数列前n项和(分组求和法)讲解学习
求数列前n项和的七种方法

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
求解数列前n_项和问题常用的技巧

解题宝典求数列的前n 项和问题具有较强的综合性,此类问题侧重于考查等差数列和等比数列的定义、通项公式、性质、前n 项和公式.求数列前n 项和的技巧很多,如裂项相消、错位相减、分组求和、并项求和等.下面结合实例谈一谈下列三种技巧.一、裂项相消运用裂项相消法求数列的前n 项和,需先将数列中的各项拆分为两项之差的形式,如1n (n +k )=1k æèöø1n -1n +k 、14n 2+1=12æèöø12n -1-12n +1、1n +n +1=n +1-n ;然后将各项相加,即可通过正负相消,顺利求得数列的前n 项和.例1.设数列{}a n ,其前n 项和S n =-3n 2,{}b n 为单调递增的等比数列,b 1b 2b 3=512,a 1+b 1=a 3+b 3.(1)求数列{}a n ,{}b n 的通项公式;(2)若c n =b n()b n -2()b n -1,求数列{}c n 的前n 项和T n .解:(1)a n =-6n +3,b n =b 2∙2n -2=2n +1;(2)由(1)可得:c n =2n +1()2n +1-2()2n +1-1=2n()2n -1()2n +1-1=1()2n -1-1()2n +1-1,所以T n =c 1+⋯+c n =æèçöø÷121-1-122-1+æèç122-1-öø÷123-1+⋯+æèçöø÷12n-1-12n +1-1=12-1-12n +1-1=1-12n +1-1.仔细观察,可发现{}c n 的通项公式的分母()2n-1()2n +1-1为两项的乘积,其差为2n +1-1-()2n-1=2n,于是将{}c n 的通项公式裂项得2n()2n -1()2n +1-1=1()2n -1-1()2n +1-1,这样数列中大部分的项可以互相抵消.运用裂项相消法就能求得数列前n 项的和.二、错位相减错位相减法是求数列前n 项和常用的方法之一.该方法主要运用于求形如{}a n ∙b n 的数列的前n 项和,其中{}a n 为等差数列,{}b n 为等比数列.先将数列{}a n ∙b n 的每一项乘以数列{}b n 的公比;然后将其与数列{}a n ∙b n 的前n 项和错位相减,即可将问题转化为等比数列求和问题.例2.数列{}a n 的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{}a n 的通项公式;(2)设数列{}b n 满足3b n +(n -4)a n =0(n ∈N *),记{}b n 的前n 项和为T n ,求T n .解:(1)a n =-3×æèöø34n;(过程略)(2)由3b n +(n -4)a n =0得:b n =-n -43a n =(n -4)×æèöø34n,即b n +1=(n -3)×æèöø34n +1,设c n =(An +B )×æèöø34n,则b n +1=c n +1-c n =[A (n +1)+B ]×æèöø34n +1-(An +B )×æèöø34n=[-An 4+14(3A -B )]×æèöø34n=(n -3)×æèöø34n +1,可得ìíîïï-A 4=34,3A -B 4=-94,解得{A =-3,B =0,所以c n =-3n ×æèöø34n,则T n =-()3×1-1×34-()3×2-1×æèöø342-(3×3-1)n 41解题宝典×æèöø343-⋯-()3×n -4×æèöø34n -1-3n ×æèöø34n34T n=-()3×1-1×æèöø342-()3×2-1×æèöø343-⋯-()3×n -4×æèöø34n-3n ×æèöø34n +1,将上述两式相减可得14T n =-2×34-2×æèöø342-2×æèöø343-⋯-2×æèöø34n -3n ×æèöø34n +1=-234×éëêùûú1-æèöø34n 1-34-3n ×æèöø34n +1,得T n =-4n ×æèöø34n +1.仔细观察{}c n 的通项公式,可发现该式为等差数列{}-3n 与等比数列ìíîüýþæèöø34n 的对应项的乘积,可运用错位相减法来求和.将数列的前n 项和式左右同时乘以公比34,即可得到等比数列-2×34,-2×æèöø342,-2×æèöø343,⋯,-2×æèöø34n,利用等比数列的前n 项和公式进行求解即可解题.例3.已知数列{}a n 的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{}b n 的首项b 1=1,点P (b n ,b n +1)满足2+b n =b n +1.(1)求数列{}a n 、{}b n 的通项公式;(2)记T n =a 1b 1+a 2b 2+∙∙∙+a n b n ,求T n .解:(1)a n =2n,b n =2n -1;(过程略)(2)T n =a 1b 1+a 2b 2+∙∙∙+a n b n=1×2+3×22+5×23+∙∙∙+(2n -3)2n -1+(2n -1)2n ,2T n =1×22+3×23+5×24+∙∙∙+(2n -3)2n +(2n -1)2n +1,将两式相减得-T n =1×2+2(22+23+∙∙∙+2n)-(2n -1)2n +1=2+2∙22+2n ∙21-2-(2n -1)2n +1=(3-2n )∙2n +1-6.故T n =(2n -3)∙2n +1+6.由问题(1)可知数列{}a n 为等比数列,数列{}b n 为等差数列,则{}a n b n 的各项由等差、等比数列的对应项的积构成,于是采用错位相减法,首先列出T n 的表达式;然后列出2T n 的表达式;再将两式作差,通过错位相减求得-T n .三、分组求和若问题中出现形如a n =b n ±c n 的数列,其中{}b n 、{}c n 为等差、等比或常数列,便可以采用分组求和法,将数列中的各项进行拆分,再重新组合成几组,使得每一组为等差、等比或常数列,即可根据等差、等比数列的前n 项和公式进行求和.例4.已知数列{}a n 的前n 项和为S n ,a 1=1,a 2=2,且a n +2=3S n -3S n +1+3,n ∈N *.(1)求证:a n +2=3a n ;(2)求S n .解:(1)过程略;(2)由(1)可知,a n ≠0,所以a n +2a n=3,则数列{}a 2n -1是首项a 1=1,公比为3的等比数列.则a 2n -1=3n -1,a 2n =2×3n -1,所以S 2n =a 1+a 2+∙∙∙+a 2n=()a 1+a 3+∙∙∙+a 2n -1+()a 2+a 4+∙∙∙+a 2n =()1+3+∙∙∙+3n -1+2()1+3+∙∙∙+3n -1=3×()1+3+∙∙∙+3n -1=3×()3n -12.所以S2n -1=S 2n -a 2n =3×()3n -12-2×3n -1=32()5×3n -2-1.综上可得,S n =ìíîïïïï32æèçöø÷5×3n -32-1,n 为奇数,32æèçöø÷3n2-1,n 为偶数.求出a 2n -1=3n -1,a 2n =2×3n -1后,可以发现在n 取奇数、偶数时,对应的S n 不同,需采用分组求和法,将数列中的项分成两组,一组由奇数项构成,一组由偶数项构成,分别根据等比数列的前n 项公式进行求和,得S 2n 、S 2n -1,最后用分段式表示S n .裂项相消、错位相减、分组求和的适用情形以及用法均不相同,同学们在解题时要重点研究数列的通项公式,对其进行合理的变形,可将其拆分、裂项、乘以公比等,以便将复杂的数列求和问题转化为简单的计算问题,这样便能化难为易、化繁为简.(作者单位:安徽省泗县第二中学)42。
高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
例谈求数列前n项和的三种思路

