八年级数学下册 用待定系数法求一次函数解析式教案
新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0
![新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0](https://img.taocdn.com/s3/m/0dc7f55a48d7c1c708a145da.png)
八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。
初中八年级数学教案-待定系数法求一次函数的解析式 精品
![初中八年级数学教案-待定系数法求一次函数的解析式 精品](https://img.taocdn.com/s3/m/e0cc682250e2524de4187ece.png)
(二)教师导学:待定系数法求函数解析式的一般步骤:1.设函数解析式;2.代入点的坐标列方程或方程组;3.解方程或方程组,求出未知系数,b;4.替换未知系数,写出具体的函数解析式教师适当结合复习回顾中的题目对待定系数法求函数解析式具体操作步骤进行说明与点拨结合复习回顾的题目引导学生归纳待定系数法求函数解析式的一般步骤,为学生课堂研讨做好准备二课堂互学激情研讨,精彩展示课堂互学研讨一:已知某个一次函数的图象如图所示,求该函数的解析式(教师板演,规范格式)研讨二:一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的6min内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示(1)当0≤≤4时,求y关于的函数解析式;(2)当4<≤10时,求y关于的函数解析式变式练习1 一次函数的图象经过点A和点B,已知点A(1,0),点B在y轴负半轴上,且直线与两坐标轴所围成的三角形面积为1,求该一次函数的解析式例题讲解,规范格式由浅入深选取典型例题,让学生熟练掌握待定系数法求一次函数解析式,通过不同类型的题目反复强化待定系数法求一次函数解析式的关键——找到函数图象上的两点通过实际问题培养学生提取信息的能力和严谨的学习态度变式:一次函数的图象经过点A(1,0),且直线与两坐标轴所围成的三角形面积为1,求该一次函数的解析式(课堂上引导学生分析解题思路,详细解答过程留待学生课后完成,题目的讲解已录制成微课发送到学生的平板中,学生可以根据实际情况进行学习)2.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y(单位:cm)是重物重量(单位:g)的一次函数,即y=b(为任意正数)现已测得不挂重物时,弹簧长度是5cm,挂2g质量的重物时,弹簧的长度是6cm(1)求这个一次函数的解析式;(2)当弹簧悬挂4g的重物时,求弹簧的长度拓展提升如图,过点A的一次函数的图象与函数y=-4的图象相交于点B,求这个一次函数的解析式通过变式培养学生严谨的学习态度,渗透数形结合、分类讨论的思想方法(一)小组讨论课堂互学、变式练习、拓展提升小组讨论内容:1小组长组织小组成员进行错题讲解与分析,并做好订正;2各函数图象经过哪两个点3如何确定各个点的坐标(二)小组展示变式1、研讨二、变式2、拓展提升展示要求:1礼貌、大方地展示小组最终答案,并做思路讲解;2突出小组易错点;3耐心等候其他同学的补充与点评小组讨论并订正错题,师徒结对,一对一帮扶,提高课堂效率并培养了学生的学习主动性小组展示既是例题的及时反馈,同时锻炼了学生的语言表达能力三当堂检测1.直线y=-2与轴的交点是(1,0),则的值是()A 3B 2C -2D -32.已知一次函数y=1的图象过点(1,3),则的值为()A 1B 2C -1 D323.直线y=b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式为()A.32+=xy B232+-=xyC23+=xy D1+=xy4 已知一次函数y=b的图象经过点A(-1,3)和点B(2,-3)(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积借助“神算子”APP推送当堂检测练习,及时对本节课内容进行巩固,通过大数据反映学生的做题情况,针对性地进行讲解补充四课堂小结本节课你学到了什么知识:求一次函数解析式方法:待定系数法关键:找到图象上的两点坐标思想:数形结合思想从知识、方法、思想三个维度引导学生对本节课内容进行回顾整理,加深印象课堂反思:本节课是在学生初步学习了《待定系数法求一次函数解析式》和《一次函数解析式的应用》的基础上进行的专题学习,目的是让学生系统而熟练地掌握待定系数法求一次函数解析式的内容通过学生课堂及课后的反馈,本节课的教学效果是较为显著的,本人认为这节课有以下亮点:1 本节课的教学设计围绕一条主线而展开,从“已知一次函数图象上的两点坐标”到“需要从图象中读出两点坐标”再到“结合三角形面积或两直线交点等问题间接求出两点坐标”,由浅入深,层层递进,但题目最终又化归为如何找到一次函数图象上的两点坐标,继而用待定系数法求函数解析式的问题,帮助突破难点,形成系统的知识结构2 本节课采用先学后教的翻转课堂教学模式,熟练运用平板、希沃授课助手和神算子APP等信息技术手段开展教学,课堂上以学生为主体,小组合作研讨,组内进行一对一、一对多的辅导,对疑难问题进行针对性的展示,最后由教师作关键处点评,提高课堂学习效率另外,课堂形式多样化,在一定程度上帮助学生集中注意力,提高数学学习兴趣3 引入神算子APP开展课堂检测,可以即时获得学生做题情况的数据反馈,便于教师有针对性地分析讲解错题,补充学生课堂上掌握薄弱的知识点;另外,在批改解答题的过程中,可以标记优秀学生,让该学生协助批改,同时,教师根据软件反馈的情况,对做错的学生进行个别辅导,实现个性化教学。
《待定系数法求一次函数的解析式》教学设计
![《待定系数法求一次函数的解析式》教学设计](https://img.taocdn.com/s3/m/c75adde633687e21af45a9b3.png)
河西中学“451学导讲练”《待定系数法求一次函数的解析式》教学设计(主备人:尹能文审核:河西中学数学组)一、教材分析本节课的内容是新人教版八年级下册数学第十九章第二节第三课时的内容,是整个初中阶段学习求解函数解析式的最基本的方法,贯穿到整个初中阶段的三种函数的教学。
本节课的内容,总体上难度不大,但是对学生数形结合思想、函数思想和方程组思想的要求比较高,是前面所学内容的应用,同时也是后续方法的基础。
【设计意图】清楚分析教材,有利于内容的准确把握和教学方法的正确设计,对教学过程作用很大。
二、学情分析乡村中学学生总体基础知识水平比较差,分层现象会比较明显。
本次课之前,学生已经有了一定的一次函数解析式和图像的相关知识,同时在初一的时候也学习了二元一次方程组的解法,故对本次课具有一定的自主探究能力。
同时,本班学生学优生对知识的理解和接受能力都比较强,可以对学习困难的学生进行帮扶,这也将是本次课中所要采用的一种重要策略。
【设计意图】根据对学生学情的全面分析,有利于设计出学生易于接受的内容和课堂组织方法,有助于本节课的展开。
三、教学方法根据学生情况,结合本节课内容特点,以我校“451学导讲练”教学模式为基础,决定采用“自学、引导、探究、分析、归纳、精讲、训练”相结合的方法进行教学,以当堂检测为达标检测评判标准,合理安排各项教学。
四、教学目标(目标引领)1.学会用待定系数法求解一次函数解析式;2.会根据所给条件找出点求解析式;3.会用待定系数法解答实际问题。
