数学建模经典案例详解
数学建模-第四篇-典型案例分析课件
问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响
数学建模规划问题的经典案例
s.t.
x13 x34 x36 0; x12 x24 x25 0; x24 x34 x45 x47 0; x25 x45 x56 x57 0; x47 x57 x67 Q x36 x56 x67 0; xij 0, i , j 1,2,,7.
§2.4 案例
建立优化模型的一般步骤
1.确定决策变量 2.确定目标函数的表达式 3.寻找约束条件 例1:设某厂生产电脑和手机两种产品,这两种产品的生产需要 逐次经过两条装配线进行装配。电脑在第一条装配线每台需要2 小时,在第二条装配线每台需要3小时;手机在第一条装配线每 台需要4小时,在第二条装配线每台需要1小时。第一条装配线每 天有80个可用工时,第一条装配线每天有60个可用工时,电脑和 手机每台的利润分别为100元和80元。问怎样制定生产计划?
问题1
不允许缺货的存贮模型
配件厂为装配线生产若干种部件,轮换生产不
同的部件时因更换设备要付生产准备费(与生产数
量无关),同一部件的产量大于需求时因积压资金、 占用仓库要付存贮费。今已知某一部件的日需求量 100件,生产准备费5000元,存贮费每日每件1元。 如果生产能力远大于需求,并且不允许出现缺货,
A
T1
B
T
t
允许缺货模型的存贮量q(t)
一个周期内存贮费
c2
T1
0
Q2 QT1 c2 q(t )dt c2 2r 2
( rT Q )(T T1 ) 一个周期内缺货损失费 c3 q(t )dt c3 T1 2 ( rT Q )2 c3 一个周期的总费用 2r
T
Q ( rT Q ) C c1 c2 c3 2r 2r
数学建模案例精选
数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。
在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。
下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。
案例一,交通拥堵问题。
在城市交通管理中,交通拥堵一直是一个严重的问题。
如何合理规划道路和交通流量,是一个复杂的问题。
数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。
案例二,股票价格预测。
股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。
案例三,物流配送优化。
在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。
数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。
案例四,环境污染监测。
环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。
数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。
通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。
数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。
因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。
希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。
数学建模与应用案例
数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。
它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。
数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。
案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。
通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。
数学建模可以通过分析历史交通数据,建立交通流量预测模型。
例如,可以利用时间序列分析方法,对历史交通数据进行拟合和预测,从而得出未来交通流量的趋势和变化规律。
同时,还可以考虑其他因素的影响,如天气、节假日等,进一步提高预测的准确性。
案例二:股票价格预测股票价格的波动对投资者来说是一个重要的信息。
通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型。
例如,可以利用时间序列分析方法,对历史股票价格进行拟合和预测,从而得出未来股票价格的趋势和变化规律。
同时,还可以考虑其他因素的影响,如宏观经济指标、公司财务状况等,进一步提高预测的准确性。
案例三:物流配送优化物流配送是一个复杂的问题,涉及到货物的运输路径、运输方式、运输成本等多个因素。
数学建模可以通过建立物流配送优化模型,帮助企业降低物流成本、提高物流效率。
例如,可以利用线性规划方法,对物流网络进行优化,确定最优的运输路径和运输方式,从而降低运输成本。
同时,还可以考虑其他因素的影响,如货物的重量、体积、运输时间等,进一步提高配送的效果。
案例四:疾病传播模型疾病传播是一个重要的公共卫生问题。
通过建立疾病传播模型,可以帮助政府和卫生部门制定有效的防控策略。
数学建模可以通过分析疾病传播的规律和机制,建立传染病传播模型。
例如,可以利用传染病动力学模型,对疾病的传播过程进行描述和分析,从而预测疾病的传播趋势和规模。
同时,还可以考虑其他因素的影响,如人口流动、社交网络等,进一步提高预测的准确性。
数学建模经典案例分析以葡萄酒质量评价为例
数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。
我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。
文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。
我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。
通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。
本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。
二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。
在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。
这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。
在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。
然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。
接下来,我们可以选择适合的模型进行训练。
在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。
我们需要根据数据的特性和问题的需求,选择最合适的模型。
同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。
我们需要对模型进行评估和优化。
这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。
如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。
数学建模案例分析【精选文档】
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。
8.27课上数学建模案例分析解析
微分方程模型
实验目的
1.学会用MATLAB分析求解微分方程模型.
