高中数学程序框图,算法语言
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。
它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。
在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。
以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。
(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。
(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。
(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。
判断符号通常有两个或多个出口,分别表示不同的条件结果。
(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。
循环符号通常有一个判断条件和两个出口。
(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。
2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。
通过模块化可以提高算法的可读性和可维护性。
(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。
(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。
(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。
(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。
(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。
(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。
3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。
高三数学基本算法语句与程序框图
第九章算法初步【知识特点】1.本章容是新标新增加的必修容,算法是数学及其应用的重要组成部分,也是计算机科学的重要基础,它与前面的知识有密切联系,并且与实际问题的联系也非常密切。
2.算法的三种基本结构蕴含了比较深刻的思想,成了历年高考的重点,在复习中要熟练掌握算法的逻辑结构和算法语句的格式,正确阅读、理解程序框图和算法语句。
【重点关注】1.算法和程序框图算法和程序框图的核心是程序框图是三种基本逻辑结构,它与其他知识,如函数、方程、不等式、数列等有密切的联系,应用非常广泛。
2.基本算法语句基本算法语句是将程序框图转化为程序语句以实现算法的重要手段,是算法的主体容,高考试题对算法语句的考查一般是填空题,主要形式有两种,一是对一个算法程序中缺少的关键语句进行补充;二是写出一个算法执行后的结果,难度不会太大。
【地位和作用】算法是数学及其应用的重要组成部分,是计算科学的重要基础.随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想也正在成为普通公民的常识,成为现代人应具备的一种基本数学素养.从新课改最近几年各省份的高考信息统计可以看出,命题会呈现出以下特点:1.考查题型以选择、填空题为主,分值约点3%左右,基本属于容易题;2.重点考查程序框图的应用和基本算法语句,如条件结构、循环结构,以及它们相对应的基本算法语句,注重程序框图和基本算法语句的应用及判别;3.预计本章在今后的高考中仍将在程序框图和算法语句处命题,更加注重考查学生的识图能力、分析问题和解决问题的能力。
9.1基本算法语句与程序框图【高考目标导航】一、算法与程序框图(一)考纲点击1.了解算法的含义,了解算法的思想;2.理解程序框图的三种基本逻辑结构:顺序、条件、循环。
(二)热点提示1.本节是高考的热点容,主要考查算法的含义和程序框图的理解和应用;2.本部分在高考题中以选择、填空为主,属于中档题。
高中数学必修三《程序框图与算法的基本逻辑结构》课件
第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
是
r=0? 是
输出“n 不是质数”
否
否
输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a
知识讲解_高考总复习:算法与程序框图
高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。
2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。
3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。
要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。
考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。
2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。
高中数学算法知识点总结:程序框图
高中数学算法知识点总结:程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个判断结构可以有多个判断框。
3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
高三数学 算法与程序框图
自然语言、数学语言、形式语言、框图。
程序框图 用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
四种图框类型 输入、输出框
处理框
判断框
起止框
算法的三种基本逻辑结构和框图表示
顺序结构
条件分支结构
循环结构
A
Yp N
B
A
B
N
p
Y
A
P14练习A
1:
开始
2:
S=0,i=1
N
i 10
0 b 9,0 c 9 .
开始
输入实数 x a.bc
c5
Y
N
x a 0.1b
x a 0.:
x 3
N
x3
Y
y x2 3x 1
输出 y
x x 0.1
结束
P15习题1—1(B)
开始
1:
开始
2:
S=0,i=1
输入分数 b , d ac
N
i 50
x bc ad
加班工作时间工资t、p1、p2 计算t=60-40=20
计算p1=40×8=320
F 9 C 32 5
输出 F
计算p2=20×10=200
计算总工资 p3=p1+p2=520
计算净得工资 p=p3×0.9=468
结束
输出p 结束
P15习题1—1(A)
3: 设两位小数为a.bc ,其
中a, b, c 都为整数,且
Y
S=S+i
i=i+1
输出S 结束
开始 S=0,i=1
N
i 10
Y
S=S+1/i
i=i+1
高中数学必修三-算法与程序框图
算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。
高中数学 程序框图
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2 第三步,计算 S = p( p - a )( p - b)( p - c) .
S=
p(p - a)(p - b)(p - c)
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p( p a )( p b)( p c )
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2 第三步,计算 S = p( p - a )( p - b)( p - c) .
第四步,输出S.
3. 将上述算法的用程序框图表示
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2
S=
p(p - a)(p - b)(p - c)
Байду номын сангаас
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p( p a )( p b)( p c )
S p( p a )( p b)( p c )
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c.