五、教学重点难点重点:能让学生学会用待定系数法求解一次函数解析式的一般方法。
难点:通过不同条件找出满足条件的点来求解一次函数解析式。
六、教学过程(一)课前预习(据案自学)复习正比例函数、一次函数解析式,图像及性质等相关知识点,并预习待定系数法。
1.复习正比例函数的解析式和图像特征;2.复习一次函数的解析式和图像特征;3.复习一次函数解析式的变量和常量。
【设计意图】学生复习正比例函数、一次函数解析式和图像,有利于对这两个函数进行区分,从而更好的将知识迁移到“正确设出函数解析式”上;学生复习一次函数的常量和变量,让学生将函数进行拆解,有利于找出什么是“待定系数”,以及k与x的关系,从而能够顺利的将点代入函数解析式中。
19.2.2待定系数法求一次函数的解析式(教案)
![19.2.2待定系数法求一次函数的解析式(教案)](https://img.taocdn.com/s3/m/2b159e3b1fd9ad51f01dc281e53a580216fc50d1.png)
1.教学重点
(1)理解待定系数法的原理:使学生掌握待定系数法的基本原理,了解为何可以通过待定系数法求解一次函数的解析式。
举例:讲解待定系数法时,以一次函数y=kx+b为例,解释如何通过设定待定系数k和b,利用已知条件求解出k和b的值,从而得到一次函数的解析式。
(2)掌握待定系数法的步骤:指导学生按照步骤进行求解,提高解题能力。
2.教学难点
(1)从实际问题中抽象出一次函数模型:对于部分学生来说,将实际问题转化为数学模型具有一定难度。
难点解析:教师需要引导学生分析题意,找出已知条件和未知量,从而建立一次函数模型。
(2)列出方程组:在求解过程中,列出正确的方程组是关键。
难点解析:教师可以通过示例,讲解如何根据已知条件列出方程组,并强调方程组中每个方程的含义。
五、教学反思
在今天的教学中,我发现学生们对待定系数法的概念和求解过程的理解普遍较好。他们在分组讨论和实践活动中表现出较高的积极性,能够将所学知识应用到解决实际问题中。然而,我也注意到一些需要改进的地方。
首先,部分学生在构建方程组时,对于如何将已知条件转化为方程还存在一定的困扰。在今后的教学中,我需要更加注重引导学生分析题意,明确已知条件和未知量,以便他们能够更准确地构建方程组。
在课堂总结环节,学生们对于待定系数法的应用有了更加明确的认识。但我也意识到,对于一些基础较弱的学生,他们可能还需要更多的时间来消化和吸收所学知识。因此,我将在课后关注这部分学生的学习情况,提供有针对性的辅导,帮助他们弥补知识漏洞。
步骤包括:
①根据题意列出已知条件;
②设出待定系数,构建一次函数的一般形式;
③将已知条件代入,列出方程组;
④解方程组,求出待定系数的值;
人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)
![人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)](https://img.taocdn.com/s3/m/ab0d4b99690203d8ce2f0066f5335a8102d266aa.png)
第3课时用待定系数法求一次函数解析式路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数. 【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系. 【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kxb,由题意得3 1k b k b=-+⎧⎨-=+⎩解得错误!未找到引用源。
用待定系数法确定一次函数的表达式教案
![用待定系数法确定一次函数的表达式教案](https://img.taocdn.com/s3/m/2958ac0a0a4e767f5acfa1c7aa00b52acfc79c63.png)
用待定系数法确定一次函数的表达式教案教学目标 1.用待定系数法求一次函数的解析式;(重点) 2.从题目中获取待定系数法所需要的两个点的条件.(难点)教学过程 一、情境导入已知弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式. 一次函数解析式怎样确定?需要几个条件? 二、合作探究 探究点:用待定系数法求一次函数解析式【类型一】 已知两点确定一次函数解析式已知一次函数图象经过点A (3,5)和点B (-4,-9). (1)求此一次函数的解析式;(2)若点C (m ,2)是该函数图象上一点,求C 点坐标. 解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设一次函数的解析式为y =kx +b (k 、b 是常数,且k ≠0),则⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴一次函数的解析式为y =2x -1;(2)∵点C (m ,2)在y =2x -1上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:先求出点B 的坐标,再根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0),∴点B 的坐标为(0,-2).设直线AB 的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:△AOB 面积等于OB 与AB 乘积的一半.根据OB 与已知面积求出AB 的长,确定出A 点坐标.设直线l 解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定出直线l 的解析式.解:∵点B 的坐标为(-2,0),∴OB =2.∵S △AOB =12OB ·AB =3,∴12×2×AB =3,∴AB =3,即A (-2,-3).设直线l 的解析式为y =kx ,将A 点坐标代入得-3=-2k ,即k =32,则直线l 的解析式为y =32x .方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.【类型四】 利用图形变换确定一次函数解析式已知一次函数y =kx +b 的图象过点(1,2),且其图象可由正比例函数y =kx 向下平移4个单位得到,求一次函数的解析式.解析:根据题设得到关于k ,b 的方程组,然后求出k 的值即可.解:把(1,2)代入y =kx +b 得k +b =2.∵y =kx 向下平移4个单位得到y =kx +b ,∴b =-4,∴k -4=2,解得k =6.∴一次函数的解析式为y =6x -4.方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y =kx +b +m .【类型五】 由实际问题确定一次函数解析式已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm) 4.2 … 8.2 9.8体温计的读数y (℃)35.0…40.042.0 (1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.解析:(1)设y 关于x 的函数关系式为y =kx +b ,由统计表的数据建立方程组求出k ,b 即可;(2)当x =6.2时,代入(1)的解析式就可以求出y 的值.