【人教A版】2020高中数学必修四导学案:第二章平面向量_含答案

合集下载

高中数学 第二章《平面向量》导学案 新人教A版必修4

高中数学 第二章《平面向量》导学案 新人教A版必修4

第二章《平面向量》导学案(复习课)【学习目标】1.理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念.2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接).4.了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5.了解实数与向量的乘法(即数乘的意义).6.向量的坐标概念和坐标表示法.7.向量的坐标运算(加、减、实数和向量的乘法、数量积).8.数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2,注意区别“实数与向量的乘法、向量与向量的乘法”.【导入新课】向量知识,向量观点在数学、物理等学科的很多分支中有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直.新授课阶段例1 已知(3,0),(,5)a b k ==r r ,若a 与b 的夹角为43π,则k 的值为_______.解析:例2 对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+ |b |. 证明:例3 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c ,i ,j . 解:例4 下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( )A .①②⑤ B.③④ C.①③ D.②④⑤ 解析:例 5 已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r,(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ABC ∆为直角三角形,且A ∠为直角,求实数m 的值. 解:例6 已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 解:课堂小结本章主要内容就是向量的概念、向量的线性运算、向量知识解决平面几何问题;掌握向量法和坐标法,以及用向量解决平面几何问题的步骤.作业 见同步练习 拓展提升 一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式:①=;②||||=;③||||+=-; ④222||||4||,AC BD AB +=u u u ru u u ru u u r其中正确的个数为 ( )A .1个B .2个C .3个D .4个4.在 ABCD 中,设====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( ) A .||||||-=- B .||||-=+ C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③8.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( ) A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.已知||22p =u r ,||3q =r ,,p q u r r 的夹角为4π,如图,若52AB p q =+u u u r u r r ,3AC p q =-u u u r u r r ,D 为BC 的中点,则||AD uuu r为( ).A .215B .215C .7D .18二、填空题12.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 13.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .14.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= . 15.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 .三、解答题16.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥.17.设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.参考答案 例1解析:如图1,设a OA =,43π=∠AOC ,直线l 的方程为5=y ,设l 与OC 的交点为B ,则OB 即为b , 显然()5,5-=b ,5-=∴k . 例2证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且 |a |-|b |<|a ±b |<|a |+|b |;(2)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a .b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>|b |,则|a +b |=|a |-|b |.同理可证另一种情况也成立.例3解:建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是=-3, =, =-3.所以-3=33+,即=3-33.例4解析:根据向量的运算可得到,只有①③对,故选择答案 C 例 5解:(1)若点A 、B 、C 能构成三角形,则这三点不共线,∵(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r, ∴(3,1)AB =u u u r ,(1,)BC m m =---u u u r,而AB u u u r 与BC uuur 不平行,xy ABOCab图1即31m m -≠--,得12m ≠, ∴实数12m ≠时满足条件. (2)若ABC ∆为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r,而(3,1)AB =u u u r ,(2,1)AC m m =--u u u r,∴3(2)(1)0m m -+-=,解得74m =. 例6解:(1,)(2,3)(1,3),BC AC AB k k =-=-=--u u u ru u u ru u u rQ0(1,)(1,3)0C RT AC BC AC BC k k ∠∠⇒⊥⇒⋅=⇒⋅--=u u u r u u u r u u u r u u u rQ 为2313130.k k k ±⇒-+-=⇒=拓展提升 题号 1 2 3 4 5 6 7 8 9 10 11 答案 ABCBCDACABA11.提示:A 11()(6)22AD AC AB p q =+=-u u u r u u u r u u u r ur r ,∴222211||||(6)361222AD AD p q p p q q ==-=-+u u u r u u u r u r r u r u r r r g2211536(22)12223cos 3242π=⨯-⨯⨯⨯+=. 二、填空题:12. 120° 13. 矩形 14、 1± 15. 2- 三、解答题: 16.证:()()22b a b a b a b a -=+⇒+=+⇒-=+Θ2222220.a ab b a ab b ab ⇒++=-+⇒=r r r r r r r r r r,a b r rQ 又为非零向量,.a b ∴⊥r r17.()121212234,BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u rQ若A ,B ,D 三点共线,则与共线,,AB BD λ∴=u u u r u u u r设即121224.e ke e e λλ+=-u r u u r u r u u r 由于12e e u r u u r 与不共线,可得: 11222,4.e e ke e λλ==-u r u ru u r u u r故2,8.k λ==-。