实验内容
1. 数学建模实例. 鸭子过河问题 慢跑者与狗的问题 导弹追踪问题
2.实验作业.
Байду номын сангаас 为什么要建立模型来解决 问题呢?
• 我认为可用“曹冲称象”的例子来说明,如图3。 变
大 象
• •
石 头
小称
大象重量
图 3
dx dt dy dt
X x , Y y
0
(2)
消去参数 ,可得狗的运动轨迹的参数方程
w dx (10 20cos t x) dt 2 2 (10 20cos t x ) (20 15sin t y ) w dy (20 15sin t y ) dt 2 2 (10 20cos t x ) (20 15sin t y ) y(0) 0 x(0) 0,
15 16
17 18 19 20 21 22
1.9217 1.8160 1.6721 1.4913 1.2759 1.0300 0.7591 0.4702
2.0937 1.6516 1.2479 0.8891 0.5818 0.3329 0.1484 0.0333
计算(1.3)的Matlab代码
a=1;b=2;h=10;dt=0.3; i=1; p=[0,h]; while p(2)>0 i=i+1; v=[a-b.*p(1)./sqrt(p(1).^2+p(2).^2),-b.*p(2)./sqrt(p(1).^2+p(2).^2)]; p=p+v.*dt; hold on plot(p(1),p(2),'p') end p
数学建模经典案例最优截断切割问题
建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。
且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。
二、 假 设1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。
当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。
1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9—13的一个有向赋权网络图G(V,E)。
为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9—13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0)表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用。
2024年高考数学建模案例解析
2024年高考数学建模案例解析2024年高考学科综合能力考试数学建模案例解析随着社会的不断发展和教育的改革,数学建模成为高中数学教育的重要组成部分。
尤其在2024年的高考中,数学建模案例成为考试的一部分。
本文将以2024年高考数学建模案例为例,进行详细解析,并探讨数学建模在培养学生综合能力方面的作用。
案例背景及要求:假设2024年某城市掀起了共享单车的热潮,共享单车数量不断增加。
由于路网条件的限制,城市规划局希望求解出一种合理的摆放方案,以保证尽可能多的市民能够方便地使用单车,并且降低管理成本。
要求学生考虑单车摆放位置、数量分布、市民的需求等因素,通过数学建模给出一种最优解,并提出相应的调整策略。
解题思路及方法:1. 研究市民需求:首先,我们需要了解市民对共享单车的需求情况,通过问卷调查、数据分析等手段,了解市民骑车的频率、时间段、出行距离等信息,从而确定出行热点区域和高峰时段。
2. 路网分析:对城市的路网进行分析,确定主要道路、交通流量等信息,了解交通状况,为后续的摆放方案提供基础数据。
3. 摆放方案优化:针对市民需求和路网状况,我们可以运用图论算法、最优化算法等数学工具,建立一个数学模型,以求解出最优的摆放方案。
可以考虑的因素包括:单车数量、摆放位置、覆盖范围、容量等。
4. 调整策略提出:根据实际情况和模型结果,我们可以提出相应的调整策略。
例如,可以针对交通拥堵区域增加摆放数量,调整单车的分布密度,以满足市民需求,并减少单车的管理成本。
案例解析:在实际解决这个问题的过程中,首先需要对市民需求进行充分了解。
