯+-()1357921222212n n -+=-+-+⋯+-()()()322322128215512nn n +⎡⎤--⎢⎥⎣⎦==----. 19.【答案】(1)由表格可知,该市100天中,空气中的PM2.5浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的PM2.5浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;(3)根据22⨯列联表中的数据可得()()()()()()2221006410161036007.4844 6.63580207426481n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯>, 因为根据临界值表可知,有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关. 【考点】古典概型的概率公式20.【答案】(1)证明:在正方形ABCD 中,AD BC ∥, 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊄平面P AD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以AD DC ⊥,l DC ∴⊥, 且PD ⊥平面ABCD ,所以AD PD ⊥,l PD ∴⊥ 因CD PD D =所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有()0,0,0D ,()0,1,0C ,()1,0,0A ,()0,0,1P ,()1,1,0B 设(),0,1Q m ,则有()0,1,0,DC =,(),0,1DQ m =,()1,1,1PB =-,因为QB =1m ==设平面QCD 的法向量为(),,n x y z =, 则0DC n DQ n ⎧=⎪⎨=⎪⎩,即00y x z =⎧⎨+=⎩,令1x =,则1z =-,所以平面QCD 的一个法向量为()1,0,1n =-,则2cos ,1n PB n PB n PB⋅<>====根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6cos ,n PB <>=所以直线PB 与平面QCD . 【考点】立体几何21.【答案】(1)由题意可知直线AM 的方程为:()1322y x -=-,即24x y -=-. 当0y =时,解得4x =-,所以4a =,椭圆()2222:10x y C a b a b+=>>过点()2,3M ,可得249116b +=,解得212b =.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时AMN △的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m =-⨯-=△,即264m =,解得8m =±,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24x y -=-,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==由两点之间距离公式可得AM =所以AMN △的面积的最大值:1182⨯=.22.【答案】 【解析】(1)()e ln 1x f x x =-+,()1e xf x x'∴=-,()1e 1k f '∴==-. ()1e 1f =+,∴切点坐标为()1,1e +,∴函数()f x 在点()()1,1f 处的切线方程为()()e 1e 11y x --=--,即()e 12y x =-+,∴切线与坐标轴交点坐标分别为()0,22,0e 1-⎛⎫⎪-⎝⎭, ∴所求三角形面积为1222=2e 1e 1-⨯⨯--;(2)解法一:()1e ln ln x f x a x a -=-+,()11e xf x a x-'∴=-,且0a >. 设()()g x f x =',则()121e 0x g x a x -'=+>, ∴()g x 在()0,+∞上单调递增,即()f x '在()0,+∞上单调递增, 当1a =时,()01f '=,∴()()min 11f x f ==,∴()1f x ≥成立.当1a >时,11a <,11e 1a -∴<,()()1111e 110a f f a a a -⎛⎫⎛⎫''∴=-- ⎪ ⎪⎝⎭⎝⎭<, ∴存在唯一00x >,使得()011e 0x f x a x -'=-=,且当()00,x x ∈时()0f x '<,当()0,x x ∈+∞时()0f x '>,0101e x a x -∴=,00ln 1ln a x x ∴+-=-,因此()()0100min e ln ln x f x f x a x a -==-+001ln 1ln 2ln 12ln 11a x a a a x =++-+-+=+≥>, ∴()1f x >,∴()1f x ≥恒成立;当01a <<时,()1ln 1f a a a =+<<,∴()11f <,()1f x ≥不是恒成立. 综上所述,实数a 的取值范围是[)1,+∞.解法二:()1ln 1e ln ln eln ln 1x a x f x a x a x a -+-=-+=-+≥等价于 ln 1ln e ln 1ln e ln a x x a x x x x +-++-+=+≥,令()e xg x x =+,上述不等式等价于()()ln 1ln g a x g x +-≥,显然()g x 为单调增函数,∴又等价于ln 1ln a x x +-≥,即ln ln 1a x x -+≥, 令()ln 1h x x x =-+,则()111xh x x x-=-=' 在()0,1上()0h x '>,()h x 单调递增;在()1,+∞上()0h x '<,()h x 单调递减, ∴()()max 10h x h ==,ln 0a ≥,即1a ≥,∴a 的取值范围是[)1,+∞.【考点】导数几何意义,利用导数研究不等式恒成立问题。
2020年海南高考数学试卷(word版+详细解析版)
2020年普通高等学校招生全国统一考试新高考全国卷二(海南卷)数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试 卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项符合题目要求的)1.设集合A ={2,3,5,7},B ={1,2,3,5,8},则B A =( )A. {1,3,5,7}B. {2,3}C. { 2,3,5}D.{1,2,3,5,7,8}答案:C解析:由交集的定义,可知集合A ,B 中的公共元素有2,3,5,故选C2.(i)(2i)12++=( )A.i 45+B. i 5C. i -5D.i 23+答案:B解析:(i)(2i)(1221)(i 4i)5i 12++=⨯-⨯++=,故选B3.在ABC △中,D 是AB 边上的中点,则CB =( )A.2CD CA +B.2CD CA -C.2CD CA -D. 2CD CA +答案:C 解析:1122CD CA CB =+,所以2CD CA CB =+,所以2CB CD CA =-,故选C DC B A4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选BCBO赤道A5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A.2种B.3种C.6种D.8种答案:C解析:两个村有一个村有两名志愿者,一个村有一名志愿者,先考虑有一名志愿者的村,有两种选择,选定有一名志愿者的村后,再从3名学生中选择一名学生,有3种方法,故共有236⨯=种方法,故选C7.