S=
p(p - a)(p - b)(p - c)
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
高中数学必修三第一章1.1算法与程序边框图
第一章1.1算法与程序边框图1.算法的概念(1)算法概念的理解①算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.②算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.③算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.(2)算法的四个特征:概括性、逻辑性、有穷性、不唯一性①概括性:写出的算法必须能解决某一类问题,并且能够重复使用.②逻辑性:算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的步骤序列.③有穷性:算法有一个清晰的起始步,终止步是表示问题得到解答或指出问题没有解答,所有序列必须在有限个步骤之内完成,不能无停止地执行下去.④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法,当然这些算法有简繁之分、优劣之别.(3)常见的算法类型①数值性计算问题.如:解方程(或方程组)、解不等式(或不等式组)、利用公式求值、累加或累乘等问题,可通过相应的数学模型借助一般的数学计算方法,分解成清晰的步骤,使之条理化.②非数值性计算问题.如:判断、排序、变量变换等需先建立过程模型,再通过模型进行算法设计与描述.注意:(ⅰ)注意算法与解法的区别:算法是解决一类问题所需要的程序或步骤的统称;而解法是解决某一个具体问题的过程或步骤,是具体的解题过程.(ⅱ)设计算法时要尽量选取简捷、快速、高效的解决问题的算法.对一个具体的问题,我们要对解决问题的途径进行透彻的研究,找出最优算法,做到“先思考后处理”.2.程序框图(1)程序框图又称为流程图,是一种用程序框、流程线及文字说明来准确、直观地表示算法的图形.(2)用程序框图表示算法,具有直观、形象的特点,能更清楚地展现算法的逻辑结构.(3)程序框图主要由程序框和流程线组成.基本的程序框有终端框、输入框、输出框、处理框、判断框,其中终端框是任何流程图不可缺少的,而输入、输出可以用在算法中任何需要输入、输出的位置.(4)画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③终端框(起止框)是任何程序框图必不可缺少的,表示程序的开始和结束;④除判断框外,大多数程序框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;⑤程序框图符号框内的文字要简洁精炼.注意:(ⅰ)每一种程序框图的图形符号都有特定的含义,在画程序框图时不能混用,并且所用图形符号一定要标准规范,起始框只有一条流出线(没有流入线),终止框只有一条流入线(没有流出线),输入、输出框只有一条流入线和一条流出线,判断框有一条流入线和两条流出线.(ⅱ)如果一个程序框图由于纸面等原因需要分开画,要在断开处画上连接点,并标出连接的号码.(ⅲ)判断框是“是”与“否”两分支的判断,有且仅有两个结果.(ⅳ)一般地,画程序框图时,先用自然语言编写算法,然后再画程序框图.3.算法的三种基本结构(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的基本结构,其基本结构形式如图所示,其中A、B两框所指定的操作是依次执行的.顺序结构中所表达的逻辑关系是自然串行、上下连贯、线性排列的.(2)条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构.条件结构用于进行逻辑判断,并根据判断的结果进行不同的处理.条件结构必含判断框.条件结构的结构形式如图2所示,此结构中包含一个判断框,算法执行到此判断框给定的条件P时,根据条件P是否成立选择不同的执行框(A框或B框).注意:无论P是否成立,下一步只能执行A框或B框之一,不能A框和B框同时执行,也不能A、B两框都不执行,但A框和B框中可以有一个是空的,如图3.(3)循环结构:根据条件是否成立,以决定是否重复执行某些操作,在算法中要求重复执行同一操作的结构称为循环结构,重复执行的处理步骤称为循环体.根据执行情况及循环结束条件的不同可以分为当型循环(WHILE型)和直到型循环(UNTIL型).当型循环的特点是“先判断,后执行”,即先判断条件,当条件满足时,反复执行循环体,当条件不满足时退出循环(也就是说直到条件不满足时退出循环).如图4.直到型循环的特点是先执行一次循环体,再判断条件,当条件不满足时执行循环体,当条件满足时退出循环(即直到条件满足时退出循环),即“先执行,后判断”.如图5.当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.当型循环与直到型循环可以相互转化,条件互补.循环结构中常用的变量有计数变量、累加变量及累乘变量.计数变量用来记录某个事件发生的次数(即执行循环体的次数),累加变量用来计算数据之和,累乘变量用来计算数据之积.对于这些变量,开始一般要先赋初值,一般地,计数变量初值可设为0或1,累加变量初值设为0,累乘变量初值设为1.注意:(ⅰ)正确理解顺序结构的特点及适用条件是作出顺序结构图的关键.(ⅱ)画条件结构的程序框图要用到判断框,判断框有两个出口,根据不同的条件输出不同的信息,这些不同的信息必须全部写出.(ⅲ)只有有规律的,能重复进行的算法过程才能用循环结构.题型一算法设计写出能找出a 、b 、c 三个数中最小值的一个算法.解 第一步:输入a 、b 、c .并且假定min =a ;第二步:若b <min 成立,则用b 的值替换min ;否则直接执行下一步;第三步:若c <min 成立,则用c 的值替换min ,否则直接执行下一步;第四步:输出min 的值,结束.点评 本题的思路是:将min 定义为最小值,并把a 的值赋给min ,然后依次与b 、c 比较大小,遇到小的就替换min 的值,最后输出min 的值,这种方法可以推广到从多个不同的数中找出最大或最小的一个.题型二 条件结构的程序框图已知函数y =⎩⎪⎨⎪⎧ -1 (x >0),0 (x =0),1 (x <0).写出求该函数值的算法及程序框图.解 算法如下:第一步:输入x ;第二步:如果x >0,那么使y =-1,如果x =0,那么使y =0,如果x <0,那么使y =1; 第三步:输出函数值y .程序框图如图所示.点评 该函数是分段函数,当x 取不同范围内的值时,函数的表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的表达式求函数值,因为函数分了三段,所以判断框需要两个,即进行两次判断.求分段函数的函数值的程序框图,如果是分两段的函数只需引入一个判断框,如果是分三段的函数,至少需要引入两个判断框,分四段的函数要引入三个判断框,以此类推,至于判断框内的内容是没有顺序的,比如:本题中的两个判断框内的内容可以交换,但对应的下一图框中的内容或操作也必须相应地进行变化,比如本题的程序框图也可以画成如图1所示或如图2所示.图1图2题型三循环结构的程序框图看下面的问题:1+2+3+…+()>10 000,这个问题的答案不唯一,我们只要确定出满足条件的最小正整数n0,括号内填写的数只要大于或等于n0即可.试写出满足条件的最小正整数n0的算法并画出相应的程序框图.解算法如下:第一步:p=0;第二步:i=0;第三步:i=i+1;第四步:p=p+i;第五步:如果p>10 000,则输出i,算法结束.否则,执行第六步;第六步:回到第三步,重新执行第三步、第四步和第五步.该算法的程序框图如图所示.点评本题属于累加问题,代表了一类相邻两数的差为常数的求和问题的解法,需引入计数变量和累加变量,应用循环结构解决问题.在设计算法时前后两个加数相差1,则i=i +1,若相差2,则i=i+2,要灵活改变算法中的相应部分.另外需注意判断框内的条件的正确写出,直到型和当型循环条件不同,本题解法用的是直到型循环,用当型循环结构时判断框内条件应为p≤10 000.如图所示.