思路探寻求数列的前n 项和问题比较常见,通常需先根据已有的递推关系式求得数列的通项公式,再观察数列的特点和规律,寻找适合的求和方法,比如:公式法、倒序相加法、错位相减法、分组求和法等来求得数列的前n 项和.若选用的方法恰当,就能起到事半功倍的效果.下面结合实例谈一谈求数列前n 项和的三种常用思路.一、借助公式公式法是求数列前n 项和的重要方法.运用公式法求数列的前n 项和,主要是根据等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n +1)2d 、等比数列的前n 项和公式S n =ìíîïïna 1,q =1,a 1(1-q n)1-q,q ≠1.在解题时,需仔细观察数列的特征,根据等差、等比数列的定义判断数列的类型,再选用相应的求和公式进行求和.例1.在等差数列{a n }中,S 10=100,S 100=10,求S 110.解:∵该数列为{a n }为等差数列,∴S 10,S 20-S 10,S 30-S 20,⋯,S 110-S 100也为等差数列,设其公差为d ,∴S 10+(S 20-S 10)+(S 30-S 20)+⋯+(S 100-S 90)=S 100,由等差数列的前n 项和公式S n =na 1+n (n +1)2d可得S 100=10S 10+10×92×d =10,又S 10=100,将其代入上式得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=S 100+(-120)=-110.由题意可知这个数列是等差数列,利用等差数列的性质以及等差数列的前n 项和公式S n =na 1+n (n +1)2d 求解,即可求出此数列的前n 项和.例2.已知log 3x =-1log 2x,求x +x 2+x 3+⋯+x n 的前n项和.解:由log 3x =-1log 2x 可得x =12,由等比数列的前n 项和公式S n =a 1(1-q n )1-q可得,x +x 2+x 3+⋯+x n=x (1-x n )1-x =12(1-12n )1-12=1-12n.观察该数列,可发现数列的后一项与前一项之比为x ,由等比数列的定义可知该数列为等比数列,利用等比数列的前n 项和公式S n =a 1(1-q n )1-q,即可求出此数列前n 项和.二、分组求和有些数列可被拆开或重组成几个等差、等比或者常见数列,此时可采用分组求和法,将各项重新组合,再分别运用等差、等比数列的前n 项和公式进行求和,最后综合所得结果,即可得出原数列的前n 项和.例3.求数列{}n (n +1)(2n +1)的前n 项和.解:设a k =k (k +1)(2k +1)=2k 3+3k 2+k ,可得S n =∑k =1nk (k +1)(2k +1)=∑k =1n(2k 3+3k 2+k )=2∑k =1nk 3+3∑k =1nk 2+∑k =1nk=2(13+23+⋯+n 3)+3(12+22+⋯+n 2)+(1+2+⋯+n )=n 2(n +1)22+n (n +1)(2n +1)2+n (n +1)2=n (n +1)2(n +2)2.仔细研究这个数列可发现,它由三个数列{}2n 3、{}3n 2、{}n 的和构成,于是将数列的每一项拆开,再重新组合S n =2∑k =1nk 3+3∑k =1nk 2+∑k =1nk ,最后分组求和,即可得n 黄增勇胡国生46思路探寻出数列前n 项和.对于一些常见的数列,同学们要熟记其和,如∑k =1nk =1+2+3+⋯+n =12n (n +1),∑k =1nk 2=12+22+32+⋯+n 2=13n (n +12)(n +1),∑k =1nk 3=13+23+33+⋯+n 3=éëêùûúæèçöø÷n (n +1)22,∑k =1n (2k -1)=1+2+3+⋯+(2n +1)=n 2.例4.求数列113,216,319,⋯,(n +13n )的前n 项和.解:S n =113+216+319+⋯+(n +13n )=(1+2+3+⋯+n )+(13+132+133+⋯+13n )=12n (n +1)+1-13n .该数列由两个数列{}n 、{}13n 构成,于是将其重新组合成等差数列{}n 和等比数列{}13n ,再分别运用等差、等比数列的前n 项和公式,求得每个数列的和,即可得到数列的前n 项和.三、裂项相消运用裂项相消法求和,关键有两步:第一步,裂项.即将数列的通项公式裂为两项之差的形式;第二步,消项.通过正负相消,消除绝对值相等,符号相反的项.在裂项的过程中,有的时候需要调整通项公式前面的系数,使拆得的两项的结构保持一致.常见的裂项方式有sin 1cos n cos(n +1)=tan(n +1)-tan n ,1n (n +1)=1n -1n +1,1(2n +1)(2n -1)=12(12n -1-12n +1)等.例5.在数列{}a n 中.a n =1n +1+1n +2+⋯+nn +1,若b n =2a n ∙a n +1,求数列{}b n 的前n 项和.解:因为a n =1n +1+1n +2+⋯+n n +1=n2,则b n =2a n ∙a n +1=2n 2∙n +12=8(1n -1n +1)所以S n =8éëêæèöø1-12+æèöø12-13+æèöø13-14+⋯+ùûúæèöø1n -1n +1=æèöø1-1n +1=8n n +1.根据题目中的已知条件可得数列{}b n 的通项公式为b n =8n ()n +1,于是将其裂项为8(1n -1n +1),即可采用裂项相消法求得数列{}b n 的前n 项的和.例6.求和:S n =15+135+163+199.解:S n =15+145+1117+1221=11×5+15×9+19×13+113×17=14(1-15)+14(15-19)+14(19-113)+14(113-117)=14[(1-15)+(15-19)+(19-113)+(113-117)]=14(1-117)=417.仔细观察可发现,数列的通项公式为a n =1()4n -3(4n +1)=14æèöø14n -3-14n +1,通过裂项,便可将数列中的前后项转化为绝对值相等,符号相反的式子,这样采用裂项相消法,通过正负相消即可求得数列的和.通过对上述例题的分析,可以看出,上述三种思路各有特色,且其适用范围各不相同.同学们在求和时,只要善于发现数列中各项的规律,改变原数列的形式、结构,进行合理的裂项、分组,灵活运用等差、等比数列的前n 项和公式,那么求数列前n 项和问题就可以迎刃而解.本文系淮安市教育科学“十四五”规划课题《新高考背景下高中数学试题编制的研究》(课题编号2021GHKT215)研究成果.(作者单位:黄增勇,江苏省淮安市洪泽湖高级中学;胡国生,江苏省淮安市洪泽区教育体育局)47。
专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题【高考真题】 2022年没考查 【方法总结】 分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.(1)若a n =b n ±c n ,且{b n },{c n }为可求和的数列(等差或等比数列),可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是可求和的数列(等比数列或等差数列),可采用分组求和法求和.【题型突破】1.已知数列{a n }为等差数列,其中a 5=3a 2,a 2+a 3=8. (1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.1.解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *.(2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3,从而等比数列{c n }的公比为3,因此c n =1×3n -1=3n -1. 另一方面,c n =a bn =2b n -1,所以2b n -1=3n -1,因此b n =3n -1+12.记{b n }的前n 项和为S n ,则S n =(1+31+…+3n -1)+n 2=3n +2n -14.2.已知递增等比数列{a n }的前三项之积为8,且这三项分别加上1,2,2后又成等差数列. (1)求等比数列{a n }的通项公式;(2)记b n =a n +2n ,求数列{b n }的前n 项和T n .2.解析 (1)设等比数列前三项分别为a 1,a 2,a 3,公比为q ,则a 1+1,a 2+2,a 3+2成等差数列.依题意得⎩⎪⎨⎪⎧a 1a 2a 3=8,2(a 2+2)=(a 1+1)+(a 3+2),即⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=8,2(a 1q +2)=a 1+1+a 1·q 2+2,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=4,q =12(舍去).∴数列{a n }的通项公式为a n =2n -1.(2)由b n =a n +2n ,得b n =2n -1+2n ,∴T n =b 1+b 2+…+b n =(20+21+22+…+2n -1)+2×(1+2+3+…+n )=20(1-2n )1-2+2×n (1+n )2=2n +n 2+n -1.3.已知数列{a n }是等差数列,S n 是其前n 项和,且a 1=2,S 3=12. (1)求数列{a n }的通项公式;(2)设b n =a n +4n ,求数列{b n }的前n 项和T n .3.解析 (1)∵数列{a n }是等差数列,S n 是其前n 项和,a 1=2,S 3=12, ∴S 3=3×2+3×22d =12,解得d =2,∴a n =2+(n -1)×2=2n .(2)∵b n =a n +4n =2n +4n , ∴T n=2(1+2+3+…+n )+(4+42+43+…+4n )=2×n (n +1)2+4(1-4n )1-4=n 2+n +4n +13-43. 4.已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4=32⎝⎛⎭⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .4.解析 (1)设等比数列{a n }的公比为q (q >0),则a n =a 1q n -1,且a n >0,由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3=32⎝⎛⎭⎫1a 1q 2+1a 1q 3,化简得⎩⎪⎨⎪⎧ a 21q (q +1)=2(q +1),a 21q 5(q +1)=32(q +1),即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32,又∵a 1>0,q >0,∴a 1=1,q =2,∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知b n =a 2n +log 2a n=4n -1+n -1, ∴T n=(1+4+42+…+4n -1)+(0+1+2+3+…+n -1)=4n -14-1+n (n -1)2=4n -13+n (n -1)2.5.