通过问卷调查,我们得知市民在上下班高峰期间对共享单车的需求较大,出行热点集中在市中心和商圈周边。
同时,我们还发现了一些特殊需求,如学生、游客等群体对单车的需求量也较大。
在进行路网分析时,我们发现了一些瓶颈路段和拥堵区域。
这些信息为摆放方案的优化提供了依据。
在建立数学模型时,我们可以使用最小费用流算法来求解。
数学建模案例分析--线性代数建模案例20例
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
数学建模经典案例最优截断切割问题
数学建模经典案例最优截断切割问题在我们的日常生活和工业生产中,经常会遇到材料切割的问题。
如何在给定的原材料上,通过合理的切割方式,获得最大的效益或者满足特定的需求,这就是最优截断切割问题所要研究的核心内容。
想象一下,你是一家木材加工厂的老板,手头有一根长长的原木,需要将其切割成不同长度的木板,以满足客户的订单需求。
但原木的长度是有限的,而客户的订单要求各种各样,怎样切割才能最大限度地利用这根原木,减少浪费,提高利润呢?这可不是一件简单的事情,需要运用数学建模的智慧来找到最优解。
为了更好地理解最优截断切割问题,让我们先来看一个具体的例子。
假设有一根长度为 10 米的钢材,需要切割成 2 米、3 米和 4 米三种不同长度的小段,分别需要 10 段、8 段和 5 段。
那么,应该如何切割才能使浪费最少,或者说在满足需求的前提下使用的钢材最少呢?首先,我们可以尝试一些直观的切割方法。
比如说,先把钢材尽可能地切成 4 米长的小段,然后再处理剩下的部分。
但这样做真的是最优的吗?也许在这个例子中是,但如果需求的数量或者钢材的长度发生变化,这种方法可能就不再适用了。
为了解决这个问题,我们可以建立一个数学模型。
假设我们用 x1、x2、x3 分别表示切割成 2 米、3 米和 4 米小段的数量。
那么,我们需要满足以下条件:2x1 + 3x2 + 4x3 <= 10 (这表示切割出的小段长度总和不能超过原材料的长度)x1 >= 10 (2 米小段的需求数量)x2 >= 8 (3 米小段的需求数量)x3 >= 5 (4 米小段的需求数量)同时,我们的目标是要使切割使用的钢材长度最小,也就是要最小化 2x1 + 3x2 + 4x3 这个目标函数。
接下来,我们可以使用一些数学方法来求解这个模型。
常见的方法有线性规划、动态规划等。
以线性规划为例,我们可以通过软件工具(如 LINGO、Matlab 等)来求解这个问题,得到最优的切割方案。
8.27课上数学建模案例分析
1 (1 x) y" 1 y'2 (3) 5 初值条件为: y(0) 0 y' (0) 0
其解即为导弹的运行轨迹:
5 5 5 5 5 y (1 x) (1 x) 8 12 24
4
6
5 5 ) 处时被导弹击中. 当 x 1时 y ,即当乙舰航行到点 (1, 24 24 y 5 被击中时间为: t . 若 v0=1, 则在 t=0.21 处被击中. v0 24v0
即
bx dx , dt a 2 2 x y dy by , dt x2 y 2
x(0) 0, y(0) h.
(1.1)
又由初始条件有
(1.2)
(1.1)(1.2) 就是所求问题的一个微分方程模型。
模型求解
设时间步长为Δt, 则
P ( x , y ) (0, h), v (a,b), 0 0 0 0 bxi 1 byi 1 vi 1 (a 2 2 , 2 2 ), xi 1 yi 1 xi 1 yi 1 P ( x , y ) P v t , i 1,2, i i i i 1 i 1
(2) w=5时 建立M文件eq4.m如下: function dy=eq4(t,y) dy=zeros(2,1); dy(1)=5*(10+20*cos(t)-y(1))/sqrt ((10+20*cos(t)-y(1))^2+(20+15*sin(t)-y(2))^2); dy(2)=5*(20+15*sin(t)-y(2))/sqrt ((10+20*cos(t)- y(1))^2+(20+15*sin(t)-y(2))^2);
数学建模经典案例最优截断切割问题
数学建模经典案例最优截断切割问题在我们的日常生活和工业生产中,经常会遇到材料切割的问题。
