最新人教版六年级数学奥数题

合集下载

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)1、哥哥今年18岁,弟弟今年12岁。

当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。

甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。

最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。

第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的'足球中拿出与这时甲校个数相同的足球并入甲校。

经过这样的变动后,三校足球的个数正好相等。

已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。

后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。

问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题1、求下列时刻的时针与分针所形成的角的度数。

(1)9点整(2)2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

【篇三】小学六年级奥数题1、小明和小英各自在公路上往返于甲、乙两地。

设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?2、一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。

十个奥数题及答案六年级

十个奥数题及答案六年级

十个奥数题及答案六年级1. 题目一:一个数列的前三项分别为2,3,5,从第四项开始,每一项都是前三项的和。

求这个数列的第10项是多少?答案:根据题意,数列的第四项为2+3+5=10,第五项为3+5+10=18,以此类推。

数列的第10项为:5 + 10 + 18 = 33。

2. 题目二:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加6厘米,面积就增加100平方厘米。

求原来长方形的长和宽。

答案:设原长方形的宽为x厘米,则长为2x厘米。

根据题意,(2x+10)(x+6) - 2x*x = 100。

解得x=5,所以原长方形的长为10厘米,宽为5厘米。

3. 题目三:一个数与它自己相加、相减、相乘、相除,所得结果的和为100。

求这个数。

答案:设这个数为x,则有 (x+x) + (x-x) + (x*x) + (x/x) = 100。

简化得 2x + x^2 = 100。

解这个一元二次方程,得到x=9。

4. 题目四:一个班级有学生若干人,如果每组有8人,多出3人;如果每组有12人,多出5人。

求这个班级至少有多少人?答案:设班级有x人。

根据题意,x-3是8的倍数,x-5是12的倍数。

求8和12的最小公倍数,得24。

所以班级至少有31人。

5. 题目五:一个数的平方减去这个数的两倍等于33,求这个数。

答案:设这个数为x,根据题意,x^2 - 2x = 33。

将方程改写为x^2 - 2x - 33 = 0,解得x=6或x=-11。

6. 题目六:两个数的和是60,它们的积是450。

求这两个数。

答案:设这两个数分别为x和y,根据题意,x+y=60且xy=450。

解这个方程组,得到x=30,y=30。

7. 题目七:一个数的立方减去这个数的两倍等于100,求这个数。

答案:设这个数为x,根据题意,x^3 - 2x = 100。

将方程改写为x^3 - 2x - 100 = 0,解得x≈4.62。

8. 题目八:一个数除以3余1,除以4余2,除以5余3。

六年级六道奥数题及答案

六年级六道奥数题及答案

六年级六道奥数题及答案1. 问题:一个数字由5个相同的数字组成,这个数字是5位数。

如果这个数字能被45整除,那么这个数字是什么?答案:首先,我们知道45 = 5 × 9,所以这个数字必须同时能被5和9整除。

由于数字由5个相同的数字组成,且能被5整除,那么这个数字的个位数字必须是5。

接下来,我们需要找到一个数字,它的各位数字之和能被9整除。

由于数字由5个5组成,5 + 5 + 5 + 5 + 5 = 25,25不能被9整除,但我们可以通过在数字前添加一个0来使其变为6位数,即055555,这样各位数字之和为5 + 5 + 5 + 5 + 5 +0 = 25,依然不能被9整除。

但我们可以通过将数字改为555555,这样各位数字之和为5 × 5 = 25,25 + 5 = 30,30可以被9整除。

所以这个数字是555555。

2. 问题:一个数列的前三项是1, 1, 2。

每一项都是前两项的和。

求这个数列的第10项。

答案:这是一个斐波那契数列的变种,数列的前几项是1, 1, 2, 3, 5, 8, 13, 21, 34, 55。

第10项是55。

3. 问题:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,那么面积将增加80平方厘米。

求原来长方形的长和宽。

答案:设原来长方形的宽为x厘米,那么长为2x厘米。

根据题意,(2x + 10) * (x + 5) - 2x * x = 80。

展开得到2x^2 + 15x + 50 -2x^2 = 80。

简化得到15x = 30,解得x = 2。

所以原来长方形的宽是2厘米,长是4厘米。

4. 问题:一个数的平方比这个数的两倍大21,求这个数。

答案:设这个数为x,根据题意,x^2 = 2x + 21。

移项得到x^2 - 2x - 21 = 0。

这是一个二次方程,可以通过因式分解或者求根公式来解。

因式分解得到(x - 7)(x + 3) = 0,所以x = 7 或 x = -3。

最新小学六年级奥数题50道题及解答(可直接打印)