人教A版2020高中数学必修四导学案第二章平面向量232 233平面向量的坐标运算 含答案

人教A版2020高中数学必修四导学案第二章平面向量232 233平面向量的坐标运算 含答案

2.3.2 平面向量的正交分解及坐标表示 2.3.3 平面向量的坐标运算掌握两个向量和、差及数了解平面向量的正交分解,掌握向量的坐标表示.2.学习目标 1...3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来乘向量的坐标运算法则平面向量的正交分解知识点一bbaaba互相垂直的两个向与垂直,记作的夹角是90°,则称向量.与思考如果向量⊥量能否作为平面内所有向量的一组基底?. 互相垂直的两个向量能作为平面内所有向量的一组基底答案. 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解梳理平面向量的坐标表示知识点二aiija=30°,且是两个互相垂直的单位向量,向量|与|思考1 如图,向量的夹角是,a?ji,4,以向量为基底,如何表示向量ija.2 =+23答案AAA点位置确定了吗?给定向量,则在平面直角坐标系内,给定点,的坐标为1)(1思考2aaa的位置确定了吗? 1),则向量=(1,的坐标为AAAaaa的坐标为点位置确定.点,若给定坐标为对于向量(1,1),则,给定答案对于a的方向和大小,但因向量的位置由起点和终点确定,且向量可以任1),此时给出了=(1,a的位置还与其起点有关意平移,因此.→→→→BCOBCOAOAA点,,则为坐标原点,若将向量的坐标是多少?平移到思考3 设向量,=(11)坐标是多少?→→OAOAAA(1,1),1). 答案向量点坐标为的坐标为(1=,梳理 (1)平面向量的坐标xyij作为基底.、①在平面直角坐标系中,分别取与轴、对于轴方向相同的两个单位向量axyaxiyj.+平面内的一个向量,由平面向量基本定理可知,有且只有一对实数=,,使得axyxya的坐标,记(叫做向量,)平面内的任一向量都可由、唯一确定,我们把有序数对axy). ,(=作ij=(0,1),00),=(0,②在平面直角坐标平面中,0). =(1,(2)点的坐标与向量坐标的区别和联系平面向量的坐标运算知识点三yxybyijxax,),,思考设,、=是分别与轴、(轴同向的两个单位向量,若设)=(2112aabjybxiyjabaxi 如,R=,λ+)+(,根据向量的线性运算性质,向量λ+∈则=,-2211ji何分别用基底表示?、jyabxxiy答案 )+(=(,++)+2211abxxiyyj,-) +-(=()-2211axiyj.λ+=λλ11axybxy),,=梳理设(=( ,,)2112→AxyBxyABxxyy)(=--已知点(,,),即任意一个向量的坐标等于(,),那么向量,11222211表示此向量的有向线段的终点的坐标减去始点的坐标.类型一平面向量的坐标表示→xOyOAABAOxOABOA==105°,=45°,∠,∠3=,4=中,如图,在平面直角坐标系1 例→baAB.=,OABC.四边形为平行四边形ba (1)求向量的坐标;,→BA (2)求向量的坐标;B.的坐标(3)求点MxAM(1)解作轴于点⊥,OAOM=则·cos 45°2 ,2=4×2=2OAAM=·sin 45°22. =4×=22aA2). =(2222,,22)∴,故(2AOyAOC=180°-105°=75°,∠∵∠=45°,COy∴∠=30°.ABOC==3又∵,????33333→→??OCABC,∴==∴,-????2222??333??b.即=,-??22??333→→??ABBA.=(2)=-,-??22333→→→ABOBOA),2)+=(+,=(222(3)-22??333??.=+22,22-??22反思与感悟在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标定义求坐标.一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围.ABCAABxC在第轴上,点边在在坐标原点,,顶点的正三角形2已知边长为1 跟踪训练.→→→→BDACBCDACAB.一象限,,为的坐标的中点,分别求向量,,CABABC2sin (2cos 60°,,解如图,正三角形的边长为2,则顶点0)(0,0),,(2 60°),31DC (),∴,(1,,3)22→→ACAB=,(1,∴3)=(2,0),→BC,3)=(-,1=(1-,23-0)3313→BD). ,=(-=(-2-,0)2222类型二平面向量的坐标运算→→→→→ABCAB a BC b CA c CM c CN,==,==,且已知,(-2,4),3(3,-1),-(3,-4).设2 例b.2=-abc;33 +-(1)求a m b n c mn的值;(2)求满足,=的实数+→MNMN的坐标求的坐标及向量,.(3)abc=(1,3),,8). =(-6 解由已知得,-=(5,-5)abc=3(5,-5)+(-6,-3)(1)3-+3(1-3,8)=(15-6-3,-15-3-24)=(6,-42).m b n c mnmn a=(5,-5))-6=+,,-3(2)∵++8=(mmn,=-=5-6,+1????解得∴??nmn1.,-38+=-=-5????O为坐标原点,设 (3)→→→CMOMOC c,∵==3-→→OM c OC=(3,24)+(-3,-+4)=(0,20),∴=3M(0,20).∴→→→CNONOC b,又∵=-=2-→→ON b OC=(12,6)+(-3,-4)=(9,2)∴=-2+,→NMN18).,-(9=,∴2),(9∴.反思与感悟向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.ab=(2,1),求:=(-1,2)跟踪训练2 已知,11ababab.-;;(2)(3)-(1)23+323ab=2(-1,32)+3(2,(1)2解 1) +=(-2,4)+(6,3)=(4,7).ab=(-1,2)-3(2,1) (2)3-=(-1,2)-(6,3)=(-7,-1).1111ab=(-1,2)-(2(3),-1) 232312172????????????,-1,-,. ==-??????36332类型三平面向量坐标运算的应用→→→ABCAPABAC(λ∈R),试求=λ+λ已知点为何值时:(2,3),(5,4), (7,10).若例3 P在第一、三象限的角平分线上;点 (1)P在第三象限内点. (2)Pxy),( 解设点,的坐标为→APxyxy-3),,3)=(则=(-,2)-(2,→→ACAB3)],-(2+λ[(7,10)+λ-=(5,4)(2,3)). λ+75λ,11),+λ(5,7)=(3+=(3→→→ACAPAB =,+∵λxx,λ5+5λ,+5=-2=3????∴则??yy.,λ7λ=4+1-3=+7????P在一、三象限角平分线上,则5+5λ=4+(1)若点7λ,1∴λ=.2,<0+5λ5??P∴λ<(2)若点-在第三象限内,则1.?,λ4+7<0??1P在第一、三象限角平分线上;时,点∴当λ=2P.在第三象限内时,点1-<λ当.反思与感悟 (1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.由此可建立相等关系求某些参数的值.ab m a n b mnmn-R8)(,若(1,-2)),+,则∈=跟踪训练3 已知向量(9=(2,1),,-=的值为________.答案-3ab m a n b mnmn)=(9,2-=(28)+,解析∵(2=,1),,=(1,-2),∴即-+mmn,2=92,+=????mn=2--5=-解得故3.??nnm,=,2-5=-8????abab等于( -21)=(-2,1.设平面向量,则=(3,5),)A.(7,3)B.(7,7)C.(1,7)D.(1,3)答案 A1→→→OAOBAB的坐标是( ,则向量 )=(-5,-2.已知向量,-=(32),1)211????????,-4-4, A. B.????22D.(8,-C.(8,1) 1)A答案→→→OAABOB=-,=(-8,解析∵1)11??→??AB,4-.=∴??22→→DBCCBAABCDAD的,则顶点=2,且3.已知四边形,的三个顶点(0,2)1(-,-2),(3,1))坐标为(71????????,-22, A.B.????22D.(1,3)C.(3,2)A答案→DxyBC=(4,3),),则,设解析点坐标为(→ADxy,2)-,(=x2=??x,4=2?7?→→?DADBC(2,2).,得,∴由∴=?72yy,??-23=2=????2→→ABACBC等于( 3),则向量) 2),向量=(-4.已知点4(0,1),,-(3,A.(-7,-4) B.(7,4)D.(14) ,4)C.(-1,A答案→→→→→ABBCACABAC4). -(7,-=(-4,-3)-(3 解析,=(3,1),=(-4,-3),=1)-=xy b x abcca,,(满足+5.如图,在6×6的方格纸中,若起点和终点均在格点的向量,=yxy=+R∈),则________.19 答案7ab=(2,,2) 建立如图所示的平面直角坐标系,设小方格的边长为1,则可得,=(1解析c=(3,,4).3)-yx,+23=??b yx ac,∴=+∵?yx,=2-34??17?x?719?xy=解得.+因此72?y?.=71.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标.由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量→ABxxyy). ,(的终点坐标不是向量的坐标,此时=--ABAB.3.向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积.课时作业一、选择题abba的坐标是( - (1,0),那么向量1.已知向量3=(-1,2),) =A.(-4,2) B.(-4,-2)D.(4C.(4,2) ,-2)D答案ab,故选2)(3+1,0-2)=(4,-==3(1,0)-(-1,2)(3,0)-(-1,2)解析 3=-D.1aaabb)等于( =(42.已知,--(1=,2),10)+,则2B.(2A.(-2,-2) ,2)D.(2,-2,2) 2)C.(-D答案bcabca的值分别为,则λ+λ,=(34),且,=已知向量3.λ=(1,2),=(2,3),λ2121) ( B.1,-2 -2,1 A.D.-1C.2,-1 ,2D答案,=λ+2λ3,1λ=-????121解得解析由??2.2λλ4,==+3λ????212→→→ABCDADABACBDOCO的坐标是,,则相交于点=(-2,3)4.在?,对角线中,已知,=(37),( ) 11????????5-,5-,- B.A.????2211????????5,,-5 D.C. ????22B答案11→→→→ADACCOAB)+(解析=-=-22111????5,--,故选=×(3,3)2=-×(-,-7)B. ??222.13→→→OBOOAOB)( 5.如果将,则= (,)绕原点的坐标是逆时针方向旋转120°得到221331) )B.(,-A.(-,222213-D.(3) ,C.(-) 1,22D答案13→→OBOAO120°得到=逆时针方向旋转(,)解析因为所在直线的倾斜角为30°,绕原点223ByAB,轴对称,由此可知-所在直线的倾斜角为150°,所以点坐标为,(两点关于2113→OB D. -,)),故,故选的坐标是(222ccacab xy b) 等于,则),若3( -2 +6.已知向量2)=(5,,3)=(-4,-,==(0,B.(2323,-12) ,12) A.(-D.(-0) C.(7,7,0)A答案y acb x解析∵=(5,2),-=(4,-3),)=(,,cba+,=3-20且acb12).23,----815,-66)=(-23--=2(4,-3)3(5,2)=(-∴=→→PPMNMNPNPM点的坐标为=-,(-27),(10,-2),点2是线段,则上的点,且7.已知) (B.(2216) ,-11) A.(-14,D.(2C.(6,,1) 4)D 答案二、填空题eeaeeae+,为基底,将分解成λ,则以,-(2,3)-=(1,2)=(1已知8.=,2),112211e____________. ∈,(λλλR)的形式为221241eea=+答案2177eae),R∈,λ(+λ解析设=λλ2211122则(-2λ=3),-(2+2),(1λ=,1-2)λ(λ+3λλ,)21,2121.1??,λ=17,-1=λ-2λ??21?由解得?43λ,2=2λ+???21?.=λ2741eea. =所以+217711→→BCBCACA________.--8,10)(2,-4),,则(0,6),的坐标是(9.已知平面上三点426)-3,答案 (→→yBDxDBCxyACA________. ,,则(2,=),且10.已知+(-1,-2),=(2,3),-(2,0)11 答案2→AC 2),(-1,,0)-(-1,-2)=解析∵=(-2→yyxBDx,,-3)-(2,=(3)=(-,2)→→yxBDAC,-1,,22)-6)又∵2==,即(2(-43??xx,1-4=-2,=??2?∴由解得?y,22-6=????y,=411yx.+∴=2→→→→→MNCNCBBACCMCA的坐标为=2-3,-4),=3,则11.已知2(-,4),,(3,-1),(________.18)(9,-答案→CM,=(3,解析 24)=3(1,8)→CN,(12,6)=2(6,3)=→→→CMCNMN18).=(9,-,6)-(3=,-24)=(12→→OAOAxOAOA的坐标为=612.已知,∠是坐标原点,点|在第二象限,=150°,向量|________.3)3(-,3答案πAOCAOBCOCOAB=.22,2),为坐标原点,点,且∠在∠内,||=,,-13.已知(30)(04→→→OCOAOB ________.=λ,则)R∈λ(+λ=设2答案3πCCExEAOC=知,过轴于点作⊥,由∠解析4OECE|=2|,| |=→→→→→OCOEOBOAOB,+所以==λ+→→OEOA,λ即=2所以(-2,0)=λ(-3,0),故λ=.3三、解答题abcpabcabp. 3、+,=(1,2),求表示=2已知14.,并用基底=(2,1),+=(-1,3)pabc+3=2+解=2(2,1)+3(-1,3)+(1,2)=(4,2)+(-3,9)+(1,2)=(2,13).p x a y b,=+设19?x?,=7yx,2=-2???解得则有?yx24,=+313???y?.=71924pab.∴+=77四、探究与拓展11→→→→→ABACABDABACDCD的坐标、,.=--(1,2),,求点(2,8)及和=15.已知点33CxyDxy),,),解设点((,2112→→ACxyAB =(3,6)-2)由题意可得,=(,+1,11→→BAyDAx6).3,-=(-1-2--),=(22,11→→→→BAABDAAC,∵,==-331yx,,2)(3=,6)=∴(+1,(1-2)1131yx,,=(12)=-)(-3,-6)-(-1-222,3xx,=1-11+1=,-????21和则有??yy,2=2-2-2=????21.xx,,2=-=0????21解得和??yy0.=4=????21CD的坐标分别为(0,4)和(-2,0),∴,→CD=(-∴2,-4).。

人教A版高中数学必修4第二章平面向量2.5平面向量应用举例导学案(1)

人教A版高中数学必修4第二章平面向量2.5平面向量应用举例导学案(1)

a 与 b 不共线, a⊥ c,
| a| = | c| ,则 | b· c| 的值一定等于 ( )
A.以 a, b 为邻边的平行四边形的面积
B.以 b, c 为两边的三角形的面积
C.以 a, b 为两边的三角形的面积
D.以 b, c 为邻边的平行四边形的面积
答案: A
3.两个大小相等的共点力 F1, F2,当它们夹角为 90°时,合力大小为 20 N,则当它们的
A.等边三角形
B .锐角三角形
C.直角三角形
D .钝角三角形
答案: C
uuur uuur uuur 5.△ ABC中, D, E,F 分别为 BC, CA, AB的中点,则 AD + BE + CF = ( )
A.0
uuur C. AB
B .0
uuur D . AC
.
精品文档
答案: B
二、填空题
y
∴∠ CAD=∠ ACB=30°,∠ BAD=120°.
即船的航行速度为 8 3 km/h ,方向与水流方向的夹角为 [ 类题通法 ] 利用向量法解决物理问题的步骤 (1) 抽象出物理问题的向量,转化为数学问题; (2) 建立以向量为主体的数学模型;
120°.
(3) 利用向量的线性运算或数量积运算,求解数学模型; (4) 用数学模型中的数据解释或分析物理问题. [ 活学活用 ] 已知力 F( 斜向上 ) 与水平方向的夹角为 30°,大小为 50 N,一个质量为 8 kg 的木块受力 F 的作用在动摩擦因数 μ= 0.02 的水平面上运动了 20 m.求力 F 和摩擦力 f 所做的功分别为 多少. ( g 取 10 m/s 2)
夹角为 120°时,合力大小为 (
)