已知函数)54lg()(2--=x x x f 在),(+∞a 上单调递增,则a 的取值范围是A. ),2(+∞B. ),2[+∞C. ),5(+∞D. ),5[+∞答案:D解析:函数()f x 的定义域是(,1)(5,)-∞-+∞,因为函数245y x x =--在(,1)-∞-上单调递减,在(5,)+∞上单调递增,所以)54lg()(2--=x x x f 在在(,1)-∞-上单调递减,在(5,)+∞上单调递增,故5a ≥,故选D8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-答案:D解析:因为()f x 是奇函数且(2)0f =,所以(2)(2)0f f -=-=,(0)0f =.作出函数的草图如下图所示:由图中可以看出:若()0f x =,则2x =-或0x =或者2x =;若()0f x <,则20x -<<或2x >;若()0f x >,则2x <-或者02x <<。
2020年海南省高考数学试卷(新课标Ⅱ)
2020年海南省高考数学试卷(新课标Ⅱ)一、选择题1. 设集合A ={2,3,5,7}, B ={1,2,3,5,8},则A ∩B =( ) A.{2,3,5} B.{1,8} C.{1,2,3,5,8} D.{2,5}2. (1+2i)(2+i)=( ) A.−5 B.−5i C.5 D.5i3. 如果D 为△ABC 的边AB 的中点,则向量CB →=( ) A. 2CD →+CA →B.2CD →−CA →C. 2CA →+CD →D.2CA →−CD →4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40∘,则晷针与点A 处的水平面所成角为( )A.50∘B.20∘C.90∘D.40∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A.46% B.62%C.42%D.56%6. 3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A.6种 B.4种C.8种D.5种7. 已知函数f (x )=log 2(x 2−4x −5)在(a,+∞)单调递增,则a 的取值范围是( )A.[2,+∞)B.(−∞,−1]C.[5,+∞)D.(−∞,2]8. 若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是( ) A.[−1,0]∪[1,+∞) B. [−1,1]∪[3,+∞) C.[−1,0]∪[1,3] D.[−3,−1]∪[0,1]二、多选题我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A.第3天至第11天复工复产指数均超过80%;B.这11天复工指数和复产指数均逐日增加;C.第9天至第11天复产指数增量大于复工指数的增量;D.这11天期间,复产指数增量大于复工指数的增量;已知曲线C:mx 2+ny 2=1( )A.若mn <0,则C 是双曲线,其渐近线方程为y =±√−mn x B.若m >n >0,则C 是椭圆,其焦点在y 轴上 C.若m =0,n >0,则C 是两条直线 D.若m =n >0,则C 是圆,其半径为√n如图是函数y =sin (ωx +φ)的部分图像,则sin (ωx +φ)=( )A.cos(2x+π6) B.sin(x+π3) C.cos(5π6−2x) D.sin(π3−2x)已知a>0,b>0,且a+b=1,则( )A.log2a+log2b≥−2B.a2+b2≥12C.√a+√b≤√2D.2a−b>12三、填空题棱长为2的正方体ABCD−A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1−D1MN的体积为________.斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=_________.将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A 是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为________cm2. 四、解答题在①ac=√3,②c sin A=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=√3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2−a2a3+⋯+(−1)n−1a n a n+1.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:[0,35](1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过$150"$的概率;(2)根据所给数据,完成下面的2×2列联表:[0,75](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB=√2,求PB与平面QCD所成角的正弦值.已知椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为12.(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.已知函数f(x)=ae x−1−ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.参考答案与试题解析2020年海南省高考数学试卷(新课标Ⅱ)一、选择题1.【答案】此题暂无答案【考点】交集根助运算【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了交集的定义和运算法则,属于基础题.2.【答案】此题暂无答案【考点】复验热数术式工乘除运算【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了复数的乘法运算,考查运算能力,属于基础题.3.【答案】此题暂无答案【考点】向量在于何中侧应用向量的明角轮法则【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了向量在几何中的应用,属于基础题.4. 【答案】此题暂无答案【考点】在实三问葡中建湖三量函数模型解三角使的实际爱用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了函数模型的实际应用,主要考查学生的数学建模思想和空间想象能力,属于基础题.5.【答案】此题暂无答案【考点】互三事实清概西加法公式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了互斥事件概率的计算,考查学生分析问题解决问题的能力,属于基础题.6.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了排列、组合简单计数问题,属于基础题.7.