实变函数论课后答案第五章1

合集下载

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(.即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(. A A C B A C B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nn A n n A χχ= (ii ))(sup lim )(sup lim x x n n A nn A χχ= 证明:(i ))(inf lim n nm N n n n A A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈. 所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x mn A n m N b A n χχN n A x n n ∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥ 有0)(inf 0=⇒=⇒∉≥x A x m n k m A n m A k χχ,故0)(i n f s u p =≥∈x m A n m N b χ ,即)(i n f lim x n A n χ=0 ,从而)(inflim )(inf lim x x nn A n n A χχ= 5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明 (i )}{n B 互相正交(ii )i ni i n i B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11 ,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i n i i n i B A 11==⋃⊂⋃当n=1时,11B A =; 当1≥n 时,有:i ni i n i B A 11===则)()()()()(11111111111i n i n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i n i A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{n i A x i i i ≤≤∈=1|min 0且 则 i n i i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i n i i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明:(i )})(|{a x f x E >=}1)({1na x f n +≥∞= (ii)})(|{a x f x E ≥=}1)({1n a x f n ->∞= 证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞= 反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈。

第三版实变函数论课后答案

第三版实变函数论课后答案

i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,

2
,而 Ak0 E 故 m( E \ Ak0 )

2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )

, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a

证毕.

8
m( E \ Ak0 ) m( Ak0 \ F1 )

8


2


8


4


2

E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集

实变函数第五章作业讲解

实变函数第五章作业讲解

第五章 习题3.设)(,x f mE ∞<在E 上可积,][n f E e n ≥=, 则0lim =⋅∞→n n me n 。

分析:采用N ε-定义证明证明 因为)(x f 在E 上可积, 所以0]|[|=∞=f mE , 即)(0]|[|∞→→≥n n f mE 。

事实上,因为[][],1∞=≥=∞=n n f E f E[][],1+≥⊃≥n f E n f E 即集列单调下降, [],1∞<≤≥mE f mE所以[],0]|[|lim =∞==≥∞→f mE n f mE n由|)(|x f 可积和绝对连续性,对0,ε∀> 0,δ∃>使对,e E ∀⊂me δ<,有ε<⎰dx x f e)(,由0]|[|lim =≥∞→n f mE n ,知对上述0,δ> 0,N ∃> 使得N n ≥时,有[]δ<=≥n me n f mE ,所以由⎰<ne dx xf ε)(,在n e 上n x f ≥)(,有⎰<≤⋅ne n dx xf me n ε)(,即0lim =⋅∞→n n me n 。

4.设)(,x f mE ∞<为E 上可测函数,[]n f n E E n <≤-=1,则)(x f 在E 上可积的充要条件是n n mE ∞-∞<∞∑。

证明 “⇒” 设)(x f 在E 上可积,则()f x 在E 上也可积。

当1n ≥时, 在n E 上, 1()()n f x f x n -≤=<, 当0n ≤时, 在n E 上, ()n f x <11n n ≤-=-,因此1()()()nnEE E n n f x dx f x dx f x dx ∞-∞==∞>=+∑∑⎰⎰⎰1(1)nnn n n mE n mE∞-∞==≥-+∑∑101n n n n n n n mE n mE mE ∞-∞∞====+-∑∑∑1n n n n mE mE ∞∞-∞==-∑∑。

实变函数(曹广福)1到5章答案

实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

第三版实变函数论课后答案

第三版实变函数论课后答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第三版实变函数论课后答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容证明:的充要条件是. 证明:若,则,故成立.反之,若,则,又,若,则,若,则.总有.故,从而有。

证毕证明.证明:,从而,故,从而,所以.另一方面,,必有,故,从而,所以.综合上两个包含式得. 证毕证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在,所以从而有.反过来,若,则使,故,,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则(相应地). 证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.必要性若,而则存在. 所以即所以这与矛盾,所以.设,求.又如果,,问是什么.解:若,则.若,则从,易知..令..证明: 因为的任何子集. 所以有,而,故,又.任取的一子集,,且.显,故只用证的确是一个域. (1) ,且的子集,若,则(是的子集,故)又的子集,.显然是的子集,所以.又若为的子集或.则.这里是的子集.或.所以.若中除的子集外,还有,则.若中有,不影响.故是域,且.证毕.6.对于的子集,定义的示性函数为证明:(1)(2)证明:,若则。

且只有有限个,使得所以使得时从而有故若,则且有无限个故所以 .故(1)成立.(2)的证明:,若则.且有无穷个使得,所以注意到所以 .若,则且只有有限个使得所以使得时,所以 .所以(2)也成立.也可以这样证(2):注意 ..7.设f(x)是定义于E上的实函数,a为一常数,证明(1)(2).证明:(1)我们有,故存在使(因为)所以.从而有;反过来:若,则所以(1)成立.下证(2)我们有从而有反过来,若8.若实函数序列在上收敛于,则对于任意常数都有证明:先证第一个等式由定理8知我们有对成立。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

1 k 1 因为 lim f n ( x) f ( x),n N ,使 m n ,有 f n ( x) a ,故 n k 1 1 x E{x | f m ( x) a }(m n), 所以 x E{x | f m ( x) a } m n k k 1 1 x E{x | f m ( x) a } = lim inf E{x | f m ( x) a } ,由 k 的任意性: n nN m n k k 1 , 反 过 来 , 对 于 x lim inf E{x | f n ( x) a } n k 1 k 1 1 有 x lim x lim inf E{x | f n ( x) a } ,k N , inf E{x | f m ( x) a } = n n k 1 k k 1 1 E{x | f m ( x) a } ,即 n N,m n 时,有: f m ( x) a 且 x E , nN m n k k 1 所以, lim f m ( x) f ( x) a 且 x E . 又令k ,故 f ( x) a且x E 从 m k
i 1 i 1 i 1 i 1 i 1 i 1
n 1
n
n 1
n
n
n
事 实 上 , x Ai , 则 i (1 i n) 使 得 x Ai , 令 i 1
i0 mini | x Ai 且1 i n
i0 1 i 1
0 0
n

n i0 1 i 1 i 1
于是, ( A B) C A ( B C ) 4.对于集合 A,定义 A 的特征函数为 A ( x)
A1 , A2 , , An 是一集列 ,证明: inf A ( x) (i) lim inf A ( x) lim n