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35.0=4.2k +b ,40.0=8.2k +b ,解得⎩⎪⎨⎪⎧k =1.25,b =29.75,∴y =1.25x +29.75.∴y 关于x 的函数关系式为y =1.25x +29.75;(2)当x =6.2时,y =1.25×6.2+29.75=37.5.答:此时体温计的读数为37.5℃. 方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型六】 与确定函数解析式有关的综合性问题如图,A 、B 是分别在x 轴上位于原点左右侧的点,点P (2,m )在第一象限内,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =12.(1)求点A 的坐标及m 的值; (2)求直线AP 的解析式;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解析:(1)S △POA =S △AOC +S △COP ,根据三角形面积公式得到12×OA ×2+12×2×2=12,可计算出OA =10,则A 点坐标为(-10,0),然后再利用S △AOP =12×10×m =12求出m ;(2)已知A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP 得PB =PD ,即点P 为BD 的中点,则可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ×2+12×2×2=12,∴OA =10,∴A点坐标为(-10,0).∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P为BD 的中点,∴B 点坐标为(4,0),D 点坐标为⎝⎛⎭⎫0,245.设直线BD 的解析式为y =k ′x +b ′,把B (4,0),D ⎝⎛⎭⎫0,245代入得⎩⎪⎨⎪⎧4k ′+b ′=0,b ′=245,解得⎩⎨⎧k ′=-65,b ′=245,∴直线BD 的解析式为y =-65x +245.三、板书设计1.待定系数法的定义2.用待定系数法求一次函数解析式 教学反思 教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.。
待定系数法求函数解析式 初中八年级下册数学教案教学设计课后反思 人教版
![待定系数法求函数解析式 初中八年级下册数学教案教学设计课后反思 人教版](https://img.taocdn.com/s3/m/b40ce5e20b4c2e3f572763e2.png)
教师姓名何春燕单位名称托里县第一中学填写时间2020.8.21学科数学年级/册八年级上册教材版本人教版课题名称第十九章《19.2.2 一次函数》难点名称用待定系数法求一次函数的解析式难点分析从知识角度分析为什么难用待定系数法求一次函数的解析式是学习函数的基础,在学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,根据题意分析出求一次函数解析式,关键是求出k、b值有一定的难度。
难点教学方法1.通过巩固复习旧知为本节知识点的学习打下基础,经历观察、分析、总结等数学活动,体验发现的乐趣。
2.通过函数图像上的点确定一次函数表达式,感知数形结合思想在一次函数中的应用教学环节教学过程学 习 目 标1.理解待定系数法。
2.学会用待定系数法求一次函数的解析式。
温故知新1.解二元一次方程组的方法: 1)代入消元法 ; 2)加减消元法2.一次函数的一般形式是: y=kx+b(k,b为常数,k≠0)3.思考:确定一次函数的解析式需要_____条件。
(两)知识讲解(难点突破)1.用待定系数法求一次函数解析式例 已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式.分析:因为一次函数的一般形式是y=kx+b(k,b为常数,k≠0),要求出一次函数的解析式,关键是要确定k和b的值(即待定系数).从已知条件一次函数的图象过点(3,5)与(-4,-9), 因此,这两点的坐标满足一次函数解析式:y=kx+b.所以,可以列出关于k,b的二元一次方程组,并求出k,b.解:设这个一次函数的解析式为y=kx+b.将点(3,5)与(-4,-9)分别代入,得:3k+b=5-4k+b=-9解方程组得 k=2b=-1∴这个一次函数的解析式为:y=2x-1总结:求一次函数解析式的一般步骤有:(简而言之)①设②代③解④写2.待定系数法定义像上面那样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出这个式子的方法,叫做待定系数法.课堂练习(难点巩固)1.y是x的一次函数,当x=1时,y=3,当x=-1时,y=7,求这个函数的解析式。
人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式
![人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式](https://img.taocdn.com/s3/m/19f5a4cec281e53a5902ff7d.png)
19.2.2一次函数--------第三课时:用待定系数法求一次函数的解析式.学习目标:1.学会用待定系数法确定一次函数的解析式.2.了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式.3.掌握一次函数的简单应用.教学重难点重点:运用待定系数法求一次函数解析式.难点:能利用一次函数图象解决有关的实际问题.教学过程一、情镜引入思考:正比例函数y=kx(k≠0)解析式中,如果确定了k的值,正比例函数的解析式就确定了,那么必须知道什么样的条件?学生思考讨论交流后总结方法,学生回答:只需知道正比例函数的一对对应值或正比例函数图象上的一个点坐标代入解析式求出k的值.,本节课就是解决这一问题.(同时展示本节课的教学目标)二、新知探究,合作交流1.提问:当x=0时,y=6;当x=4时,y=7.2.你将如何求出上述问题中的函数关系式?学生独立完成后,交流展示:解:设y与x的函数关系式为y=kx+b.所以解得k=0.3 b=6因此这个一次函数的解析式为y=0.3x+6.方法总结:先设一次函数解析式,然后把两对对应值分别代入一次函数解析式,得到两个关于k,b的方程,构成方程组,解方程组求出k,b的值即可确定一次函数的解析式,这就是我们本节课要学习的求一次函数解析式的方法——待定系数法.2.用待定系数法求一次函数的解析式提问:用待定系数法确定函数解析式的一般步骤是怎样的?学生归纳:(1)设出函数解析式的一般形式为y=kx+b.(2)把自变量x与函数y的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(3)解方程或方程组,求出待定系数的值.(4)写出所求函数的解析式.例1.已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.分析:由于一次函数y=kx+b有k和b两个待定系数,因此用待定系数法,把x = 5时,y = 4和x=-2时,y=-3分别代入函数解析式,得到两个关于k和b的二元一次方程组成的二元一次方程组.