【答案】此题暂无答案【考点】已知都数环单梯遗求参数问题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了复合函数的单调性,属于基础题.8.【答案】此题暂无答案【考点】函数奇明性研性质函较绕肠由的判断与证明【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了不等式的求解,抽象函数的奇偶性和单调性,考查了学生的分类讨论思想和转化能力,属于中档题.二、多选题【答案】此题暂无答案【考点】频率验热折视图、发度曲线【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了学生的读图识图能力,属于基础题.【答案】此题暂无答案【考点】双曲根气渐近线椭圆较标准划程圆的射纳方程【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查圆锥曲线方程的定义,属于中档题.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是利用三角函数图象求函数的解析式,易错点容易漏掉该图象对应的余弦解析式,属于中档题【答案】此题暂无答案【考点】基来雨等式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了基本不等式的变形应用,同时涉及到指数函数、对数函数的增减性及对数函数的运算,用到了化归转化思想,属于中档题.三、填空题【答案】此题暂无答案【考点】柱体三锥州、台到的体建计算【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了三棱锥体积的计算公式,用到了等体积转换法,考查了学生的空间想象能力和运算能力,属于基础题.【答案】此题暂无答案【考点】与抛较绕有肠军中点弦及弦长问题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了韦达定理,抛物线的简单几何性质,直线与抛物线位置关系的应用,考查了学生的计算能力,属于基础题.【答案】此题暂无答案【考点】等差数常的占n项和等差都升的确定【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了等差数列的基本性质和前n项和,属于中档题.【答案】此题暂无答案【考点】解三角使的实际爱用在实三问葡中建湖三量函数模型扇形常积至式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了直线与圆的位置关系,解三角形的实际应用,考查了学生分析问题解决问题的能力和运算能力,属于中档题.四、解答题【答案】此题暂无答案【考点】余于视理正因归理【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了正弦定理和余弦定理的应用,考查了学生转化思想,属于基础题.【答案】此题暂无答案【考点】等比数使的前n种和等比数表的弹项公式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了等比数列的通项公式、等比数列的证明和等比数列的前n项和,属于基础题.【答案】此题暂无答案【考点】独根性冬验古典因顿二其比率计算公式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了用频率估计概率,独立性检验的应用,属于基础题.【答案】此题暂无答案【考点】用空根冬条求才面间的夹角直线与平正垂直的判然【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了线面垂直的判定,空间向量法求线面角的三角函数值,主要考查了学生的数形结合、转化思想和计算能力,属于基础题.【答案】此题暂无答案【考点】直线常椭圆至合业侧值问题椭圆较标准划程【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是直线与椭圆的位置关系的综合应用,椭圆方程的求法,椭圆的性质的应用,考查转化思想及学生分析问题解决问题的能力,属于中档题.【答案】此题暂无答案【考点】利用都数资究不长式化成立问题利用三数定究曲纵上迹点切线方程【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了导数的几何意义,导数和函数的最值的关系,考查了运算求解能力,转化与化归能力,属于中档题.。
2020年海南高考数学试卷(详细解析版)
处的水平面所成角为 BAC ,因为 OA AC , AB OB ,所以 BAC AOB ,由已知
AOB 40 ,所以 BAC 40 ,故选 B
5.某中学的学生积极参加体育锻炼,其中有 96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%
的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是
0Hale Waihona Puke 或xf0 (x 1)
0
,
由
x
f
0 (x 1)
0
解
得
1
x
3
,
由
x 0
f
(x
1)
0
解得
1
x
0
综上所述 xf (x 1) 0 解集为[1, 0] [1,3] ,故选 D
二、选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要 求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分) 9.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续 11 天复工复产指数折线 图,下列说法正确的是( )
1.设集合 A{2,3,5,7},B={1,2,3,5,8},则 A B =( )
A. {1,3,5,7} B. {2,3} C. { 2,3,5} D.{1,2,3,5,7,8} 答案:C 解析:由交集的定义,可知集合 A,B 中的公共元素有 2,3,5,故选 C
2. (1 2i)(2 i) =( )
B.3 种
C.6 种
D.8 种
答案:C 解析:两个村有一个村有两名志愿者,一个村有一名志愿者,先考虑有一名志愿者的村,有两种选
择,选定有一名志愿者的村后,再从 3 名学生中选择一名学生,有 3 种方法,故共有 2 3 6 种方
2020年新高考全国卷Ⅱ数学高考试题试卷海南无答案
11、右图是函数 y sin(x ) ,则 sin(x ) ( )
A.
sin(x ) B .
sin(
2x)
C. cos(2x )
D . cos(5 2x)
3
3
6
6
12、已知 a 0, b 0,且 a b1,则( )
A. a2 b2 1 B . 2ab 1
2
2
C. log2 a log2 b 2
B. [2,)
C. (5,)
D. [5,)
8、若定义在 R 上的奇函数 f (x) 在 (, 0) 单调递减,且 f (2) 0 ,则满足 xf (x 1) 0 的 x 的
取值范围是( )
A. [1,1] [3, ) B. [3, 1] [0,1]
C.[1, 0] [1, )
D. [1, 0] [1,3]
22、已知函数 f (x) aex1 ln x ln a (1)当 a e 时,求曲线 y f (x) 在点 (1, f (1)) 处的切线与两坐标轴围成的三角形的面积; (2)若 f (x) 1,求 a 的取值范围.
度有关?