题型四程序框图在生活中的应用72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.解用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同时引进两个累加变量,分别计算高于80分的成绩的总和和人数.程序框图如图所示.构和循环结构相结合的算法.【例1】如图所示是某一算法的程序框图,根据该框图指出这一算法的功能.错解 求S =12+14+16+…+110的值. 错解辨析 本题忽略了计数变量与循环次数,没有明确循环体在循环结构中的作用,以及循环终止条件决定是否继续执行循环体.正解 在该程序框图中,S 与n 为两个累加变量,k 为计数变量,所以该算法的功能是求12+14+16+…+120的值. 【例2】 试设计一个求1×2×3×4×…×n 的值的程序框图.错解 程序框图如图所示.错解辨析 本题程序框图看似当型循环结构,我们应当注意的是,当型循环结构是当条件满足时执行循环体,而本题显然是误解了当型循环结构条件.正解 程序框图如图所示.乘变量t和计数变量i,这里t与i每一次循环,它们的值都在改变.1.(海南、宁夏高考)如果执行下面的程序框图,那么输出的S为()A.2 450 B.2 500 C.2 550 D.2 652答案 C解析当k=1,S=0+2×1;当k=2,S=0+2×1+2×2;当k=3,S=0+2×1+2×2+2×3;…当k=50,S=0+2×1+2×2+2×3+…+2×50=2 550.2.(济宁模拟)在如图的程序框图中,输出结果是()A.5 B.6C.13 D.10答案 D解析a=5时,S=1+5=6;a=4时,S=6+4=10;a=3时,终止循环,输出S=10.3.(广东高考)阅读下图的程序框图.若输入m=4,n=6,则输出a=________,i=________.答案12 3解析输入m=4,n=6,则i=1时,a=m×i=4,n不能整除4;i=2时,a=m×i=8,n不能整除8;i=3时,a=m×i=12,6能整除12.∴a=12,i=3.一、选择题1.一个完整的程序框图至少包含()A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框答案 A解析一个完整的程序框图至少需包括终端框和输入、输出框.2.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C .条件结构中的两条路径可以同时执行D .对于一个算法来说,判断框中的条件是惟一的答案 B解析 由条件结构可知:根据所给条件是否成立,只能执行两条途径之一.3.下列问题的算法适宜用条件结构表示的是( )A .求点P (-1,3)到直线l :3x -2y +1=0的距离B .由直角三角形的两条直角边求斜边C .解不等式ax +b >0 (a ≠0)D .计算100个数的平均数答案 C解析 条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含有判断a 的符号,其余选项都不含逻辑判断.4.下列程序框图表示的算法是( )A .输出c ,b ,aB .输出最大值C .输出最小值D .比较a ,b ,c 的大小答案 B解析 根据流程图可知,此图应表示求三个数中的最大数.5.用二分法求方程的近似根,精确度为δ,用直到型循环结构的终止条件是( )A .|x 1-x 2|>δB .|x 1-x 2|<δC .x 1<δ<x 2D .x 1=x 2=δ答案 B解析 直到型循环结构是先执行、再判断、再循环,是当条件满足时循环停止,因此用二分法求方程近似根时,用直到型循环结构的终止条件为|x 1-x 2|<δ.二、填空题6.下边的程序框图(如下图所示),能判断任意输入的整数x 是奇数或是偶数.其中判断框内的条件是________.答案 m =0?解析 根据程序框图中的处理框和输出的结果,寻找判断框内的条件.由于当判断框是正确时输出的是“x 是偶数”,而判断框前面的处理框是x 除以2的余数,因此判断框应填“m =0?”.7.下图是计算1+13+15+…+199的程序框图,判断框应填的内容是________,处理框应填的内容是________.答案 i ≤99? i =i +2解析 由题意知,该算法从i =1开始到99结束,循环变量依次加2.8.完成下面求1+2+3+…+10的值的算法:第一步,S =1.第二步,i =2.第三步,S =S +i .第四步,i =i +1.第五步,________________________________________________________________________. 第六步,输出S .答案 如果i =11,执行第六步;否则执行第三步解析 本题是用自然语言来描述的算法,实际上第五步是一个判断条件,根据题意,是循环是否终止的条件,因此应该为如果i =11,执行第六步;否则执行第三步.三、解答题9.画出求11×2+12×3+13×4+…+199×100的值的程序框图. 解 这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:10.写出解方程ax +b =0 (a 、b 为常数)的算法,并画出程序框图.解 算法如下:第一步,判断a 是否等于零,若a ≠0,执行第二步,若a =0,执行第三步;第二步,计算-b a ,输出“方程的解为-b a”; 第三步,判断b 是否等于零,若b =0,输出“有无数个解”的信息,若b ≠0,输出“方程无解”的信息.程序框图如图所示:探 究 驿 站11.画出求12+12+…+12(共6个2)的值的程序框图. 分析 本题看上去非常烦琐,尤其是对于2的位置处理,容易让人产生错觉.本题只要把含有2的式子分离开来,用A 代替12,即令A =12,则不难分析出分母可化为12+A的形式,且此结构重复出现.解 方法一 当型循环结构程序框图如图所示.方法二 直到型循环结构程序框图如图所示.12.给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出.试画出该问题的程序框图.解程序框图如下图:趣味一题13.相传,古印度的舍罕王打算重赏国际象棋的发明者——宰相西萨·班·达依尔.于是,这位宰相跪在国王面前说:“陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍.陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人罢!”国王慷慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前.计数麦粒的工作开始了.第一格内放一粒,第二格两粒,第三格四粒……还没到第二十格,袋子已经空了.一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!请你画出一个程序框图来求需要的麦粒数.分析由题意,我们可以看出第一格内放一粒,第二格两粒,第三格四粒,就是往后每一格是前一格的2倍,这样一共需要的麦粒数就是1+2+22+…+262+263.从而可以得出这是一个累加求和问题,可以利用循环结构来设计算法,计数变量i从1到64循环64次,每个求和的数可用一个累乘变量表示.解程序框图:。
高一数学算法与程序框图
程序框图如下:
i=1 s=0 i=i+1 i<=100? 是 s=s+1
否 输出s
结束
开始
例1. 某工厂2005年的年生产总值为200万元,技术革新后 n=2005 预计以后每年的年生产总值都比上一年增长5%.设计一程 序框图,输出预计年生产总值超过300万元的最早年份。 a=200
t=0.05a a=a+t n=n+1 否
结束
在一些算法中,从否处开始,按照一定条件, 反复执行某一处理步骤的情况,这就是循环结构。反复执行的 处理步骤称为循环体。 在循环结构中,通常都有一个起到循环计数作用的变量,这个 变量的取值一般都含在执行或中止循环体的条件中。
Until(直到型)循环
③循环结构
While(当型)循环
A P
不成立
A P
a>300? 是 输出n
结束
算 法
可以理解为由基本运算及规定的运 算顺序所构成的完整的解题步骤,或 者看成按照要求设计好的有限的确切 的计算序列,并且这样的步骤或序列 能够一类问题解决.