已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和T 2n .5.解析 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列. ∴⎩⎪⎨⎪⎧a 6=a 1+5d =6,a 1+d 2=a 1a 1+3d ,d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 6.由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4. (1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.6.解析 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3, 所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2) =2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.7.若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .7.解析 (1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.8.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .8.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).9.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .9.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).10.在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2n b(n ∈N *).(1)求数列{b n }的通项公式;(2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n .10.解析 (1)设等比数列{a n }的公比为q ,且q >0,由a n >0,a 1a 3=4,得a 2=2,又a 3是a 2-2与a 4的等差中项,故2a 3=a 2-2+a 4,∴2·2q =2-2+2q 2, ∴q =2或q =0(舍).∴a n =a 2q n -2=2n -1, ∴a n +1=2n =2n b,∴b n =n (n ∈N *).(2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n +12⎝⎛⎭⎫12n -1-12n +1,∴数列{}c n 的前n 项和S n =2+22+…+2n +12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2(1-2n )1-2+12⎝⎛⎭⎫1-12n +1=2n +1-2+n 2n +1(n ∈N *). 11.(2019·天津)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).11.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=⎣⎡⎦⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ).记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).12.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .12.解析 (1)由a 1=-3S 1+4=-3a 1+4,得a 1=1,由a n =-3S n +4,知a n +1=-3S n +1+4,两式相减并化简得a n +1=14a n ,∴数列{a n }是首项为1,公比为14的等比数列,∴a n =⎝⎛⎭⎫14n -1,b n =-log 2a n +1=-log 2⎝⎛⎭⎫14n=2n . (2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n2n +1=1-n +22n +1.∴H n =2-n +22n .又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n +nn +1.13.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .13.解析 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n , 所以a n =11221,21 2n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩,为奇数,为偶数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n =21233, 2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩,为偶数,为奇数.14.(2021·新高考Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.14.解析 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3,所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *.(2)因为a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n+2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1,即a 2k =a 2k -1+1,①,a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③ 所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列. 所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300.15.已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .15.解析 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2.综上可知,T n =(-1)n n (n +1)2.16.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .16.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1.由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 17.已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.17.解析 (1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n }的公差为d ,∵2a 1=2,a 5=5(a 4-a 3),∴a 1+4d =5(a 1+3d -a 1-2d ),∴a 1=d =1.∴a n =1+(n -1)×1=n . 设等比数列{b n }的公比为q .由b 1=2,且b 5=4(b 4-b 3),得b 1q 4=4(b 1q 3-b 1q 2).∴q 2-4q +4=0,解得q =2.所以{b n }是首项为2,公比为2的等比数列.故b n =2×2n -1=2n (n ∈N *). 若选条件②,b n +1=S n +2.令n =1,得b 2=S 1+2=b 1+2=4.∴公比q =b 2b 1=2.∴数列{b n }是首项为2,公比为2的等比数列.从而b n =2×2n -1=2n (n ∈N *). (2)由(1)知a n -b n =n -2n ,∴T n =(1+2+3+…+n )-(21+22+23+…+2n ), ∴T n =n (1+n )2-2(1-2n )1-2,∴T n =2-2n +1+n 22+n 2.18.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.18.解析 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1. (2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n 1+2n -12=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.19.已知等比数列{a n }为递增数列,且a 4=23,a 3+a 5=209,设b n =log 3a n2(n ∈N *).(1)求数列{b n }的前n 项和S n ;(2)令T n =b 1+b 2+b 22+…+b 2n -1,求使T n >0成立的最小值n .19.解析 (1)设等比数列{a n}的公比为q ,由题意知,⎩⎨⎧a 1q 3=23,a 1q 2+a 1q 4=209,两式相除,得q 1+q 2=310, 解得q =3或q =13,∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1q n -1=281·3n -1=2·3n -5.∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n (-4+n -5)2=12(n 2-9n ).(2)T n =b 1+b 2+b 22+…+b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0, 即2n >5n +1,∵24<5×4+1,25>5×5+1,∴n min =5.20.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值.20.解析 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2.记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=n 2(n +2), 记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12,从而T n =n 2(n +2)+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1,则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.。
求数列前N项和的七种方法(含例题和答案)