如何在给定的材料上进行最优的截断切割,以最大程度地提高材料利用率、降低成本,是一个具有实际意义和挑战性的问题。
接下来,让我们深入探讨一下最优截断切割问题的经典案例。
想象一下,有一家家具厂接到了一批订单,需要生产一定数量的桌子和椅子。
而用于制作桌椅的原材料是长度固定的木板。
为了满足订单需求,同时尽可能减少浪费,就需要精心规划木板的切割方式。
假设我们有一块长度为 L 的木板,要将其切割成若干段,用于制作不同长度的零件。
比如,我们需要制作长度分别为 a1, a2, a3,, an 的零件,且每个零件的需求量分别为 b1, b2, b3,, bn 。
首先,我们来考虑一种简单的切割方案。
如果不考虑最优性,只是随意切割,可能会导致大量的材料浪费。
比如,先把木板切割成需要的最长零件长度,然后再用剩余的部分切割较短的零件。
但这样的方法往往不是最优的,因为可能会在最后剩下一些无法有效利用的小段材料。
那么,如何才能找到最优的切割方案呢?这就需要运用数学建模的思想。
我们可以建立一个目标函数,目标是使切割后的剩余材料最少,或者等价地说,使切割出的有用材料最多。
设切割方案为 x1, x2, x3,,xn ,分别表示切割出长度为 a1, a2, a3,, an 的零件的数量。
则我们的目标函数可以表示为:Maximize ∑xi ai (在满足约束条件的情况下)约束条件通常包括:∑xi ai ≤ L (切割出的零件总长度不能超过木板长度)xi ≥ bi (切割出的每种零件数量要满足需求)xi 为整数(因为零件的数量必须是整数)接下来,我们可以使用一些数学优化算法来求解这个模型,比如线性规划、整数规划等方法。
为了更好地理解,让我们来看一个具体的例子。
假设木板长度 L =10 米,需要切割出长度为 2 米、3 米和 4 米的零件,需求量分别为 5 个、3 个和 2 个。
数学建模经典案例最优截断切割问题
数学建模经典案例最优截断切割问题在我们的日常生活和工业生产中,经常会遇到材料切割的问题。
如何在给定的原材料上,以最优的方式进行切割,以满足不同尺寸的需求,同时最大程度地减少浪费,这就是最优截断切割问题。
这个问题看似简单,实则蕴含着深刻的数学原理和实际应用价值。
想象一下,你是一家木材加工厂的老板,接到了一批订单,需要生产不同长度的木板。
你手头有一定长度的原木,如何切割这些原木才能满足订单需求,并且使用的原木数量最少,废料最少呢?这就是一个典型的最优截断切割问题。
为了更好地理解这个问题,让我们来看一个具体的例子。
假设我们有一根长度为 10 米的原木,需要切割出 2 米、3 米和 4 米长的木板各若干块。
那么,我们应该如何切割才能最节省材料呢?一种可能的切割方案是,先将原木切成 2 米长的 5 段。
但这样做显然会有很大的浪费,因为我们还需要 3 米和 4 米长的木板。
另一种方案是,先切割出一段 4 米长的木板,剩下的 6 米再切割出两段 3 米长的木板。
这种方案看起来比第一种要好一些,但也许还不是最优的。
那么,如何找到最优的切割方案呢?这就需要运用数学建模的方法。
首先,我们需要明确问题的目标。
在这个例子中,目标是在满足订单需求的前提下,使原木的利用率最高,也就是废料最少。
接下来,我们需要确定决策变量。
在这里,决策变量就是每种长度木板的切割数量。
然后,我们要建立约束条件。
约束条件包括原木的长度限制,以及订单中对每种长度木板数量的要求。
有了目标函数、决策变量和约束条件,我们就可以建立一个数学模型。
通过求解这个数学模型,我们就能够得到最优的切割方案。
在实际求解过程中,可能会用到一些数学方法和算法,比如线性规划、动态规划等。
线性规划是一种常用的数学方法,它可以在一组线性约束条件下,求出目标函数的最优解。
对于简单的最优截断切割问题,线性规划可能就能够有效地解决。
但对于一些复杂的情况,比如需要考虑多种原材料、多种切割方式,或者存在不同的成本因素时,动态规划可能会更加适用。
数学建模的实际案例与反思
数学建模的实际案例与反思数学建模作为一门现代应用数学的分支,通过将数学方法与实际问题相结合,对问题进行定量分析和求解,为解决实际问题提供了全新的视角和方法。
在实践中,数学建模也经常面临着各种挑战和困难。
本文将以数学建模的实际案例为线索,对该领域的发展和应用进行反思,并探讨其未来的发展方向。