自然语言、数学语言、形式语言、框图。
程序框图
用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
四种图框类型 输入、输出框 处理框 判断框 起止框
A B 开始
由若干个依次执行的处理步骤组成的。
例1 已知一个三角形的三边边长分别为2、3、4,利用 海伦-秦九韶公式设计一个算法,求出它的面积,画出 它的程序框图。
三角形面积为s
p ( p a )( p b)( p c )
23 4 p 3
s
其中p
abc (a、b、c为三角形三边长) 3
高中数学_算法与程序框图
算法与程序框图知识图谱算法与程序框图知识精讲一.算法的概念1.算法的定义由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则,解决某一类问题的明确的和有限的步骤,称为算法.通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征:(1)有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;(2)确定性:算法的每一个步骤必须有确定的含义;(3)可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;(4)输入:有零个或多个输入;(5)输出:有一个或多个输出.二.算法的描述1.用自然语言;2.用数学语言;3.用算法语言(程序设计语言);4.用程序框图(流程图).三.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).1.常用图形符号:图形符号名称符号表示的意义起、止框框图的开始或结束输入、输出框数据的输入或者结果的输出处理框赋值、执行计算语句、结果的传送判断框根据给定条件判断流程线流程进行的方向连结点连结另一页或另一部分的框图四.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构.1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,只有在执行完A 框指定的操作后,才能接着执行B 框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:否否是是BA A P PB A3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:否是A P三点剖析一.注意事项:1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到达结束框,流程线必须加箭头表示顺序.2.对于循环结构有如下需要注意的情况:(1)循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确;(2)循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如i n ≤就是中止循环的条件;(3)循环结构的关键是,要理解“累加变量”和“用1i 代替i ”,S 是一个累加变量,i 是计数变量,每循环一次,S 和i 都要发生变化,这两步要重复计算若干次;(4)一种循环结构是先判断i n ≤是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了当型循环外,常用的循环结构还有直到型循环.二.方法点拨1.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号;(4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚.2.画程序框图要注意的几点:(1)起、止框是任何流程不可少的,表示程序的开始和结束;(2)输入、输出框可以用在算法中任何需要输入、输出的位置;(3)算法中间要处理数据或计算,可分别写在不同的处理框内;(4)当算法要求你对两个不同的结果进行判断时,要写在判断框内;(5)一个算法步骤到另一个算法步骤用流程线连结;(6)如果一个框图需要分开来画,要在断开处画上连结点,并标出连结的号码.程序框图例题1、下列说法正确的是()A.算法就是某个问题的解题过程;B.算法执行后可以产生不同的结果;C.解决某一个具体问题算法不同结果不同;D.算法执行步骤的次数不可以为很大,否则无法实施.例题2、指出下列哪一个不是算法()A.解方程260x -=的过程是移项和系数化为1B.从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C.解方程2210x x +-=D.利用公式2πS r =,计算半径为3的圆的面积为2π3⨯例题3、下列语句中是算法的个数为()①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否是大树;④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积A.1B.2C.3D.4随练1、下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭要需要刷锅.添水.加热这些步骤C.在野外做饭叫野炊D.做饭必需要有米随练2、下列关于算法的说法正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后产生确定的结果.A.1个B.2个C.3个D.4个随练3、早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶算法的三种逻辑结构和框图表示例题1、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题2、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题3、阅读右边的程序框图,运行相应的程序,输出的S的值是()A.26B.40C.57D.无法确定随练1、如图是某算法的流程图,则执行该算法输出的结果是S=____.随练2、执行如图所示的程序框图,如果输入a=2,那么输出的a值为()A.4B.16C.256D.log316随练3、执行如图所示的程序框图,则输出的k=()A.4B.5C.6D.7拓展1、算法的有穷性是指()A.算法最后包含输出B.算法的每个操作步骤都是可执行的C.算法的步骤必须有限D.以上都不正确2、下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3、看下面的四段话,其中不是解决问题的算法的是()A.从上海到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C.方程210x -=有两个实根D.求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,4、根据如图程序框图,输出k 的值为()A.3B.4C.5D.65、给出计算12+14+16+…+120的值的一个程序框图如图,其中判断框内应填入的条件是()A.i >10B.i <10C.i >20D.i <206、如图所示的流程图表示一函数,记作y=f (x ),若x 0满足f (x 0)<0,且f (f (x 0))=1,则x 0=____.。
高中数学程序框图,算法语言
基本算法语句【基础知识】1.输入、输出语句输入语句INPUT 对应框图中表示输入的平行四边形框输出语句PRINT 对应框图中表示输出的平行四边形框2.赋值语句格式为变量=表达式,对应框图中表示赋值的矩形框3.条件语句一般有两种:IF—THEN语句;IF—THEN—ELSE语句.语句格式及对应框图如下.(1)IF—THEN—ELSE格式当计算机执行这种形式的条件语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句体1,否则执行ELSE后的语句体2.(2)IF—THEN格式4.算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中有当型(WHILE型)和直到型(UNTIL型)两种语句结构,即WHILE语句和UNTIL语句.(1)WHILE语句(2)UNTIL语句5.............................对应关系翻译成框图。