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和:q=1时,1n S na = ()1111nn a q q S q-≠=-,,特别要注意对公比的讨论。
[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由212loglog3log1log3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n=1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ……………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………. ② (设制错位)①-②得 nn n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 再利用等比数列的求和公式得:nn n x n xxx S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n xn S nn n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn 前n 项的和.解:由题可知,{nn 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nn n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………②①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n nn n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S ……..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin)2cos 2(sin)1cos 1(sin 2222222++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aaaS n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aaaS n n (分组) 当a =1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11nn a a a n-+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk nk nk ∑∑∑===++1213132 (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
等差数列前n项和公式说课稿

等差数列前n项和公式说课稿一、说教材(一)作用与地位《等差数列前n项和公式》是高中数学课程中的重要内容,位于数列章节的核心位置。
等差数列作为数列中的基础类型,其前n项和公式的推导和应用,不仅对理解数列的性质具有关键作用,而且对于后续学习等比数列、数列的极限等高级数学概念奠定了基础。
(二)主要内容本文主要围绕等差数列前n项和公式的推导和应用展开,首先通过具体实例引入等差数列的概念,进而引导学生发现并证明等差数列前n项和的公式。
内容涉及以下几个方面:1. 等差数列的定义及性质复习;2. 利用图形及实际案例推导等差数列前n项和公式;3. 通过例题讲解,让学生掌握等差数列前n项和公式的应用;4. 课后练习,巩固所学知识。
二、说教学目标(一)知识与技能1. 理解等差数列的概念,掌握等差数列的基本性质;2. 学会推导等差数列前n项和公式,并能熟练运用;3. 能够解决实际问题中与等差数列前n项和相关的计算问题。
(二)过程与方法1. 通过观察、分析、归纳等学习方法,培养学生发现问题和解决问题的能力;2. 通过小组合作、讨论等学习方式,提高学生的沟通能力和团队协作能力。
(三)情感态度价值观1. 培养学生对数学的兴趣,激发学生学习数学的热情;2. 培养学生严谨、踏实的科学态度,提高学生的逻辑思维能力。
三、说教学重难点(一)重点1. 等差数列前n项和公式的推导过程;2. 等差数列前n项和公式的应用。
(二)难点1. 等差数列前n项和公式的推导过程,特别是倒序相加法的理解;2. 在实际问题中灵活运用等差数列前n项和公式解决问题。
四、说教法(一)教学方法1. 启发法:通过设置问题情境,引导学生主动思考,发现等差数列前n项和的规律。
在教学过程中,我会设计一系列由浅入深的问题,让学生在解决问题的过程中,逐步推导出等差数列前n项和公式。
2. 问答法:在教学过程中,我将以提问的方式引导学生复习等差数列的基本概念和性质,为新知识的推导做好铺垫。
专题06 数列求和(分组法、倒序相加法)(解析版)

数列专题六 :数列求和(分组法、倒序相加法)一、知识储备1、倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.2、分组求和法,如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法. 二、例题讲解1.(2021·全国高三专题练习)定义在R 上的函数()442xx f x =+,121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2,3,n =⋅⋅⋅,求n S . 【答案】12n - 【分析】由已知条件推导出()(1)1f x f x +-=,因此111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,由此能求出结果. 【详解】函数4()42xx f x =+,114(1)42xxf x ---=+, 可得()(1)1f x f x +-=, 即有: 121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=++⋯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又121n n n S f f f n n n --⎛⎫⎛⎫⎛⎫=++⋯+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可得:1122n n S ff fn n n ⎡⎤⎡-⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎝⎭⎣⎦⎣211n n f f f n n n ⎤⎡⎤--⎛⎫⎛⎫⎛⎫+⋯++ ⎪ ⎪ ⎪⎥⎢⎥⎝⎭⎝⎭⎝⎭⎦⎣⎦, 1n =-,即有12n n S -=.故答案为:12n -. 2.(2021·全国高三专题练习)()221xf x x =-,利用课本中推导等差数列前n 项和的公式的方法,可求得122020202120212021f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值。
【答案】2021 【分析】先证得()()12f x f x +-=,利用倒序相加法求得表达式的值. 【详解】解:由题意可知()()()()()2122121=22121-121x x xf x f x x x x --+-=+=---, 令S=122020 202120212021⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 则S=202020191 202120212021⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 两式相加得,220202S =⨯2020S ∴=.故填:2020 【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到()()12f x f x +-=的规律.3.(2022·全国)已知等比数列{}n a 中,11a =,且22a 是3a 和14a 的等差中项.数列{}n b 满足,且171,13b b ==.212n n n b b b +++=.(1)求数列{}n a 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 【答案】(1)12n n a ;(2)221n n T n =+-.【分析】(1)设等比数列{}n a 的公比为q ,由等差中项的性质建立等量关系,求解q ,从而求出数列{}n a 的通项公式;(2)由等差中项的性质可知{}n b 为等差数列,求出{}n b 通项公式,分组求和即可.【详解】解:(1)设等比数列{}n a 的公比为q 因为11a =,所以222131,a a q q a a q q ====.因为22a 是3a 和14a 的等差中项, 所以23144a a a =+, 即244q q =+, 解得2,q =所以1112n n n a a q --==.(2)因为212n n n b b b +++=, 所以{}n b 为等差数列. 因为171,13b b ==, 所以公差131271d -==-. 故21n b n =-.所以1122n n n T a b a b a b =++++⋯++()()1212n n a a a b b b =++⋅⋅⋅++++⋯+21212121()n n n n n -+-=+=+- 三、实战练习1.(2021·陕西渭南市·(文))已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求。
求数列前n项和的七种方法

求数列前n项和的七种方法-CAL-FENGHAI.-(YICAI)-Company One1求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S = 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和) =2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
数列求前n项和方法总结