实变函数论课后答案第五章1

实变函数论课后答案第五章1

第无章第一节习题1•试就[0, 1上的D i r i chBe数D(x)和Riema nn函数R(x)计算D(x)dx 和R(x)dx[0,1] [0,1]解:回忆D(x) =『x「Q即D(X)=^Q(X) ( Q为R1上全体有理数0 x E R Q之集合)回忆:E(X)可测二E为可测集和P129定理2:若E是R n中测度有限的可测集,f (x)是E上的非负有界函数,则f(x)dx二f(x)dx:= f (x)E E为E上的可测函数显然,Q可数,贝y m*Q =0,Q可测,Q(x)可测,有界,从而Lebesgue可积由P134Th4(2)知二Q(x)dx 亠I :Q(x)dx 二1dx 亠i 0dxQ(x)dx[0,1] [0,1] 'Q [0,1] 'Q c[0,1] 'Q [0,1] "Q c=1 m([0,1「Q) 0 m([0,1] 一Q c) =1 0 0 1 = 0回忆Riemann函数R(x): R:[0,1] T R11n— x =一口和门无大于1的公因子n mR(x)二 1 x = 00 x 壬[0,1]_Q在数学分析中我们知道,R(x)在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann可积,R(x) = 0 a.e于[0,1]上,故R(x)可测(P104定理3),且R(x)dx 二 R(x)dx R(x)dx[0,1][0,1] QQ而0_ R(x)dx _ 1dx=mQ=0(Q 可数,故m *Q=0)故QQR(x)dx 二 R(x)dx= 0dx=0[0,1][0,1] q[0,1] -Q2.证明定理1(iii)中的第一式证明:要证的是:若mE — f(x),g(x)都是E 上的非负有界函数,则f(x)dx_ f(x)dx 亠 I g(x)dx-EE-E下面证明之:-;.0,有下积分的定义,有E 的两个划分D 1和D 2使) f(x)dx ,S D 2(g). g(x)dx--_E2_E2此处s D 1( f), S D 2(g)分别是f 关于D 1和g 关于D 2的小和数,合并D 1,D 2 而成E 的一个更细密的划分 D ,则当S D (f g )为f(x),g(x)关于D 的小 和数时(f(x) g(x))dx_S D (f g)-S D f S o g-Sqf S D 2gg(x)dx f (x)dx 亠i g(x)dx - ;(用到下确界的性上 2_E _E质和P125引理1)由;的任意性,令工一0,而得 (f (x) g(x))dx 1 f(x)dx 亠 1 g(x)dx--E-E3.补作定理5中.f(x)dx 「::的情形的详细证明E证 明 : 令 E m 二 E 「X lllxlF ml , 当 .f(x)dx 「:: 时E:二 f (x)dx = lim f (x)dxEm ''E m-f(x)dx--E-M 0 ,存在m0= m0(M ) N ,当m 一m°时,f(x)dx=lim [f(x)]kdxJ k -JtsC J'E m[f(x)]k dx 二[limf n(x)]kdx 二lim[f n(x)]kdxu u n厂 • n 厂E mE m 「Em …= lim [ f n(x)]kdx 乞 limf n(x)dx ^lim f n(x)dx―匸n _&En r.E mE mE(利用[f n(x)]kdx 有限时的结论,Th5中已详证)E m由 M 的任意性知 lim f n(x)dx 二::=f (x)dxn ^sc **十 E4.证明:若f(x)是E 上的非负函数,f(x)dx = O ,则f(x)=Oa.eE证明:令E n1二[x|n ::: f(x)辽 n 1],n =1,2,, F m=[x|f (x)空-bo -be则 E[x| f(x) 0^(E n ) 一•(F n )n Tn叫f 可测,故 E n ,F m ,E[x| f (x) 0]( n =1,2川l ;m =12111)都是可测集,由 P135Th 4(2)和 f(x)dx = 0,f(x)非负知E0 二 f (x)dx _f (x)dx _ f (x)dx _ n dx 二 nmE n_ 0EE[x;f(x) 0]E n E n故 mE n =0,( n =1,2,|l();同理 mF m =0,(m =1,2,|l()-bo-bo故 mE[x | f (x) 0] _ ' mE n' mF m= 0n 二 m d故从 f (x)非负,E[x| f(x)=0] = E - E[x| f(x) 0],知 fx) 0 ae 于 E . 证毕.5.证明:当mE 「::时,E 上的非负函数的积分.f(x)dx 「二的充要条E件是-bokk、2 mE[x| f (x) _2 ]:2M ::: E m 则存在k 使M 证毕.证明:令E k = E x f( x k2 ]* 10 ,, E n 二E[x|2n乞f(x) :::2n1], k =0,1,2,HlE[x|f(x)- — UEnECE j =0当iQ , f 非负,故从mE^+^知 n =0 0 乞f(x)dx ::::,而 f(x)dx 二f(x)dx ::f (x)dxE[x|f(x)::?]EE[x|0^f(x) ::?]E[x|f (x) 1]f (x)dx :: :: =f (x)dx ::::EE[x|f(x)」]注意由单调收敛定理和f (X) _ 0可测知-bon(x) f (x)dx = lim f(x)dx = lim' f(x)dx 「 f (x)dxEEi" J 1E" i i卫 Ei7 E i乜E ii 0<Z J 2“dx =E 2小口巳=2瓦 2nmEn 兰2E 2nmFn=^ 2nE[x| f(xp^2n]i =0E ・ n^0 nT n =0 nJ所以,若 v 2kmE[x| f (x) _2k]—::,k=0则f(x)dx ::: •::,故充分性成立.E::::1若 k n为证必要性,注意F kE 「mF k 八mE i ,令珂 卄一,则 宦◎ 0 右k c n-J-y*"-J-y*"—l-y"°^^0^^0' 2nmE[x| f(x) _2n]八 2n mF n 八 2叽 mE k;二 2n:mE k ;二 2n{mE kn=0 n=0 n =0k=n n =0k=nn =0k=0■bo 二' mE k(2k1—1) =為 2k1mE k—' mE kk -0 k -0k -0-bo-bo=2、2kmE k -m[E[x; f (x)-1]]乞 2、f(x)dxk =°k=0 Ekf(x)dx= [ f(x)dx =E[x|f(x) 1],「E nf(x)dx 二nEn im屮(x)f(x)dx T m: QEi(x)f(x)dxLeviTh=limn _j I 则有 . f(x)dx ::::E[x;f(x) _1]-bo -bo二二 2nTmE k二二 2nmE k八 mE 「2n八 mEk =0 n =0::kk =0 n =0 k =0k 12 Tn =0 k =02-1-bdk十 =2 2kmE k-m (UE k )心E Ef (x)dx = 2 f (x)dx _ 2 f (x)dx :::E[x|f (x) 1] E(mE ” 壯j mE[x | f (x)亠1]:::::)证毕.注意以上用到正项二重级数的二重求和的可交换性, 这可看 成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定-be -bek —; a 八・ 7 a nm - b ,同理,b - a ,贝Sa = b , l 二 a nmn =0 m=0[一1,"2九为简单函数,f(x)「im 「n X),则x _ n n ::f(x)可测6.如果f(x),g(x)都是E 上的非负可测函数,并且对于任意常数a 都有mE[x| f (x) _ a] = mE[x | g(x) _ a]则.f (x)dx = J g(x)dx=2UEkmank -F m-e-be k%d叫m )=k im : o、' a nm d 叫m) n 二0k=lim ' k _ .'n z :0■be址"be "bea nm d 」(m) ='a nm d 叫m)a nmn=0 mz0nz0■是R 1上的一个测度(离散的)-m Nj[[m]] =1J(A) =#[A - N] , N 为自然数集, 需看成a nxa n (x) J当x 三N■ ■ ■■当 ,也可这样设送Z a nm-bo -bd二 a,M •二 a nm 二 b ,贝「k,k ―― a nmn吕 m :!P k ―― a nm m z! n二P ::< v y a nmm z! n T-b ,令 p > --:, k ::二二 anm- b ,令n =1 m T-bo -bo■- ■-a nm m=0 n =0nmn =0 m =0an(X )={^■— ■— a nmm 0n =0■— ■— a nm ■— ■— a nm m =0n -0 n =0m =0证明:若存在b ■ 0使E[x | f (x) _ b] - •二,贝卩f (Mdx = g )x dx 「::结论成EE故-b a , a,b R 1, E[x| f(x) _b]:::::,贝SE[x| f(x) _a] — E[x| f(x) _b]二 E[x|a 乞 f(x) ::: b]mE[x | a _ f (x) :: b] = mE[x | f (x) _ a] - mE[x | f (x) _ b]=mE[x; g (x) _ a] -mE[x; g(x) _ b] = mE[x; a 乞 g(x) ::: b]_k k 1-m N ,及 k =0,12|l(,2m -1,令 Em,厂 E[x|2m "(x):::芦]及Em ,m2^E[x| f(x^m]贝Um2mE 二 |jE m,k , E m,k 互不相交k =0同样 E m,k =E[x| 存 g(x) /], Em,m2m二 E[x|g(x) m],E m,k 互不相交负简单函数,且*m (X )L 「m (X )_均为单调不减关于m ,'- m (X )》f(X ), ' m (x) > g(x)注意到kk+1kk +1m(E m,k )二 mE[x| 班乞 f (x)::〒]=mE[x |却乞 g(x)::〒]=m(E m,Qm2mkm2mk故「m (x)dxmm^m’k ) 而 m(E m,k) =「m (x)dxEk =0 2k =02E故由 Levi 定理知 f (x)dx = lim ■ m (x)dx = lim m(x)dx 二 g(x)dxEEEE7.设mE- ::, f (x)是E 上的有界非负可测函数,0 — (x):::M ,m2mE= U Em ,k ,令' m (x)mm2 u八卫 k =0 2mm2 kfmE m,k(X ),屮 m (X )=送 才 ~(x),则屮 m (x )2 m(x)都是非0 二g0n) ::: g1n)viAg k:) = M, n=1,2,川使max'y i(n)-y(nJL)|i =1,2,|||,k n』=l n—0(n—,),E i(n^E[x|y i(n] < f(x) ::: y i⑺],i n• E i(n),i = 1,2,11( ,k n; n =1,231()证明:k nf(x)dx=lim' f( i n)m^(n)E n口4证明:显然,由f可测于E知,E i(n)是可测集(-仁i ^k n,n・N )且k nE E i(n)i 4,又在E(n)上小f(x)<閑表明y(^inV(x^x SUP f(x^y(n)记S D nKi k n=L sup f(x)mE(n)(大和数),S D:inf f(x)mE j(n)(小i 4 x. E(n)i4 x已和数)则从f(x)有界可测知f(x)在E上可积(P129Th2,故一二:::S D< f(x)dx = f(x)dx 二f(x)dxzS D「:::,又从T E i(n)知E _E Ek:k:<Z f(¥)mE(:)玄迟sup f(x)mE i(n)=S D:< -hsc i =1 i 1 x-E(n)k n"f(x)dx-送f(¥)mE(n)兰S D:E 7k n | f x dx - x E Ykf ( mE(n岂S D:-S D:•八i 二ny i -y i n i mE i n( < l/' mE n'iJmE >1 i=(从l n > 0知)8 .设mE :::k n故f(x)dx = lim'E …心f (x)是E上的非负可测函数,f (x)dx ::::,f( i n)mE(n)e n 二E[x;f (x) - n] 证明:lim: men =0证明:由本节习题5知f(x)dx::: :: , mE < -HeE■be 则v 2k mE[x| f (x) _2k] :::•::,故k 4lim 2k mE[x| f(x) _2k] =0n L :(1)反证设I i nm 叶 e ,贝卩;。