解方程组后就能确定一次函数的解析式.解:由题意可知解得∴这个一次函数的解析式为y=x-1.例2.黄金1号”玉米种子的价格为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg 部分的种子价格打8折.(1)填写下表:购买量∕kg0.5 11.522.533.54 …付款金额∕元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.探究:(1)付款金额与什么有关?种子价格是固定的吗?它与什么有关?种子的价格是如何确定的?(2)函数的图象是一条直线吗?为什么?学生独立思考,交流讨论,总结:(1)付款金额与种子价格相关.问题中种子价格不是固定不变的,它与购买量有关. 设购买种子数量为x kg,当0≤x≤2时,种子价格为5元/kg;当x>2时,其中有2 kg种子按5元/kg 计价,其余的(x-2)kg即超出2 kg的部分种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x≤2和x>2分段讨论.(2)在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.学生完成解题过程,教师点评:解:(1)购买量∕kg0.5 11.522.533.54 …付款金额∕元2.5 57.510 12 14 16 18 …(2)设购买种子数量为x kg,付款金额为y元.当0≤x≤2时,y=5x;当x>2时,y=4(x-2)+10=4x+2. 函数图象如图所示.进一步引导学生根据函数图象思考:(1)一次购买1.5 kg种子,需付款多少元?(2)一次购买3 kg种子,需付款多少元?三.巩固练习1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.2.已知一次函数y=kx+b的图象如图所示,则它的函数关系式为.3.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式. 四.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题(1).求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入,得二元一次方程组,③解方程组求出k和b的值,④写出答案. (2).一次函数解析式的确定通常有下列几种情况:①利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.②根据图象上两点坐标求出一次函数的解析式.2.拓展延伸一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.3.作业布置教材P99页习题7,8,9题.五.课堂效果测评1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.53.已知一次函数y=kx+b的图象经过点A(2,4)和点B(-2,-8),这个一次函数的解析式为.4.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=-1,则此函数的解析式为.5.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式.6.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.57.已知一条直线经过点A(0,6),且平行于直线y=-2x+1.(1)求这条直线的函数解析式;(2)若这条直线经过点B(m,2),求m的值.六.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课主要学习了待定系数法及一次函数的应用,由前面的学习知道两点确定一条直线,以已知两点怎样确定这条直线即怎么样求出它的解析式.。
一次函数——用待定系数法求一次函数解析式 教学设计 人教版数学八年级下册
![一次函数——用待定系数法求一次函数解析式 教学设计 人教版数学八年级下册](https://img.taocdn.com/s3/m/8a5899e685254b35eefdc8d376eeaeaad1f316df.png)
一次函数——用待定系数法求一次函数解析式教学设计一、教学目标1.会用待定系数法确定一次函数的解析式.2.能根据所给信息(图象、表格、实际问题等)确定一次函数的解析式.3.经历根据函数的图象确定一次函数的解析式的过程,体验数形结合,具体感知数形结合思想在一次函数中的应用.4.经历对实际问题的解决过程,培养学生学数学、用数学的意识.二、教学重难点重点:用待定系数法确定一次函数的解析式.难点:灵活运用有关知识解决相关问题.三、教学过程教学环节教师活动学生活动设计意图环节一导入新课【回顾】前面我们学习了一次函数及其图象和性质,你能写出一个具体的一次函数解析式吗?如何画出它的图象?预设答案:y= x+2;两点法.【思考】追问:反过来,如果知道一条直线经过两个已知点,能否确定这条直线的表达式呢?我们一起来看下面这个问题.学生在练习本上画函数图象.复习旧知,引导学生在质疑中发现问题,在问题中展开教学,可以激活学生的数学思维,在解决问题中深化学生对知识的理解.【思考】如图,已知一次函数的图象经过P(0,-1),Q(1,1)两点. 怎样确定这个一次函数的解析式呢?学生独立完成解答,点名板培养学生的动手解题能力和规范解题步骤.y= x+2教师活动:引导学生分析求一次函数y=kx+b的解析式,关键是求出k、b的值.从已知条件可以列出关于k、b的二元一次方程组,并求出k,b.【归纳】待定系数法:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.特别提醒:在确定函数解析式时,要求几个系数一般就需要知道几个条件.提出问题:你能归纳出待定系数法求函数解析式的基本步骤吗?②设:②代:③解:④写:新知引导学生分析:利用待定系数法,通过设、代、解、写四个步骤求出.2.利用图像确定条件练习2.为缓解用电紧张,某电力公司制定了新的用电收费标准,每月用电量x (度)与应付电费y (元)的关系如图所示.根据图象,请分别求出当0≤x ≤50和x >50时,y 关于x 的函数解析式. 注意:y 与x 的函数解析式应合起来表示为3.利用文字信息确定条件在弹性限度内,弹簧的长度 y (厘米)是所挂物体质量 x (千x -2 -1 0 1 y 31思考后写出答案.步骤,进一步体会数形结合的思想.通过从实际问题中抽象出函数解析式和图象,让学生了解分段函数,培养学生的数学建模能力.引导学生关注自变量在不同区间取值时,要选对应的函数关系.y =0.5x(0≤x ≤50) 0.9x-20(x>50)克)的一次函数。
一次函数——用待定系数法求一次函数的解析式 教学设计 人教版八年级数学下册
![一次函数——用待定系数法求一次函数的解析式 教学设计 人教版八年级数学下册](https://img.taocdn.com/s3/m/3470bf2c7f21af45b307e87101f69e314332fa2d.png)
一次函数——用待定系数法求一次函数的解析式 教学设计一、教学目标: 1.知识与技能:①会用待定系数法求一次函数的解析式.②了解一个条件确定正比例函数解析式,两个条件确定一次函数的解析式. ③掌握一次函数的简单应用. 2.过程与方法:通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力. 3.情感态度价值观:通过自我探究得出数学结论,增强学好数学的信心。