高中数学必修4(人教A版)第二章平面向量2.1知识点总结含同步练习及答案

高中数学必修4(人教A版)第二章平面向量2.1知识点总结含同步练习及答案

描述:高中数学必修4(人教A版)知识点总结含同步练习题及答案第二章 平面向量 2.1 平面向量的实际背景及基本概念一、学习任务了解向量的实际背景,理解平面向量的基本概念和几何表示,理解向量相等的含义.二、知识清单平面向量的概念与表示三、知识讲解1.平面向量的概念与表示向量的基本概念我们把既有方向,又有大小的量叫做向量(vector).带有方向的线段叫做有向线段.我们在有向线段的终点处画上箭头表示它的方向.以为起点、为终点的有向线段记做,起点写在终点的前面.有向线段包含三个要素:起点、方向、长度.向量可以用有向线段来表示.向量的大小,也就是向量的长度(或称模),记做 ,长度为 的向量叫做零向量(zero vector),记做 .零向量的方向不确定.长度等于 个单位的向量,叫做单位向量(unit vector).方向相同或相反的非零向量叫做平行向量 (parallel vectors),向量 、 平行,通常记做.规定零向量与任一向量平行,即对于任意向量,都有.A B AB −→−||AB −→−00 1a b ∥a b a →∥0→a →例题:相等向量与共线向量长度相等且方向相同的向量叫做相等向量(equal vector).向量 与 相等,记做 .任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量(collinear vectors).四、课后作业 (查看更多本章节同步练习题,请到快乐学)∥a b =a b 下列四个命题:① 时间、速度、加速度都是向量;② 向量的模是一个正实数;③ 相等向量一定是平行向量;④ 共线向量一定在同一直线上;⑤ 若 , 是单位向量,则 ;⑥ 若非零向量 与 是共线向量,则四点 共线.其中真命题的个数为( )A. B. C. D.解:B只有③正确.a →b →=a →b →AB −→−CD −→−A ,B ,C ,D 0123下列说法正确的是( )A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为D.任意两个单位向量方向相同解:C零向量的长度为 ,方向是任意的,故 A,B 错误,C 正确,任意两个单位向量的长度相等,但方向不一定相同,故 D 错误.00如图所示, 是正六边形 的中心.(1)与 的模相等的向量有多少个?(2)是否存在与 长度相等、方向相反的向量?(3)与 共线的向量有哪些?解:(1)因为 的模等于正六边形的边长,而在图中,模等于边长的向量有 个,所以共有 个与 的模相等的向量.(2)存在,是 .(3)有 、、.O ABCDEF OA −→−OA −→−OA −→−OA −→−1211OA −→−F E −→−F E −→−CB −→−DO −→−高考不提分,赔付1万元,关注快乐学了解详情。

【人教A版】2020高中数学必修四导学案:第二章平面向量章末复习课_含答案

【人教A版】2020高中数学必修四导学案:第二章平面向量章末复习课_含答案

第二章 平面向量学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一 向量的线性运算例1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟 向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1 在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC →+23BE →,若存在,说明D 点位置;若不存在,说明理由.解 假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二 向量的数量积运算例2 已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解 (1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟 数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2 已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解 (1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三 向量坐标法在平面几何中的应用例3 已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解 建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟 把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练 3 如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于( )A. 3B.33C.433D.2 3 答案 A解析 由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于( ) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案 B解析 如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20 B.15 C.9 D.6答案 C解析 ▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( ) A.12 B.2 C.-12 D.-2 答案 D解析 m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案 2 5解析 由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解 由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是( ) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案 D解析 OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于( ) A.5 B.4 C.3 D.2 答案 A解析 ∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 ∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案 A解析 设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是( ) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案 C解析 由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为( ) A.π6 B.π3 C.2π3D.5π6答案 B解析 ∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为()A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案 C解析 令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案238解析 由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案 711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案 -2解析 由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案 1解析 ∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 ∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解 ∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解 (1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。

人教A版高中数学必修4第二章平面向量2.2平面向量的线性运算导学案(1)

人教A版高中数学必修4第二章平面向量2.2平面向量的线性运算导学案(1)

→MN= ________.( 用 a,b 表示 )
6.给出下列命题: ①向量 A→B的长度与向量 B→A的长度相等;
②向量 a 与 b 平行,则 a 与 b 的方向相同或相反;
③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;
⑤向量 A→B与向量 C→D是共线向量,则点 A、B、 C、 D必在同一条直线上.
.
精品文档
③λ ( a+ b) = □15________.
4.两个向量共线定理
向量 b 与非零向量 a 共线的充要条件是有且只有一个实数λ,使得
□16________ .
温馨提醒: 向量的平行与直线的平行不同, 向量的平行包括两向量所在直线平行和重合两种
情形.
双基自测
1. D 是△ ABC的边 AB上的中点,则向量 C→D等于
(
).
A.- B→C+12B→A
B.- B→C- 12B→A
C. B→C- 12B→A
D. B→C+ 12B→A
2.判断下列四个命题:
①若 a∥ b,则 a=b;②若 | a| =| b| ,则 a=b;③若 | a| = | b| ,则 a∥ b;④若 a= b,则 | a|
=|b| .
正确的个数是
(
).
A. 0
B. B→E
C.
A→D
D. C→F
5.设 a 与 b 是两个不共线向量,且向量 a+ λ b 与 2a- b 共线,则 λ=________.
考向一 平面向量的概念
【例 1】下列命题中正确的是 ( ) .
A. a 与 b 共线, b 与 c 共线,则 a 与 c 也共线
B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点

人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念习题(4)

人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念习题(4)

2.1平面向量的实际背景及基本概念一、选择题1.【题文】下列各量中不是向量的是( ) A .浮力 B .风速 C .位移D .密度2.【题文】在下列判断中,正确的是( )①长度为的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等; ④单位向量都是同方向;⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤3.【题文】若AB AD =且BA CD =,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形4.【题文】已知:如图,D ,E ,F 依次是等边三角形ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点或终点的向量中,与向量AD 共线的向量有()A .个B .个C .个D .个5.【题文】下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同. A .个 B .个 C .个 D .个6.【题文】给出下列说法:①AB 和BA 的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④0=0;⑤AB CD >,其中正确说法的个数是( )A. B. C. D.7.【题文】若四边形ABCD 是矩形,则下列说法中不正确的是 ( ) A .AB 与CD 共线B .AC 与BD 共线C .AD 与CB 是相反向量 D .AB 与CD 的模相等8.【题文】下列说法正确的是( )A .有向线段AB 与BA 表示同一向量 B .两个有公共终点的向量是平行向量C .零向量与单位向量是平行向量D .对任一向量,aa是一个单位向量 二、填空题9.【题文】如图,正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有个(含AB ).10.【题文】给出下列四个条件:①=a b ;②=a b ;③与的方向相反;④0=a 或0=b ,其中能使a b 成立的条件有________.11.【题文】下列说法中,正确的是 . ①向量AB 的长度与BA 的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是相等向量,则A、B、C、D能构成平行四边形.三、解答题12.【题文】如图,D,E,F分别是△ABC的边AB,BC,CA的中点,在以A,B,C,D,E,F为起点和终点的向量中:(1)找出与向量EF相等的向量;(2)找出与向量DF相等的向量.13.【题文】如图,在△ABC中,D,E分别是边AB,AC的中点,F,G分别是DB,EC 的中点,求证:向量DE与FG共线.14.【题文】如图,EF是△ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中请分别写出:(1)与向量CD共线的向量;(2)与向量DF的模相等的向量;(3)与向量DE相等的向量.2.1平面向量的实际背景及基本概念参考答案与解析一、选择题1.【答案】D【解析】根据向量的定义,从大小和方向两个方面考虑,可知密度不是向量.考点:平面向量的概念.【题型】选择题【难度】较易2.【答案】D【解析】由零向量与单位向量的概念知①③⑤正确.考点:零向量与单位向量.【题型】选择题【难度】较易3.【答案】C【解析】四边形ABCD中,∵BA CD=,∴BA CD,且BA CD=,∴四边形ABCD是平行四边形.又AB AD=,∴平行四边形ABCD是菱形.考点:相等向量.【题型】选择题【难度】较易4.【答案】C【解析】∵D,E,F分别为AB,BC,CA的中点,∴AD∥EF ,∴与向量AD共线的向量有AB,FE,EF,DA,BA,BD,DB,共7个.考点:共线向量.【题型】选择题【难度】较易5.【答案】A【解析】长度相等且方向相同的向量叫做相等向量,故①错误;长度为的向量叫零向量,故②正确;通过平移能够移到同一条直线上的向量叫共线向量,故③错误;零向量的方向是任意的,故④错误;共线向量方向相同或相反,⑤正确;平行向量方向相同或相反,故⑥错误,因此②与⑤正确,其余都是错误的,故选C.考点:相等向量,共线向量.【题型】选择题【难度】一般6.【答案】B【解析】①正确,AB与BA是方向相反、模相等的两个向量;②错误,方向不同包括共线反向的向量;③错误,向量用有向线段表示,但二者并不等同;④错误,是一个向量,而为一数量,应为0=0;⑤错误,向量不能比较大小.只有①正确,故选B.考点:向量的有关概念.【题型】选择题【难度】一般7.【答案】B【解析】∵四边形ABCD是矩形,∴AB CD且AB CD=,AD CB,∴AB 与CD共线,且模相等,AD与CB是相反向量,∵AC与BD相交,∴AC与BD不共线,故B错误.考点:共线向量,相等向量.【题型】选择题【难度】一般 8. 【答案】C【解析】向量AB 与BA 方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当=0a 时,aa无意义,故A 、B 、D 错误.零向量与任何向量都是平行向量,C 正确.考点:平行向量;单位向量. 【题型】选择题 【难度】较难二、填空题 9. 【答案】10【解析】正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有,,,,,,,,,AB BA OC CO OF FO CF FC DE ED ,共10个. 考点:平行向量. 【题型】填空题 【难度】较易 10.【答案】①③④【解析】因为与为相等向量,所以a b ,即①能够使a b 成立;=a b 并没有确定与的方向,即②不能够使ab 成立;与方向相反时,a b ,即③能够使a b 成立;因为零向量与任意向量共线,所以0=a 或0=b 时,a b 能够成立.故使a b 成立的条件是①③④.考点:平行向量. 【题型】填空题 【难度】一般11. 【答案】①【解析】对于①,向量AB 与BA 互为相反向量,长度相等,正确;对于②,因为零向量与任何向量平行,但零向量的方向是任意的,不能说方向相同或相反,所以②错误;对于③,两个有共同起点的单位向量,其终点不一定相同,因为方向不一定相同,所以③错误; 对于④,向量AB 与向量CD 是相等向量,则A 、B 、C 、D 可能在同一直线上,则A 、B 、C 、D 四点不一定能构成平行四边形,所以④错误.综上,正确的是①. 考点:平面向量的概念. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1),BD DA (2),BE EC【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EFBA ,且12EF BA =,又D 是BA 的中点, ∴EF BD DA ==,∴与向量EF 相等的向量是,BD DA .(2)∵D ,F 分别为BA ,AC 的中点, ∴DFBC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC ==, ∴与向量DF 相等的向量是,BE EC . 考点:共线向量.【题型】解答题【难度】较易13.【答案】详见解析【解析】证明:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,∴四边形DBCE是梯形.又∵F,G分别是DB,EC的中点,∴FG是梯形DBCE的中位线,∴FG DE.∴向量DE与FG共线.考点:向量共线.【题型】解答题【难度】一般14.【答案】(1),,,,,,BD BC EF DB CB FE DC(2),,,,FD AE EA EB BE(3),CF FA【解析】根据三角形中位线的性质及共线向量及相等向量的概念即可得到:(1)与向量CD共线的向量为,,,,,,BD BC EF DB CB FE DC.(2)与向量DF的模相等的向量为,,,,FD AE EA EB BE.(3)与向量DE相等的向量为,CF FA.考点:相等向量,平行向量. 【题型】解答题【难度】一般。