案例一:城市交通流量优化面对城市交通日益严重的拥堵问题,如何优化交通流量已成为城市规划者和交通管理者亟待解决的难题。
这一问题就可以通过数学建模来进行分析和求解。
首先,可以用数学模型对交通状况进行建模,包括车辆数量、行驶速度等参数;然后,通过对数据进行分析和优化算法的设计,得到最优的交通流量方案。
该方法不仅可以减少行程时间,还能提高整体交通效益,为城市交通管理提供科学依据。
案例二:股票市场波动预测股票市场波动对投资者而言是一个关键的问题,准确预测市场的波动趋势有助于投资者做出明智的决策。
数学方法可以通过建立股票市场的数学模型,结合历史数据和相关经济指标,对市场波动进行预测。
这样的建模方法可以帮助投资者降低风险,提高投资收益,为投资领域的决策提供科学依据。
案例三:疾病传播模型疾病的传播对公共卫生和社会稳定具有重要影响,针对不同的传染病,可以利用数学建模的方法来进行疫情预测和控制策略的制定。
通过构建传染病传播的数学模型,可以对疫情传播的趋势进行预测和分析,进而制定相应的防控措施。
这种模型的应用可以提前发现潜在的疫情蔓延风险,快速响应并有效地减少疫情扩散。
数学建模的实际案例给我们展示了数学在实际生活中的广泛应用和价值。
通过数学建模,我们可以对各个领域的问题进行系统的分析、预测和优化,为决策和问题解决提供科学依据。
然而,数学建模也存在着一些挑战和困难。
首先,实际问题的复杂性和多样性给数学建模带来了挑战。
不同的问题需要使用不同的数学模型和方法进行建模,而选择合适的模型和方法需要对问题进行深入的了解和分析,这对建模者的数学素养和领域知识要求较高。
最短路径数学建模案例及详解
最短路径数学建模案例及详解最短路径问题是数学建模中一个经典的问题,它在实际生活中有很多应用,例如网络传输、交通规划、物流配送等等。
下面我们以交通规划为例,来详细解析最短路径问题的数学建模过程。
问题描述:假设有一座城市,城市中有多个地点(称为节点),这些节点之间有道路相连。
我们希望找到两个节点之间的最短路径,即耗费时间最短的路径。
数学建模:1. 数据准备:a. 用图的方式表示这座城市和道路连接关系。
我们可以用一个有向图来表示,其中各个节点代表不同的地点,边表示道路,边的权重表示通过该道路所需的时间。
b. 节点间道路的时间数据。
这是一个关键的数据,可以通过实地调研或者其他数据收集手段获取,或者通过模拟生成。
2. 建立数学模型:a. 定义问题中的主要变量和约束条件。
- 变量:选择经过的边,即路径(也可以看作是边的集合)。
- 约束条件:路径必须是从起始节点到目标节点的有向路径,不允许重复经过节点。
b. 建立目标函数。
我们的目标是最小化路径上的时间,所以目标函数可以定义为路径上各边的权重之和。
c. 建立约束条件。
- 定义起始节点和目标节点。
- 定义路径必须从起始节点出发,到目标节点结束。
- 定义路径不能重复经过同一节点。
3. 解决模型:a. 利用最短路径算法求解,比如在有向图中,可以用Dijkstra 算法或者 Bellman-Ford 算法等。
4. 结果分析和验证:找到了最短路径后,我们可以对结果进行分析,比如查看路径上的具体节点和道路,以及路径的耗时。
我们还可以按照实际情况进行验证,比如通过实地考察或者其他数据对比来验证求解得到的路径是否合理。
总结:最短路径问题是一个常见的数学建模问题,在实际应用中有着广泛的应用。
通过数学建模,我们可以准确刻画问题,用数学方法求解,得到最优的结果。
在实际解决问题过程中,还需要对结果进行分析和验证,以保证结果的合理性和可行性。
数学模型应用案例详解与实践
数学模型应用案例详解与实践数学模型是一种将现实问题抽象化、形式化的工具,通过数学方法对问题进行分析和求解。
它在各个领域都有广泛的应用,如物理学、经济学、生物学等。
本文将通过几个实际案例,详细介绍数学模型的应用和实践。
案例一:流量优化问题在城市交通管理中,如何优化车流量是一个重要的问题。
假设我们要优化某个交叉路口的车流量,我们可以建立一个数学模型来解决这个问题。
首先,我们需要收集交叉路口的交通数据,包括车辆通过该路口的速度、车辆的数量等。
然后,我们可以使用数学方法,如线性规划,来优化车流量。
通过调整信号灯的时间间隔、车辆的速度限制等因素,我们可以最大限度地提高车流量。