二、教学重难点1.重点:会用待定系数法求一次函数的解析式2.难点:掌握一次函数的简单应用. 三、教学方法: 讲授法、练习法 四、 教学过程: (一)复习回顾1.正比例函数表达式的一般形式为 ; 一次函数表达式的一般形式为 .2.一次函数是一条 .3.一次函数图像上任意一点M (x ,y )均满足解析式y =kx +b(k ≠0) (二) 新课讲授1.如何画出一次函数图像?列表、描点、连线——两点确定一条直线画出列表:描点、连线:2、反过来,如果知道一次函数的图象,选取图象上的两个点,是否能够求出一次函数的解析式呢?正比例函数:将图像上的两点(0,0)(1,3)代入y 1=k 1x (k 1≠0),实际只需要一个方程求出常数k 1一次函数:将图像上的两点(0,2)(1,4)代入y 1=k 2x +b (k 2≠0),实际需要个方程求出两个常数k2、b 的值。
3.结论:①确定正比例函数需要一个条件,实质:求出k 1,即找到在图像上的一个点坐标; ②确定一次函数需要两个条件,实质:求出k 2,b ,即找到在图像上的两个点坐标。
(三)例题讲解(1)已知正比例函数y =kx(k ≠0)的图象经过点(1,−2),求正比例函数的解析式。
解:将点(1,−2)代入y =kx (k ≠0)中得:−2=k∴ y =−2x(2)已知一次函数的图象经过点(−2,−1)和(1,2),求一次函数的解析式。
解:设一次函数表达式为y =kx +b(k ≠0)将点(-2,-1),(1,2)代入y =kx +b(k ≠0)中得: −1=−2k +b2=k+bk=1∴ b=1∴y=x+1(四)总结归纳:(1)用待定系数法求一次函数解析式像这样,通过先设定函数解析式(确定函数模型),再根据条件确定解析式中的未知数系数,从而求出函数解析式的方法称为待定系数法。
人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案
![人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案](https://img.taocdn.com/s3/m/b54d61a4aff8941ea76e58fafab069dc502247f9.png)
-熟练运用一次函数模型解决实际问题。
举例解释:在教学过程中,教师应重点关注学生对待定系数法的基本理解和运用。例如,通过讲解和练习,确保学生明白如何将实际问题转化为数学模型,特别是如何选取未知数,列出方程组,并正确使用待定系数法求解。
2.教学难点
-理解待定系数法背后的数学思想,即通过设定未知系数来构建方程组。
4.培养学生的团队协作和交流能力:通过小组讨论、合作解决问题,促进学生之间的交流与合作,提高团队协作能力。
本节课将紧紧围绕这些核心素养目标,结合课本内容,设计教学活动,确保学生在掌握知识的同时,提高学科素养。
三、教学难点与重点
1.教学重点
-理解并掌握待定系数法的概念及原理。
-学会运用待定系数法求解一次函数的解析式。
1.培养学生的逻辑推理能力:通过待定系数法求解一次函数解析式的过程,让学生体会从特殊到一般、从具体到抽象的推理方法,提高逻辑思维水平。
2.提升学生的数据分析能力:使学生能够根据实际问题提炼出一次函数模型,通过数据处理和方程组构建,求解出函数解析式,从而解决实际问题。
3.增强学生的数学建模素养:培养学生运用数学知识构建一次函数模型解决实际问题的能力,提高数学应用意识。
五、教学反思
在今天的教学中,我带领学生们学习了待定系数法求解一次函数解析式的内容。回顾整个教学过程,我觉得有几个方面值得反思。
首先,我发现学生们在理解待定系数法的概念和原理上存在一定难度。虽然我在课堂上通过生动的案例进行了讲解,但可能还需要在今后的教学中进一步加强引导,让学生更加直观地感受到这一方法的应用价值。或许可以尝试引入更多生活中的实例,让学生认识到待定系数法在解决实际问题中的重要性。
人教版初中数学八年级下册19.2.2《待定系数法求一次函数的解析式》教案
![人教版初中数学八年级下册19.2.2《待定系数法求一次函数的解析式》教案](https://img.taocdn.com/s3/m/9e9faeae87c24028915fc3aa.png)
《待定系数法求一次函数解析式》的教学设计《待定系数法求一次函数解析式》一节是人教版八年级下册第十九章第二节中的一部分.本节是在认识了一次函数的定义、掌握了一次函数的图像与性质后,对于一次函数又一深刻的认识过程.只有明确了一次函数的解析式,才能对于一次函数进行更为深入的探究与综合的应用,本节起到了一个承上启下的作用.同时,本节还说明了函数解析式与函数图像的相互转化过程,实现这种转化过程的工具就是点的坐标,它是连接数与形两种对象的纽带.从实际问题中抽象出函数的解析式和图象,能培养学生从多个角度思考问题,更全面地认识了事物的本质所在.为此,我将本节课设计如下:一、教学目标:通过学生自学掌握待定系数法求一次函数解析式的方法与步骤;能根据题目中的信息正确求出一次函数的解析式,培养学生转化的数学思想;在实际问题中抽象出一次函数的解析式,培养学生掌握函数建模的数学思想,并使学生深刻体会一次函数模型解决实际问题的有效性.二.教学重点:待定系数法求一次函数解析式.三.教学难点:在实际问题中抽象出一次函数的解析式.四.教学关键:能在问题中转化出两个点的坐标.五.教学流程:(一)复习巩固、巧引新课.师:(给出函数三种表达方式的反例)这三种表达方式,能表达函数关系吗?生:不能.因为因变量y与自变量x不是一一对应关系.师:函数有几种表达方式?生:三种.解析式、表格法、图像法.师:列举一个一次函数,并回答下列问题:1.k=_ b=_ 2.此函数过第几象限? 3.增减性如何?4.与x轴交点坐标_,与y轴交点坐标_ 5.与坐标轴围成的三角形面积_学生根据自己列举的一次函数解析式,进行回答.师:对于y=kx+b(k≠0),能完成以上问题吗?我们必须知道哪些量?生:不能.必须知道k、 b的值.师:本节课我们就如何求k、 b的值,进行探究.(设计理念:复习巩固上一周所学的内容,铺垫一次函数的基础知识.对于一般式,进行求解相关的内容是有阻碍的,所以必须先求关键字母的值.这样循序渐进地引课,不能有效地复习上周的知识,又能将本节课的内容与前面的内容有机地结合起来.)(二)自我学习、检测要点.幻灯展示“学习目标”,全体学生进行诵读.1.掌握待定系数法.2.能根据题目中的已知条件正确求出一次函数解析式.3.能从实际问题中抽象出一次函数的解析式,掌握数学建模思想.幻灯展示“自学指导”:阅读教材第93、94页,思考问题:已知两个点的坐标,如何求过这两点的一次函数的解析式?幻灯展示“自学检测”:已知直线经过点(1,2)和点(3,0),求这条直线的解析式.学生们根据学习目标与自学指导进行为时5-10分钟的自学,并结合自己的自学情况进行自学检测.找一名同学板演自测题目.自我检测结束后,小组内进行互评.然后共同对于板演内容进行评析.归纳待定系数法的解题步骤.找两名同学进行加以说明.师:通过自学,你能得出何为“待定系数法”吗?生:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做“待定系数法”.(设计理念:自我学习一直是数学学习中所提倡的一种方法,让学生进行自学,找到知识间的联系与外延,将知识系统化.