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。

高中数学必修4 第二章平面向量最优完整版导学案

高中数学必修4 第二章平面向量最优完整版导学案
的有向线段记作 AB .
(2)有向线段包含三个要素: 、 、
3.向量的表示
(1)几何表示:向量可以用有向线段表示,此时有向线段的方向就是向量的方向.
(2)字母表示:通常在印刷时用黑体小写字母 a,b,c…表示向量,书写时用→a ,→b ,→c …
表示向量;也可以用表示向量的有向线段的起点和终点字母表示,
平行四边形法则:
①适用于两个不共线向量求和,且两向量要共起点;
②力的合成可以看作向量加法平行四边形法则的物理模型.
4
三、应用举例 例 1 如图 5,已知向量 a、b,求作向量 a+b
作法 1(三角形法则):
b a
图5
作法 2(平行四边形法则):
探究合作: ||a|-|b||,|a+b|,|a|,|b|存在着怎样的关系?
| a |-| b |;若| a |<| b |,则 a + b 的方向与 b 相同,且| a + b |
ab
结论:一般地:
| a b || a | | b |
四、练习巩固: 教材 84 页 1、2 题
| b |-| a |.
5
2.2.2 向量的减法运算及其几何意义 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:
(1)当向量 a 与 b 不共线时,| a + b |
| a |+| b |;
(2)当 a 与 b 同向时,则 a + b 、 a 、 b
(填同向或反向),且| a + b |
| a |+| b |;当 a 与 b 反向时,若| a |>| b | ,则 a + b 的方 向与 a 相同,且| a + b |

2020版高中数学人教A版必修4 导学案 《平面向量基本定理》(含答案解析)

2020版高中数学人教A版必修4 导学案 《平面向量基本定理》(含答案解析)

2.3.1 平面向量基本定理学习目标1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理思考1 如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案: 能.依据是数乘向量和平行四边形法则.思考2 如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案:不一定,当a 与e 1共线时可以表示,否则不能表示. 梳理:(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直思考1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?答案:存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案为:如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理:(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一 对基底概念的理解例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ, 使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.A.①②B.②③C.③④D.②跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2类型二 向量的夹角例2 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.类型三 平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解. 跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点, 且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.1.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于( ) A.30° B.60° C.120° D.150°3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A.e 1+e 2和e 1-e 2 B.3e 1-4e 2和6e 1-8e 2 C.e 1+2e 2和2e 1+e 2 D.e 1和e 1+e 22.若向量a 与b 的夹角为60°,则向量-a 与-b 的夹角是( ) A.60° B.120° C.30° D.150°3.如图所示,用向量e 1,e 2表示向量a -b 为( )A.-4e 1-2e 2B.-2e 1-4e 2C.e 1-3e 2D.3e 1-e 24.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为( )A.3B.4C.-14D.-345.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于( ) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.457.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.12a +14bC.23a +13bD.12a +23b 二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.15.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.答案解析例1.答案为:B解析:由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B. 反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.答案为:D ;解析:选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量; 选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 例2解:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形,所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形,所以OC ⊥AB ,所以∠COA =90°-60°=30°,即a +b 与a 的夹角α=30°, 所以α+β=90°. 跟踪训练2.答案为:90°解析:由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.例3.解:∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解:取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b .跟踪训练3.解:OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b ,OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a .∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.答案为:C解析:零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.答案为:D解析:由向量夹角定义知,AC →与BA →的夹角为150°. 3.答案为:-15 -12;解析:∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.答案为:a +b 2a +c ;解析:由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.解:连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点,∴DC 綊FB .∴四边形DCBF 为平行四边形.依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF →=AD →-12AB →=a -12b , EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a . 课时作业1.答案为:B解析:B 中,∵6e 1-8e 2=2(3e 1-4e 2),∴(6e 1-8e 2)∥(3e 1-4e 2),∴3e 1-4e 2和6e 1-8e 2不能作为基底.2.答案为:A3.答案为:C ;解析:如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.答案为:B解析:因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,所以(3x -4y +7)e 1+(10-y -2x )e 2=0, 又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧ 3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧ x =3,y =4,故选B.5.答案为:D解析:∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2,∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb . 6.答案为:C解析:∵CD →=4DB →=rAB →+sAC →,∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →, ∴r =45,s =-45.∴3r +s =125-45=85. 7.答案为:C解析:如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb . ∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧ 1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧ λ=23,μ=34,∴AF →=23a +13b ,故选C. 8.答案为:(-∞,4)∪(4,+∞)解析:若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b , 即得λ≠4.9.答案为:60°解析:作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.答案为:43解析:设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b , 又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43. 11.解:(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2. 因为1-λ与1+λ不同时为0,所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.解:如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.解:方法一 如图所示,∵AB →=e 2,且DC AB=k ,∴DC →=kAB →=k e 2. 又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2. 方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)=k +12e 2. 14.答案为:90°解析:由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.(1)证明 若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解:设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2. ∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b .(3)解:由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧ λ=3,μ=1.故所求λ,μ的值分别为3和1.。

人教A版高一数学必修4 教案--第二章 平面向量--含答案

人教A版高一数学必修4 教案--第二章 平面向量--含答案

aaa平面向量复习教案一、教学目标1.知识与技能:通过复习本章知识点,提高综合运用知识的能力”. 2.过程与方法:通过知识回顾,例题分析,强化训练,体现向量的工具作用. 3.情感态度与价值观:通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.三、重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题. 教学难点:如何将几何等实际问题化归为向量问题.四、教学设想一、基础知识:(一)平面向量的计算及其性质: (1)+=+;(2)(-+=-;平行四边形法则三角形法则(3))0(,≠=a a b λ⇔和共线;(4a的模(即长度)0≥(5+≤+≤-+≤-≤-。

(6)θcos =⋅,其中θ为向量和的夹角。

==(7)()()⋅+⋅+⋅+⋅=+⋅+;那么()()___=+⋅- (8)⊥⇔=⋅0 (二)向量的坐标表示和运算:在平面中,若,不共线(可作为平面的一组基底),则任意向量,有且只有一组数(y x ,)使得y x +=当我们选定的一组基为直角坐标系上两互相垂直的单位向量和,则平面任意向量可以表示成y x +=,那么任意向量和坐标平面上的一个点坐标相对应,如图所示,即),(y x =, (1)设),(),,(2211y x y x ==则=+=-=a λ=⋅ba=;若//,则;⊥,则;(填坐标关系)(2)已知点),(11y x A 、),(22y x B 则向量=AB=;二、例题选讲(一)加减运算。