附:
K2
n(ad bc)2
P(K 2 k) 0.050 0.010 0.001 ,
(a b)(c d )(a c)(b d )
k
3.841 6.635 10.828
20、(12 分)如图,四棱锥 P ABCD 的底面为正方形, PD 底面 ABCD .
设平面 PAD 与平面 PBC 的交线为 l . (1)证明: l 平面 PDC ;
A 处的纬度为北纬 40o ,则晷针与点 A 处的水平面所成角为( )
A. 20o
B. 40o
(精校版)2020年新高考全国卷Ⅱ数学高考试题文档版(海南)
普通高等学校招生全国统一测试数学考前须知:1 .答卷前,考生务必将自己的姓名、考生号等填写在做题卡和试卷指定位置上^2 .答复选择题时,选出每题答案后,用铅笔把做题卡上对应题目的答案标号涂黑.如需改动, 用橡皮擦干净后,再选涂其他答案标号.答复非选择题时,将答案写在做题卡上.写在本试卷上无效.3 .测试结束后,将本试卷和做题卡一并交回.一、选择题〔此题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项符合题目要求的〕1、设集合A {2, 3, 5, 7}, B={1 , 2, 3, 5, 8},那么A B=( )A. {1 , 3, 5, 7}B. {2 , 3}C. { 2 , 3, 5}D.{1 , 2, 3, 5, 7, 8}2、(1 2i)(2 i)=()A. 4 5iB. 5iC. -5iD.2 3i3、在ABC中, D是AB边上的中点,那么CB=〔〕A. 2CD CAB. CD 2CAC.2CD CAD.CD 2CA4、日思是中国古代用来测定时间的仪器,利用与署面垂直的替针投射到替面的影子来测定时间.把地球看成一个球〔球心记为O〕,地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面在点A处放置一个日思,假设思面与赤道所在平面平行,点A处的纬度为北纬40°,那么署针与点A处的水平面所成角为〔A. 20°B.40oC.50oD. 90°5、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳, 60%的学生喜欢足球, 82%的学生喜欢游泳,那么该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是〔〕A.62B.56C.46D.426、要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村, 每个村里至少有一名志愿者,那么不同的安排方法共有〔〕取值范围是〔、选择题〔此题共 4小题,每题 5分,共20分.在每题给出的选项中,有多项符合题目要 求.全部选对的得 5分,有选错的得 0分,局部选对的得 3分〕9.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续 图,以下说法正确是〔〕A.2种B.3种C.6种D.8种7、函数 -2f(x) lg(x4x 5〕在〔a, 〕上单调递增,那么a 的取值范围是〔〕A. (2,)B. [2,C. (5,)D. [5,)8、假设定义在 R 上的奇函数 f 〔x 〕在〔,0〕单调递减,且f 〔2〕 0,那么满足 xf 〔x 1〕 0的x 的A. [ 1,1] [3,) B.[ 3, 1] [0,1] C.[ 1,0] [1,) D. [ 1,0] [1,3]11天复工复产指数折线A. B. 豕日增加日里 ;S2% 80% 78%II 期11这11天复工指数和复产指娄这11天期间,复产指数增 第3天至第11天复工复产 均超过 80C. 第9天至第11天复产指数D. 10、曲线10 ,那么C 是椭限 0,那么C 是双曲线,其渐近线方程为C.假设mnyA.假设 m nB.假设 mn0,那么C 是圆,其半径为为VnC : mx 2 nyD.假设m 0,n 0 ,那么C是两条直线11、右图是函数y sin( x ),那么sin( x )()A. sin(x 3)B . sin(- 2x) C. cos(2x —) D . cos(-^12、a 0, b 0,且a b 1,那么()A. a2 b2— B . 2a b— C. log 2 a log 2 b 2 D . , a 2 2三、填空题(此题共4小题,每题5分,共20分)13、正方体ABCD-A 1B1C1D1的棱长为2, M、N分别为BB I、AB的中点,那么三棱锥A-NMD 1的体积为_________14、斜率为J3的直线过抛物线C:y2 4x的焦点,且与C交于A,B两点,那么|AB|15、将数列{2n -1}与3n- 2}的公共项从小到大排列得到数列a n ,那么a n的前n项和为16、某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,.为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形3DEFG 为矩形, BC DG,垂足为C, tan ODC —,5BH 〃DG,EF 12cm,DE 2cm, A到直线DE和EF的距离均为7cm ,圆孔半径为1cm ,那么图中阴影局部的面积为cm2四、解做题〔此题共6小题,共70分.解容许写出文字说明、证实过程或演算步骤.〕17、〔10 分〕在①ac=J3,②c sin A 3,③c J3b这三个条件中任选一个, 补充在下面问题中,假设问题中的三角形存在,求c的;假设问题中的三角形不存在,说明理由.问题:是否存在ABC , 它的内角A, B,C的对边分别为a,b,c,且sin A 3sin B,C 一,?6注:如果选择多个条件分别解答,按第一个解答计分^18、(12 分)公比大于1的等比数列{a n}满足a2 a4 20, a3 8(1)求{a n}的通项公式;(2)求a1a2 a2% …(1) a n a n 119、(12 分)为增强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和SO2浓度(单位:g / m3m ),得下表:(1)估计事件该市一天空气中PM 2.5浓度不超过75,且2浓度不超过150〞的概率;(2)根据所给数据,完成下面的2 2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与SO2浓度有关?附:n(ad bc)2 P(K2 k) 0.050 0.010 0.001K 2 ,(a b)(c d)(a c)(b d) k 3.841 6.635 10.82820、(12分)如图,四棱锥P ABCD的底面为正方形,PD 底面ABCD . 