...............解决算法语言试题的基本技巧是把题目中的算法语言依照上面的..温馨提示:【例题分析】考点一输入、输出和赋值语句的应用例1分别写出下列语句描述的算法的输出结果:(1)a =5b =3c =(a +b )/2d =c*cPRINT “d =”;d (2)a =1b =2c =a +b b =a +c -bPRINT “a =,b =,c =”;a ,b ,c【解答】 (1)∵a =5,b =3,c =a +b2=4,∴d =c 2=16,即输出d =16.(2)∵a =1,b =2,c =a +b ,∴c =3,又∵b =a +c -b , 即b =1+3-2=2,∴a =1,b =2,c =3, 即输出a =1,b =2,c =3.练习1 请写出下面运算输出的结果__________. a =10b =20c =30a =b b =c c =aPRINT “a =,b =,c =”;a ,b ,c【解答】经过语句a =b ,b =c 后,b 的值赋给a ,c 的值赋给b ,即a =20,b =30,再经过语句c =a 后,a 的当前值20赋给c ,∴c =20.故输出结果a =20,b =30,c =20.考点二 条件语句的应用例2阅读下面的程序,当分别输入x =2,x =1,x =0时,输出的y 值分别为________、________、________.INPUT “x =”;x IF x>1 THEN y =1/(x -1)ELSEIF x =1 THEN y =x^2ELSEy =x^2+1/(x -1) END IF END IF PRINT y END【解答】计算机执行这种形式的条件语句时,是首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句;如果条件不符合,则直接结束该条件语句,转而执行其他语句,嵌套时注意内外分层,避免逻辑混乱.由程序可知分段函数是:y =⎩⎪⎨⎪⎧x 2+1x -1, x<1x 2, x =11x -1, x>1∴输入x =2,输出1; 输入x =1,输出1;输入x =0,输出-1. 故输出的y 的值1,1,-1练习2 阅读下面的程序,写出程序运行的结果.(1)若x =6,则P =______;(2)若x =20,则P =______.【解答】(1)2.1(2)10.5考点三循环语句的应用例3下列程序执行后输出的结果是()n=5s=0WHILE s<14s=s+nn=n-1WENDPRINT nENDA.-1B.0C.1D.2【解答】解题导引解答这类问题的关键是认真阅读程序,理解程序功能.必要时,根据程序画出框图辅助分析.C[由程序画出对应的程序框图,这是一个当型循环语句.由框图可知,该程序的功能是计算s =5+4+…+n 到首次不小于14的n -1的值,即(s ,n)由以下运算得:(0,5)→(0+5,5-1)→(5+4,4-1)→(9+3,3-1)→(12+2,2-1),所以输出n =1.]练习3 下面的程序运行后第3个输出的数是( )A .1 B.32 C .2D.52【解答】C [该程序中关键是循环语句, 第一次输出的数是1,第二次输出的数是x =1+12=32,第三次输出的数是x =1+12+12=2.]【课后练习】1.(2011·银川模拟)下面程序运行的结果是( ) i =1S =0WHILE i<=100 S =S +ii =i +1WEND PRINT S ENDA .5 050B .5 049C .3D .2【解答】A [该程序的功能是求S =1+2+…+100的值.由等差数列求和公式得,S =1002×(1+100)=5 050.]2.下面程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL i*i>=2 000 i =i -1PRINT i END A .42B .43C .44D .45【解答】C [程序功能是求使i 2≥2 000成立的最小i 值,输出结果为i -1.∵442=1 936,452=2 025>2 000,∴输出结果为44.]3.利用计算机计算:s =11×2+12×3+13×4+…+199×100,某同学编写的程序语句中,①处应填________.【解答】k >99解析 循环体执行到k =99.4.为了在运行下面的程序之后得到y =25,键盘输入的x 应该是________.INPUT xIF x<0 THEN y =(x +1)*(x +1)ELSEy =(x -1)*(x -1)END IF PRINT y END【解答】-6或6解析 程序对应的函数是y =⎩⎪⎨⎪⎧(x +1)2,x<0(x -1)2,x ≥0.由题意得,⎩⎨⎧ x<0(x +1)2=25,或⎩⎨⎧x ≥0(x -1)2=25, 解得x =-6或x =6.5.当a =1,b =3时,执行完如下的一段程序后x 的值是( ) INPUT a,bIF a<b THEN x =a +b ELSEx =a -b END IFA .1B .3C .4D .-2 【解答】C [∵1<3,∴x =1+3=4.]6.(2011·淄博统考)当x =2时,下面的程序运行结果是( ) i =1s =0WHILE i<=4 s =s*x +1i =i +1WEND PRINT s ENDA .3B .7C .15D .17【解答】C [当x =2时,i =1≤4,s =0×2+1=1; i =1+1=2≤4,s =1×2+1=3; i =2+1=3≤4,s =3×2+1=7; i =3+1=4≤4,s =7×2+1=15;i =4+1=5>4,输出s =15.]7.(2011届温州期末)下列程序执行后输出的结果是________________________. i =11s =1DOs =s*ii =i -1LOOP UNTIL i<9PRINT s END【解答】990解析由题意s=11×10×9=990.。
人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图
UNTIL型
WHILE型
i=1 s=0 DO s=s+i i=i+1 LOOP UNTIL i>100 PRINT s END 执行循环体直到满 足条件时跳出循环 (不满足条件时执行 循环体)
i=1 s=0 WHLIE i<=100 s=s+i i=i+1 WEND PRINT s END 当满足条件时,执行 循环体(直到不满 足条件时跳出循环)
3 . 则输出的 n 的值为________
第十四章 算法初步
第二节 基本算法语句
一.各种程序设计语言中都包含下列基本的算法语句: 输入语句 输出语句 赋值语句 条件语句 循环语句
二.基本算法语句 (一)输入语句 INPUT “提示内容”;变量
INPUT “ 提 示 内 容 1 , 提 示 内 容 2 , 提 示 内 容 3,…”;变量1,变量2,变量3,…
基础自测
1.(2009年汉沽模拟)已知变量a,b已被赋值,要交换a、b的
值,采用的算法是( D A.a=b,b=a C.a=c,b=a,c=a B.a=c,b=a,c=b D.c=a,a=b,b=c C
基础自测
2. 下边的程序语句输出的结果S为(A )
A.17
B.19
C.21
D.23
990 3. 下列程序执行后输出的结果是_________ i=1 WHILE i<8 S=2i+3 i=i+2 WEND PRINT S END i=11, S=1, DO s=s*i s=1 LOOP UNTIL i<9 PR图的两部分
开始
输入n i=2 求n除以i的余数r i=i+1 i≥n或r=0?