2020_2021学年高中数学第二章平面向量2.3.1平面向量基本定理训练含解析新人教A版必修4

2020_2021学年高中数学第二章平面向量2.3.1平面向量基本定理训练含解析新人教A版必修4

第二章 平面向量2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理 [A 组 学业达标]1.若k 1a +k 2b =0,则k 1=k 2=0,那么下面关于向量a ,b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 垂直D .a 与b 中至少有一个为0解析:由平面向量基本定理可知,当a ,b 不共线时,k 1=k 2=0. 答案:B2.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:取第Ⅲ部分内一点画图易得a >0,b <0. 答案:B3.如果e 1,e 2是平面α内两个不共线的向量,那么在下列各命题中不正确的有( )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若实数λ,μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②解析:由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2 =0时,这样的λ有无数个.故选B. 答案:B4.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,则AD →可用基底a ,b 表示为 ( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:∵BD →=2DC →,∴BD →=23BC →.∴AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C5.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,试用m ,n 表示p ,p =________.解析:设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3,-3x -2y =2,解得⎩⎨⎧x =-74,y =138.所以p =-74m +138n .答案:-74m +138n6.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =________.解析:∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3.答案:37.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.解析:易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.答案:128.在梯形ABCD 中,AB ∥CD ,M ,N 分别是DA ,BC 的中点,且DC AB=k (k ≠1).设AD →=e 1,AB →=e 2,选择基底{e 1,e 2},试写出下列向量在此基底下的分解式:DC →,BC →,MN →. 解析:如图,∵AB →=e 2,且DC AB=k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=-e 2+k e 2+e 1=e 1+(k -1)e 2. ∵MN →+NB →+BA →+AM →=0,∴MN →=-NB →-BA →-AM →=BN →+AB →-AM →=12BC →+e 2-12AD →=12[e 1+(k -1)e 2]+e 2-12e 1=k +12e 2. 9.在△ABC 中,点M 是BC 的中点,点N 在AC 上且AN →=2NC →,AM 交BN 于P 点,求AP与AM 的比值.解析:设BM →=a ,CN →=b ,则AM →=AC →+CM →=-a -3b ,BN →=2a +b . ∵A ,P ,M 和B ,P ,N 分别共线, ∴存在实数λ,μ使AP →=λAM →=-λa -3λb , BP →=μBN →=2μa +μb .∴BA →=BP →-AP →=(λ+2μ)a +(3λ+μ)b . 又∵BA →=BC →+CA →=2a +3b ,由平面向量基本定理得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35,则AP →=45AM →.∴AP 与AM 的比值为45.[B 组 能力提升]10.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →=( )A .a +λbB .λa +bC .λa +(1+λ)bD.a +λb 1+λ解析:∵P 1P →=λPP 2→,∴OP →-OP 1→=λ(OP 2→-OP →),(1+λ)OP →=λOP 2→+OP 1→,∴OP →=a +λb1+λ.答案:D11.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,CD 与BE 交于点F ,设AB →=a ,AC →=b ,AF →=m a +n b ,则m +n =( )A .1 B.43 C.23D.56解析:AF →=mAB →+nAC →=mAB →+2nAE →, 由B ,F ,E 三点共线,得m +2n =1,① AF →=mAB →+nAC →=2mAD →+nAC →, 由C ,F ,D 三点共线,得2m +n =1,② ①+②得3(m +n )=2,m +n =23.答案:C12.设G 为△ABC 的重心,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OG →,则OG →=________.解析:OG →=OC →+CG →=OC →+13(CA →+CB →)=OC →+13(OA →-OC →+OB →-OC →)=13(a +b +c ).答案:13(a +b +c )13.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)解析:如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.答案:-23e 1+512e 214.已知△ABC 内一点P 满足AP →=λAB →+μAC →,若△P AB 的面积与△ABC 的面积之比为1∶3,△P AC 的面积与△ABC 的面积之比为1∶4,求实数λ,μ的值.解析:如图,过点P 作PM ∥AC ,PN ∥AB ,则AP →=AM →+AN →,所以AM →=λAB →,AN →=μAC →.作PG ⊥AC 于点G ,BH ⊥AC 于点H . 因为S △P AC S △ABC =14,所以PG BH =14.又因为△PNG ∽△BAH ,所以PG BH =PN AB =14,即AM AB =14,所以λ=14,同理μ=13. 15.如图,已知三点O ,A ,B 不共线,且OC →=2OA →,OD →=3OB →,设OA →=a ,OB →=b .(1)试用a ,b 表示向量OE →;(2)设线段AB ,OE ,CD 的中点分别为L ,M ,N ,试证明:L ,M ,N 三点共线.解析:(1)∵B ,E ,C 三点共线, ∴OE →=xOC →+(1-x )OB →=2x a +(1-x )b .①同理,∵A ,E ,D 三点共线,∴OE →=y a +3(1-y )b .②比较①②,得⎩⎪⎨⎪⎧2x =y ,1-x =3(1-y ),解得x =25,y =45,∴OE →=45a +35b .(2)证明:∵OL →=a +b 2,OM →=12OE →=4a +3b 10,ON →=12(OC →+OD →)=2a +3b 2,∴MN →=ON →-OM→=6a +12b 10,ML →=OL →-OM →=a +2b10, ∴MN →=6ML →,又MN →与ML →有公共点M , ∴L ,M ,N 三点共线.。

高中数学 第二章 平面向量 2.2.3 向量数乘运算及其几何意义导学案 新人教A版必修4-新人教A版

高中数学 第二章 平面向量 2.2.3 向量数乘运算及其几何意义导学案 新人教A版必修4-新人教A版

2.2.3 向量数乘运算及其几何意义班级:__________姓名:__________设计人:__________日期:__________ ♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语一个人追求的目标越高,他的才力就发展得越快,对社会就越有益。

——高尔基学习目标1.掌握向量数乘运算的概念.2.能应用向量数乘运算的运算律化简数乘运算.3.掌握向量的共线定理及应用.学习重点平面向量数乘运算法则的应用.学习难点平面向量数乘运算法则的应用自主学习1.向量的数乘运算的概念(1)定义:实数λ与向量a的积是一个______.(2)运算律:①=②=③=特别地,( )= ( ),=. 2.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使_________.预习评价1.在四边形ABCD中,若,则此四边形是A.平行四边形B.菱形C.梯形D.矩形2.设,是两个不共线的向量,若向量m=-+ k(k∈R)与向量n= -2 共线,则A.k=0B.k=1C.k=2D.3.若向量,a满足2 -3( -2a)=0,则向量=________.4.向量a与b不共线,向量c=3a-b,d=6a-2b,则向量c与的关系_______.(共线,不共线)5. =___________.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.向量数乘的概念及运算根据向量数乘的概念,思考下面的问题:(1)向量数乘得到的依然是向量,那么它的方向由谁确定?(2)实数与向量数乘所得向量与原向量是否为共线向量?2.所得向量λa的几何意义是什么?3.向量的大小与方向如何?4.共线向量定理根据共线向量定理,探究下面的问题:(1)若向量a与向量b(b≠0)共线,则a=λb,如何确定λ的值?(2)定理中为何要限制a≠0?5.若向量a,b不共线,且λa=μb,则λ,μ的值如何?为什么?教师点拨1.对向量数乘的三点说明(1)向量的数乘是一个实数与一个向量相乘,其结果是一个向量,方向与λ的正负有关.(2)当λ=0时,λa=0.(3)向量的数乘运算要遵循向量的数乘运算律.2.共线向量定理的两个作用(1)证明线段平行,但要注意向量共线时,两向量所在的线段可能平行,也可能共线.(2)证明点共线,当两向量共线,且有公共点时,则表示向量的线段必在同一条直线上,从而向量的起点、终点必共线.交流展示——向量的数乘运算及理解已知向量a,b满足:|a|=3,|b|=5,且a=λb,则实数λ=A. B. C. D.变式训练设a是非零向量,λ是非零实数,则下列结论中正确的是 ( )A.a与λa的方向相同B.a与-λa的方向相反C.a与λ2a的方向相同D.|λa|=λ|a|交流展示——共线向量定理及其应用已知向量,,,则A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线变式训练在中,点是的中点,点在上,且,求证:,,三点共线.交流展示——向量线性运算的应用下列各式计算正确的个数是 ( )①(-7)·6a=-42a;②a-2b+2(a+b)=3a;③a+b-(a+b)=0.A.0个B.1个C.2个D.3个变式训练=A.2a−bB.2b−aC.b−aD.a−b学习小结1.向量的数乘运算方法(1)向量的数乘运算类似于代数的多项式的运算,其解题方法为“合并同类项”“提取公因式”,“同类项”“公因式”指的是向量,实数与向量数乘,实数可看作是向量的系数.(2)向量的求解可以通过列方程来求,将所求向量作为未知量,通过解方程的方法求解. 2.由共线向量定理求向量系数的步骤(1)把向量等式通过向量线性运算,转化为与另一个式子相同的形式.(2)由两等式相同知对应系数相同,列方程可求向量的系数.3.用共线向量定理证明三点共线的三个步骤(1)定向量:由三点可确定多个不同的向量.(2)证共线:证明两个向量共线.(3)得结论:说明三点共线.当堂检测1.化简下列各式:(1)-+--;(2)2(a+2b)+3(3a+2b)-4(a-b).2.已知向量a,b不共线,若向量a+λb与b+λa的方向相反,则实数λ的值为. 3.已知关于的方程有,则=A. B. C. D.无解4.在平行四边形ABCD中,,,,则________(用e1,e2表示).5.已知非零向量e1,e2,a,b满足a=2e1-e2,b=k e1+e2.(1)若e1与e2不共线,a与b共线,求实数k的值.(2)是否存在实数k,使得a与b不共线,e1与e2共线?若存在,求出k的值,否则说明理由知识拓展已知两个向量e1,e2不共线.如果a=e1+2e2,b=2e1-4e2,c=4e1-7e2,是否存在非零实数λ,μ,使得向量d=λa+μb与c共线?2.2.3 向量数乘运算及其几何意义详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】1.(1)向量λa,|λ||a|,相同相反0(2)①(λμ)a②λa+μa③λa+λbλa-aλa-λb2.b=λa【预习评价】1.C2.D3.6a4.共线5.2b-a♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)实数λ与向量a数乘,得到向量λa,其方向由λ的正负及向量a的方向共同确定(2)所得向量与原向量是共线向量.2.是把向量a沿a的方向放大(λ>1)或缩小(0<λ<1)到原来的λ倍或沿a的相反方向放大(λ<-1)或缩小(-1<λ<0)到原来的|λ|倍.3.向量的大小为1,方向与a的方向相同,所以该向量也是向量a方向上的单位向量.4.(1)当a,b同向时,λ=,当a,b反向时,λ=-.(2)共线向量定理中,若不限制a≠0,则当a=b=0时,λ的值不唯一,定理不成立.并且当b≠0,a=0时,λ的值不存在.5.:λ=μ=0.假设λ≠0,由于向量a,b不共线,则a≠0,b≠0,且a=b,从而a,b共线,与向量a,b不共线矛盾,可知λ=μ=0.【交流展示——向量的数乘运算及理解】C【变式训练】C【解析】只有当λ>0时,a与λa的方向相同,a与-λa的方向相反,且|λa|=λ|a|.因为λ2>0,所以a与λ2a的方向相同.【交流展示——共线向量定理及其应用】B【解析】本题主要考查平面向量的共线的定理与向量的应用,由于与有公共点B,因此A、B、D三点共线,故答案为B.【变式训练】证明:.因为,,所以.由于,可知,即.又因为、有公共点,所以、、三点共线.【解析】本题考查向量的运算法则、向量共线的充要条件、利用向量共线解决三点共线.【交流展示——向量线性运算的应用】C【解析】根据数乘向量的运算律可验证①②正确;③错误,因为向量的和、差及数乘运算的结果仍为一个向量,而不是实数.【变式训练】B【当堂检测】1.(1)原式=(-)-(+)=-0=.(2)原式=2a+4b+9a+6b-4a+4b=(2+9-4)a+(4+6+4)b=7a+14b.2.-1【解析】本题主要考查向量的相关知识,解题的关键是根据a+λb与b+λa的方向相反得到恒等式,进而得到关于λ的方程,从而得出λ的值.由a+λb与b+λa的方向相反得,a+λb=-k(b+λa),k>0,则λ=-k,-kλ=1,即λ2=1,又k>0,所以λ=-1,此时a+λb与b+λa的方向相反.3.B【解析】本题主要考查向量的线性运算.向量的线性运算同多项式的合并化简类似,具体解法如下:由已知得,则.4.5.(1)由,得,而与不共线,所以2,21k k λλ=⎧⇒=-⎨=-⎩. (2)不存在.若与共线,则, 有因为为非零向量,所以2λ≠且k λ≠-, 所以,即,这时与共线,所以不存在实数k 满足题意. 【知识拓展】显然c≠0,否则4e 1-7e 2=0,即e 1=e 2,与e 1,e 2不共线矛盾.又d=λa+μb=(λ+2μ)e 1+(2λ-4μ)e 2(λμ≠0),假设向量d=λa+μb 与c 共线,则存在一个实数γ,使得d=γc,即( λ+2μ)e 1+(2λ-4μ)e 2=4γe 1-7γe 2,从而,消去γ,得15λ=2μ(μ≠0).所以存在非零实数λ,μ,只要它们满足15λ=2μ(μ≠0),就能使得向量d 与c 共线.。