最新小学六年级奥数题50道题及解答(可直接打印)

练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱? 得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米? 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。

思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。

2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。

思路:根据数量关系列方程求解。

3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。

思路:先求两车行驶的路程和,再加上相距距离。

4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。

解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。

思路:根据圆柱侧面积和体积公式计算。

5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。

2024年六年级奥数题

2024年六年级奥数题

2024年六年级奥数题一、工程问题。

1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

两人合作4天后,剩下的工程由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。

甲的工作效率为1÷10=(1)/(10),乙的工作效率为1÷15=(1)/(15)。

两人合作4天完成的工作量为((1)/(10)+(1)/(15))×4先计算括号内(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。

那么((1)/(10)+(1)/(15))×4=(1)/(6)×4=(2)/(3)。

剩下的工作量为1-(2)/(3)=(1)/(3)。

乙单独做剩下工程需要的时间为(1)/(3)÷(1)/(15)=(1)/(3)×15 = 5天。

2. 有一个水池,装有甲、乙、丙三根水管,单开甲管6小时可将空池注满,单开乙管8小时可将空池注满,单开丙管12小时可将满池水放完。

如果三管齐开,多少小时可将空池注满?解析:把水池的容积看作单位“1”。

甲管的注水效率为1÷6=(1)/(6),乙管的注水效率为1÷8=(1)/(8),丙管的放水效率为1÷12=(1)/(12)。

三管齐开的注水效率为(1)/(6)+(1)/(8)-(1)/(12)先通分,(4 + 3-2)/(24)=(5)/(24)。

注满空池需要的时间为1÷(5)/(24)=1×(24)/(5)=4.8小时。

二、分数应用题。

3. 某班有学生50人,男生占全班人数的(3)/(5),后来又转来几名男生,这时男生占全班人数的(5)/(7),转来几名男生?解析:原来男生人数为50×(3)/(5)=30人,女生人数为50 30=20人。

转来男生后,女生人数不变,此时女生占全班人数的1-(5)/(7)=(2)/(7)。

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】1.小学六年级奥数题1、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。

这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。

6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。

现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付 1.8元。

该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。

小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。

问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。

他兑换了两种面额的人民币各多少张?2.小学六年级奥数题1、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。

6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。

最新人教版新课标六年级数学上册奥数题(附答案)

最新人教版新课标六年级数学上册奥数题(附答案)