案例二:疾病传播模型在疾病控制领域,数学模型也有着重要的应用。
以传染病的传播为例,我们可以建立一个数学模型来预测疾病的传播趋势和规律。
首先,我们需要收集疾病传播的相关数据,如患者的数量、患者的接触人数等。
然后,我们可以使用数学方法,如微分方程,来建立传染病传播的数学模型。
通过模型的分析和求解,我们可以预测疾病的传播速度、传播范围等,从而制定相应的控制措施。
案例三:金融风险管理在金融领域,风险管理是一个重要的问题。
数学模型可以用来评估和管理金融风险。
以股票市场为例,我们可以建立一个数学模型来预测股票价格的变动。
首先,我们需要收集股票市场的相关数据,如历史股价、市场指数等。
然后,我们可以使用数学方法,如随机过程,来建立股票价格的数学模型。
通过模型的分析和求解,我们可以评估股票价格的风险,并制定相应的投资策略。
案例四:生态系统模拟在生态学研究中,数学模型可以用来模拟和预测生态系统的变化。
以物种数量的变化为例,我们可以建立一个数学模型来分析物种数量的动态演化。
首先,我们需要收集生态系统的相关数据,如物种的繁殖率、捕食关系等。
然后,我们可以使用数学方法,如微分方程,来建立物种数量的数学模型。
通过模型的分析和求解,我们可以预测物种数量的变化趋势,从而制定相应的保护措施。
数学建模经典案例:最优截断切割问题
建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少.二、 假 设1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用;4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9-13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用.W(Vi,Vj)=(xj-xi)⨯(bi⨯ci)+(yj-yi)⨯(ai⨯ci)+(zj-zi)⨯(ai⨯bi)⨯r其中,ai、bi、ci分别代表在状态Vi时,长方体的左右面、上下面、前后面之间的距离.例如,状态V5(1,1,0),a5 = a0-u1,b5 = b0-u3,c5 = c0;状态V6(2,1,0)W(V5,V6) =(b0-u3)⨯c0(3)根据准则知第一刀有三种选择,即第一刀应切M1、M3、M5中的某个面,在图中分别对应的弧为( V1,V2),(V1,V4),(V1,V10). 图G中从V1到V27的任意一条有向道路代表一种切割方式.从V1到V27共有90条有向道路,对应着所考虑的90种切割方式.V1到V27的最短路即为最少加工费用,该有向道路即对应所求的最优切割方式.实例:待加工长方体和成品长方体的长、宽、高分别为10、145、19 和3、2、4,两者左侧面、正面、底面之间的距离分别为6、7、9,则边距如下表:u1 u2 u3 u4 u5 u66 17 55 6 9r=1时,求得最短路为V1-V10-V13-V22-V23-V26-V27,其权为374 对应的最优切割排列为M5-M3-M6-M1-M4-M2,费用为374元.2、e≠0的情况当e 0时,即当先后两次垂直切割的平面不平行时,需加调刀费e.希望在图9-13的网络图中某些边增加权来实现此费用增加.在所有切割序列中,四个垂直面的切割顺序只有三种可能情况:<情况一>先切一对平行面,再切另外一对平行面,总费用比e=0时的费用增加e.<情况二>先切一个,再切一对平行面,最后割剩余的一个,总费用比e=0时的费用增加2e.<情况三>切割面是两两相互垂直,总费用比e=0时的费用增加3e.在所考虑的90种切割序列中,上述三种情况下垂直切割面的排列情形,及在图G中对应有向路的必经点如下表:垂直切割面排列情有向路必经点形情况一(一)M1-M2-M3-M4 (1,0,z),(2,0,z),(2,1,z)情况一(二)M3-M4-M1-M2 (0,1,z),(0,2,z),(1,2,z)情况二(一)M3-M1-M2-M4 (0,1,z),(1,1,z),(2,1,z)情况二(二)M1-M3-M4-M2 (1,0,z),(1,1,z),(1,2,z)情况三(一)M1-M3-M2-M4 (1,0,z),(1,1,z),(2,1,z)情况三(二)M3-M1-M4-M2 (0,1,z),(1,1,z),(1,2,z)我们希望通过在图9-13的网络图中的某些边上增加权来进行调刀费用增加的计算,但由于网络图中的某些边是多种切割序列所公用的.