【人教A版】新编必修四导学案设计(含答案)第二章 2.2.3

【人教A版】新编必修四导学案设计(含答案)第二章  2.2.3

新编人教版精品教学资料2.2.3 向量数乘运算及其几何意义[学习目标] 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘运算和运算律 1.向量数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反;特别地,当λ=0或a =0时,0a =0或λ0=0. 2.向量数乘的运算律 (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .特别地,有(-λ)a =-(λa )=λ(-a ); λ(a -b )=λa -λb .思考 你能理解λa 的几何意义吗?答案 意义有两条,一是a 的模变为|λ|倍;二是λ的正负改变λa 的方向. 知识点二 共线向量定理 1.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .思考 若向量a 与b 共线,一定有a =λb 吗?答案 不一定.因为当b =0,而a ≠0时,则不能表示为a =λb 的形式.题型一 向量的线性运算 例1 计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ). 解 (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝⎛⎭⎫3a -23a +2b -b - 76⎝⎛⎭⎫12a +12a +37b =12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b=76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =(6a -4a +4a )+(8b -6b )+(6c -4c -2c )=6a +2b .反思与感悟 向量的线性运算类似于代数多项式的运算,主要是“合并同类项”、“提取公因式”,但这里的“同类项”、“公因式”指向量,实数看作是向量的系数. 跟踪训练1 若a =b +c ,化简3(a +2b )-2(3b +c )-2(a +b )的结果为( ) A .-a B .-4b C .c D .a -b 答案 A解析 3(a +2b )-2(3b +c )-2(a +b )=(3-2)a +(6-6-2)b -2c =a -2(b +c )=a -2a =-a . 题型二 向量共线的判定及应用 例2 已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.(1)证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →,BD →共线,且有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思与感悟 1.本题充分利用了向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,因此用它既可以证明点共线或线共线问题,也可以根据共线求参数的值.2.向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.跟踪训练2 如图,已知任意两个非零向量a ,b ,作OA →=a +b ,OB →=a +2b ,OC →=a +3b .试判断A 、B 、C 三点之间的位置关系,并说明理由.解 分别作向量OA →、OB →、OC →,过点A 、C 作直线AC (如图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线. 因为AB →=OB →-OA → =(a +2b )-(a +b )=b ,AC →=OC →-OA →=(a +3b )-(a +b )=2b , 故有AC →=2AB →.因为AC →∥AB →,且有公共点A ,所以A 、B 、C 三点共线. 题型三 向量数乘运算的综合应用例3 如图所示,已知▱ABCD 的边BC 、CD 上的中点分别为K ,L ,且AK →=e 1,AL →=e 2,试用e 1,e 2表示BC →,CD →. 解 方法一 设BC →=x ,则BK →=12x ,AB →=e 1-12x ,DL →=12e 1-14x ,又AD →=x ,由AD →+DL →=AL →得x +12e 1-14x =e 2,解方程得x =43e 2-23e 1,即BC →=43e 2-23e 1,由CD →=-AB →,AB →=e 1-12x ,得CD →=-43e 1+23e 2.方法二 设BC →=x ,CD →=y ,则BK →=12x ,DL →=-12y .由AB →+BK →=AK →,AD →+DL →=AL →得⎩⎨⎧-y +12x =e 1, ①x -12y =e 2,②用-2乘以②与①相加得12x -2x =e 1-2e 2,解得x =23(2e 2-e 1),即BC →=23(2e 2-e 1),同理得y =23(-2e 1+e 2),即CD →=-43e 1+23e 2.反思与感悟 1.由已知向量表示未知向量时,要善于利用三角形法则、平行四边形法则以及向量线性运算的运算律,还应重视平面几何定理的应用.2.当用已知向量表示未知向量比较困难时,应考虑方程思想,利用方程的观点进行求解. 跟踪训练3 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).证明 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →).又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →.∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →). 数形结合思想在向量线性运算中的应用例4 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N ,设AB →=a ,AC →=b ,用a ,b 表示向量AE →,BC →,DE →,DN →,AM →,AN →.分析 利用DE ∥BC 等条件进行转化. 解 ∵DE ∥BC ,AD →=23AB →,∴AE →=23AC →=23b ,BC →=AC →-AB →=b -a .由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ).又AM 是△ABC 底边BC 的中线,DE ∥BC , ∴DN →=12DE →=13(b -a ).AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).AN →=AD →+DN →=23AB →+13(b -a )=13(a +b ).点评 向量本身具有“数”和“形”的双重特征.所以在进行向量的线性运算中,结合图形可使运算更直观更快捷.数形结合思想是向量运算中体现最为明显的.1.下列各式中不表示向量的是( ) A .0·a B .a +3bC .|3a | D.1x -ye (x ,y ∈R ,且x ≠y ) 答案 C解析 向量的数乘运算结果仍为向量,显然只有|3a |不是向量.2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .B 、C 、D B .A 、B 、C C .A 、B 、D D .A 、C 、D答案 C解析 ∵BD →=BC →+CD →=2a +4b =2AB →, ∴A 、B 、D 三点共线.3.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________. 答案 2解析 ∵四边形ABCD 为平行四边形,对角线AC 与BD 交于点O ,∴AB →+AD →=AC →=2AO →,∴λ=2.4.若AC →=2CB →,AB →=λBC →,则λ=________. 答案 -3解析 ∵AB →=AC →+CB →=2CB →+CB →=3CB →,∴λ=-3.1.实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模长有关.2.利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2aD .若b =±2a ,则|b |=2|a | 答案 D解析 显然b =±2a 时,必有|b |=2|a |.2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( )①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .①④ B .①② C .①③ D .③④答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD → D.12BC → 答案 C解析 如图,EB →+FC →=EC →+CB →+FB →+BC → =EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且P A →+PB →+PC →=AB →,则( ) A .P 在△ABC 内部 B .P 在△ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上 答案 D解析 P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →,∴P 在AC 边上.5.设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.6.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 答案 D解析 ∵△DEF ∽△BEA ,∴DF AB =DE EB =13,∴DF =13AB ,∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得:AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.答案 23解析 CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →.8.已知在△ABC 中,点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________. 答案 3解析 ∵MA →+MB →+MC →=0, ∴点M 是△ABC 的重心.∴AB →+AC →=3AM →,∴m =3.9.在△ABC 中,点D 在直线CB 的延长线上,且CD →=4BD →=rAB →+sAC →,则r -s =________. 答案 83解析 ∵CD →=CB →+BD →=4BD →, ∴CB →=3BD →.∴CD →=AD →-AC →=AB →+BD →-AC → =AB →+13CB →-AC →=AB →+13(AB →-AC →)-AC →=43AB →-43AC →∴r =43,s =-43,r -s =83.10.如图所示,设M ,N 为△ABC 内的两点,且AM →=14AB →+13AC →,AN →=25AB →+12AC →,则△ABM 的面积与△ABN 的面积之比为________. 答案 2∶3解析 如图所示,设AP →=14AB →,AQ →=13AC →,则AM →=AP →+AQ →.由平行四边形法则知,MQ ∥AB , ∴S △ABM S △ABC =|AQ →||AC →|=13. 同理S △ABN S △ABC =12.∴S △ABM S △ABN =23.三、解答题11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,试求实数k 的值. 解 ∵k a +2b 与3a +k b 共线, ∴存在实数λ使k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0λk -2=0,∴k =±6.12.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,求MN →(用a ,b 表示).解 方法一 如图所示,在▱ABCD 中,连接AC 交BD 于O 点, 则O 平分AC 和BD . ∵AN →=3NC →,∴NC →=14AC →,∴N 为OC 的中点,又M 为BC 的中点,∴MN 綊12BO ,∴MN →=12BO →=14BD →=14(b -a ).方法二 MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14(b -a ).13.如图所示,在平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD .求证:M 、N 、C 三点共线.证明 设BA →=a ,BC →=b ,则由向量减法的三角形法则可知:CM →=BM →-BC →=12BA →-BC →=12a-b .又∵N 在BD 上且BD =3BN , ∴BN →=13BD →=13(BC →+CD →)=13(a +b ),∴CN →=BN →-BC →=13(a +b )-b=13a -23b =23⎝⎛⎭⎫12a -b , ∴CN →=23CM →,又∵CN →与CM →的公共点为C ,∴C 、M 、N 三点共线.。