人教版新课标六年级数学上册奥数题1. 小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下.小明容许了,只经过简单一转手,这辆山地车就让小明赚了105元.那么,小明这辆山地车的原价是元.【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2. 瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100 克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%. A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%. 【分析】方法一:方程.设B种酒精的浓度为x,那么A种酒精的浓度为2x,于是可以得到:故A的浓度为.方法二:比例.1000 X 15%=150 〔克〕,混合后溶液中纯酒精为〔1000+400+10.X 14%=210 〔克〕,210-150=60 〔克〕,A 和B 共含酒精60克,A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60 + 3=20 〔克〕,那么A的浓度为20%.3. A、B两杯食盐水各有40克,浓度比是3: 2.在B中参加60 克水,然后倒入A中克.再在A、B中参加水,使它们均为100 克,这时浓度比为7: 3.【分析】比例思想.两杯中的食盐水总量相同,浓度比为3:2,那么含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量.倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10统一份数.3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A 倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐.4 .经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的, 那么为了使人类有不断开展的潜力,地球上最多能养活多少亿人【分析】每亿人每年消耗资源量为1份.新生资源量:〔份〕即为保证不断开展,地球上最多养活70亿人.5 .有三块草地,面积分别是5, 15, 25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,那么第三块草地可供〔〕头牛吃60天.【分析】设每头牛每天的吃草量为1份.第一块草地,5亩原有草量+5亩30天长的草=10X 30=300〔份〕,那么每亩面积=原有草量+每亩面积30天长的草=300+ 5=60 〔份〕:第二块草地,15亩原有草量+15亩45天长的草=28X45=1260份〕,即每亩面积原有草量+每亩面积45天长的草=1260+ 15=84份〕.所以每亩面积每天长草量〔84-60〕 +〔45-30〕=1.6〔份〕.每亩原有草量=60-30X 1,6=12 〔份〕.第三块草地面积是25亩,60天新生长的草量为:6X60X 25=2400 〔份〕.所以第三块草地可供〔2400+12X 25〕+60=45 〔头〕牛吃60天.6 .有一块草地,每天都有新的草长出.这块草地可供9头牛吃12天, 或可供8头牛吃16天.开始只有4头牛在这块草地上吃草,从第7 天起又增加了假设干头牛来吃草,又吃了6天吃完了所有的草.假设草的生长速度每天都相同,每头牛每天的吃草量也相同,那么从第7天起增加了头牛来吃草【分析】设每头牛每天的吃草量为1份.每天长草:〔8X16-9X12〕 + 〔16-12〕 =5 〔份〕原有草:108-5X12=48份〕吃12天需要牛的头数:[48+ 〔5-4〕 X6] +6+5=14世〕增加牛的头数:14-4=10 〔头〕7 .放满一个水池,如果同时翻开1, 2号阀门,那么12分钟可以完成;如果同时翻开1, 3号阀门,那么15分钟可以完成;如果单独翻开1号阀门,那么20分钟可以完成;那么,如果同时翻开1, 2, 3号阀门, 分钟可以完成.【分析】根据题意可知,1, 2号阀门的效率之和为,1, 3号阀门的效率之和为,1号阀门的效率为,所以1, 2, 3号阀门的效率之和为,所以,如果同时翻开1, 2, 3号阀门,10分钟可以完成.8 .一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,在三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工.完成这项工程共用天.【分析】甲的工作效率是 ,乙的工作效率是,丙的工作效率是, 三人工作3天完成.,剩下的乙、丙继续工作需要天.所以一共要用6天.9 .有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时.甲、乙同时开始各搬运一个仓库的货物.开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.那么丙帮甲小时,帮乙小时.【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束, 共搬运了两个仓库的货物,所以它们完成工作的总时间为小时.在这段时间内,甲、乙各自在某一个仓库内搬运,丙那么在两个仓库都搬运过.甲完成的工作量是,所以丙帮甲搬了的货物,丙帮甲做的时间为小时,那么丙帮乙做的时间为小时.10 .某人将他所有的钱的给他的儿子,给他的女儿,剩下的钱那么全给他的妻子.假设他的妻子得到元,请问此人原来有多少元【分析】〔元〕.11 .四位小朋友合购一个价值600元的生日礼物送给同学.第一位小朋友付的钱是其他小朋友付的总数的;第二位小朋友付的钱是其他小朋友付的总数的;第三位小朋友付的钱是其他小朋友付的总数的.请问第四位小朋友付多少钱【分析】〔元〕12 .实验小学六年级有学生152人.现在要选出男生人数的和女生5人,到国际数学家大会与专家见面.学校根据上述要求选出假设干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人【分析】〔人〕13 .某次测试共有9道题,做对1〜9题的人数分别占参加测试人数的82%, 65%, 92%, 93%, 68%, 98%, 70%, 60%, 72%.如果做对5道或5道以上为及格,那么这次测试的及格率至少〔〕.【分析】不妨设参加测试的人数为100,那么做错l〜9题的人数分别为18人,35人,8人,7人,32人,2人,30人,40人,28人, 共做错18+35+8+7+32+2+30+40+28=200 道〕.一人做错5道或5道以上为不及格,,因此.100人中至多有40人不及格,至少有100 -40=60及格,及格率至少是60%.14 .有5堆苹果,较小的3堆平均有18个苹果,较大的2堆苹果数之差为5个.,较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少苹果【分析】最大堆与最小堆共22X2 = 44个苹果较大的2堆与较小的2堆共44X2+7-5 = 90个苹果所以中间的一堆有:〔18X3+26X 3 — 90〕 +2 = 21个苹果较大的2堆有:26X 3-21=57个苹果,最大的一堆有:〔57+ 5〕 +2=31个苹果,次大的2堆有:57-31=26个苹果较小的2堆有:18X 3-21=33个苹果次小的一堆有:〔33+7〕+2 = 20个苹果最小的一堆有:20- 7= 13个苹果15 .小张、小李和小黄三人乘飞机出差,三人携带的行李重量都超过了可免费携带行李的重量,需另付行李托运费,三人其付90元.而三人行李共重65千克,如果三人的行李只由一人携带,除免费局部外,应另付行李托运费810元.求每人可免费携带的行李重量.【分析】设每人可免费携带x千克行李.如果65千克行李由三人携带,三人可免费携带3x千克行李,三人共付90元托运费,那么超重行李每千克付90+ (65 -3x);如果65千克行李由一人携带,一人可免费携带x千克行李,付810元托运费,那么超重行李每千克付810+ (65 -x).可列出方程所以每人可免费携带的行李重量是20千克.。