实变函数课后答案(何穗刘敏思)习题5参考答案

实变函数课后答案(何穗刘敏思)习题5参考答案

习题5参考解答(A 组题)一、二、(略) 三、计算题1、设 P 0为 0,1中的三分 Cantor (康托)集,f (x ) 100, x P, n , x E n ,n 1,2,其中 E n 表示 P 0的n 阶邻接区间的并集,求 0,1 f (x )d x 。

2n 1由康托集的构造知,E n I i (n ),其中 I i (n )(i 1,2,,2n1)为 P0的长度都是 n 且13i 1互不相交的n阶邻接区间。

,且 P 0,E 1,E 2,两两不 由于 f (x )是 0,1的非负可测函数, 0,1 P 0 E nn 1相交,mP0 0,以0,1f (x )d x Pf (x )d x E f (x )d xnn1n 12n1n 2n11 2f (x )d x n 3。

I i (n )3n 3 3n 1 i 1n1n 1 2、设1, x 0,1 \R D (x ) 0,1,2, x R 0,1其中 R 0,1表示 0,1中的有理数全体,求D (x )d x 。

[0,1]解因为有理数集为零测集,所以, D (x )1 a .e .于[0,1],于是[0,1]D (x )d x [0,1]1d x 1。

x 2 3, x P 0, x0,1\ P 0,其中 P 0为 0,1中的三分康托集,求 3、设 f (x ) f (x )d x 。

0,1x a .e .于 0,1,于是解因为mP 0,所以, f (x ) x 03 d x 1 。

1 [0,1] f (x )d x [0,1] x 3 d x 0x 344、设1 2 , x 0,1 , x 0,1 \ R f (x ) x 0,1, g (x ) x , 4 x ,x R0,10, x 0其中 R0,1表示 0,1中的有理数全体,求f (x )d x 和[0,1]g (x )d x ,并由此说明[0,1]f (x ),g (x )L 0,1。

实变函数部分课后习题答案(最新版)

实变函数部分课后习题答案(最新版)

备注:证明题每章都是二选一,计算题在第五章第二章1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂,从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明:对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>, 使()(){}00,,;a x x N x x f x a δ∈⊂≥,这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥,故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥.,故(){};x f x a ≥是闭集.第三章68页3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*) 证明:若()m A B =∞ ,则,A B A B ⊂∞=∞=∞=⋃⇒)(,)(,)(B m A m B A m∞=+=⋂+⋃=∞∴)()()()(B m A m B A m B A m 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+- 注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+-A 可测()()()()()c m B m A B m A B m A B m B A =+=+-)()()()(B A m B m A B m B A m ⋂-=-∴∞<⋂()()()()m A B m A m B m A B ∴=+-9、设n E R ⊂,那么E 可测当且仅当对任意正数ε,存在开集G E ⊃及闭集F E ⊂使得()m G F ε-<。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。