设平面PAD与平面PBC的交线为l .(1)证实:l 平面PDC ;(2)PD AD l , Q为l上的点,QB= J2 ,求PB与平面QCD 所成角的正弦值.^2 2 1 21、椭圆C:与-y2- 1(a b 0)且过点M(2,3),点A为其左顶点且AM的斜率为- a b 2(1)求C的方程;(2)点N为椭圆上任意一点,求&AMN的面积的最大值.x 122、函数f (x) ae ln x ln a(1)当a e时,求曲线y f (x)在点(1, f (1))处的切线与两坐标轴围成的三角形的面积;(2)假设f(x) 1 ,求a的取值范围.芳的孥节是号裒探空活獴春关也A 睾泊宪Aug %0M鲁豫ug花吧群美6、生的光橐,活着重要. 8时15分8时15分3-Aug-208.3.2021 ’丽,MW1蹒隹8、人生能有几回搏. 08:15(亲爱新f 产时候,你会想起谁. 20.8.383202121:1508:15:23Aug-2021:152、人心是不待风吹儿自落得花.二0二0年八月三日2021年8月3日星期一4、与肝胆人共事,无字句处读书. 8.3.20218.3.202121:1508:1508:15:2308:15:2320.8.320.8.320.8.3 . 2021年8月3日星期一二0二0年八月三日08:1508:15:238.3.2021Monday, August 3, 2021。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年海南省高考数学试卷(新课标Ⅱ)一、选择题1. 设集合A ={2,3,5,7}, B ={1,2,3,5,8},则A ∩B =( ) A.{1,8} B.{2,5} C.{2,3,5} D.{1,2,3,5,8}【答案】 C【考点】 交集及其运算 【解析】 此题暂无解析 【解答】解:因为A ={2,3,5,7},B ={1,2,3,5,8}, 所以A ∩B ={2,3,5}. 故选C .2. (1+2i)(2+i)=( ) A.−5i B.5i C.−5 D.5【答案】 B【考点】复数代数形式的乘除运算 【解析】 此题暂无解析 【解答】解:(1+2i )(2+i )=2+5i +2i ⋅i =2+5i −2=5i . 故选B .3. 如果D 为△ABC 的边AB 的中点,则向量CB →=( ) A.2CD →−CA →B.2CA →−CD →C. 2CD →+CA →D. 2CA →+CD →【答案】 A【考点】向量在几何中的应用 向量的三角形法则 【解析】 此题暂无解析 【解答】解:由三角形中线性质,2CD →=CB →+CA →,所以CB →=2CD →−CA →. 故选A .4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40∘,则晷针与点A 处的水平面所成角为( )A.20∘B.40∘C.50∘D.90∘【答案】 B【考点】解三角形的实际应用在实际问题中建立三角函数模型 【解析】 此题暂无解析 【解答】解:画出截面图如图所示,其中CD 是赤道所在平面的截线,l 是点A 处的水平面的截线,依题意可知OA ⊥l , AB 是晷针所在直线,m 是晷面的截线.依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知m//CD ,根据线面垂直的定义可得AB ⊥m . 由于∠AOC =40∘,m//CD , 所以∠OAG =∠AOC =40∘.由于∠OAG +∠GAE =∠BAE +∠GAE =90∘,所以∠BAE =∠OAG =40∘,也即晷针与点A 处的水平面所成角为∠BAE =40∘. 故选B .5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A.62%B.56%C.46%D.42%【答案】C【考点】互斥事件的概率加法公式【解析】此题暂无解析【解答】解:设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,由题意,可得{x+z=60,x+y+z=96,y+z=82,解得{x=14, y=36, z=46,所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C.6. 3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( )A.4种B.5种C.6种D.8种【答案】C【考点】排列、组合及简单计数问题【解析】此题暂无解析【解答】解:先将3人分成两组,有C32=3种分法,再将两组分配到两个山村,共C32A22=6种不同分配方案.故选C.7. 已知函数f(x)=log2(x2−4x−5)在(a,+∞)单调递增,则a的取值范围是()A.(−∞,−1]B.(−∞,2]C.[2,+∞)D.[5,+∞)【答案】D【考点】已知函数的单调性求参数问题【解析】此题暂无解析【解答】解:令t =x 2−4x −5,由t >0,得x <−1或x >5,又f (x )=log 2t 在定义域内单调递增,且t =x 2−4x −5在(5,+∞)也单调递增, 由条件可知a ≥5. 故选D .8. 若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是( ) A. [−1,1]∪[3,+∞) B.[−3,−1]∪[0,1] C.[−1,0]∪[1,+∞) D.[−1,0]∪[1,3]【答案】 D【考点】函数奇偶性的性质函数单调性的判断与证明【解析】 此题暂无解析 【解答】解:因为定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=(−2)=0. 令g (x )=f (x −1),则g (3)=g (−1)=0,且g (x )在(−∞,1), (1,+∞)单调递减, 又当x =0时,不等式xf (x −1)≥0成立, 当x =1时,不等式xf (x −1)≥0成立;当x −1=2或x −1=−2时,即x =3或x =−1时,不等式xf (x −1)≥0成立. 当x >0时,不等式x (x −1)≥0等价为f (x −1)≥0, 此时{x >0,0<x −1≤2,此时1<x ≤3.当x <0时,不等式xf (x −1)≥0等价为f (x −1)≤0, 即{x <0,−2≤x −1<0,得−1≤x <0, 综上−1≤x ≤0或1≤x ≤3,即实数x 的取值范围是[−1,0]∪[1,3]. 