六年级十道奥数题及答案

六年级十道奥数题及答案

六年级十道奥数题及答案1. 题目一:一个数的3倍加上10等于这个数的5倍减去8,求这个数是多少?答案:设这个数为x,根据题意可得方程:3x + 10 = 5x - 8。

解这个方程,我们可以得到2x = 18,所以x = 9。

2. 题目二:一个班级有45名学生,其中1/3是男生,1/4是女生,剩下的是双胞胎。

求班级中有多少对双胞胎?答案:男生人数为45 * 1/3 = 15人,女生人数为45 * 1/4 = 11.25,但人数不能为小数,所以女生人数为11人。

剩下的人数为45 - 15 - 11 = 19人。

因为双胞胎是两人一组,所以有19 / 2 = 9.5对双胞胎,但双胞胎的对数不能是小数,所以班级中有9对双胞胎。

3. 题目三:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积是长、宽、高的乘积,即10 * 8 * 6 = 480立方厘米。

4. 题目四:一个数的平方加上它的两倍等于这个数的5倍,求这个数。

答案:设这个数为x,根据题意可得方程:x^2 + 2x = 5x。

简化得到x^2 - 3x = 0,提取x得到x(x - 3) = 0,所以x = 0或x = 3。

5. 题目五:一个数的1/5加上这个数的1/4等于这个数的1/3,求这个数。

答案:设这个数为x,根据题意可得方程:x/5 + x/4 = x/3。

解这个方程,我们可以得到12x + 15x = 20x,即27x = 20x,所以x = 0。

但是题目中通常不涉及0,所以可能是题目有误。

6. 题目六:一个圆的半径是5厘米,求这个圆的周长和面积。

答案:圆的周长是2πr,所以周长为2 * π * 5 = 10π ≈ 31.42厘米。

圆的面积是πr^2,所以面积为π * 5^2 = 25π ≈ 78.54平方厘米。

7. 题目七:一个数的3/4加上另一个数的1/2等于这两个数的和的1/3,求这两个数的和。

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。

第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。

问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。

如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

3.妈妈每四天去一次杂货店,每五天去一次百货商店。

妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。

2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。

如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。

2.从五年级的六个班级中选出一个学习、体育、健康先进集体。

有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。

他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。

所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。

有50道测试题。

评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。

最新人教版新课标 六年级数学上册奥数题(附答案)

最新人教版新课标 六年级数学上册奥数题(附答案)

人教版新课标六年级数学上册奥数题1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。

最新部编人教版六年级数学有趣经典的奥数题及答案解析

最新部编人教版六年级数学有趣经典的奥数题及答案解析

六年级数学有趣经典的奥数题及答案解析【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小学六年级奥数试题(8篇)

小学六年级奥数试题(8篇)

小学六年级奥数试题(8篇)小学六年级奥数试题(8篇)在学习和工作的日常里,我们都经常看到试题的身影,试题可以帮助参考者清楚地认识自己的知识掌握程度。

你知道什么样的试题才算得上好试题吗?以下是小编整理的小学六年级奥数试题,仅供参考,欢迎大家阅读。

小学六年级奥数试题11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。

求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题2标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