培养学生的自学能力一直是教者所做的终极目标.此处这样设计,很好地培养了学生的自学能力.)(三)变式训练、逐步提升.师:问题1中,如何表达的函数关系?出现了两点的坐标了吗?生:用表格法表达了函数关系,可以组建点的坐标.(-2,3)(1,0)(2,, -1),然后利用待定系数法即可求出一次函数的解析式.学生们动手操作,小组内进行互评互讲.师:问题2中,仅仅出现了一个点的坐标,能求出解析式吗?生:给出两直线平行了,即可说明k=-1,将(8,2)代入即可.师:问题3中,没有出现点的坐标,该如何求解析式?生:根据已知条件的表述,即可知道此直线经过(1,3(0,1),代入即可.然后将x=2代入已求的解析式中,可得y的值.师:题目中的函数关系是以哪种方式展现的?能读出两个点的坐标吗?生:以函数图像的方式展现的,经过(0,3)(2,0).(设计意图:设置了一组变式问题,目的让学生根据已知条件能正确读出点的坐标.同时,复习了两直线平行,比例系数相等这一重要性质.对于函数关系的表达方式,也有效地进行了复习.在这一过程中,能学生深深地体会到函数的三种表达方式不是孤立存在的,而是可以相互转化的,体会到转化的数学思想.)(四)分类讨论、拓展思维.师:问题5中出现了三角形,我们在分析问题时,要注意什么?生:作图,将已经条件落实到图形中,利用数形结合的思想.学生们自己独立思考完成、小组内进行讨论互评.派一名同学进行演示讲解.师:在解决此类问题时,一定要作图进行协助分析,充分利用数形结合的思想.根据面积,确定直线与x轴的交点,进而利用待定系数法求一次函数的解析式.问题6,由学生先独立思考,然后让有思路的同学进行理论分析,然后再动手自己完成.(设计理念:经过一点可以作出无数条直线,但这些直线大致可以分为两类.一是首先经过一三象限向下平移得到的,而是经过二四象限向下平移得到的.函数的增减性没有明确时,组建点的坐标要进行讨论.函数问题中也蕴藏中分类讨论的思想,需要学生们在尝试解决问题时要谨慎,真正灵活应用基本的数学思想方法.)(五)函数建模、深化应用.师:问题6中的实际问题,蕴含了什么关系?生:一次函数关系,因为图像是直线的一部分.师:能求出一次函数的解析式吗?从图中能读出什么信息?学生们独立思考,然后小组间进行交流.找两名同学进行解释. 生:销售量为1万件时,月收入1800元;销售量为2万件时,月收入为2000元;相当于直线过(1,1800)(2,2000),可以确定直线解析式,令x=0时,求出y值.师:问题7中的实际问题,根据图象能读出哪些信息?生:步行速度、出租车的速度、根据8—20时间段,可以求出直线解析式,并求出当x=20时,y的值,即可知道全程为65百米. (设计意图:函数是数学中继方程(组)、不等式(组)又一重要的数学模型,能在实际问题中构建正确的函数模型对于解决实际问题时至关重要的.设计两个实际问题,让学生初步感受函数的实际应用价值,在后续的教学中还要加大对一次函数应用的探究.)(六)课堂小结、全面提升.师:本节课你对一次函数有何收获?有何困惑?你又学习了哪些基本的数学思想方法?生:待定系数法求一次函数解析式;能将实际问题转化为函数问题;掌握了数形结合的思想、分类讨论法;函数建模思想.(七)作业:1.教材99页中的第6、7题.2.查找一次函数的实际应用问题,独立完成,将解决问题中的困惑记录下来,明天上课一同解决.。
用待定系数法求一次函数的解析式教学设计
![用待定系数法求一次函数的解析式教学设计](https://img.taocdn.com/s3/m/b06d22ab0b4e767f5acfced8.png)
用待定系数法求一次函数的解析式教学目标1、用待定系数法求一次函数的解析式。
2、学会利用一次函数解析式、性质、图象解决简单的实际问题。
3、通过本节课的专题学习,对前面所学知识有更系统和更深入的认识。
情感目标1、充分让学生合作探究,培养学生自主学习的能力,增进学生之间的友谊。
2、理论联系实际,让学生充分体验数学知识与生活实际的联系,从而激励学生热爱生活,热爱学习。
学情分析学生已学完本章知识的基础上,对求一次函数的解析式的方法进行归类总结。
教学重点让学生能在不同的条件下运用待定系数法求出一次函数的解析式,从而解决生活中的实际问题。
教学过程一、知识回顾一次函数和正比例函数的一般形式二、探索新知待定系数法和求一次函数解析式常见题型1.利用点的坐标求函数关系式例1:已知正比例函数的图象经过点(-2,6),求这个正比例函数的解析式.解:设这个正比例函数的解析式为y=kx(k≠0).∵y=kx的图象过点(-2,6),∴将(-2,6)代入得6=-2k,解之得 k=-3∴这个正比例函数的解析式为y=-3x小结:待定系数法:先设出函数解析式,再根据条件列出方程或方程组,求出未知的系数,从而具体写出这个式子的方法,叫做待定系数法。
练习:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式.(见黑板)小结:用待定系数法求函数解析式的一般步骤:变式1:已知一次函数y=kx+b,当x=1时,y=-5;当x=-2时,y=7.求这个一次函数的解析式.变式2:已知一次函数y=0.5x+b的图象过点(-2,3).求这个一次函数的解析式.变式3:已知一次函数y=kx+b的图象与y=2x平行且过点(2,-1).求这个一次函数的解析式.2.利用图像求函数关系式(见例2)变式4:已知一次函数y=k x+b 的图象过点A (3,0).与y 轴交于点B ,若△AOB 的面积为6,求这个一次函数的解析式.3.利用表格信息确定函数关系式例3: 小明根据某个一次函数关系式填写了下表:(略)解:设这个一次函数的解析式为y=kx+b (k ≠0)由表得,当x=0时,y=2;当x=1时,y=4.(略)4.根据实际情况收集信息求函数解析式例4: 已知弹簧长度y (厘米)在一定限度内所挂重物质量x (千克)的一次函数,现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的解析式。
待定系数法求一次函数的解析式--教案
![待定系数法求一次函数的解析式--教案](https://img.taocdn.com/s3/m/2af0dd53dcccda38376baf1ffc4ffe473268fd56.png)
教学设计
(1)设:设一次函数的一般形式;
(2)代:把图象上的点(x 1,y 1)(x 2,y 2),代入一次函数的解析式,组成二元一次方程组; (3)解:解二元一次方程组得k,b ; (4)写:把k,b 的值代入一次函数的解析式.
练习:已知一次函数y=kx+b 的图象经过点(-1, 1)和点(1,-5) , 求这个函数解析式,并求当x=5时,函数y 的值.
练习:小明根据某个一次函数关系式填写了下表:
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?
练习:一次函数的图象经过点(2,1)和点(1,5),则这个一次函数是( )
A.y=4x+9
B. y=4x -9
C. y=-4x+9
D. y=-4x -9
练习:若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m 的值是( )
A.8
B.4
C.-6
D.-8
练习:一次函数的图象如图所示,则k 、b 的值分别为( ) A.k=-2,b=1 B.k=2,b=1 C.k=-2,b=-1 D.k=2,b=-1
练习:已知一次函数的图像经过点(9,0)和点(24,20),求
这个一次函数的解析式.