是
高考数学专题—算法与程序框图
高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。
高三数学第一轮复习专题---算法与程序框图、基本算法语句
第五十一讲 算法与程序框图、基本算法语句班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.(2010·新课标全国卷)如果执行下面的框图,输入N =5,则输出的数等于( ) A.54 B.45 C.65D.56解析:根据程序框图可知,该程序框图的功能是计算S =11×2+12×3+13×4+…+1k (k +1),现在输入的N =5,所以输出的结果为S =11×2+12×3+13×4+14×5+15×6=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫15-16=56.故选D. 答案:D2.(2010·福建)阅读下图所示的程序框图,运行相应的程序,输出的i 值等于( )A.2 B.3C.4 D.5解析:当i=1时,a=1×2=2,s=0+2=2,i=1+1=2;由于2>11不成立,故a=2×22=8,s=2+8=10,i=2+1=3;由于10>11不成立,故a=3×23=24,s=10+24=34,i =3+1=4;34>11成立,故输出的i=4.答案:C3.(2010·天津)阅读如图所示的程序框图,运行相应的程序,则输出s的值为()A.-1B.0 C.1D.3解析:第一次执行s=1×(3-1)+1=3,i=2;第二次执行s=3×(3-2)+1=4,i=3;第三次执行s=4×(3-3)+1=1,i=4;第四次执行s=1×(3-4)+1=0;i=5>4,结束循环,故输出的结果是0,选B.答案:B4.(2010·辽宁)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360C.240 D.120解析:k=2,p=12;k=3,p=60;k=4,p=360,k=4时不满足k<m,所以输出的p=360.答案:B5.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1) B.S=S*x n+1C.S=S*n D.S=S*x n解析:由题意可知,输出的是10个数的乘积,故循环体应为S=S*x n,所以选D.答案:D6.(2010·天津)阅读如图所示的程序框图,若输出s的值为-7,则判断框内可填写()A.i<3? B.i<4?C.i<5? D.i<6?解析:由题意可知i=1,s=2→s=1,i=3→s=-2,i=5→s=-7,i=7,因此判断框内应为i<6?.答案:D二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2010·安徽)如图所示,程序框图(算法流程图)的输出值x=________.解析:当x =1时,执行x =x +1后x =2;当x =2时,执行x =x +2后x =4,再执行x =x +1后x =5;当x =5时,执行x =x +1后x =6;当x =6时,执行x =x +2后x =8,再执行x =x +1后x =9;当x =9时,执行x =x +1后x =10;当x =10时,执行x =x +2后x =12,此时12>8,因此输出的x 的值为12.答案:128.(2010·山东)执行如图所示的程序框图,若输入x =4,则输出y 的值为________.解析:当x =4时,y =1,|1-4|=3>1,此时x =1; 当x =1时,y =-12,⎪⎪⎪⎪-12-1=32>1,此时x =-12;当x =-12时,y =-54,⎪⎪⎪⎪-54+12=34<1, 故此时输出y 的值为-54.答案:-549.定义某种运算S =a ⊗b ,运算原理如图所示.则式子:(2tan 5π4)⊗lne +lg100⊗(13)-1的值是________.解析:原式=2⊗1+2⊗3=2×(1+1)+2×(3-1)=8. 答案:810.(2010·广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为x 1,…,x n (单位:吨).根据如图所示的程序框图,若n =2,且x 1,x 2分别为1,2,则输出的结果s 为________.解析:i =1时,s 1=0+x 1=1,s 2=0+x 21=1,s =11×⎝⎛⎭⎫1-11×12=0;i=2时,s1=1+x2=3,s2=1+x22=5,s=12×⎝⎛⎭⎫5-12×32=14;i=3时,结束循环,输出s=1 4.答案:1 4三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.如图,设计算法求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积,并画出相应的程序框图.解:解法一:先求体积,V=13Sh,S=a2,高h=l2-R2,R=22a,斜高h′=l2-a24,从而求得S侧=4×12a·h′=2ah′.由解法一可得算法一:S1 a=4,l=5;S2 R=22a;S3 h=l2-R2,S=a2;S4 V=13Sh;S5 输出V;S6 h′=l2-a2 4;S7 S侧=2ah′;S8 输出S侧.解法二:推导出利用a和l表达的侧面积及体积公式,然后代入求解.由解法二得算法二:S1 a=4,l=5;S3 V=13a2l2-a22;S4 输出S侧,V.算法一程序框图如图1;算法二程序框图如图2.评析:利用公式求解问题,先写出公式,看公式中的条件是否满足,若不满足,先求出需要的量,看要求的量需根据哪些条件求解,需要的条件必须先输入,或将已知条件全部输入,求出未知的量,然后将公式中涉及的量全部代入求值即可.利用算法和程序框图,能够规范思维,可以锻炼书面表达的能力,先求什么,后求什么,无论是用算法表达,还是用程序框图表达,都是一目了然,非常清晰的,所以把这种方法用于我们平时的做题会使解题的思路简练、易懂、有逻辑性.12.2008年某地森林面积为1000 km2,且每年增长5%,到哪一年该地森林面积超过2000 km2.