六年级奥数题大全(共35道题-142页word文档)-小学数学六年级上册-奥数试题及答案-人教版--

六年级奥数题大全(共35道题-142页word文档)-小学数学六年级上册-奥数试题及答案-人教版--

六年级奥数题大全(共35道题,142页word文档)小学数学六年级上册奥数试题及答案人教版目录1. 定义运算 (1)2. 简便运算(一) (5)3. 简便运算(二) (8)4. 转化单位“1”(一) (11)5. 转化单位“1”(二) (15)6. 设数法解题……………………………………………………(21)7. 假设法解题(一)……………………………………………(25)8. 假设法解题(二)……………………………………………(29)9. 假推法解题(一) (33)10.代数法解题 (38)11.比的应用(一) (42)12.比的应用(二) (47)13.用“组合法”解决工程问题 (52)14.浓度问题 (57)15.面积计算(一) (61)16.面积计算(二) (66)17.抓“不变量”解题 (71)18.特殊工程问题 (76)19.周期工程问题 (81)20.比较大小 (88)21.最大最小问题 (93)22.乘法和加法原理 (96)23.表面积和体积(一) (100)24.表面积和体积(二) (105)25.抽屉原理(一) (110)26.抽屉原理(二) (114)27.逻辑原理(一) (117)28.逻辑原理(一) (123)29.行程问题(一) (128)30.行程问题(一) (133)31.流水行船问题 (138)32对策问题 (142)33.应用同余解题 (146)34.“牛吃草”问题 (150)35.不定方程 (154)15.面积运算计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们基本的几何知识,适当添加辅助线,搭一座联通已知条件与所求问题的“小桥”,就会使你顺利地达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

人教版六年级经典奥数题19道

人教版六年级经典奥数题19道

人教版六年级奥数题1、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款2、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?3、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?4、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?5、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?6、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?7、仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

仓库原有货物多少吨?8、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?9、甲乙二人共同完成242个机器零件。

甲做一个零件要6分钟,乙做一个零件要5分钟。

完成这批零件时,两人各做了多少个零件?10、甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?11、哈利.波特参加数学竞赛,他一共得了68分。

最新人教版小学六年级奥数题

最新人教版小学六年级奥数题

最新人教版小学六年级奥数题1.甲、乙、丙三人在A、B两块地植树。

A地需要植900棵,B地需要植1250棵。

已知甲、乙、丙每天分别能植树24、30、32棵。

甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。

问乙在开始后第几天从A地转到B地,使得两块地同时开始同时结束。

2.有三块草地,面积分别是5、15、24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问第三块地可供多少头牛吃80天。

3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少。

4.一个圆柱形内放有一个长方形铁块。

现打开水龙头往中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满。

已知的高为50厘米,长方体的高为20厘米。

求长方体的底面面积和底面面积之比。

5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套。

问甲原来购进这种时装多少套。

6.有甲、乙两根水管,分别同时给A、B两个大小相同的水池注水。

在相同的时间里,甲、乙两管注水量之比是7:5.经过2+1/3小时,A、B两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变。

那么,当甲管注满A池时,乙管再经过多少小时注满B池?7.XXX上从家步行去学校,走完一半路程时,爸爸发现XXX的数学书丢在家里,随即骑车去给XXX送书。

追上时,XXX还有3/10的路程未走完。

XXX随即上了爸爸的车,由爸爸送往学校。

这样XXX比独自步行提早5分钟到校。

问XXX 从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、人教版六年级数学奥数题
2、育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28
人。

根据成绩,男生全部获奖,而女生则有25%的人未获奖。

获奖总
2.六年级学生共有多少
人数是42人,又知参加竞赛的是全年级的
5
人?
3、水果批发部里的苹果比梨多20吨,梨比苹果少20%,梨是多少
吨?
4、六年级有学生146人,达到《国家体育锻炼标准》的有124人。

求这个年级的达标率。

(百分号前保留一位小数)
5、一种半导体收音机,现在售价165元,比去年降低了85元,降低
了百分之几?
6、甲乙两人分别从A、B两地同时相向而行,4时相遇,这时甲行
了全程的40%。

两人继续前进,当乙到达A地时,甲还需行全程的几分之几就可以到达B地了?
7、一个工人由于改进生产技术,生产一个零件的时间由12分减到8分,以前每天生产40个零件,现在的生产效率比以前生产效率提高了百分之几?
8、东乡去年春季植树450棵,成活率为80%,去年秋季植树的成活率为90%,已知去年春季比秋季多死了18棵,这个乡去年一共种活了多少棵树?
9、某校选派360名学生参加夏令营,结果发现男生占40%,为了使男生占50%,又增派了一批男生,问被增派的男生有多少名?
1,第二次用去余下的60%, 10、一根铁丝全长4.8米,第一次用去全长的
3
最后还剩下多少米?
11、修一条长2400米的公路,如果由甲工程队单独修建,需要20天;乙工程队单独修建,需要30天。