故选D .二、多选题我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】C,D【考点】频率分布折线图、密度曲线【解析】此题暂无解析【解答】解:从第1天到第7天复产指数逐日增加,从第7天到第9天复产指数也逐日减少,从第9天到第11天复产指数也逐日增加,所以A选项错;从图中可以看出这11天期间,复工指数增量略大于复产指数的增量,所以B选项错;从图中可以看出第3天和第11天复工复产指数均在80%线之上,所以C选项对;从图中纵坐标变化可以看出第9天至第11天复产指数增量大于复工指数的增量,所以D 选项对.故选CD.已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nxC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnD.若m=0,n>0,则C是两条直线【答案】A,C,D【考点】双曲线的渐近线椭圆的标准方程圆的标准方程【解析】此题暂无解析【解答】解:A,若m>n>0,则1m <1n,则根据椭圆定义,知x21m+y21n=1表示焦点在y轴上的椭圆,故A正确;B,若m=n>0,则方程为x2+y2=1n ,表示半径为√n的圆,故B错误;C,根据求双曲线渐近线的方法,可以得双曲线的渐近线方程mx2+ny2=0,又因为mn<0,所以渐近线方程为y=±√−mnx,故C正确;D,当m=0, n>0时,则方程为y=√n表示两条直线,故D正确.故选ACD.如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)【答案】B,C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】此题暂无解析【解答】解:由图象知函数的周期T=2×(2π3−π6)=π,所以ω=2.由五点对应法得2×π6+φ=π,得φ=2π3.则f(x)=sin(2x+2π3)=cos(2x+2π3−π2)=cos(2x+π6)=sin(π2−2x−π6)=sin(π3−2x).故选BC.已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤√2【答案】A,B,D【考点】基本不等式【解析】此题暂无解析【解答】解:A,已知a>0,b>0,且a+b=1,因为a+b2≤√a2+b22,所以(a+b)2≤2a2+2b2,则a2+b2≥12,故A正确;B,要证2a−b>12,只需证明a−b>−1即可,即a>b−1,由于a>0,b>0且a+b=1,所以a>0,b−1<0,故B正确;C,log2a+log2b=log2ab≤log2a+b2=−2,故C错误;D,由于a>0,b>0,且a+b=1,根据a+b2≤√a2+b22,得√a+√b2≤√a+b2=√22,所以√a+√b≤√2,当且仅当a=b=√22取等号,故D正确.故选ABD.三、填空题棱长为2的正方体ABCD−A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1−D1MN的体积为________.【答案】1【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:因为S A1NN =2×2−12×2×1−12×2×1−12×1×1=32,所以V A1−D1MN =V D1−A1MN=13×S A1MN×A1D1=13×32×2=1.故答案为:1.斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=_________.【答案】163【考点】与抛物线有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由题意可得抛物线焦点F(1,0),直线l的方程为y=√3(x−1),将方程代入y2=4x并化简得3x2−10x+3=0.设A(x1,y1),B(x2,y2),则x1+x2=103,所以由抛物线的定义可得|AB|=x1+x2+p=103+2=163.故答案为:163.将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.【答案】3n2−2n【考点】等差数列的前n项和等差关系的确定【解析】此题暂无解析【解答】解:将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n}为1,7,13,19,⋯,则{a n}是以1为首项、以6为公差的等差数列,故它的前n项和为n×1+n(n−1)2×6=3n2−2n.故答案为:3n2−2n.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为________cm2.【答案】4+5π2【考点】解三角形的实际应用在实际问题中建立三角函数模型扇形面积公式【解析】此题暂无解析【解答】解:如图,设OB=OA=r,由题意AM=AN=7, EF=12,所以NF=5.因为AP=5,所以∠AGP=45∘,因BH//DG,所以∠AHO=45∘.因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r,DQ=7−√22r.因为tan∠ODC=OQDQ =35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH面积为S1=12×2√2×2√2=4,扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2.故答案为:4+5π2.四、解答题在①ac=√3,②c sin A=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=√3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.【答案】解:①ac=√3.△ABC中,sin A=√3sin B,即b=√33a,ac=√3,所以c=√3a.cos C=a2+b2−c22ab =a2+a23−3a22√3a23=√32,所以a=√3,b=1,c=1;②c sin A=3.△ABC中,c sin A=a sin C=a sinπ6=3,所以a=6.因为sin A=√3sin B,即a=√3b,所以b=2√3 .cos C=a2+b2−c22ab =22×6×2√3=√32,所以c=2√3;③c=√3b.