对于某一种切割序列,需要在此边上增加权e,但对于另外一种切割序列,就有可能不需要在此边上增加权e,这样我们就不能直接利用图9-13的网络图进行边加权这种方法来求出最短路径.由上表可以看出,三种情况的情形(一)有公共点集{(2,1,z)|z=0,1,2},情形(二)有公共点集{(1,2,z)|z=0,1,2}.且情形(一)的有向路决不通过情形(二)的公共点集,情形(二)的有向路也不通过情形(一)的公共点集.所以可判断出这两部分是独立的、互补的.如果我们在图G中分别去掉点集{(1,2,z)|z=0,1,2}和{(2,1,z)|z=0,1,2}及与之相关联的入弧,就形成两个新的网络图,如图H1和H2.这两个网络图具有互补性.对于一个问题来说,最短路线必存在于它们中的某一个中.由于调整垂直刀具为3次时,总费用需增加3e,故我们先安排这种情况的权增加值e,每次转刀时,给其待切弧上的权增加e.增加e的情况如图9-14中所示.再来判断是否满足调整垂直刀具为二次、一次时的情况,我们发现所增加的权满足另外两类切割序列.综合上述分析,我们将原网络图G分解为两个网络图H1和H2,并在指定边上的权增加e,然后分别求出图H1和H2中从V1到V27的最短路,最短路的权分别为:d1,d2.则得出整体的最少费用为:d = min(d1,d2) ,最优切割序列即为其对应的最短路径.实例:r=15,e=2时,求得图G1与G2的最短路为G2的路V1-V4-V5-V14-V17-V26-V27,权为4435,对应的最优切割序列为M3-M1-M6-M4-M5-M2,最优费用为4435.图9-14 H1图9-15 H2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设条件的本质与非本质 考察四脚呈长方形的椅子
数学建模.
数学模型概述; 微积分模型;随机模型
P16
1.3.2 如何预报人口的增长
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
x(2000) = 274.5 实际为281.4 (百万)
模型应用——预报美国2010年的人口
加入2000年人口数据后重新估计模型参数
r=0.2490, xm=434.0
x(2010)=306.0
数学建模.
数学模型概述; 微积分模型;随机模型
P23
1.4 数学建模的方法和步骤
数学建模的基本方法
•机理分析 •测试分析
• 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
数学建模.
数学模型概述; 微积分模型;随机模型
P19
阻滞增长模型(Logistic模型)
-弗尔哈斯特(Verhulst,荷兰),1838提出
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用
型
假
作出合理的、简化的假设
设 在合理与简化之间作出折中
用数学的语言、符号描述问题 模
型 构
发挥想像力 使用类比法
成 尽量采用简单的数学工具
P25
数学建模.
数学模型概述; 微积分模型;随机模型
P26
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
k年后人口
x = x (1 + r) k
k
0
指数增长模型
——马尔萨斯(Malthus,英国)提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
x(t + ∆t) − x(t) = r∆t x(t)
dx dt
= rx ,
x(0) = x0
x(t ) = x e rt 0
数学模型概述; 微积分模型;随机模型
P13
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
用θ(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是θ的函数
C
四个距离
两个距离
(四只脚) 正方形
C´
对称性
θA
O
模型集中反映了原型中人们需要的那一部分特征
数学建模.