最新人教A版高中数学必修4第二章平面向量章末复习课导学案

最新人教A版高中数学必修4第二章平面向量章末复习课导学案

第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。

人教版高中数学版必修四学案 第二章 平面向量

人教版高中数学版必修四学案 第二章 平面向量

第二章平面向量(复习)【学习目标】1、理解和掌握平面向量有关的概念;熟练掌握平面向量的几何运算和坐标运算;2、熟悉平面向量的平行、垂直关系和夹角公式的应用;【学习过程】一、自主学习(预习教材P116—P121)1、平面向量有关的概念:(1)向量;(2)向量模;(3)相等向量;(4)相反向量;(5)零向量;(6)单位向量;(7)平行向量;(8)垂直向量;(9)向量的夹角;(10)向量的坐标。

2、向量的运算:(1)加减法;(2)实数与向量的乘积;(3)向量的数量积。

3、几个重要的结论:设11a (x ,y )=,22b (x ,y )=,λ为一实数。

(1)+a b =________;-a b =__________;λa =__________;a b ⋅=.(2)设a=(x,y),则2a =_____________或a _______________;(3)设θ是a 与b 的夹角,则cos θ=_________=_______________;(4)a b ⊥⇔a b 0⋅=⇔; (5)∥⇔存在0λ≠,使得a b =λ⇔二、合作探究1、设1e 、2e 是两个不共线的向量,已知AB =122e ke +,123CB e e =+,122CD e e =-,若,,A B D 三点共线,求k 的值.2、已知向量()()4,3,1,2a b ==-,求⑴求a 与b 的夹角θ;⑵若向量a b λ-与2a b +垂直,求λ的值.3、向量a (1,1)=-,且a 与a 2b +方向相同,求a b ⋅的取值范围。

三、交流展示 1、已知正方形ABCD 的边长为,AB a =,BC b =,AC c =,则a b c ++为多少?2、若12,e e 是夹角为60的两个单位向量,则122a e e =+;1232b e e =-+的夹角为多少?3、已知向量()2,2a =-,()5,b k =,若a b +不超过5,则k 的取值范围是多少?四、达标检测(A 组必做,B 组选做)A 组:1. 下列各组向量中,可以作为基底的是()A.()()120,0,1,2e e ==-B.()()121,2,5,7e e =-=C.()()123,5,6,10e e ==D. ()12132,3,,24e e ⎛⎫=-=- ⎪⎝⎭ 2. 若平面向量b 与向量()1,2a =-的夹角是180,且35b =,则=b ()A.()3,6-B.()3,6-C.()6,3-D.()6,3-3. 已知向量()1,2a =,()2,4b =--,5c =,若()52a b c +⋅=,则a 与c 的夹角为()A.30B.60C.120D.1504.已知向量()1,1a =,()2,3b =-,若2ka b -与a 垂直,则实数k =.5. 如右图所示,在△AOB 中,若A ,B 两点坐标分别为(2,0),(-3,4),点C 在AB 上,且平分∠BOA ,求点C 的坐标.B 组:1.已知a =(2,3),b =(-4,7),则b 在a 方向上的投影为________.2.已知OA→=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).若点A 、B 、C 能构成三角形,则实数m 应满足的条件为________.3.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ.。