因为sin A=√3sin B,即a=√3b,又因为c=√3b,cos C=a2+b2−c22ab =√36≠cosπ6,与已知条件C=π6相矛盾,所以问题中的三角形不存在.【考点】余弦定理正弦定理【解析】此题暂无解析【解答】解:①ac=√3.△ABC中,sin A=√3sin B,即b=√33a,ac=√3,所以c=√3a.cos C=a2+b2−c22ab =a2+a23−3a22√3a23=√32,所以a=√3,b=1,c=1;②c sin A=3.△ABC中,c sin A=a sin C=a sinπ6=3,所以a=6.因为sin A=√3sin B,即a=√3b,所以b=2√3 .cos C=a2+b2−c22ab =22×6×2√3=√32,所以c=2√3;③c=√3b.因为sin A=√3sin B,即a=√3b,又因为c=√3b,cos C=a2+b2−c22ab =√36≠cosπ6,与已知条件C=π6相矛盾,所以问题中的三角形不存在.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2−a2a3+⋯+(−1)n−1a n a n+1.【答案】解:(1)因为a2+a4=20,a3=8,所以8q+8q=20,2q2−5q+2=0.解得q=2或q=12(舍去),所以a1=2,所以a n=2n.(2)令b n=(−1)n−1a n a n+1,则b n=(−1)n−1×2n×2n+1=(−1)n−1×22n+1.因为b nb n−1=(−1)n−1×22n+(−1)n−2×22n−1=−4(n≥2,n∈N∗),又b1=8,所以{b n}是以8为首项,−4为公比的等比数列,所以a1a2−a2a3+⋯+(−1)n−1a n a n+1=b1+b2+b3+⋯+b n=8−(−1)n×2n+1×41−(−2)2=8−(−1)n×22n+35.【考点】等比数列的前n项和等比数列的通项公式【解析】此题暂无解析【解答】解:(1)因为a2+a4=20,a3=8,所以8q+8q=20,2q2−5q+2=0.解得q=2或q=12(舍去),所以a1=2,所以a n=2n.(2)令b n=(−1)n−1a n a n+1,则b n=(−1)n−1×2n×2n+1=(−1)n−1×22n+1.因为b nb n−1=(−1)n−1×22n+(−1)n−2×22n−1=−4(n≥2,n∈N∗),又b1=8,所以{b n}是以8为首项,−4为公比的等比数列,所以a1a2−a2a3+⋯+(−1)n−1a n a n+1=b1+b2+b3+⋯+b n=8−(−1)n×2n+1×41−(−2)2=8−(−1)n×22n+35.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:((1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过$150"$的概率;(2)根据所给数据,完成下面的2×2列联表:(0,75](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附: K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d )【答案】解:(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过$150"$的概率 P =32+18+6+8100=0.64.(2)根据所给数据,可得下面的2×2列联表:(0,75] 由K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d )=100×(64×10−16×10)280×20×74×26=7.484>6.635,P (K 2≥0.635)=0.01.故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 【考点】 独立性检验古典概型及其概率计算公式【解析】 此题暂无解析 【解答】解:(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过$150"$的概率 P =32+18+6+8100=0.64.(2)根据所给数据,可得下面的2×2列联表:由K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=7.484>6.635,=100×(64×10−16×10)280×20×74×26P(K2≥0.635)=0.01.故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB=√2,求PB与平面QCD所成角的正弦值.【答案】(1)证明:过P在平面PAD内作直线l//AD,由AD//BC,可得l//BC,即l为平面PAD和平面PBC的交线,因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.又BC⊥CD,CD∩PD=D,所以BC⊥平面PCD.因为l//BC,所以l⊥平面PCD;(2)如图,以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D−xyz.则D (0,0,0),C (1,0,0),A (0,1,0),P (0,0,1),B (1,1,0). 设Q (0,m,1)(m >0),BQ →=(−1,m −1,1),因为QB =√2,所以(−1)2+(m −1)2+12=2,化简得(m −1)2=0,所以m =1, 所以Q (0,1,1),因此,DQ →=(0,1,1),DC →=(1,0,0),PB →=(1,1,−1). 设平面QCD 的法向量为n →=(a,b,c ), {n →⋅DC →=0,n →⋅DQ →=0, 即{a =0,b +c =0.取n →=(0,1,−1), 所以cos ⟨PB →,n →⟩=PB →⋅n→|PB →|⋅|n →|=1×0+1×1+(−1)×(−1)√3×√2=√63, 所以PB 与平面QCD 所成角的正弦值为√63. 【考点】用空间向量求平面间的夹角 直线与平面垂直的判定【解析】 此题暂无解析 【解答】(1)证明:过P 在平面PAD 内作直线l//AD ,由AD//BC ,可得l//BC ,即l 为平面PAD 和平面PBC 的交线, 因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .又BC ⊥CD , CD ∩PD =D , 所以BC ⊥平面PCD . 