练习:若一次函数的图象与直线y=-3x+2交y 轴于同一点,且过点(2,-6),求此函数解析式
x -2 -1 0 1 y
3
1
1
1 2
1
x
y。
八年级下册数学教案《待定系数法求一次函数的解析式》
![八年级下册数学教案《待定系数法求一次函数的解析式》](https://img.taocdn.com/s3/m/4ae8431ece84b9d528ea81c758f5f61fb6362817.png)
八年级下册数学教案《待定系数法求一次函数的解析式》学情分析一次函数是初中阶段学习的三种基本函数中最简单的一种函数形式,本节内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。
从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。
确定一次函数解析式,关键在于确定出一次函数y = kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的数学思想意识。
为后面学习反比例函数、二次函数夯实基础。
教学目的1、会用待定系数法,确定一次函数的解析式。
2、了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式。
3、掌握一次函数的简单应用。
教学重点用待定系数法确定一次函数的解析式。
教学难点灵活运用有关知识解决问题。
教学方法讲授法、演示法、启发式教学法、讨论法、练习法教学过程一、导入上节课我们学习了一次函数的图像与性质,在给定解析式的前提下,我们可以容易地画出函数图像,并说出它的有关性质,那反过来,如果已知一次函数图象的某些特征,能否确定函数解析式呢?这将是本节课我们要研究的问题。
二、待定系数法求一次函数解析式已知一次函数的图象经过点(3,5)与(-4,-9),求这个一次函数的解析式。
(学法指导:因为一次函数的图象是直线,所以要求直线的解析式,只需要找到直线上两个点的坐标,并将点的坐标代入一次函数解析式,得到关于k,b的二元一次方程组,即可求出系数k,b的值,进而确定一次函数的解析式)解:设这个一次函数的解析式为y = kx+b(k≠0)因为y = kx+b的图象过点(3,5)与(-4,-9),所以3k+b= 5-4k+b = -9解方程组得k = 2b = -1这个一次函数的解析式为y = 2x - 1总结:先设函数解析式,再根据条件确定解析式中未知数的系数,从而得到函数解析式的方法,叫做待定系数法。
2024年人教版八年数学下册教案(全册)一次函数 待定系数法确定函数解析式
![2024年人教版八年数学下册教案(全册)一次函数 待定系数法确定函数解析式](https://img.taocdn.com/s3/m/16b7bdcedbef5ef7ba0d4a7302768e9951e76ef3.png)
第3课时待定系数法确定函数解析式课时目标(一)教学知识点1.学会用待定系数法确定一次函数解析式.2.具体感知数形结合思想在一次函数中的应用.(二)能力训练目标1.经历待定系数法的应用过程,提高研究数学问题的技能.2.体验数形结合,逐步学习利用这一思想分析解决问题.学习重点待定系数法确定一次函数解析式.学习难点灵活运用有关知识解决相关问题.课时活动设计回顾复习已知正比例函数y=kx(k≠0)的图象经过点(-1,2),求这个正比例函数的解析式.解:∵正比例函数y=kx(k≠0)经过点(-1,2),∴-k=2,解得k=-2.∴这个正比例函数的解析式为y=-2x.设计意图:温故知新,为抓住本节重点、突破难点做知识储备.为本节课的学习提供迁移或类比的办法.1.提出问题,创设情境我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象的特征,并学会了已知解析式画出其图象的方法以及分析图象的特征与解析式之间的联系.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?2.导入新课有这样一个问题,大家来分析思考,寻求解决的办法. 活动设计内容:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?教师活动:引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.学生活动:在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.活动过程及结论:分析:求一次函数y =kx +b 的解析式,关键是求出k ,b 值.因为图象过(3,5)与(-4,-9)两点,所以这两点的坐标必适合解析式,由此可列出关于k ,b 的二元一次方程组,解之可得.解:设这个一次函数的解析式为y =kx +b (k ≠0).因为y =kx +b 的图象过点(3,5)与(-4,-9),所以{3k +b =5,-4k +b =-9解方程组得{k =2,b =-1.这个一次函数的解析式为y =2x -1. 结论:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.设计意图:通过活动掌握待定系数法在函数中的应用,进而思考分析,归纳总结一次函数解析式与图象之间的转化规律,体全数形结合思想在函数中的重要性.巩固训练1.已知一次函数y =kx +2,当x =5时,y 的值为4,求k 的值.解:将x =5,y =4代入y =kx +2,得4=5k +2,解得k =25. 2.已知直线y =kx +b 经过点(9,0)和点(24,20),求k ,b 的值.解:设这个一次函数的解析式为y =kx +b (k ≠0).把点(9,0)与(24,20)代入y =kx +b ,得{0=9k +b ,20=24k +b ,解得{k =43,b =-12.设计意图:强化学生对知识的理解,以题带点强化知识的应用.合作探究例 “黄金1号”玉米种子的价格为5元/kg .如果一次购买2 kg 以上的种子,超过2 kg 部分的种子价格打8折.(1)填写表格.购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 … 付款金额/元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.解:(1)购买量/kg 0.5 1 1.522.5 33.5 4 … 付款金额/元 2.557.5 1012141618…(2)设购买量为x kg,付款金额为y 元. 当0≤x ≤2时,y =5x.当x >2时,y =4(x -2)+10=4x +2.y 与x 的函数解析式也可以合起来表示为y ={5x ,0≤x ≤2,4x +2,x >2.函数图象如图所示.思考:你能由上面的函数解析式解决以下问题吗?由函数图象也能解决这些问题吗?(1)一次购买1.5 kg 种子,需付款多少元? (2)一次购买3 kg 种子,需付款多少元? 解:(1)当x =1.5时,y =5×1.5=7.5.所以一次购买1.5 kg 种子,需付款7.5元. (2)当x =3时,y =4×3+2=14.所以一次购买3 kg 种子,需付款14元.设计意图:涉及了分段函数,分段函数是在不同区间上有不同对应方式的函数.不讨论分段函数的名称,只是给出需要对自变量分段讨论的例子,讨论中要关注分段点的选取.特别注意分段函数的图象由几段组成,画图时要注意分段点的位置.尤其注意引导学生关注自变量在不同区间取值时要选对应的函数关系.学以致用1.一次函数的图象经过点(2,1)和点(1,5),则这个一次函数是(C)A.y=4x+9B.y=4x-9C.y=-4x+9D.y=-4x-92.已知点P的横坐标与纵坐标之和为1,且这点在直线y=x+3上,则该点是(D)A.(-7,8)B.(-5,6)C.(-4,5)D.(-1,2)3.若点A(-4,0),B(0,5),C(m,-5)在同一条直线上,则m的值是(D)A.8B.4C.-6D.-84.一次函数的图象如图所示,则k,b的值分别为(A)A.k=-2,b=1B.k=2,b=1C.k=-2,b=-1D.k=2,b=-15.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=2,k=-2;3(2)当x=30时,y=-18;(3)当y=30时,x=-42.拓展延伸6.若一直线与另一直线y=-3x+2交y轴于同一点,且过点(2,-6),你能求出这条直线的函数解析式吗?解:设这条直线的函数解析式为y=kx+b.在y=-3x+2中,当x=0时,y=2.∴y=kx+b过点(0,2),(2,-6).将(0,2),(2,-6)代入y=kx+b,得{2=b,2k+b=-6,解得{k=-4,b=2.∴这条直线的函数解析式为y=-4x+2.设计意图:巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.知识方面2.能力方面3.思想方法设计意图:让学生对本节课所学知识进行一下梳理,培养学生知识建构的意识.课堂8分钟.1.教材第95页练习第1,2题,第99页习题19.2第5题,第107页复习题19复习巩固第4题,拓广探索第13题.2.七彩作业.第3课时待定系数法确定函数解析式1.用待定系数法求解的步骤:(1)设:设一次函数的解析式为y=kx+b(k≠0);(2)代:将已知点的坐标代入y=kx+b,得到方程(组);(3)解:解所列方程(组);(4)代回:将所求得的k,b的值代回所设y=kx+b中.2.两条直线平行,k值相等.3.数学思想:方程思想.教学反思。
《待定系数法求解一次函数解析式》说课
![《待定系数法求解一次函数解析式》说课](https://img.taocdn.com/s3/m/4f4d46f26037ee06eff9aef8941ea76e58fa4a27.png)
教学过程
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
知识目标
能力目标
情感目标
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
1、理解待一定次系函数法和。正比例函数的 概 2、念会,用以待及定它系们数之法间求的一关次系函;数的表 3达、式能。根据已知条件写出一次函数 表达式 。
1、(必做题)已知一次函数,当时 y 的值为4,当时 y 的值为-2,求 k 与 b. 2、(必做题) 已知一次函数的图象经过点(-4, 9)和点(6, 3),求这个函 数的解析式. 3、(选做题)求与直线y=2x+5平行,且与x轴相交于点M(-2,0)的 直线的解析式。
【设计意图】以作业的形式反馈本节课内容的 掌握情况,并加以巩固提高。设置选做题则让 学有余力的同学有发挥的空间,使学生在课外 通过具有层次性的训练得到不同程度的发展。
y=3x-1 y=-2x+4
两点法——两点确定一条直线
【设计意图】 通过让学生动手画图的方式 巩固、 复习上节课的知识点。 同时为接下来所 要学的新知识“热身”。
二、学习目标
1、学会用待定系数法确定一次函数的解析式。
2、能根据函数的图象确定一次函数的解析式,体验 数形结合思想在一次函数中的应用。
函数解析式
1、求一次函数解析式的方法 ——待定系数法
2、待定系数法的一般步骤:
一设、二代、三解、四写
函数解析式
y =kx+b
选取
解出
满足条件的两 画出
定点(x1,y1) 与(x2,y2) 选取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时 用待定系数法求一次函数解析式
1.用待定系数法求一次函数的解析式;
(重点) 2.从题目中获取待定系数法所需要的两个点的条件.(难点)
一、情境导入
已知弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.