解析:由题可知,{ }的通项是等差数列{2n-1}….②(设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:
∴
例5求数列 的前n项和.
解:设 (裂项)
则 (裂项求和)
=
=
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。余下的项具有如下的特点:余下的项前后的位置前后是对称的;余下的项前后的正负性是相反的。
(分组)
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此
例2、求和
[解析]:
例3、已知函数
(1)证明: ;
(2)求 的值.
解析:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以 .
小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.
教学内容
一、本周错题讲解
二、知识点梳理
求数列前n项和的常用方法总结
(1)公式法:
等差数列求和公式:
等比数列求和公式:
自然数方幂和公式:
(2)分组化归法:将数列的每一项拆成多项,然后重新分组,将一般数列求和问题转化为特殊数列求和问题。运用这种方法的关键是将通项变形。
(3)并项转化法:在数列求和过程中,将某些项分组合并后转化为特殊数列再求和。利用该法时要注意有时要对所分项数是奇数还是偶数进行讨论。
四、课堂练习
1、在各项均为正数的等比数列中,若 的值.
2、求和:
解:
3、求值:
4、求数列 的前n项和
5、已知 ,求数列{an}的前n项和Sn.
专题01 分组求和(解析版)

专题1 分组求和1.(2022·广东·深圳市光明区高级中学模拟预测)已知各项都为正数的数列{}n a 满足1+32nn n a a +=⋅,11a = . (1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S . 【答案】(1)证明见解析(2)1(1)5222+-=+-n n n S【解析】 【分析】(1)根据等比数列的定义,利用2n n n b a =-以及1+32nn n a a +=⋅,即可得到1n n b b +=-,即可证明.(2)根据分组求和和等比数列求和公式即可求解. (1)因为1+32nn n a a +=⋅所以()111123222n n n n n n n n n b a a a b ++++=-=-+⋅-=--=-,因为1=1a ,所以1121b a =-=- 所以10n n b b +=-≠ 所以11n nb b +=- 所以{}n b 是首项和公比均为1-的等比数列.(2)由(1)易得:(1)n n b =- 因为()2-1 =nn n n b a =-所以2(1)n n n a =+- 所以()()()()1232=1111222nn n S -+-+-+⋅⋅⋅+-+++⋅⋅⋅+ ()()()111212212nn ⎡⎤----⎣⎦=+- 1(1)5222+-=+-n n2.(2022·湖北·模拟预测)已知数列{}n a ,{}n b 满足10a =,13b =,且112136n n n a a b --=+,111536n n n b a b --=+.(1)若{}n n a b λ+为等比数列,求λ值;(2)在(1)的条件下,求数列{}n a 的前n 项和n S . 【答案】(1)2λ=-或1λ=(2)1122n n -⎛⎫+- ⎪⎝⎭【解析】【分析】(1)利用待定系数法,设()11n n n n a b a b q λλ--+=+,结合题意求解;(2)利用分组求和结合等比数列求和处理.(1)由题1121536n n n n a b a b λλλ--+++=+ ∵{}n n a b λ+为等比数列,设公比为q 则()11n n n n a b a b q λλ--+=+ ∵21356q q λλλ+⎧=⎪⎪⎨+⎪=⎪⎩,∵21536λλλ++=,即220λλ+-=,解得2λ=-或1λ= 当2λ=-时,12q =,即()111222n n n n a b a b ---+=-+ 又1123a b -+=,∵{}2n n a b -+成以3为首项,以12为公比的等比数列 当1λ=时,1q =即11n n n n a b a b --+=+ 又113a b +=,∵{}n n a b +成以3为首项,以1为公比的等比数列 综上:2λ=-或1λ=(2)由(1)得11232n n n a b -⎛⎫-+=⋅ ⎪⎝⎭,3n n a b +=∵1112n n a -⎛⎫=- ⎪⎝⎭∵0121111111112222n n S -⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111221212nn n n -⎛⎫- ⎪⎛⎫⎝⎭=-=+- ⎪⎝⎭-3.(2022·湖北·襄阳五中模拟预测)已知数列{}n a 的前n 项和为Sn ,Sn +1=4an ,n ∵N *,且1 4.a = (1)证明:{}12n n a a +-是等比数列,并求{}n a 的通项公式; (2)在∵bn =an +1-an ;∵bn =log 2na n;∵12n n n n a b a a ++=,这三个条件中任选一个补充在下面横线上,并加以解答.已知数列{bn }满足_________,求{ bn }的前n 项和.n T【答案】(1)证明见解析,(1)2nn a n =+⋅(2)答案见解析 【解析】 【分析】(1)利用通项与Sn 的关系得出递推公式()11222n n n n a a a a +--=-证明即可;(2)若选∵:代入(1)2n n a n =+⋅,可得(3)2nn b n =+⋅,再错位相减求解即可;若选∵:根据对数运算公式与等差数列的求和公式求解即可;若选∵:化简得1144n nn n na ab a a ++-=,再裂项求和即可(1)当n ≥2时,因为Sn +1=4an ,所以Sn =4an -1,两式相减得,1144n n n a a a +-=- ,故()11222n n n n a a a a +--=-,当n =1时,因为Sn +1=4an ,所以S 2=4a 1,又a 1=4,故a 2=12,于是a 2-2a 1=4,所以{}12n n a a +-是以4为首项2为公比的等比数列. 所以1122n n n a a ++-=,两边除以12n +得,11122n nn na a ++-= 又122a =,所以2n n a ⎧⎫⎨⎬⎩⎭是以2为首项1为公差的等差数列. 所以()1,122nn nn a a n n =+=+⋅ (2)若选∵:bn =an +1-an ,即bn =(n +2)⋅12n +-(n +1)⋅2n =(n +3)⋅2n , 因为Tn =4×21+5×22+6×23+…+(n +3)⋅2n , 所以2Tn =4×22+5×23+6×24+…+(n +3)⋅12n +,两式相减得,-Tn =4×21+(22+23+24+…+2n )-(n +3)⋅12n +, =8+()142121n -⋅---(n +3)⋅12n +,所以Tn =(n +2)×12n +-4.若选∵:bn =log 2n a n,即bn =log 21n n ++log 22n =log 21n n ++n , 所以Tn =(log 221+log 232+…+log 21n n+)+(1+2+...+n ), =log 2( (321)12n n ⨯+⨯⨯)+()12n n +=log 2(n +1)+()12n n +,若选∵:21n n n n a b a a ++=,即11144114n n n n n nn a a b a a a a +++⎛⎫-==- ⎪⎝⎭, 所以Tn =122311111114...n n a a a a a a +⎛⎫-+-++- ⎪⎝⎭=()111111144422n n a a n ++⎛⎫⎛⎫-=- ⎪ ⎪ ⎪+⎝⎭⎝⎭ ()11122n n -=-+.4.