实变函数论课后答案解析第五章1

实变函数论课后答案解析第五章1

实变函数论课后答案第五章1第无章第一节习题1.试就[0,1]上的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆: ()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E 上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])10010c m Q m Q =⋅⋂+⋅⋂=⋅+⋅= 回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰2.证明定理1(iii)中的第一式证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()EEEf x dx f x dxg x dx --≥+⎰⎰⎰下面证明之: 0ε∀>,有下积分的定义,有E 的两个划分1D 和2D 使 1()()2D Es f f x dx ε->-⎰,2()()2D Es g g x dx ε->-⎰此处1()D s f ,2()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时12(()())()DD D D D f x g x dx sf g s f s g s f s g -+≥+≥+≥+⎰()()()()22EEEEf x dxg x dx f x dx g x dx εεε----≥-+-=+-⎰⎰⎰⎰(用到下确界的性质和P125引理1)由ε的任意性,令0ε→,而得(()())()()EEf xg x dx f x dx g x dx ---+≥+⎰⎰⎰3.补作定理5中()Ef x dx =+∞⎰的情形的详细证明证明:令{}|||||m E E x x m =≤,当()Ef x dx =+∞⎰时,()lim ()mm EE f x dx f x dx →∞+∞==⎰⎰0M ∀>,存在00()m m M N =∈,当0m m ≥时,2()lim [()]mmk k E E M f x dx f x dx →∞<=⎰⎰则存在k 使[()][lim ()]lim[()]mmmk n k n k n n E E E M f x dx f x dx f x dx →∞→∞<==⎰⎰⎰lim [()]lim()lim ()mmn k n n n n n E E Ef x dx f x dx f x dx →∞→∞→∞=≤≤⎰⎰⎰(利用[()]mn k E f x dx ⎰有限时的结论,Th5中已详证)由M 的任意性知lim ()()n n EEf x dx f x dx →∞=+∞=⎰⎰ 证毕.4.证明:若()f x 是E 上的非负函数, ()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+=,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m ==)都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnnEE x f x E E f x dx f x dx f x dx n dx nmE>=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n ==;同理0,(1,2,)m mF m == 故11[|()0]0n m n m mE x f x mE mF +∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|()0]E x f x E E x f x ==->,知()0.f x a e=于E .证毕.5.证明:当mE <+∞时,E 上的非负函数的积分()Ef x dx <+∞⎰的充要条件是02[|()2]k k k mE x f x +∞=≥<+∞∑证明:令[|()2],0,1,2,k k E E x f x k =≥=,1[|2()2]n n n E E x f x +=≤<,0,1,2,k =[|()1],n i j n E x f x E E E +∞=≥=⋂=∅当i j ≠,f 非负,故从mE <+∞知[|()1]0()E x f x f x dx <≤<+∞⎰,而[|0()1][|()1]()()()EE x f x E x f x f x dx f x dx f x dx ≤<≥=<⎰⎰⎰[|()1]()()EE x f x f x dx f x dx ≥<+∞⇔<+∞⎰⎰注意由单调收敛定理和()0f x ≥可测知00lim[|()1]lim()()()()()lim ()()n n niin i i nin n i n E E E x f x EE E E f x dx f x dx f x dx x f x dx x f x dxχχ+∞→∞==→∞==→∞≥====⎰⎰⎰⎰⎰00lim ()()lim()lim ()()LeviThn niiii ii n n n n E i i EE E E x f x dx f x dx f x dx f x dxχ==+∞→∞→∞→∞======∑∑⎰⎰⎰⎰110022222222[|()2]ii n nnn n n n n i n n n n E dx mE mE mF E x f x +∞+∞+∞+∞+∞++=====≤==≤=≥∑∑∑∑∑⎰所以,若02[|()2]k k k mE x f x +∞=≥<+∞∑,则有[;()1]()E x f x f x dx ≥<+∞⎰则()Ef x dx <+∞⎰,故充分性成立.为证必要性,注意,k i k i i k i kF E mF mE +∞+∞====∑,令1{0n k k n k nϕ≥=<若若,则0002[|()2]2222nnnn nn nn nkkkkkn n n k nn k n n k mE x f x mF mE mE mEϕϕ+∞+∞+∞+∞+∞+∞+∞+∞========≥====∑∑∑∑∑∑∑∑100000002122221k knnnnkk k k kk n k n k n k mE mE mE mE ϕ++∞+∞+∞+∞+∞+∞=======-====-∑∑∑∑∑∑∑11(21)222()k k kk k k k k k k k k k mE mE mE mE m E +∞+∞+∞+∞+∞++======-=-=-∑∑∑∑0022[[;()1]]2()kk k k k E mE m E x f x f x dx +∞+∞===-≥≤∑∑⎰[|()1]2()2()2()kk E x f x EE f x dx f x dx f x dx +∞=≥==≤<+∞⎰⎰⎰(,[|()1]mE mE x f x <+∞≥<+∞)证毕.注意以上用到正项二重级数的二重求和的可交换性,这可看成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定理的应用.0000nmnm m n n m aa +∞+∞+∞+∞=====∑∑∑∑0000lim lim ()lim ()kkknmnm nm nmk k k m n m n n n aa a d m ad m μμ+∞+∞+∞+∞+∞→∞→∞→∞=========∑∑∑∑∑∑⎰⎰00000lim ()()knm nm nm k n n n m a d m a d m a μμ+∞+∞+∞+∞+∞→∞=======∑∑∑∑⎰⎰ μ是1R 上的一个测度(离散的),[[]]1,()#[]m N m A A N μμ∀∈==⋂,N 为自然数集,nm a 看成 (){nx n a x Na x x N∈=∉当当 ,也可这样设1111,nm nm n m m n a a a b +∞+∞+∞+∞======∑∑∑∑,则,k p N ∀∈111111pppkknmnm nm n m m n m n aa ab +∞=======≤≤∑∑∑∑∑∑,令p →∞,11knm n m a b +∞==≤∑∑,令00,nm n m k a a b +∞+∞==→∞=≤∑∑,同理,b a ≤,则a b =,0000nm nm n m m n a a +∞+∞+∞+∞=====∑∑∑∑,[1,),1(){0i n a i i i nx x n ϕ-≤≤=≥为简单函数,()lim ()n n f x x ϕ→∞=,则()f x 可测6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()]mE x f x a mE x g x a ≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dxg x dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则[|()][|()][|()]E x f x a E x f x b E x a f x b ≥-≥=≤<[|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()]mE x g x a mE x g x b mE x a g x b =≥-≥=≤<m N ∀∈,及0,1,2,,21m k =-,令,1[|()]22m k m mk k E E x f x +=≤<及 ,2[|()]m m m E E x f x m =≥则2,0m m m k k E E ==,,m k E 互不相交同样,,21[|()],[|()]22m m km m m m k k E E x g x E E x g x m +=≤<=≥,2,0mm m k k E E ==,,m k E 互不相交令~,,2200()(),()()22mmm k m km m m E m m m E k k k kx x x x ψχψχ====∑∑,则()m x ψ,()m x ψ都是非负简单函数,且(),()m m x x ψψ均为单调不减关于m ,()()m x f x ψ→,()()m x g x ψ→注意到,,11()[|()][|()]()2222m k m k m m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<= 故22,,00()()()()22mmm m m m k m k m m m k k E Ek kx dx m E m E x dx ψψ=====∑∑⎰⎰故由Levi 定理知()lim ()lim ()()m m n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰7.设mE <+∞,()f x 是E 上的有界非负可测函数,0()f x M ≤<,()()()010,1,2,nn n n k g g g M n =<<<==使{}()(1)max |1,2,,0()n n i i n n y y i k l n --==→→∞,()()()()1[|()],,1,2,,;1,2,3,n n n n n i i i i i n E E x y f x y E i k n ξ-=≤<∈==证明:()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰证明:显然,由f 可测于E 知,()n i E 是可测集(1,n i k n N ∀≤≤∈)且()1nk n i i E E ==,又在()n i E 上()()1()n n i i y f x y -≤<表明()()()()1inf ()sup ()n n i i n n i i x E x E y f x f x y -∈∈≤≤≤ 记()()1sup ()nnn ik n D ix E i S f x mE ∈==∑ (大和数),()()1inf ()nn ni k n D i x E i s f x mE ∈==∑ (小和数)则从()f x 有界可测知()f x 在E 上可积(P129Th2),故()()()n n D D E EEs f x dx f x dx f x dx S ---∞<≤==≤<+∞⎰⎰⎰,又从()n n i i E ξ∈知()()()11()sup ()nnn n n ik k nn n D iii D x E i i s f mEf x mE S ξ∈==-∞<≤≤=<+∞∑∑()1()()nn n n nk n n D D i i D D i Es S f x dx f mE S s ξ=-≤-≤-∑⎰,则()(1111|()()|nnnn n k k kn n n nnn niiD D i i i n in i i i Ef x dx f mES s y ymE l mE l mE ξ→∞-===-≤-≤-≤=→∑∑∑⎰(从0n l →知)故()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则02[|()2]k k k mE x f x +∞=≥<+∞∑ ,故lim 2[|()2]0k k n mE x f x →∞≥= (1)反证设l i m n n n m e→∞⋅>,则00,,k k N n ε∃>∀∈∃使0kk n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim 0n n n me →∞⋅= 9.设()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,对任意的0r >,令[|||||]()()E x x r F r f x dx <=⎰证明:()F r 是(0,)+∞上的连续函数证明:[|||||](0,)E x x r E B r <=⋂显然为可测集;又()f x 在E 上非负可测,故0r ∀>,f 在[|||||]rE E x x r <上也可测,且0()()rE Ef x dx f x dx ≤≤<+∞⎰⎰,故()F r 是(0,)+∞上有定义的函数1)先设0()f x M ≤≤<+∞于E 上,此时00,0r r ∀>∀>有0000[|||||]0()()()E x r x r r F r r F r f x d ≤<+≤+-=⎰0000[;||||][(0,)\(0,)]MmE x r x r r Mm B r r B r ≤≤<+≤+0000(((0,))\(0,))(()()]0n n n n M m B r r mB r M w r r w r =+=+-→ (当0r →)这里(0,)nn mB r w r =最好是用(0,)(0,)()1n n B r mB r R dx w r ==⎰来看.(下一节!)也可这样看00((0,))(0,)0m B r r mB r +-→,0R r ∀>>{}12(0,)(,,,);n R n i B R I x x x x R R x R ⊂==∈-<<,而12(,,,);(0,)n r n i nr r Ix x x x R x B r n n ⎧⎫==∈-<<⊂⎨⎬⎩⎭,故 (0,)\(0,)\R r nB R B r I I⊂((0,)\(0,))(\)()()(2)(2)22()n n n n n nR r R r nnr r m B R B r m I I m I m I R R nn ≤=-=-=-得不出结果!