请设计一个程序,并画出程序框图.解:需要一个累加变量和一个计数变量,将累加变量的初值设为1000,计数变量从0开始取值.程序框图为:程序为:13.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值.分析:利用秦九韶算法一步一步地代入运算,注意本题中有几项不存在,在计算时,我们应该将这些项添加上,比如含有x3这一项可看作0·x3.解:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0·x5+3·x4+0·x3+0·x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1.v0=8;v1=8×2+5=21;v2=21×2+0=42;v3=42×2+3=87;v4=87×2+0=174;v5=174×2+0=348;v6=348×2+2=698;v7=698×2+1=1397.∴当x=2时,多项式的值为1397.评析:秦九韶算法是多项式求值的优秀算法,秦九韶算法的特点:(1)化高次多项式求值为一次多项式求值;(2)减少了运算次数,提高了效率;(3)步骤重复执行,容易用计算机实现.利用秦九韶算法计算多项式的值关键是能正确地将所给多项式改写,然后由内向外逐次计算,由于后项计算用到前项的结果,故应认真、细心,确保中间结果的准确性.若在多项式中有几项不存在时,可将这些项的系数看成0,即把这些项看做0·x n.高考学习网-中国最大高考学习网站 | 我们负责传递知识!。
高中数学 考点45 算法与程序框图、基本算法语句、算法案例(含2013高考试题)
考点45 算法与程序框图、基本算法语句、算法案例一、选择题1。
(2013·天津高考理科·T3)阅读下边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64B.73 C。
512 D。
585【解题指南】按照框图循环计算要求逐次进行.【解析】选B.因为输入的x的值为1,第一次循环S=1,x=2;第二次循环S=9,x=4;第三次循环S=73,此时满足输出条件,故输出,则输出S的值为73。
2。
(2013·安徽高考理科·T2)【(2013·安徽高考文科·T3)题干与之相同】如图所示,程序框图(算法流程图)的输出结果是()A. 16B。
2524C.34D.1112【解题指南】程序循环到第三次时n=8〈8,退出循环,输出结果。
【解析】选D.第一次循环:1,4;2s n第二次循环:113+=,6;244s n第三次循环:3111+=,884612s n不成立,退出循环,输出结果为1112。
3.(2013·天津高考文科·T3)阅读下边的程序框图,运行相应的程序,则输出n的值为()A 。
7 B.6 C.5 D.4【解题指南】根据框图所表示的运算,逐次进行,直至达到输出条件.【解析】选 D.第一次运算,n=1,S=-1;第二次运算,n=2,S=1;第三次运算,n=3,S=—2;第四次运算,n=4,S=2,此时符合输出条件,故输出的n 值为4。
4. (2013·广东高考文科·T5)执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .4D .7 【解题指南】本题考查程序框图等知识,可依据题设条件顺次验算。
【解析】选C. 各次执行循环体的情况是:10,2s i =+=;11,3s i =+=;22,4s i =+=;此时跳出循环体,输出4s =5. (2013·重庆高考文科·T5)执行如图所示的程序框图,则输出的k 的值是( )A. 3 B 。
高考数学复习:算法与程序框图、基本算法语句
A.6
B.7
C.8
D.12
【解析】选C.S=0,n=1,S>1 009? 否
2 020
S=0+(1 )1 ,n=1+1=2,S1>009 ? 否
3
2 020
S=0+(1 )1 (1,n)2=2+1=3,S>1 009? 否
33
2 020
由( 1 )1 ( 1 )2 ( 1 )3 ( 1 )m
A.1B.1C. 3D.1
4
2
4
3
【解析】选A.由题意,得2×[2×(2x+1)+1]+1≥55, 解得x≥6,所以输出的x不小于55的概率为 8-6=1 .
84
思想方法系列15——程序框图中的分类讨论思想 【思想诠释】每个数学结论都有其成立的条件,每一种 数学方法的使用也往往有其适用范围,在我们所遇到的 数学问题中,有些问题的结论不是唯一确定的,有些问 题的结论在解题中不能以统一的形式进行研究,还有些
由( 1 )1 ( 1 )2 ( 1 )3 ( 1 )m
33 3
3
1[1-( 1 )m ] 33
1 [1-( 1
)m ]>1
009 ,得
1-1
23
2 020
3
1 < 1 ,即3m>1 010,m≥7,”………………抓本质
3m 1 010
“由此可知S=0+ (1 )1 (1 )2 (1 )3 (1 )7,
第八章 算法、复数、推理与证明 第一节 算法与程序框图、
基本算法语句(全国卷5年11考)
【知识梳理】 1.算法 算法通常是指按照一定_规__则__解决某一类问题的 __明__确__和__有__限__的__步__骤__.这些步骤必须是_明__确__和_有__效__ 的,而且能够在有限步之内完成.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本算法语句
【基础知识】
1.输入、输出语句
输入语句INPUT 对应框图中表示输入的平行四边形框
输出语句PRINT 对应框图中表示输出的平行四边形框
2.赋值语句
格式为变量=表达式,对应框图中表示赋值的矩形框
3.条件语句一般有两种:IF—THEN语句;IF—THEN—ELSE语句.语句格式及对应框图如下.(1)IF—THEN—ELSE格式
当计算机执行这种形式的条件语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句体1,否则执行ELSE后的语句体2.