(2022·黑龙江·大庆实验中学模拟预测(理))已知正项数列{}n a 满足11a =,前n 项和n S满足)2,N n a n n *≥∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足12221212121nn nb bb a -=++++++,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-;(2)33,12417,2n n n T n n +=⎧=⎨+-≥⎩.【解析】 【分析】(1)由已知得到2n S n =,再利用n a 与n S 的关系求出数列{}n a 的通项公式;(2)令21nn nb c =+,其前n 项和为n M ,求出{},{}n n c b 的通项,再利用分组求和求出数列{}n b 的前n 项和n T . (1)解:∵)2,N n a n n *≥∈∵1n n S S --=1=,1为首项,1为公差的等差数数列,n ,即2n S n =, 当2n ≥时,121n n n a S S n -=-=-, 当1n =时,11a =也成立, ∵21n a n =-. (2) 解:令21nn nb c =+,其前n 项和为n M , 则2143n n M a n =-=-, 当2n ≥时,14n n n c M M -=-=, 当1n =时,11c =,所以1,1,4,221nn n n b c n =⎧==⎨≥+⎩ 所以23,124,2n n n b n +=⎧=⎨+≥⎩. ∵当1n =时,13=T当2n ≥时,1316(12)3+4(1)241712n n n T n n -+-=+-=+--即33,12417,2n n n T n n +=⎧=⎨+-≥⎩. 5.(2022·河北·沧县中学模拟预测)已知数列{}n a 为等差数列,n S 为其前n 项和,若34102252,33+==a a S .(1)求数列{}n a 的通项公式; (2)若()22π1cos3n n n b a =+,求数列{}n b 的前18项和18T . 【答案】(1)13n n a =-(2)583【解析】 【分析】(1)根据已知条件及等差数列的通项公式,再利用前n 项和公式即可求解;(2)根据(1)知n a ,进而求出n b ,根据已知条件及三角函数的诱导公式,再利用并项求和法即可求解. (1)设等差数列{}n a 的公差为d .则 34102252,33a a S +==112383109251023a d a d ⎧+=⎪⎪∴⎨⨯⎪+=⎪⎩,解得12313a d ⎧=-⎪⎪⎨⎪=⎪⎩. 故数列{}n a 的通项公式为21(1)1333=-+-⨯=-n na n .(2)由(1)知,13n na =-, 所以()2222π2π12π1cos 11cos cos33393n n n n n n b a n ⎛⎫=+=-+= ⎪⎝⎭. 因为当N k *∈时,2223231324π12π5cos 2πcos 2πcos 2π333318k k k b b b k k k k k k k --⎛⎫⎛⎫⎛⎫⎛⎫++=--+--+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()()18123345161718T b b b b b b b b b =+++++++++.555555123456181818181818=-+-+-+-+-+- 558(123456)6183=+++++-⨯= 所以数列{}n b 的前18项和为583. 6.(2022·山东临沂·三模)已知数列{}{},n n a b 的前n 项和分别是,n n A B ,若2111,21,3n n n a a a B n n +==+=+(1)求{}{},n n a b 的通项公式;(2)定义,*,a a ba b b a b >⎧=⎨≤⎩,记*n n n c a b =,求数列{}n c 的前n 项和n T . 【答案】(1)21nn a =-,22=+n b n(2)213,325,3n n n n n T n n +⎧+=⎨-+>⎩【解析】【分析】(1)由()1121n n a a ++=+结合等比定义得出21nn a =-,由前n 项和与通项的关系得出22=+n b n ;(2)讨论n a ,n b 的大小,得出{}n c 通项公式,进而得出n A ,最后讨论3n ≤,3n >两种情况得出n T . (1)由121n n a a +=+,可得()1121n n a a ++=+所以{}1n a +是以112a +=为首项,以2为公比的等比数列所以12nn a +=,即21n n a =-又23n B n n =+,所以21(1)3(1),(2)n B n n n -=-+-所以122,(2)n n n b B B n n -=-=+ 114b B ==满足上式,所以22=+n b n(2)由223nn n a b n -=--当3n >时,0,n n n n a b a b ->>;当3n ≤时,0,n n n n a b a b -<<所以21,322,3n n n c n n ⎧->=⎨+⎩,所以()12122212n n n A n n +-=-=---当3n ≤时,23n n T B n n ==+当3n >时,113322111825n n n n T A A B n n ++=-+=---+=-+综上,213,325,3n n n n n T n n +⎧+=⎨-+>⎩7.(2022·山东师范大学附中模拟预测)已知n S 是数列{}n a 的前n 项和,且111,21n n a a a n +=+=+. (1)求数列{}n a 的通项公式;(2)记2,,n a n n n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和n T .【答案】(1)n a n =(2)2122233n n n +-++【解析】 【分析】(1)对条件变形得到()()11n n a n a n +-+=--,得到0n a n -=,求出通项公式;(2)写出{}n b 的通项公式,分组进行求和. (1)121++=+n n a a n 变形为()()11n n a n a n +-+=--,因为110a -=,所以()()()111?··10n n a n a n a +-+=--==--=,故n a n =; (2)当n 为奇数时,2nn b =,当n 为偶数时,n b n =,则3521222242622n n T n -=++++++++()352124622222n n -+++++++++()2121222222221433n n n n n n +++-=+=-++- 8.(2022·浙江省春晖中学模拟预测)已知数列{}n a 满足()*1:27N n n a a n n ++=+∈,且14a =.(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足()*21,1log , 2.N n nn n b a n n +=⎧⎪=⎨≥∈⎪⎩ ,定义使()*123N k b b b b k ⋅⋅∈为整数的k 叫做“幸福数”,求区间[]1,2022内所有“幸福数"的和. 【答案】(1)3n a n =+ (2)1349 【解析】 【分析】(1)根据()*1:27N n n a a n n ++=+∈可得125n n a a n -+=+,两式相减可推得{}n a 的奇数项和偶数项各自成等差数列,由此求得答案;(2)利用(1)写出n b 的表达式,继而可得1234log (3)k b b b b k ⋅⋅=+。
《数列的前n项和》课件