则000()()0F r r F r ≤+-→ 当0r <时0000|()()|()()(()()]0n n n n F r r F r F r F r r M w r w r r +-=-+≤-+→则()F r 是连续的对一般可测函数()f x ,令(),()(),()m f x f x Mf x m f x M≤⎧=⎨>⎩ min((),)f x m =,则0N f ≤可测于E ,且()()N f x f x →于E ,N f 单调不减,故由Levi 定理知lim ()m m EEf dx f x dx →∞=<+∞⎰⎰0,()N εε∀>∃,使0()()[()()]6N N EEEf x dx f x dx f x f x dx ε≤-=-<⎰⎰⎰对上述固定的()N N ε=,[|||||]()()N N E x x r F r f x dx <=⎰是连续于(0,)+∞上的则00(,,())(0,),r N r εεδδ∈+∞∃=0(,)0r εδ=>,当0||r r δ-<时0|()()|3N N F r F r ε-<则当0||r r δ-<时1230000|()()||()()||()()||()()|N N N N N N NF r F r F r F r F r F r F r F r I I I -≤-+-+-=++ 1[|||||][|||||][|||||]|()()||()()||(()())|NN N N E x x r E x x r E x x r I F r F r f x dx f x dx f x f x dx <<<-=-=-⎰⎰⎰[|||||]|(()())||(()())|3N N E x x r Ef x f x dx f x f x dx ε<≤-≤-<⎰⎰20|()()|3N N N I F r F r ε-<,0300[|||||]|()()||(()())|(()())3N N N N E x x r EI F r F r f x f x dx f x f x dx ε<-=-≤-<⎰⎰则0|()()|F r F r ε-≤从而()F x 在(0,)+∞上连续得证.10.证明:若非负可测函数()f x 在E 上的积分()Ef x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1E E =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n n n n n m B r B r w r r m m→∞→∞=+=+-= 若[|||||]m E E x x m =≤,0[|||||]mE E x x m =<,则0(\)((0,))0m m m E E m B m ≤∂= 而()f x 非负可测,故011lim ()lim ()lim()()m m m m m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c > 另一方面,0lim ()0r F r +→=(当0f M <<有界时,010()()()((0,))0m r E F r f x dx Mm E Mm B r ≤=≤≤→⎰)一般,0ε∀>,()N ε∃,使||3N E Ef dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→=由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.11.设mE <+∞,12,,,m E E E 是E 的m 个可测子集,正整数k m ≤,证明:若E 中每一点至少属于k 个i E ,则有i ,使i kmE mE m≥ 证明:反证,设(1,2,,)i i m ∀=有i kmE mE m<,则由于x E ∀∈,x 至少属于k 个i E ,故1()imE i x k χ=≥∑ (x E ∀∈),而i E E ⊂,故11()()im mi E i i E Em E E x dx k dx kmE χ==⋂=≥=∑∑⎰⎰111()m m mi i i i i kkmE m E E mE mE kmE m===≤⋂=<=∑∑∑得矛盾 所以i ∃使i kmE mE m≥.(徐森林书P242)12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n =;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1n n mE mF mF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n n n n n n mE mF mF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+故01(())2n k n n m E F F δ=⋂⋃≥在01n k n n E F F =⋂⋃上,01()1f x n ≥+ 所以111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立13.设mE <+∞,()f x 是E 上的有界非负可测函数,证明有[0,]mE 上的非负单调不增函数()g y 使对任意常数a 都有[|()][|0,()]mE x f x a mE y y mE g y a ≥=≤≤≥,进而证明[0,]()()EmE f x dx g y dy =⎰⎰证明:1s R ∀∈,令()[|()|]f s mx f x s μ=>且{}*()inf 0|()f f t s s t μ=>≤,显然*()f t 是[0,)+∞上的非负单调不增函数,因为12t t ∀>,{}{}20|()0|()f fs s t s s t μμ>≤⊂>≤,从而**21()()f t f t ≥ 注意{}|()()f f s s ημημ⊂≤,从而*(())ff s s μ≤ (1)又由Levi 定理知()f s μ是右连续的121,,n n n n s s s s s s s s +∀→>≥≥≥≥≥,则{}{}1||()|||()|n n x f x s x f x s +>⊂>11[||()|][||()|]lim ()lim [||()|]lim ()lim ()n n f n n x f x s x f x s n n n n R R s m x f x s y dy y dy μχχ>>→∞→∞→∞→∞=>==⎰⎰1[||()|]()[||()|]()x f x s f R y dy m x f x s s χμ>==>=⎰,0,()n f n t s s tμ∀∃>≤,*()n s f t →,故从()f s μ右连续知*(())lim ()f f n n f t s t μμ→∞=≤ 即*(())f f t tμ≤(2)令**()[|()]f s m t f t s μ=>,则从*f 非增,知{}**()sup 0|()f s t f t s μ=>>(3)事实上*0()f t s μ∀≤<,则***,(),(),()f t t t s f t s f t s μ'''∃<<>>,则{}***[0,][0,()]0;()[0,()]f f t s t f t s s μμ⊂⊂>>⊂,故{}**0|()[0,()]f t f t s s μ>>=故{}**sup 0|()()f t f t s s μ>>=从(1)*(())f f s s μ≤知*()()f f s s μμ≥,从(3)若*()f t s μ>,则:*()f t s≤由(2)*()(())f f s f t t μμ≤≤ (注意f μ单调不增!) 由*()f t s μ>之任意性知*()()f f s s μμ≤,所以*()()f f s s μμ=即*[|()][|()][|()]mE x f x s m x f x s m t f t s >=>=>1a R ∀∈ 111[|()][[|()]]lim [[|()]]n n mE x f x a m E x f x a m E x f x a n n +∞→∞=≥=>-=>- ***111lim [;()][[;()]][,()]n n m t f t a m t f t a m t f t a n n +∞→∞==>-=>-=≥ 注意:t mE >时*()0f t ≡,故当0a >时*[|()][0,]t f t a mE ≥⊂*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥当0a ≤时,[|()]m x f x a mE ≥=*[|0,()][|0]m x t mE f t a m t t mE mE ≤≤≥=≤≤=.所以有*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥. 令*()()g t f t =即证明了本题的第一部分.记[0,],mE I mI mE ==则且[|()][|()]mE x f x a mI y g y a ≥=≥[|()][|()][|()][|()]m x f x a mE m x f x a mI mI y g y a mI y g y a <=-≥=-≥=<故b a ∀<,有[|()][|()][|()][|()]mE x f x a mE x f x b mE x b f x a mI y b g y a <-<=≤<=≤<14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()nn fx f x →∞= 并且有0n 使0()n Ef x dx <+∞⎰,举例说明,当()n Ef x dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得lim ()lim ()n n n n E Es x dx s x dx →∞→∞=⎰⎰ ,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令n E R ⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n Ef x dx mE n==+∞⎰,()0lim ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰15.设()f x 是可测集E 上的非负可测函数,如果对任意m N ∀∈,都有[()]()mEEf x dx f x dx =<+∞⎰⎰ 则()f x 几乎处处等于一可测集合的示性函数.证明:令0[|()0]E E x f x ==,1[|()1]E E x f x ==,[|()1]E E x f x ∞=>,[|0()1]E E x f x =<<,则 01E E E E E ∞=⋃⋃⋃由于()f x 非负可测,故[()]m f x (m N ∀∈)也非负可测,故由Fatou 引理知lim[()]lim[()]lim [()]()mmmm m m E E EEmE f x dx f x dx f x dx f x dx ∞∞→∞→∞→∞∞⋅=≤≤=<+∞⎰⎰⎰⎰故0mE ∞=,从而有11[()][()]()()m m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰而在1E 上()1f x =,故 11()[()]()()m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰由0f ≥,且()Ef x dx <+∞⎰知1()E f x dx <+∞⎰,故[()]()m E Ef x dx f x dx =⎰⎰,即(()[()])0m Ef x f x dx -=⎰,而()[()]0mf x f x ->于E 上(m ∀),由此可知0mE =(本节第4题)(Lemma :若0g >可测于可测集E 上,()0Eg x dx =⎰,则0mE =证明:令11[|()],[|()1]1k F E x g x F E x g x k k ∞=≤<=≥+,则 1k k E F F +∞∞=⎛⎫=⋃ ⎪⎝⎭,k N ∀∈1()()0,01k k k F E mF g x dx g x dx mF k ≤≤==+⎰⎰ 0()()0,0F EmF g x dx g x dx mF∞∞∞≤≤≤==⎰⎰则10k k mE mF mF +∞∞==+=∑)由此可知,111()0.cE f x a e E ⎧=⎨⎩,于上 ,于上 所以对几乎处处x E ∈有1111()()0E x E f x x x E χ∈⎧==⎨∉⎩, ,16.证明:如果()f x 是E 上的可测函数,则对于任意常数0a >都有 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ [|()]exp ()a EmE x f x a e f x dx -≥≤⎰ 证明: [||()|]|()||()|[||()|]EE x f x a f x dx f x dx amE x f x a ≥≥≥≥⎰⎰则 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ 又若x E ∈,则()()f x a f x a e e ≥⇔≥,故[|()][|exp ()]a E x f x a E x f x e ≥=≥,从而由前一部分结果知[|()][|exp ()][||exp ()|]a a mE x f x a mE x f x e mE x f x e ≥=≥=≥ |exp ()|exp ()a a EEe f x dx e f x dx --≤=⎰⎰17.证明;如果()f x 是1R 上的非负可测函数,则对任意实数,,,,,0a b c t a b c <>,都有[,][,]1()()a b ca t cb t f cx t dx f x dx c +++=⎰⎰ 证明:1)若()()E f x x χ=,(E 为1R 上任一可测集),则结论成立,这里1()0E x Ex x Eχ∈⎧=⎨∉⎩, ,此时[,][,]111()([,])ca t cb t ca t cb t f x dx dx m E ca t cb t c c c ++++==⋂++⎰⎰ 而[,][,][,][|]()()([,][|])E a b a b a b x cx t E f cx t dx cx t dx dx m a b x cx t E χ⋂+∈+=+==⋂+∈⎰⎰⎰([,][])E tm a b c-=⋂[][]1,,c E t E t m a b m c a b c c c c ⎡⎤⎡⎤⎛-⎫⎛-⎫⎛⎫⎛⎫==⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦[][][][]11,,m ca cb E t m ca cb E t t cc⎡⎤⎡⎤=-=-+⎣⎦⎣⎦[]()[],11,ca t cb t m ca t cb t E f x dx c c ++⎡⎤=++=⎣⎦⎰2)由内积的线性性质,当()f x 为简单函数时,结论也成立。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .


An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=

n=1
An
(相应地)
lim
n→∞
=

n=1
An
.

证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞

lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=

m=1
Am

另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯

A,
B
的任何子集
F
(

实变函数与泛函分析基础第五章习题答案

实变函数与泛函分析基础第五章习题答案
a

f (x, t + hn) − f (x, t) hn
=
ft′(x, t + θhn) · hn hn
= | ft′(x, t + θhn)| ≤ K,
Ó ¶ ¨ 0 < θ < 1, a ≤ x ≤ b, t0 − δ < t + θhn < t0 + δ.
¦±
d dt
b
f (x, t)dt =
n=1
n=0
n=1
−∞
n=1
² ¤ En ¯Æ E


mEn = m( En) ≤ mE < ∞,
n=1
n=1
²∞ | n | mEn < ∞. −∞
½
¾ ¡Þ ¿ ∞ | n | mEn,
−∞

−∞

−∞
| f (x) | dx =
| f | dx +
| f | dx ≤ nmEn + | n − 1 | mEn
¤× º ¼¨ »Á©Í ¼ ­ ¨ ¥ ÄÅ À Â
´¹ °± 1.
Lebesgue
ß
¾¶
´¹ ± Darboux Ç ¤¿ £
Á ´ ± Darboux ´¤¢ ¤ ß f(x) E ·ÈÎ ¨ ´ E Ü Î ¾
D : E1, E2, · · · , En, max mEi → 0
1≤i≤n
¯ S (D, f ) → f (x)dx, S (D, f ) → E f (x)dx.
¿ ¹ f (x) = 0 a.e. E. ÆÃ ´Ü° δ > 0,
f (x)ϕ(x)dx = 0,
E

《实变函数论》课后答案

《实变函数论》课后答案

Xn c, (0, 0, · · · , 0, x∗ , 0 , · · · ) ∈ / Pn (Dn ), n

Dn < c, Pn (Dn ) ≤ Dn < c, ∀n, ∃x∗ n, ∗ ∗ ∗ (x1 , x2 , · · · , xn , · · ·) ∈ / Dn , (x1 , x2 , · · · , x∗ / n , · · ·) ∈ Dn0 = c, An0 = c.
(ii) Ex 5: {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 ≤ 1} [0, 1) [0, 1]
r ∈[0,1]
f (x) = x2 , X = [−1, 1], Y = [0, 1], A = [0, 1]. {(x, y ) : x2 + y 2 ≤ 1}
n=1
An ∼ [0, 1]∞ .
An
E
ቤተ መጻሕፍቲ ባይዱ

ww ¿À ' · T S Á¿À C õ d WÃX ÃÄ T WX à « Å Æ ÇÈ ' WXÉÊ UV Å« ! "#ËÌ"Í$%')({|12 t vw # 8 u#2v
n→∞
F
lim En = [a, b] \ E .
HGI T P
n→∞
lim fn (x) = χ[a,b]\E (x) =
Ex 4: f : X → Y, A ⊂ X, B ⊂ Y , (i)f −1 (Y \ B ) = f −1 (Y ) \ f −1 (B ); (ii)f (X \ A) = f (X ) \ f (A). (i)