一次函数解析式怎样确定?需要几个条件?
二、合作探究 探究点:用待定系数法求一次函数解析式
【类型一】 已知两点确定一次函数解析式
已知一次函数图象经过点A (3,5)
和点B (-4,-9).
(1)求此一次函数的解析式;
(2)若点C (m ,2)是该函数图象上一点,求C 点坐标.
解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.
解:(1)设一次函数的解析式为y =kx +
b (k 、b 是常数,且k ≠0),则⎩⎪⎨
⎪
⎧5=3k +b ,-9=-4k +b ,∴⎩
⎪⎨⎪⎧k =2,
b =-1,∴一次函数的解析式为y =2x -1;
(2)∵点C (m ,2)在y =2x -1上,∴2=
2m -1,∴m =32,∴点C 的坐标为(3
2
,2).
方法总结:解答此题时,要注意一次函
数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.
【类型二】 由函数图象确定一次函数解析式
如图,一次函数的图象与x 轴、y
轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.
解析:先求出点B 的坐标,再根据待定系数法即可求得函数解析式.
解:∵OA =OB ,A 点的坐标为(2,0),∴点B 的坐标为(0,-2).设直线AB 的解
析式为y =kx +b (k ≠0),则⎩⎪⎨⎪
⎧2k +b =0,b =-2,解得
⎩
⎪⎨⎪⎧k =1,
b =-2,∴一次函数的解析式为y =x -2. 方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式.
【类型三】 由三角形的面积确定一次函数解析式
如图,点B 的坐标为(-2,0),
AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.
解析:△AOB 面积等于OB 与AB 乘积
的一半.根据OB 与已知面积求出AB 的长,确定出A 点坐标.设直线l 解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定出直线l 的解析式.
解:∵点B 的坐标为(-2,0),∴OB =2.∵S △AOB =12OB ·AB =3,∴1
2×2×AB =3,
∴AB =3,即A (-2,-3).设直线l 的解析
式为y =kx ,将A 点坐标代入得-3=-2k ,即k =32,则直线l 的解析式为y =32x .
方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.
【类型四】 利用图形变换确定一次函数解析式
已知一次函数y =kx +b 的图象过
点(1,2),且其图象可由正比例函数y =kx 向下平移4个单位得到,求一次函数的解析式.
解析:根据题设得到关于k ,b 的方程组,然后求出k 的值即可.
解:把(1,2)代入y =kx +b 得k +b =2.∵y =kx 向下平移4个单位得到y =kx +b ,∴b =-4,∴k -4=2,解得k =6.∴一次函数的解析式为y =6x -4.
方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y =kx +b +m .
【类型五】 由实际问题确定一次函数解析式
已知水银体温计的读数y (℃)与水
银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
水银柱的长度x (cm) 4.2 … 8.2 9.8
体温计的读数y (℃)
35.0
…
40.0
42.0 出函数自变量的取值范围);
(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.
解析:(1)设y 关于x 的函数关系式为y =kx +b ,由统计表的数据建立方程组求出k ,b 即可;(2)当x =6.2时,代入(1)的解析式就可以求出y 的值.
解:(1)设y 关于x 的函数关系式为y =
kx +b ,由题意,得⎩⎪⎨⎪⎧35.0=4.2k +b ,
40.0=8.2k +b ,解得
⎩⎪⎨⎪⎧k =1.25,
b =29.75,
∴y =1.25x +29.75.∴y 关于x 的函数关系式为y =1.25x +29.75;
(2)当x =6.2时,y =1.25×6.2+29.75=37.5.
答:此时体温计的读数为37.5℃. 方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.
【类型六】 与确定函数解析式有关的综合性问题
如图,A 、B 是分别在x 轴上位于
原点左右侧的点,点P (2,m )在第一象限内,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =12.
(1)求点A 的坐标及m 的值; (2)求直线AP 的解析式;
(3)若S △BOP =S △DOP ,求直线BD 的解析式.
解析:(1)S △POA =S △AOC +S △COP ,根据三角形面积公式得到12×OA ×2+12
×2×2=12,可计算出OA =10,则A 点坐标为(-10,0),然后再利用S △AOP =1
2×10×m =12求出
m ;(2)已知A 点和C 点坐标,可利用待定系
数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP 得PB =PD ,即点P 为BD 的中点,则可确定B 点坐标为(4,0),D 点坐标为(0,24
5),然后利用待定系数
法确定直线BD 的解析式.
解:(1)∵
S △POA =S △AOC +S △COP ,∴
1
2×OA ×2+1
2×2×2=12,∴OA =10,∴A
点坐标为(-10,0).∵S △AOP =1
2×10×m =
12,∴m =12
5
;
(2)设直线AP 的解析式为y =kx +b ,把
A (-10,0),C (0,2)代入得⎩
⎪⎨
⎪⎧-10k +b =0,
b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =1
5
x +
2;
(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P 为BD 的中点,∴B 点坐标为(4,0),D 点坐标为⎝⎛⎭⎫0,24
5.设直线BD 的解析式为y =k ′x +b ′,把B (4,0),D ⎝
⎛⎭⎫0,24
5代入得⎩
⎪⎨⎪
⎧4k ′+b ′=0,b ′=245,解得⎩
⎨⎧k ′=-6
5
,
b ′=245
,
∴直线BD 的
解析式为y =-65x +24
5
.
三、板书设计
1.待定系数法的定义
2.用待定系数法求一次函数解析式
教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.、。