04
数列的前n项和的拓展
等差数列的前n项和
等差数列的前n项和公式
Sn=n/2 * (a1+an)
推导过程
等差数列中,每两项之间的差是固定的,记为d,则an=a1+(n1)d,所以前n项和为Sn=na1+n(n-1)/2*d
应用举例
求1到100的和,即等差数列1,2,3...100的前100项和。
等比数列的前n项和
等比数列的前n项和公式
Sn=a1*(1-q^n)/(1-q)
推导过程
等比数列中,每两项之间的比值是固定的,记为q,则 an=a1*q^(n-1),所以前n项和为 Sn=a1+a1*q+a1*q^2+...+a1*q^(n-1),利用错位相减 法得到最终结果。
应用举例
求1,2,4,...2^98的和,即等比数列1,2,4...2^98的 前99项和。
在物理中的应用
振动与波动
在物理学中,振动与波动是常见的现 象。数列的前n项和可以用于描述这 些现象的规律,如简谐振动的周期性 、波动传播的规律等。
量子力学与统计物理
在量子力学与统计物理中,数列的前 n项和用于描述微观粒子的状态和分 布,如玻尔兹曼分布、费米分布等。 这些分布对于理解物质的微观结构和 性质至关重要。
数学建模
数列的前n项和在数学建模中有着广泛的应用,如解决几何级数求和问题、等差数列求和问题等。通过数学建模 ,可以将实际问题转化为数学问题,进而通过数学方法求解。
概率论与统计学
在概率论与统计学中,数列的前n项和常常用于计算各种概率分布的和,如二项分布、泊松分布等。这些概率分 布在解决实际问题中有着广泛的应用。
将数列中的每一项都拆分成两个部分,使得相邻两项相消,从而简化求和过程。
等比数列前N项和的性质知识讲解

例题讲解
4、若等 {an}的 比公 数 1 3, 比 列 a1且 为 a3a99 6,0
则 {an}的1前 0 项 0 和 80 为 。
解: 令 S 奇 a 1 a 3 a 9 9 60
S 偶 a 2a 4 a 100
由则 等 S100比 S奇 数 nS项 偶列 和前 性S质 偶知 q1:
化简S到 n1 3: 3n2a
1 3
2a
0
a 1 6
探究二:
我们知道,等差数列有这样的性质:
如 a n 果 为等 , 则 差 S k,S 2 数 kSk,S 列 3 kS 2 k也成等
新的等差数列 Sk, 首 公项 差k为 为 2d。
那么,在等比数列中,也有类似的性质吗? 怎么证 明?
等比数列前n项和的性质二:
法
二
:
根据题意S10,S20-S10,S30-S20成等比数列 → S10=10,S20=30 → S30
例题讲解
【解】 法一:设公比为 q,则
a111--qq10=10 a111--qq20=30 ② ② ①得 1+q10=3,∴q10=2,
①
a1 10 1 q
例题讲解
∴S30=a111--qq30=70. 法二:∵S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, ∴S30-S20=S30-30=30-10102, 即 S30=70.
课后作业
书上第62页,习题2.5 B组,第2题、第5题。
5 、在{a 等 n} 中 a 比 1 , a n 数 6, 6 a 2列 a n 1 1, 2 前 n 项 S n 和 1, 2n 6 及 求 q 公 。比
解: a1ana2an 1128
求数列前n项和的七种方法

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
(完整版)数列前n项和的求法总结

数列前n 项和的求法总结核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。
当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。
一. 公式法(1) 等差数列前n 项和: S n=n(a 1+a n )2=na 1+n(n+1)2d(2) 等比数列前n 项和: q =1时, S n=na 1;q ≠1时, S n =a 1(1−q n )1−q(3) 其他公式: S n=1+2+3+⋯+n =12n (n +1)S n =12+22+32+⋯+n 2=16n(n +1)(2n +1)S n =13+23+33+⋯+n 3=[12n (n +1)]2例题1:求数列 112,214,318,……,(n +12n ),…… 的前n 项和S n解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。
练习:二.倒序相加法如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn =a1+a2+a3+...+an①倒序得:Sn =an+an-1+an-2+…+a1②①+②得:2Sn =(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn =n(a2+an) Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。
数列,通项公式方法,求前n项 和例题讲解和方法总结

的前n项和为
,
为等比数列,且
(Ⅰ)求数列
和 的通项公式; (Ⅱ)设 ,求数列 的前 项和 .
例2.已知数列的首项,,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)数列的前项和.
2.设数列 的前n项和为 , 为等比数列,且
(Ⅰ)求数列 和
的通项公式; (Ⅱ)设 ,求数列 的前 项和
. 三、分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适 当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其 合并即可. 2、已知数列的通项公式为,则它的前n项的和 3:求数列的前n项和。
数列求和练习
1、已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和. (1)求通项an及Sn; (2)设{bn-an}是首项为1,公差为3的等差数列,求{bn}的通项公式及 前n项和Tn.
3、已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,
则S13的值为( )
5、已知数列 是等差数列,且 , 是数列 的前
项和. (Ⅰ)求数列
的通项公式 及前 项和 ;
(Ⅱ) 若数列 满足 ,且 是数列 的前 项和,求 与 .
6. 设是正数组成的数列,其前n项和为 并且对于所有的自然数与2 的等差中项等于与2的等比中项. (1)求数列的通项公式; (2)令 求证:
7、已知数列 是等差数列, ;数列 的前n项和是 ,且 .
(1)公式法
①等差数列前n项和Sn=____________=________________,推导方 法:____________; ②等比数列前n项和Sn=推导方法:乘公比,错位相减法. ③常见数列的前n项和: a.1+2+3+…+n=________________; b.2+4+6+…+2n= _________________; c.1+3+5+…+(2n-1)=_____________;d. e.
(完整版)数列前n项和的求法

数列前n项和的求法一.用倒序相加法求数列的前n项和如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2解:S n=a1+a2+a3+...+a n ①倒序得:S n=a n+a n-1+a n-2+…+a1②①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1)又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1∴2S n=n(a2+a n) S n=n(a1+a n)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。
二.用公式法求数列的前n项和对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
例题2:求数列的前n项和S n解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。
三.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
例题3:求数列(n∈N*)的和解:点拨:此题先通过求数列的通项找到可以裂项的规律,再把数列的每一项拆开之后,中间部分的项相互抵消,再把剩下的项整理成最后的结果即可。
数列,通项公式方法,求前n项和例题讲解和方法总结