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实变函数论课后答案第五章1第无章第一节习题1.试就[0,1]上的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆: ()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E 上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])10010c m Q m Q =⋅⋂+⋅⋂=⋅+⋅= 回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰2.证明定理1(iii)中的第一式证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()EEEf x dx f x dxg x dx --≥+⎰⎰⎰下面证明之: 0ε∀>,有下积分的定义,有E 的两个划分1D 和2D 使 1()()2D Es f f x dx ε->-⎰,2()()2D Es g g x dx ε->-⎰此处1()D s f ,2()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时12(()())()DD D D D f x g x dx sf g s f s g s f s g -+≥+≥+≥+⎰()()()()22EE EEf x dxg x dx f x dx g x dx εεε----≥-+-=+-⎰⎰⎰⎰(用到下确界的性质和P125引理1)由ε的任意性,令0ε→,而得(()())()()EEf xg x dx f x dx g x dx ---+≥+⎰⎰⎰3.补作定理5中()Ef x dx =+∞⎰的情形的详细证明证明:令{}|||||m E E x x m =≤,当()Ef x dx =+∞⎰时,()lim ()mm EE f x dx f x dx →∞+∞==⎰⎰0M ∀>,存在00()m m M N =∈,当0m m ≥时,2()lim [()]mmk k E E M f x dx f x dx →∞<=⎰⎰则存在k 使[()][lim ()]lim[()]mmmk n k n k n n E E E M f x dx f x dx f x dx →∞→∞<==⎰⎰⎰lim [()]lim()lim ()mmn k n n n n n E E Ef x dx f x dx f x dx →∞→∞→∞=≤≤⎰⎰⎰(利用[()]mn k E f x dx ⎰有限时的结论,Th5中已详证)由M 的任意性知lim ()()n n EEf x dx f x dx →∞=+∞=⎰⎰ 证毕.4.证明:若()f x 是E 上的非负函数, ()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnnEE x f x E E f x dx f x dx f x dx n dx nmE>=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0n m n m mE x f x mE mF +∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|()0]E x f x E E x f x ==->,知()0.f x a e=于E .证毕.5.证明:当mE <+∞时,E 上的非负函数的积分()Ef x dx <+∞⎰的充要条件是02[|()2]k k k mE x f x +∞=≥<+∞∑证明:令[|()2],0,1k k E E x f x k =≥= ,1[|2()2]n n n E E x f x +=≤<,0,1,2,k =[|()1],n i j n E x f x E E E +∞=≥=⋂=∅ 当i j ≠,f 非负,故从mE <+∞知[|()1]0()E x f x f x dx <≤<+∞⎰,而[|0()1][|()1]()()()EE x f x E x f x f x dx f x dx f x dx ≤<≥=<⎰⎰⎰[|()1]()()EE x f x f x dx f x dx ≥<+∞⇔<+∞⎰⎰注意由单调收敛定理和()0f x ≥可测知lim [|()1]lim()()()()()lim ()()n n ni i n i i ni n n i n E E E x f x EE E E f x dx f x dx f x dx x f x dx x f x dxχχ+∞→∞==→∞==→∞≥====⎰⎰⎰⎰⎰00lim ()()lim()lim ()()LeviThn niiii ii n n n n E i i E E E E x f x dx f x dx f x dx f x dxχ==+∞→∞→∞→∞======∑∑⎰⎰⎰⎰110022222222[|()2]ii n nnn n n n n i n n n n E dx mE mE mF E x f x +∞+∞+∞+∞+∞++=====≤==≤=≥∑∑∑∑∑⎰所以,若02[|()2]k k k mE x f x +∞=≥<+∞∑,则有[;()1]()E x f x f x dx ≥<+∞⎰则()Ef x dx <+∞⎰,故充分性成立.为证必要性,注意,k i k i i ki kF E mF mE +∞+∞====∑ ,令1{n k k n k nϕ≥=<若若,则0002[|()2]2222nnnn nn nn nkkkkkn n n k nn k nn k mE x f x mF mE mE mEϕϕ+∞+∞+∞+∞+∞+∞+∞+∞========≥====∑∑∑∑∑∑∑∑100000002122221k knnnnkk k k kk n k n k n k mE mE mE mE ϕ++∞+∞+∞+∞+∞+∞=======-====-∑∑∑∑∑∑∑11(21)222()k k kk k k k k k k k k k mE mE mE mE m E +∞+∞+∞+∞+∞++======-=-=-∑∑∑∑ 0022[[;()1]]2()kk k k k E mE m E x f x f x dx +∞+∞===-≥≤∑∑⎰[|()1]2()2()2()kk E x f x EE f x dx f x dx f x dx +∞=≥==≤<+∞⎰⎰⎰(,[|()1]mE mE x f x <+∞≥<+∞)证毕.注意以上用到正项二重级数的二重求和的可交换性,这可看成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定理的应用.0000nmnm m n n m aa +∞+∞+∞+∞=====∑∑∑∑0000lim lim ()lim ()kkknmnm nm nmk k k m n m n n n aa a d m ad m μμ+∞+∞+∞+∞+∞→∞→∞→∞=========∑∑∑∑∑∑⎰⎰00000lim ()()knm nm nm k n n n m a d m a d m a μμ+∞+∞+∞+∞+∞→∞=======∑∑∑∑⎰⎰μ是1R 上的一个测度(离散的),[[]]1,()#[]m N m A A N μμ∀∈==⋂,N 为自然数集,nm a 看成(){nxn a x Na x x N∈=∉当当 ,也可这样设1111,nm nm n m m n a a a b +∞+∞+∞+∞======∑∑∑∑,则,k p N ∀∈111111pppkknmnm nm n m m n m n aa ab +∞=======≤≤∑∑∑∑∑∑,令p →∞,11knm n m a b +∞==≤∑∑,令00,nm n m k a a b +∞+∞==→∞=≤∑∑,同理,b a ≤,则a b =,0000nm nm n m m n a a +∞+∞+∞+∞=====∑∑∑∑,[1,),1(){0i n a i i i nx x n ϕ-≤≤=≥为简单函数,()lim ()n n f x x ϕ→∞=,则()f x 可测6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()]mE x f x a mE x g x a ≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dxg x dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则[|()][|()][|()]E x f x a E x f x b E x a f x b ≥-≥=≤<[|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()]mE x g x a mE x g x b mE x a g x b =≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m m k k E E x f x +=≤<及 ,2[|()]m m m E E x f x m =≥则2,0mm m k k E E == ,,m k E 互不相交同样 ,,21[|()],[|()]22m m km m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m k k E E == , ,m kE 互不相交 令 ~,,2200()(),()()22mmm k m km m m E m m mE k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()m x ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m k m m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<= 故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知 ()lim ()lim ()()m m n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰7.设mE <+∞,()f x 是E 上的有界非负可测函数,0()f x M ≤<,()()()010,1,2,nn n n k g g g M n =<<<== 使{}()(1)max |1,2,,0()n n i i n n y y i k l n --==→→∞ ,()()()()1[|()],,1,2,,;1,2,3,n n n n n i i i i i n E E x y f x y E i k n ξ-=≤<∈== 证明: ()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰证明:显然,由f 可测于E 知,()n i E 是可测集(1,n i k n N ∀≤≤∈)且()1nk n i i E E == ,又在()n i E 上()()1()n n i i y f x y -≤<表明()()()()1inf ()sup ()n n i i n n i i x E x E y f x f x y -∈∈≤≤≤ 记()()1sup ()nnn ik n D ix E i S f x mE ∈==∑ (大和数),()()1inf ()nn ni k n D i x E i s f x mE ∈==∑ (小和数)则从()f x 有界可测知()f x 在E 上可积(P129Th2),故()()()n n D D E EEs f x dx f x dx f x dx S ---∞<≤==≤<+∞⎰⎰⎰,又从()n n i i E ξ∈知()()()11()sup ()nnn n n ik k nn n D iii D x E i i s f mEf x mE S ξ∈==-∞<≤≤=<+∞∑∑()1()()nn n n nk n n D D i i D D i Es S f x dx f mE S s ξ=-≤-≤-∑⎰,则()(1111|()()|nnnn n k k kn n n nnn niiD D i i i n in i i i Ef x dx f mES s y ymE l mE l mE ξ→∞-===-≤-≤-≤=→∑∑∑⎰(从0n l →知)故()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则02[|()2]k k k mE x f x +∞=≥<+∞∑ ,故lim 2[|()2]0k k n mE x f x →∞≥= (1)反证设l i m n n n m e →∞⋅>,则00,,k k N n ε∃>∀∈∃使0kk n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim0n n n me →∞⋅= 9.设()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,对任意的0r >,令[|||||]()()E x x r F r f x dx <=⎰证明:()F r 是(0,)+∞上的连续函数证明:[|||||](0,)E x x r E B r <=⋂显然为可测集;又()f x 在E 上非负可测,故0r ∀>,f 在[|||||]r E E x x r < 上也可测,且0()()rE Ef x dx f x dx ≤≤<+∞⎰⎰,故()F r 是(0,)+∞上有定义的函数1)先设0()f x M ≤≤<+∞于E 上,此时00,0r r ∀>∀>有0000[|||||]0()()()E x r x r r F r r F r f x d ≤<+≤+-=⎰0000[;||||][(0,)\(0,)]MmE x r x r r Mm B r r B r ≤≤<+≤+0000(((0,))\(0,))(()()]0n n n n M m B r r mB r M w r r w r =+=+-→ (当0r →)这里(0,)nn mB r w r =最好是用(0,)(0,)()1n n B r mB r R dx w r ==⎰来看.(下一节!)也可这样看00((0,))(0,)0m B r r mB r +-→,0R r ∀>>{}12(0,)(,,,);n R n i B R I x x x x R R x R ⊂==∈-<< ,而12(,,,);(0,)n r n i nr r Ix x x x R x B r n n ⎧⎫==∈-<<⊂⎨⎬⎩⎭ ,故(0,)\(0,)\R r nB R B r I I⊂((0,)\(0,))(\)()()(2)(2)22()n n n n n n R r R r nnr rm B R B r m I I m I m I R R n n≤=-=-=-得不出结果!