(2)IF—THEN格式
4.算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中有当型(WHILE型)和直到型(UNTIL型)两种语句结构,即WHILE语句和UNTIL语句.
(1)WHILE语句
(2)UNTIL语句
5.
......................................巧是把题目中的算法语言依照上面的对应关系翻译成框图。
.....解决算法语言试题的基本技
..温馨提示:
【例题分析】
考点一 输入、输出和赋值语句的应用
例1 分别写出下列语句描述的算法的输出结果: (1) a =5b =3c =(a +b )/2d =c*c
PRINT “d =”;d
(2)
a =1
b =2
c =a +b b =a +c -b
PRINT “a =,b =,c =”;a ,b ,c
【解答】 (1)∵a =5,b =3,c =a +b 2
=4, ∴d =c 2=16,即输出d =16.
(2)∵a =1,b =2,c =a +b ,∴c =3,又∵b =a +c -b ,
即b =1+3-2=2,∴a =1,b =2,c =3,
即输出a =1,b =2,c =3.
练习1 请写出下面运算输出的结果__________.
a =10
b =20
c =30
a =
b b =c
c =a
PRINT “a =,b =,c =”;a ,b ,c
【解答】经过语句a =b ,b =c 后,b 的值赋给a ,c 的值赋给b ,即a =20,b =30,再经过语句c =a 后,a 的当前值20赋给c ,∴c =20.故输出结果a =20,b =30,c =20.
考点二 条件语句的应用
例2 阅读下面的程序,当分别输入x =2,x =1,x =0时,输出的y 值分别为________、________、________.
INPUT “x =”;x
IF x>1 THEN
y =1/(x -1)
ELSE
IF x =1 THEN
y =x^2 ELSE
y =x^2+1/(x -1)
END IF
END IF
PRINT y
END
【解答】计算机执行这种形式的条件语句时,是首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句;如果条件不符合,则直接结束该条件语句,转而执行其他语句,嵌套时注意内外分层,避免逻辑混乱.
由程序可知分段函数是:
y =⎩⎪⎨⎪⎧ x 2+1x -1, x<1x 2, x =1
1x -1, x>1
∴输入x =2,输出1;
输入x =1,输出1;
输入x =0,输出-1. 故输出的y 的值1,1,-1
练习2 阅读下面的程序,写出程序运行的结果.
(1)若x =6,则P =______;(2)若x =20,则P =______.
【解答】(1)2.1 (2)10.5
考点三 循环语句的应用
例3 下列程序执行后输出的结果是( )
n =5
s =0
WHILE s<14
s =s +n n =n -1
WEND
PRINT n
END
A .-1
B .0
C .1
D .2
【解答】解题导引 解答这类问题的关键是认真阅读程序,理解程序功能.必要时,根据程序画出框图辅助分析.
C [由程序画出对应的程序框图,这是一个当型循环语句.
由框图可知,该程序的功能是计算s =5+4+…+n 到首次不小于14的n -1的值,即(s ,n)由以下运
算得:(0,5)→(0+5,5-1)→(5+4,4-1)→(9+3,3-1)→(12+2,2-1),所以输出n =1.]
练习3 下面的程序运行后第3个输出的数是( )
A .1
B.32 C .2 D.52
【解答】C [该程序中关键是循环语句,
第一次输出的数是1,
第二次输出的数是x =1+12=32
, 第三次输出的数是x =1+12+12
=2.]
【课后练习】
1.(2011·银川模拟)下面程序运行的结果是( ) i =1
S =0
WHILE i<=100
S =S +i i =i +1
WEND
PRINT S
END
A .5 050
B .5 049
C .3
D .2
【解答】A [该程序的功能是求S =1+2+…+100的值.由等差数列求和公式得,S =1002
×(1+100)=5 050.]
2.下面程序运行后,输出的值是( )
i =0
DO
i =i +1
LOOP UNTIL i*i>=2 000 i =i -1
PRINT i
END
A .42
B .43
C .44
D .45
【解答】C [程序功能是求使i 2≥2 000成立的最小i 值,输出结果为i -1.∵442=1 936,452=2 025>2 000,∴输出结果为44.]
3.利用计算机计算:s =
11×2+12×3+13×4+…+199×100
,某同学编写的程序语句中,①处应填________.
【解答】k >99
解析 循环体执行到k =99.
4.为了在运行下面的程序之后得到y =25,键盘输入的x 应该是________.
INPUT x
IF x<0 THEN
y =(x +1)*(x +1)
ELSE y =(x -1)*(x -1)
END IF
PRINT y
END
【解答】-6或6
解析 程序对应的函数是y =⎩⎪⎨⎪⎧
(x +1)2,x<0(x -1)2,x ≥0. 由题意得,⎩⎨⎧ x<0(x +1)2=25,或⎩
⎨⎧
x ≥0(x -1)2=25, 解得x =-6或x =6.
5.当a =1,b =3时,执行完如下的一段程序后x 的值是( )
INPUT a,b
IF a<b THEN
x =a +b
ELSE
x =a -b
END IF
A .1
B .3
C .4
D .-2
【解答】C [∵1<3,∴x =1+3=4.]
6.(2011·淄博统考)当x =2时,下面的程序运行结果是( )
i =1
s =0
WHILE i<=4
s =s*x +1 i =i +1
WEND
PRINT s
END
A .3
B .7
C .15
D .17
【解答】C [当x =2时,i =1≤4,s =0×2+1=1;
i =1+1=2≤4,s =1×2+1=3;
i =2+1=3≤4,s =3×2+1=7;
i =3+1=4≤4,s =7×2+1=15;
i =4+1=5>4,输出s =15.]
7.(2011届温州期末)下列程序执行后输出的结果是________________________. i =11
s =1
DO
s =s*i i =i -1
LOOP UNTIL i<9
PRINT s
END
【解答】990
解析由题意s=11×10×9=990.。