数列的通项公式1.通项公式如果数列{}a n 的第n 项n a 与项数n 之间的函数关系可以用一个公式来表达,叫做数列的通项公式。
2.数列的递推公式(1)如果已知数列{}a n 的第一项,且任一项n a 与它的前一项-1n a 之间的关系可以用一个公式来表示。
(2)递推公式是数列所特有的表示方法,它包含两部分,一是递推关系,二是初始条件,二者缺一不可3.数列的前n 项和与数列通项公式的关系数列{}a n 的前n 项之和,叫做数列的前n 项和,用n S 表示,即123=n n S a a a a ++++n S 与通项n a 的关系是11(1)(2)={n n S n n S Sn a -=-≥4.求数列通项公式的常用方法有:(前6种常用,特别是2,5,6)1)、公式法,用等差数列或等比数列的定义求通项2)前n 项和n S 与n a 的关系法,⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解. (注意:求完后一定要考虑合并通项)3)、累(叠)加法:形如)(1n f a a n n +=+∴112211=()()()n n n n n a a a a a a a a ----+-++-+4). 累(叠)乘法:形如nn a n f a )(1=+∴13211221=n n n n n a a a aa a a a a a ---⋅⋅⋅⋅⋅⋅⋅⋅ 5).待定系数法 :形如a 1+n =p a n +q (p ≠1,pq ≠0),(设a 1+n +k=p (a n +k )构造新的等比数列) 6) 倒数法 :形如11n n n a a ka b--=+(两边取倒,构造新数列,然后用待定系数法或是等差数列)7). 对数变换法 :形如,11()lg lg lg p n n n n a c a a p a c ++=⋅⇒=+(然后用待定系数法或是等差数列)8).除幂构造法: 形如11111n n n n n n na q a a qa d d d d d++++=+⇒=+ (然后用待定系数法或是等差数列) 9). 归纳—猜想—证明”法直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法.通项公式方法及典型例题1.前n 项和n S 与n a 的关系法例1、已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
数列的前n项和求法

数列的前n 项和一、公式法1、通项公式:(1)、等差数列的通项公式:a n =a 1+(n -1)d =a m +(n -m)d ; (2)、等比数列的通项公式:11-=n n q a a =m n m n q a a -=;2、a n 与Sn 的有关系:a n =⎩⎨⎧≥-=-)2(,)1(,11n S S n S n n3、前n 项和:(1)、等差数列前n 项和:Sn =2)(1n a a n +=na 1+d n n 2)1(- (2)、等比数列前n 项和:Sn =⎪⎩⎪⎨⎧≠--=--=)1(11)1()1(,111q q q a a q q a q na n n例1:已知n S =1+2+3+4+……+n ,(n ∈N +),求1)32(++n nS n S 的最大值。
【解析】: )1(21+=n n S n ,1)32(++n n S n S =64342++n n n=34641++nn ≤501变式练习1:在等比数列{n a }中,2a -1a =2,且22a 为31a 和3a 的等差中项,求数列{n a }的通项公式及前n 项和。
【解析】:设该数列的公比为q ,由已知,可得a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以,数列的前n 项和S n =312n -.变式练习2:已知{n a }是公差不为零的等差数列,1a =1,且1a ,3a ,9a 成等比数列。
(1)求数列{n a }的通项公式;(2)求数列{n a2}的前n 项和n S 。
【解析】:n a =n n S =221-+n二、分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
例2: 求数列的前n 项和:121,241,381,……(n +n 21) 【解析】: n n n n S 2112)1(-++=变式练习1:求数列0.9,0.99,0.999,0.9999,0.99999……的前n 项和Sn 。
数列前n项和求和方法集锦(错位相加法,分组求和法等)

一.求和方法大集锦1.分组求和法:就是将数列的项分成二项,而这两项往往是常数或是等差(比)数列,它们的和当然就好求了。
例如:求1/2+3/4+7/8+9/16+......+(2^n-1)/(2^n)的话,可以将通项(2^n-1)/(2^n)写成1-2^(-n)这样就变成每一项都是1-X(X为通项)的公式对于通项-2^(-n)是一个等比数列,这个你就可以直接套用公式了2.数列累加法(1)逐差累加法例3 已知a1=1, an+1=an+2n 求an解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1将以上n-1个式子相加可得an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法求通项公式,特别的,当f(n)为常数时,数列即为等差数列。
(2)逐商叠乘法例4 已知a1=1, an=2nan-1(n≥2)求an解:当n≥2时,=22, =23, =24, (2)将以上n-1个式子相乘可得an=a1.22+3+4+…+n=2当n=1时,a1=1满足上式故an=2 (n∈N*)注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列3.裂项求和当一项可以拆时需要注意是否为了考察裂项求和,最有名的就是分数:1/2+1/6+1/12+……+1/n*(n+1)可拆为1-1/2+(1/2-1/3)+(1/3-1/4)+……+(1/n-1/(n+1))然后你会发现从-1/2 到1/n全部能想消掉,故只剩下首项和末项。
4.倒序相加最简单的是等差数列用倒序相加求和:1到9 1+9=10 2+8=10。
所以便有首项加末项乘以项数除以二。
1+1/1*2+1/2*3+1/3*4+...+1/99*100=1+(1-1/2)+(1/2-1/3)+...+(1/99-1/100) (裂项)=1+1-1/2+1/2-1/3+...-1/99+1/99-1/100 (消元)=2-1/100=199/1005.错位相减这个可以求出和与求通项公式和首相的关系,常用与等比数列,Sn乘上q(等比的比例常数)如:Sn(数列和)=1+2+4+8+……2^(n-1)+2^n 左右乘上2:2Sn=2+4+8+16+……2^n+2^(n+1) 用后式-前式:Sn=2^(n+1)-1 这就得出了总和与通项式的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列前n项和(分组
求和法)
收集于网络,如有侵权请联系管理员删除
1.求数列的前n 项和:ΛΛ,231,,71,41,
1112-++++-n a
a a n
2.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2012等于( )
A. 1006
B. 2012
C. 503
D. 0
3.设f (x )=12x +2
,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.
4.求︒+︒+⋅⋅⋅+︒+︒+︒89sin 88sin 3sin 2sin 1sin 22222的值。
5.求数列13521,,,,,2482
n n -L L 的前n 项的和。
收集于网络,如有侵权请联系管理员删除 6.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图像上.
(1)求r 的值;
(2)当b =2时,记b n =n +14a n
(n ∈N +),求数列{b n }的前n 项和T n .
7.已知数列{}n a 的前n 项和为n S ,且n n S n +=22,n ∈N*,数列{}n b 满足3log 42+=n n b a ,n ∈N*.
(1)求n n b a ,;
(2)求数列{}n n b a •的前n 项和Tn.
8.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N +.
(1)求数列{a n }的通项;
(2)设b n =n a n
,求数列{b n }的前n 项和S n .
9.求和
)
2(1531421311+++⨯+⨯+⨯n n Λ
收集于网络,如有侵权请联系管理员删除
10.求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和。
11.已知数列{a n }:11,211+,3
211++,…1123n +++L ,…,求它的前n
12.设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).
(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;
(2)设数列{
1a n a n +1
}的前n 项和为T n .求证:15≤T n <14.。