因为l//BC ,所以l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D −xyz .则D (0,0,0),C (1,0,0),A (0,1,0),P (0,0,1),B (1,1,0). 设Q (0,m,1)(m >0),BQ →=(−1,m −1,1),因为QB =√2,所以(−1)2+(m −1)2+12=2,化简得(m −1)2=0,所以m =1, 所以Q (0,1,1),因此,DQ →=(0,1,1),DC →=(1,0,0),PB →=(1,1,−1). 设平面QCD 的法向量为n →=(a,b,c ), {n →⋅DC →=0,n →⋅DQ →=0,即{a =0,b +c =0.取n →=(0,1,−1),所以cos ⟨PB →,n →⟩=PB →⋅n→|PB →|⋅|n →|=1×0+1×1+(−1)×(−1)√3×√2=√63, 所以PB 与平面QCD 所成角的正弦值为√63.已知椭圆C : x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12. (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【答案】解:(1)由题意可知直线AM 的方程为: y −3=12(x −2), 即x −2y =−4当y =0时, 解得x =−4, 所以a =4.椭圆C:x 2a 2+y 2b 2=1(a >b >0)过点M (2,3), 可得416+9b 2=1, 解得b 2=12.如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.联立直线方程x−2y=m与椭圆方程x 216+y212=1,可得:3(m+2y)2+4y2=48,化简可得:16y2+12my+3m2−48=0,所以Δ=144m2−4×16(3m2−48)=0,即m2=64,解得m=±8.与AM距离比较远的直线方程:x−2y=8,直线AM方程为:x−2y=−4.点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d=8+4√1+4=12√55,由两点之间距离公式可得|AM|=√(2+4)2+32=3√5,所以△AMN的面积的最大值:1 2×3√5×12√55=18.【考点】直线与椭圆结合的最值问题椭圆的标准方程【解析】此题暂无解析【解答】解:(1)由题意可知直线AM的方程为:y−3=12(x−2),即x−2y=−4当y=0时,解得x=−4,所以a=4.椭圆C:x 2a2+y2b2=1(a>b>0)过点M(2,3),可得416+9b2=1,解得b2=12.如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.联立直线方程x−2y=m与椭圆方程x 216+y212=1,可得:3(m+2y)2+4y2=48,化简可得:16y2+12my+3m2−48=0,所以Δ=144m2−4×16(3m2−48)=0,即m2=64,解得m=±8.与AM距离比较远的直线方程:x−2y=8,直线AM方程为:x−2y=−4.点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d=8+4√1+4=12√55,由两点之间距离公式可得|AM|=√(2+4)2+32=3√5,所以△AMN的面积的最大值:1 2×3√5×12√55=18.已知函数f(x)=ae x−1−ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【答案】解:(1)当a=e时,f(x)=e x−ln x+1,所以f′(x)=e x−1x,所以f′(1)=e−1.因为f(1)=e+1,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−(e+1)=(e−1)(x−1).当x=0时,y=2,当y=0时,x=−2e−1,所以曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=1 2×2×2e−1=2e−1.(2)由f(x)≥1,可得ae x−1−ln x+ln a≥1,即e x−1+ln a−ln x+ln a≥1,即e x−1+ln a+ln a+x−1≥ln x+x=e ln x+ln x. 令g(t)=e t+t,则g′(t)=e t+1>0,所以g(t)在R上单调递增,所以g(ln a+x−1)>g(ln x),所以ln a+x−1>ln x,即ln a>ln x−x+1.令ℎ(x)=ln x−x+1,所以ℎ′(x)=1x −1=1−xx.当0<x<1时,ℎ′(x)>0,函数ℎ(x)单调递增,当x>1时,ℎ′(x)<0,函数ℎ(x)单调递减,所以ℎ(x)≥ℎ(1)=0,所以ln a≥0,所以a≥1.故a的范围为[1,+∞).【考点】利用导数研究不等式恒成立问题利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1ln aaa+ln a+x−1≥ln x+x=e ln x+ln x,令g(t)=e t+t,根据函数单调性可得ln a>ln x−x+1,再构造函数ℎ(x)=ln x−x+1,利用导数求出函数的最值,即可求出α的范围.【解答】解:(1)当a=e时,f(x)=e x−ln x+1,所以f′(x)=e x−1x,所以f′(1)=e−1.因为f(1)=e+1,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−(e+1)=(e−1)(x−1).当x=0时,y=2,当y=0时,x=−2e−1,所以曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=1 2×2×2e−1=2e−1.(2)由f(x)≥1,可得ae x−1−ln x+ln a≥1,即e x−1+ln a−ln x+ln a≥1,即e x−1+ln a+ln a+x−1≥ln x+x=e ln x+ln x. 令g(t)=e t+t,则g′(t)=e t+1>0,所以g(t)在R上单调递增,所以g(ln a+x−1)>g(ln x),所以ln a+x−1>ln x,即ln a>ln x−x+1. 令ℎ(x)=ln x−x+1,所以ℎ′(x)=1x −1=1−xx.当0<x<1时,ℎ′(x)>0,函数ℎ(x)单调递增,当x>1时,ℎ′(x)<0,函数ℎ(x)单调递减,所以ℎ(x)≥ℎ(1)=0,所以ln a≥0,所以a≥1.故a的范围为[1,+∞).。