则000()()0F r r F r ≤+-→ 当0r <时0000|()()|()()(()()]0n n n n F r r F r F r F r r M w r w r r +-=-+≤-+→则()F r 是连续的对一般可测函数()f x ,令(),()(),()m f x f x Mf x m f x M≤⎧=⎨>⎩ min((),)f x m =,则0N f ≤可测于E ,且()()N f x f x →于E ,N f 单调不减,故由Levi 定理知lim ()m m EEf dx f x dx →∞=<+∞⎰⎰0,()N εε∀>∃,使0()()[()()]6N N EEEf x dx f x dx f x f x dx ε≤-=-<⎰⎰⎰对上述固定的()N N ε=,[|||||]()()N N E x x r F r f x dx <=⎰是连续于(0,)+∞上的则00(,,())(0,),r N r εεδδ∈+∞∃=0(,)0r εδ=>,当0||r r δ-<时0|()()|3N N F r F r ε-<则当0||r r δ-<时1230000|()()||()()||()()||()()|N N N N N N NF r F r F r F r F r F r F r F r I I I -≤-+-+-=++ 1[|||||][|||||][|||||]|()()||()()||(()())|N N N N E x x r E x x r E x x r I F r F r f x dx f x dx f x f x dx <<<-=-=-⎰⎰⎰[|||||]|(()())||(()())|3N N E x x r Ef x f x dx f x f x dx ε<≤-≤-<⎰⎰20|()()|3NN N I F r F r ε-< ,0300[|||||]|()()||(()())|(()())3N N N N E x x r EI F r F r f x f x dx f x f x dx ε<-=-≤-<⎰⎰则0|()()|F r F r ε-≤从而()F x 在(0,)+∞上连续得证.10.证明:若非负可测函数()f x 在E 上的积分()Ef x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1E E =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n n n n n m B r B r w r r mm→∞→∞=+=+-= 若[|||||]m E E x x m =≤,0[|||||]m E E x x m =<,则0(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故011lim ()lim ()lim()()m m mm m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c > 另一方面,0lim ()0r F r +→=(当0f M <<有界时,010()()()((0,))0m r E F r f x dx Mm E Mm B r ≤=≤≤→⎰)一般,0ε∀>,()N ε∃,使||3N E Ef dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→=由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.11.设mE <+∞,12,,,m E E E 是E 的m 个可测子集,正整数k m ≤,证明:若E 中每一点至少属于k 个i E ,则有i ,使i kmE mE m≥ 证明:反证,设(1,2,,)i i m ∀= 有i kmE mE m<,则由于x E ∀∈,x 至少属于k 个i E ,故1()imE i x k χ=≥∑ (x E ∀∈),而i E E ⊂,故11()()im mi E i i E Em E E x dx k dx kmE χ==⋂=≥=∑∑⎰⎰111()m m mi i i i i kkmE m E E mE mE kmE m===≤⋂=<=∑∑∑得矛盾 所以i ∃使i kmE mE m≥.(徐森林书P242)12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1n n mE mF mF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n n n n n n mE mF mF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+故01(())2n k n n m E F F δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+ 所以111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立13.设mE <+∞,()f x 是E 上的有界非负可测函数,证明有[0,]mE 上的非负单调不增函数()g y 使对任意常数a 都有[|()][|0,()]mE x f x a mE y y mE g y a ≥=≤≤≥,进而证明[0,]()()EmE f x dx g y dy =⎰⎰证明:1s R ∀∈,令()[|()|]f s mx f x s μ=>且{}*()inf 0|()f f t s s t μ=>≤,显然*()f t 是[0,)+∞上的非负单调不增函数,因为12t t ∀>,{}{}20|()0|()ff s s t s s t μμ>≤⊂>≤,从而**21()()f t f t ≥注意{}|()()f f s s ημημ⊂≤,从而*(())ff s s μ≤ (1)又由Levi 定理知()f s μ是右连续的121,,n n n n s s s s s s s s +∀→>≥≥≥≥≥ ,则{}{}1||()|||()|n n x f x s x f x s +>⊂>11[||()|][||()|]lim ()lim [||()|]lim ()lim ()n n f n n x f x s x f x s n n n n R R s m x f x s y dy y dy μχχ>>→∞→∞→∞→∞=>==⎰⎰1[||()|]()[||()|]()x f x s f R y dy m x f x s s χμ>==>=⎰,0,()n f n t s s tμ∀∃>≤,*()n s f t →,故从()f s μ右连续知*(())lim ()f f n n f t s t μμ→∞=≤ 即*(())f f t tμ≤(2)令**()[|()]f s m t f t s μ=>,则从*f 非增,知{}**()sup 0|()f s t f t s μ=>>(3)事实上*0()f t s μ∀≤<,则***,(),(),()f t t t s f t s f t s μ'''∃<<>>,则{}***[0,][0,()]0;()[0,()]f f t s t f t s s μμ⊂⊂>>⊂,故{}**0|()[0,()]f t f t s s μ>>=故{}**sup 0|()()f t f t s s μ>>=从(1)*(())f f s s μ≤知*()()f f s s μμ≥,从(3)若*()f t s μ>,则:*()f t s≤由(2)*()(())f f s f t t μμ≤≤ (注意f μ单调不增!) 由*()f t s μ>之任意性知*()()f f s s μμ≤,所以*()()f f s s μμ=即*[|()][|()][|()]mE x f x s m x f x s m t f t s >=>=>1a R ∀∈ 111[|()][[|()]]lim [[|()]]n n mE x f x a m E x f x a m E x f x a n n +∞→∞=≥=>-=>-***111lim [;()][[;()]][,()]n n m t f t a m t f t a m t f t a n n +∞→∞==>-=>-=≥ 注意:t mE >时*()0f t ≡,故当0a >时*[|()][0,]t f t a mE ≥⊂*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥当0a ≤时,[|()]m x f x a mE ≥=*[|0,()][|0]m x t mE f t a m t t mE mE ≤≤≥=≤≤=.所以有*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥. 令*()()g t f t =即证明了本题的第一部分.记[0,],mE I mI mE ==则且[|()][|()]mE x f x a mI y g y a ≥=≥[|()][|()][|()][|()]m x f x a mE m x f x a mI mI y g y a mI y g y a <=-≥=-≥=<故b a ∀<,有[|()][|()][|()][|()]mE x f x a mE x f x b mE x b f x a mI y b g y a <-<=≤<=≤<14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()nn fxf x →∞= 并且有0n 使0()n Ef x dx <+∞⎰,举例说明,当()n Ef x dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得lim ()lim ()n n n n E Es x dx s x dx →∞→∞=⎰⎰ ,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令n E R ⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n Ef x dx mE n==+∞⎰, ()0lim ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰15.设()f x 是可测集E 上的非负可测函数,如果对任意m N ∀∈,都有[()]()mEEf x dx f x dx =<+∞⎰⎰ 则()f x 几乎处处等于一可测集合的示性函数.证明:令0[|()0]E E x f x ==,1[|()1]E E x f x ==,[|()1]E E x f x ∞=>,[|0()1]E E x f x =<<,则 01E E E E E ∞=⋃⋃⋃ 由于()f x 非负可测,故[()]m f x (m N ∀∈)也非负可测,故由Fatou 引理知lim[()]lim[()]lim [()]()mm m m m m E E EEmE f x dx f x dx f x dx f x dx ∞∞→∞→∞→∞∞⋅=≤≤=<+∞⎰⎰⎰⎰故0mE ∞=,从而有11[()][()]()()m m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰而在1E 上()1f x =,故 11()[()]()()m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰由0f ≥,且()Ef x dx <+∞⎰知1()E f x dx <+∞⎰,故 [()]()m EEf x dx f x dx =⎰⎰,即 (()[()])0m Ef x f x dx -=⎰,而()[()]0m f x f x ->于 E 上(m ∀),由此可知 0mE=(本节第4题) (Lemma :若0g >可测于可测集E 上,()0Eg x dx =⎰,则0mE =证明:令11[|()],[|()1]1k F E x g x F E x g x k k ∞=≤<=≥+,则 1k k E F F +∞∞=⎛⎫=⋃ ⎪⎝⎭, k N∀∈1()()0,01k k k F EmF g x dx g x dx mF k ≤≤==+⎰⎰ 0()()0,0F EmF g x dx g x dx mF∞∞∞≤≤≤==⎰⎰则10k k mE mF mF +∞∞==+=∑)由此可知,111()0.cE f x a e E ⎧=⎨⎩,于上,于上 所以对几乎处处x E ∈有1111()()0E x E f x x x E χ∈⎧==⎨∉⎩, ,16.证明:如果()f x 是E 上的可测函数,则对于任意常数0a >都有 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ [|()]exp ()a EmE x f x a e f x dx -≥≤⎰ 证明: [||()|]|()||()|[||()|]EE x f x a f x dx f x dx amE x f x a ≥≥≥≥⎰⎰则 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ 又若x E ∈,则()()f x a f x a e e ≥⇔≥,故[|()][|exp ()]a E x f x a E x f x e ≥=≥,从而由前一部分结果知[|()][|exp ()][||exp ()|]a a mE x f x a mE x f x e mE x f x e ≥=≥=≥ |exp ()|exp ()a a EEe f x dx e f x dx --≤=⎰⎰17.证明;如果()f x 是1R 上的非负可测函数,则对任意实数,,,,,0a b c t a b c <>,都有[,][,]1()()a b ca t cb t f cx t dx f x dx c +++=⎰⎰ 证明:1)若()()E f x x χ=,(E 为1R 上任一可测集),则结论成立,这里1()0E x Ex x Eχ∈⎧=⎨∉⎩, ,此时[,][,]111()([,])ca t cb t ca t cb t f x dx dx m E ca t cb t c c c ++++==⋂++⎰⎰ 而[,][,][,][|]()()([,][|])E a b a b a b x cx t E f cx t dx cx t dx dx m a b x cx t E χ⋂+∈+=+==⋂+∈⎰⎰⎰([,][])E tm a b c-=⋂[][]1,,c E t E t m a b m c a b c c c c ⎡⎤⎡⎤⎛-⎫⎛-⎫⎛⎫⎛⎫==⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦[][][][]11,,m ca cb E t m ca cb E t t c c ⎡⎤⎡⎤=-=-+⎣⎦⎣⎦ []()[],11,ca t cb t m ca t cb t E f x dx c c ++⎡⎤=++=⎣⎦⎰ 2)由内积的线性性质,当()f x 为简单函数时,结论也成立。

相关文档
最新文档