现在由甲乙两工程队合修,需要多少天?
12、一项工程,由甲单独修做12天可以完成。

甲队做了3天后,另有任务,余下的工程由乙队做15天完成,由乙队单独做这项工程要多少天?
13、老刘和小李合做一件工作,要12天完成,如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成,小李单独做这件工作需几天完成。

14、甲.乙两队开挖一条水渠。

甲队独做8天完成,乙队独做12天完成。

现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。

乙队挖了几天?
15、加工一批零件,甲独做20天完成,乙独做30天完成。

现两人合作来完成任务,合作中甲休息了2.5天。

乙休息了若干天,这样共14天完工。

乙休息了几天?
16、抄一本书稿,甲每天的工作效率等于乙、丙两人每天的工作效率的和;丙的工作效率相当于甲、乙每天工作效率和的1/5;如果3人合作只需要8天就完成了,那么乙一人单独抄需要多少天才能完成?
17、一项工程,甲队单独承建要20天完,乙队单独承建要30天完,如果两队合做,多少天才能完成全部工作的3/4?
18、甲从A 地出发到B 地去,2小时走了全程的1/3,乙从B 地到A 地去,2小时走了全程的1/2,两人同时出发相向而行,几小时相遇?
19、一项工程由甲、乙合做988天可以完成,若甲先独做8天后再由乙独做10天可完工,问这项工程由甲、乙单独做各要几天完工?
20、一项工程,甲单独做要12小时可以完成,现在甲、乙两人先合做2小时,剩下的工作乙又用了215小时完成。

如果这件工作全都由乙来做,需要几小时才能完成?
21、一项工程甲单独做24小时完成,乙单独做36小时完成,现要求20小时完成,且两人合作的时间尽可能少;问甲、乙合作几小时完成?
22、修一条马路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成。

现在由甲、乙两队合修4天后,余下的由丙队修,还需要几天才能修完?
23、一件工程,甲、乙两人合做8天可以完成,乙、丙两人合做6天可以完成,丙、丁两人合做12天可以完成,那么甲、丁两人合做多少天可以完成?
24、一项工程,甲单独做要3小时完成,乙单独做要5小时完成,两人合做这项工程的54,需要几小时完成?
25、甲、乙两人共同加工一批零件,8小时可以完成任务。

如果甲单独加工,便需要12小时完成,现在甲、乙两人共同加工了5
22小时后,甲被调出做其他工作,由乙继续加工了420个零件才完成任务,问乙一共加工零件多少个?
26、有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要
15天;李单独完成甲工作要8天,单独完成乙工作要20天。

如果每项工作都可以由两人合做,那么这两项工作都完成最少需要多少天?27、李师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,就可以提前5天完成。

问:这批零件共有多少个?
28、5个工人加工735个零件,2天加工了135个零件。

已知这两天中有1个人因故请假1天,照这样的工作效率,如果以后几天中无人请假还要多少天才能完成任务?
29、甲、乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米,现由甲工程队先修3天,余下的路程由甲、乙两队合修,正好花6天时间修完。

问甲、乙两个工程队每天各修路多少米?
30、如果甲、乙、丙3根水管同时往一个空水池里灌水,1小时可以灌满;如果用甲、乙两根水管,1小时20分钟可以灌满;如果用乙、丙两根水管,1小时15分可以灌满,那么乙管单独灌水的话,灌满这一池水需要多长时间?
31、一项工程,甲、乙合做9天完成,乙、丙合做6天完成,甲、丙合做12天完成,问3人合做多少天完成?
32、加工一批零件,甲独干要12天,乙独干要15天完,甲、乙合干3天后,还剩132个零件没有加工,如果甲单独加工这批零件每天应加工多少个?
33、抄一份稿件,甲要12小时,乙要15小时,两人合抄2小时后,剩下的由甲抄,还要几小时抄完?
34、一件工作,甲独做要10小时完工,乙独做要30小时完工,现两人合做,其间甲休2小时、乙休8小时(不在同一时间休息),从开始到完工共用多少时间?
35、一件工作,甲独做要12小时完,乙独做要18小时完,若由甲先做1小时,然后再由乙接替甲做1小时,再由甲接替乙工作1小时……两人如此交替工作,完成任务共用多少时间?
36、一批零件,由师傅单独做,需5小时完成,由徒弟单独做,需7小时完成,两人合做,完成任务时师傅做的比总数的一半还多18个,这批零件共有多少个?。

相关文档
最新文档