数学模型概述; 微积分模型;随机模型
P7
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
( x + y ) × 30 = 750 ( x − y ) × 50 = 750
x
D´ D
A,C 两脚与地面距离之和 ~ f(θ) B,D 两脚与地面距离之和 ~ g(θ)
正方形ABCD 绕O点旋转
数学建模.
数学模型概述; 微积分模型;随机模型
P14
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
地面为连续曲面
f(θ) , g(θ)是连续函数
椅子在任意位置 至少三只脚着地
对任意θ, f(θ), g(θ)
至少一个为0
数学 问题
已知: f(θ) , g(θ)是连续函数 ; 对任意θ, f(θ) • g(θ)=0 ;
且 g(0)=0, f(0) > 0.
证明:存在θ0,使f(θ0) = g(θ0) = 0.
数学建模.
数学模型概述; 微积分模型;随机模型
P15
模型求解 给出一种简单、粗糙的证明方法
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
数学建模.
数学模型概述; 微积分模型;随机模型
P10
数学软件
• 实际问题一般需要利用计算机技术,并借 助一定的数学软件和算法(平台),对所 建立的模型进行求解(数值或解析)。
• Mathematica (强大的符号演算、图形处理和计算能力)
基本信息 华北电力大学数理系信息与计
算科学教研室 马新顺 .
联系方式:maxs@ 数学实验网站:
《数学建模》
1.数学建模概述(1) 2.微积分基本模型(2) 3.随机数学模型(2)
教材、参考书 姜启源等:《数学模型》(清华,2003) 陈恩水等:《数学建模与实验 》(科学,2008)
作业
数学建模.
数学模型概述; 微积分模型;随机模型
P32
供大于求
价格下降
减少产量
现
数量与价格在振荡
象
增加产量
价格上涨
供不应求
描述商品数量与价格的变化规律
问 商品数量与价格的振荡在什么条件下趋向稳定 题
当不稳定时政府能采取什么干预手段使之稳定
数学建模.
数学模型概述; 微积分模型;随机模型
P33
xk~第k时段商品数量;yk~第k时段商品价格
将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
实践 理论 实践
数学建模.
数学模型概述; 微积分模型;随机模型
P28
1.5 数学模型的特点和分类
数学模型的特点
模型的逼真性和可行性 模型的非预制性
模型的渐进性 模型的强健性
模型的条理性 模型的技艺性
模型的可转移性
模型的局限性
数学建模.
数学模型概述; 微积分模型;随机模型
P24
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模.
数学模型概述; 微积分模型;随机模型
数学建模的一般步骤
模
针对问题特点和建模目的
消费者的需求关系 需求函数 yk = f (xk ) 减函数
生产者的供应关系
y
f
g
y0
P0
供应函数 xk +1 = h ( y k ) 增函数 yk = g ( xk +1 )
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
0
x0
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
x =20 求解 y =5
答:船速每小时20千米/小时.
数学建模.
数学模型概述; 微积分模型;随机模型
P8
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速);
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(π/2)=0 , g(π/2)>0.
令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) . 因为f(θ) • g(θ)=0, 所以f(θ0) = g(θ0) = 0.
x(t) = x0 (er )t ≈ x0(1+ r)t
随着时间增加,人口按指数规律无限增长
数学建模.
数学模型概述; 微积分模型;随机模型
P18
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代 • 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律
根据对客观事物特性的认识, 找出反映内部机理的数量规律 将对象看作“黑箱”,通过对量测数据的 统计分析,找出与数据拟合最好的模型
•二者结合 用机理分析建立模型结构, 用测试分析确定模型参数
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
数学建模.
且阻滞作用随人口数量增加而变大
r是x的减函数
假设 r(x) =r −sx (r,s >0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
r(xm ) = 0
s = r r ( x) = r (1 − x )
xm
xm
数学建模.
数学模型概述; 微积分模型;随机模型
P20
阻滞增长模型(Logistic模型)
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0
研究人口变化规律
控制人口过快增长
数学建模.
数学模型概述; 微积分模型;随机模型
P17
常用的计算公式 今年人口 x0, 年增长率 r
dx = rx dt
dx/dt
dx = r(x)x = rx(1− x )
dt
xm
x
xm
0