人教A版2020高中数学必修四导学案第二章平面向量 含答案

人教A版2020高中数学必修四导学案第二章平面向量 含答案

第二章平面向量1 向量和差作图全攻略两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.ab共线、一、向量aba+b、. 例1 如图,已知共线向量,求作ab同向;、(1)abab|; |、>反向,且||(2)abab|.|(3)|、<反向,且|→→→aOAaABbOBab,具体作法是:当,=作法在与=平行的同一条直线上作出三个向量+=,abababababa+与|与;当、的方向相同,长度为|方向相反时,|与方向相同时,++|babab||.|||为了直观,将三个向量中绝对值最与|、-中长度长的向量方向相同,长度为aabab.作图如下:,大的向量沿与垂直的方向稍加平移,然后分别标上,+abab. ,求作-例2 如图,已知共线向量、abab|;| 同向,且|>(1)|、abab|;|| |(2)、<同向,且ab反向、(3).→→→OOAaOBbBAababa+(=-,=-,则=可看作是-.事实上作法在平面上任取一点,作babab,作图如下:,按照这个理解和-+的作图方法不难作出 )ab不共线二、向量、.如果向量不共线,可以应用三角形法则或平行四边形法则作图ab. 3 如图,已知向量、例abab. ;求作:(1)(2)+-作法1 (应用三角形法则)O.一般情况下,应在两已知向量所在的位置之外任取一点(1)→OAaa重合,再将直尺一边与三角板的另一=第一步:作,方法是将一个三角板的直角边与O,一直角边与直尺的一边重合的位直角边重合,最后将三角板拿开,放到一直角边过点→→OAaOAa同向与|,并使|置,在此基础上取|.|=→→ABbAB此处最易错的是把第二步:同第一步方法作出,一定要保证方向相同且长度相等=.(b的方向相反作成与.)→→OBOBBOBab. 第三步:作处打上箭头,,即连接+,在即为作图如下:abO;, (2)第一步:在平面上位置之外任取一点→→OOAaOBb;作==第二步:依照前面方法过,→ABABAab. 处加上箭头,向量-即为第三步:连接,在作图如下:点评向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”.作法2 (应用平行四边形法则)→AAABa,在平面上任取一点,以点=为起点作→→→bDBaABCDABADbADACba?=,以,为邻边作,则=+,=-.作图如下:点评向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是→→AB b AB b.==-,可实际上作的是“作法不一”,比如作法中要求的是作只要作图的过程与作法的每一步相对应,一定能作出正确的图形.2 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面.一、化简例1 化简下列各式:→→→→ABCDACBD); (1)(2--2)-(1abab)]. 6(42[3(2+8-)-(2)24→→→→ABCDACBD)(2--)-解 (1)(2→→→→→→→→ABCDACBDABDCCABD 22+-+-++2=2=→→→→→→→ABBDDCCAADDAAD. =2)+(=++=2()+1abab)] 6(4-[3(22+8-)(2)2411ababab) 36+)==(6(+24-24-+1218242433ab.+=-42点评向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法abc等看,,则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量.二、求参数→→→→→→ABCMMAMBMCmABACmAM成立,则=02 例如图,已知△和点满足++=,若存在实数使得+m________.=→→→MAMBMC=0,++解析如图,因为→→→MAMBMC),=-( 即+→→→AMMBMC,即+=AMBCD点,于,交延长→→DBCAMMD,2边的中点,所以所以是=3→→→→→→ADAMABACADAM,,所以=+3=所以2=2m=3. 所以答案 3点评求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值.三、表示向量2→→ABCADABDEBCACEBCAMDEN,=,,交∥边上的中线交于点例3 如图所示,在△于中,3→→→→→→→AB a AC bab AEBCDEDNAM.,用向量、,、设表示=、,=、2→→DEBCADAB,,解因为∥=322→→→→→AEAC b BCACAB ba,-所以-===,=3322→→ADEABCDEBC ba),,得-=(=由△∽△33MABCBCDEBC,的中点,又∥是△底边11→→DNDE ba),(所以==-32.111→→→→AMABBM a BC abaab).(-=++)==+=(+222点评用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.3 平面向量的基本定理应用三技巧eea=,技巧一构造某一向量在同一基底下的两种不同的表达形式,用“若为基底,且21xx =??21ee y e y e xx来求解++,则用=.?21112212yy=??21→→→→OABOAOBMNOMOAONOB|=1∶4,设=1∶3,,使|例1 在△|的边,|∶|上分别取点|∶|,|→→→ANBMPOA a OB bab OP. ,线段,与=交于点表示向量,记,用=BPM共线,,解∵,→→sBPsPM,∴存在常数=,使s1→→→OPOOM.=则+ss+1+1s1→→→OPOBOA即+=ss?+31+?1s1ba. =+①ss++1??31→→tAPtPN,同理,存在常数=,使t1→OP ab.+则②=tt?1+4?1+s1??=st?3?1+1+?ba 不共线,∴∵,,t1??=ts?+1?4+1.9?s?=223→?OP ab.=+,∴解之得11118?t?=3→→→OAOBOP在此基底下的两种不同的表达形式,再根据相同基,作为基底,构造点评这里选取底的系数对应相等得到实数方程组,最后进行求解. eea x e+构造两个共线向量在同一基底下的表达形式,用“若为基底,,=技巧二1121y eb x e y eab xyxy =0”来求解=,则+∥,-,且.→→→→→→OABOCOAODOBADBCMOA a OB b .121221221211=,设,,与例2 如图,在△=中,交于点==,42→ab OM;用表示、 (1)→→→→ACEBDFEFMOEpOAOFqOB,上取一点=,使=过(2)已知在线段上取一点,,在线段点,设13求证:+=1.qp77→OMm a n b,则 (1)解设+=1→→bb AD a mAM a n.,+=(+-1)=-2→→ADAMAMD与∵点共线,∴、共线,、1nmnm,∴①+2=1. ∴( -1)-(-1)×=0211→→→→CMOMOCm a n b CB ab.(-),+而=+-=-=44→→CMBCMCB共线,∵共线,∴、、与11nmmn=1.②∴--(=0.∴4-) +4431nm=联立①②可得,=,7713→b OM a.+∴=7713→→b pEF ba p a EMq,)-= (2)证明(+=-+,77.→→EFEM共线,∵与13pqp)=-∴(-×(-)0. 771313qpqp,即+∴=-1. =-qp7777点评这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.eeee不共线),根据λ,λ=+λλ=0的形式(将题目中的已知条件转化成技巧三21112221.来求解=0→→→CPCPQPABCAPBP的延长线与=内一点,且满足条件0+2,设+例3 如图,已知3是△为→→CQ p ABCP p.表示的交点,令,试用向量=→→→→→→APAQQPBPBQQP,∵+==+,解→→→→→AQQPBQQPCP=032(,+∴()++)+→→→→AQQPBQCP=03,+2 ∴++3ABQCPQ三点共线,,三点共线,又∵,,,→→→→AQBQCPQP,λ=,∴μ=→→→→BQQPBQQP=0,3μ+3 +2+λ∴→→BQQP=0.3μ)λ+2)(3++∴(,0+2=λ??→→QPBQ,而为不共线向量,∴?0.μ=3+3??→→→CPQPPQ. =-1.∴==-2∴λ=-,μ→→→→CQCPPQCP p.2+==2故=→→BQQP eλ这里选取,两个不共线的向量作为基底,运用化归与转化思想,最终变成点评11e=0的形式来求解+λ.224 直线的方向向量和法向量的应用由于直线和平面向量的学习分散在必.直线的方向向量和法向量是处理直线问题的有力工具.修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析.一、直线的方向向量1.定义→PPlAxByCPP以及与它平行的非零向量都称+设0,+是直线上的不同两点,那么向量:=2112→lPxyPxyPPxxyy)-,-)为直线,则的方向向量,若,((,,)的坐标为(;特别当121221222111lxxxkk),直线≠0,直线的斜率与是它的一个方向向轴不垂直时,即存在时,那么-(112lx轴平行时,方向向量可为(1,与0)量;当直线;而无论斜率存在与否,其方向向量均可BA). ,表示为(-2.应用(1)求直线方程ABCAB边上的中线、,求(18,-(7,9)例1 已知三角形三顶点坐标分别为,(2,-3),9)C的内角平分线方程. 高线方程以及∠解①求中线方程→→→→CBCAABCDCBCA=(边上的中线+的方向向量为,,0)-=(-16,-12)由于,那么=(-2541,-12),1212????CD,1的斜率为,,因而直线也就是??414112CDyx-18),=(那么直线的方程为-941xy+15341-=整理得120.②求高线方程9+34k==-由于,AB237--4????AB,-1,因而的方向向量为??3ABCEAB,⊥边上的高而3????CE,1,则直线的方向向量为??43CEyx-18)(,那么高线的方程为-9=4xy-18=0. 4整理得3-C的内角平分线方程③求∠→→CBCA43????,--,1,0),==(-??55→→CACB||||C则∠的内角平分线的方向向量为→→CACB139????????,1-,-,,也就是=+????355→→CACB||||1xyCF,的方程为--9=(18)因而内角平分线3yx0.=整理得+-39yxBAxyAxByCx-(),(),与直线++-+0=平行的直线方程是( 点评一般地,经过点000yAyyAxByCBxx0.(+)+-=0垂直的直线方程是-(=-))=0;与直线000 (2)求直线夹角πmmxllxyy.6=0与-15=0的夹角为:,求-3例2 已知的值:++3214v l,=(-3解直线,的方向向量为1)11m v l (1,3直线,的方向向量为)=22πll与∵,的夹角为214m vv2-||3|3|·21vv,〉|=∴|cos〈=,=21vv2||||2m9++1·1921122mmmm.解得=18=-+9或-2=0.化简得63bxklyklykxb v,其)点评一般地,设直线,直线:,==:++,其方向向量为=(121121112kkkkk v时,设夹+≠0=0时,两直线的夹角为方向向量为90°;当=(1,+),当11222211k vv k|·+|||12211CxBylA,其方向+=θ角为,则cos θ==;若设直线+:01111vv|||·|22kk+·1+12121ACBAxByABl=cos θ)=0向量为(-,,其方向向量为),直线(:-+,那么,+22212212AABB|+|2112 .2222BABA++·2211二、直线的法向量1.定义AxByC n l n l的法向量.垂直,则称向量+=0的法向量:如果向量为直线与直线直线+因vnv AxByC v 而言,其方向向量为=++此若直线的方向向量为0,则·0=,从而对于直线BA nvn AB). =(,0(=,-),则由于·=,于是可取2.应用判断直线的位置关系(1).axaylaxyala0. +例3 已知直线=:(2-++2-=0与直线1):21all,求实数⊥(1)若的值;21all.,求实数∥(2)若的值21aall n a n-1解直线(2,,的法向量分别为=(,,-1),)=2112aal nn aaaal 时,=0=1.∴-1)+(-1)×或=0,解得(1)若1⊥=,则0·=或(22211ll.⊥21a12a n aall n=-,∴,且-(2=-1±∥-1)×(-1)=(2)若0.∥解得,则22121aa1-2lal.2=-1±≠2.∴时,∥21n xClAByCxlABy,它们的法向量分别为=0,=+:点评一般地,设直线+:++0122112211n lBl nn BA n AB n AAB,即⊥∥+(,反之亦然;当,,当)=⊥0,即=(,时,),=212121*********lBlllABA.=0时,重合∥与或-21122211求点到直线的距离(2)CBylAxMxy. :外一点+=例4 已知点+(0,)为直线00CByAx||++00dylMx.)到直线,=求证:点的距离(0022BA+nn lxPyAxByC=设是直线(,的一个法向量,不妨取)是直线=+0+上任一点,证明11→n PMlAxByCdyABMx方向上投影的长度,:的距离+在到直线+(,等于向量).则=(,0)00.如图所示→→n PMdPM|=|,|·|cos〈〉→n PM|| =n||BAxxyy|,?|??-·,-?1100=22BA+yxAxBy||??-??+-1001=22BA+ByByAxAx|-?|++?1001=.22BA+Pxyl上,,)∵点在直线(11AxByCAxByC+0+∴+=,∴,=-1111.CAxBy||++00d.∴=22BA+CAxByClAxByl++:++同理应用直线的法向量可以证明平行直线=:0与直线点评2121CC|-|1222dABCC.=0(的距离为+)≠0且=≠2122BA+证明过程如下:CByClAxByxPyPxylAx上任意两+=设(=,0),,直线(:,)分别为直线+:++022********→n yxyxll n ABPP上的投影的长,点,取直线),的一个法向量(=(=,-),则-在向量12211122ll. 、度,就是两平行线的距离21→n PP||,·→→21n dPPPP〉|=|,=||cos〈2211n||ByAxxy|?·?|?-?,,-1212=22BA+yByxAx|?+|??--?1122=22BA+ByCAxCAxBy|-??+|?-?|+|112221= .=2222BBAA++5 向量法证明三点共线平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角. 下面就一道习题的应用探究为例进行说明.去分析、解决问题,有益于培养创新能力→→→CBOAOCAOB. 1.求证:、、=λ三点共线+μ,其中λ+μ=已知典例→→kACAB.如)=得三点共线思路通过向量共线(→→→→→→→OAOCOAOBOAOCOB-μ+)μ.∴-μ,则-=得=+如图,由证明λμ1λ1μ=λ+=(1→→OAOC,)-(μ=→→ABAC,=∴μABC三点共线.∴、、O具有灵活性; 1.此题揭示了证明三点共线的又一向量方法,点思考→→ABCOBOA+=、μ):若,满足、λ、三点共线,则存在唯一实数对λ2.反之也成立(证明略→OC,且λ+μ=1.揭示了三点共线的又一个性质;μ11→→→→OBOAOCBACOACOB的一个向(为+中线),点λ3.特别地,=μ=时,的中点,揭示了△=22量公式,应用广泛.应用举例1ABCDMABNBDBNBD.是上,且的中点,点利用向量法在例1 如图,平行四边形中,点=3MNC三点共线、.证明:、→→→BBNBMBC,且λ+μ+μ=思路分析选择点,只须证明1.=λ11111→→→→→→→→BDBABCNBDBBDBNBDBABCBA+)=,得证明由已知+==+,又点=在=上,且(33333→BC.MAB的中点,又点是121→→→→→→→BMBABABMBNBMBC..∴∴+==,即2=23321MNC三点共线、. 而+=1.∴、33→→MNmMC简洁=证明过程比证明点评 .11OACBBDBCODABEBEBA.=如图,平行四边形例2 中,=,与相交于,求证:34思路分析可以借助向量知识,只需证明:1→→→→→EBABABOBCODBE,使λ+μ,又=、1、、三点共线,存在唯一实数对=λ,而μ=,且+4→→→→→BABEBEBOBD.λ与+μ的关系,从而得到=→→→→→kBAEABEBOBABCB、证明由已知条件,==+三点共线,可设,又,则、→→→kBCBEkBO①=+,OED三点共线,则存在唯一实数对λ、μ、,又、→→→BEBOBD,且λ+μ+μ使==λ1.1→→BDBC,=又31→→→BEBOBC,=λ+μ②∴31?k,=4k?,=λ??11??k,,=λ=μ解得根据①②得43???3μλ+=1,?.=μ411→→BEBABEBA.∴,∴==44点评借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.6 平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在→→GABCGABCGAGB+是△向量表达形式中,设点所在平面内的一点,则当点是△的重心时,有1→→→→→→→→GCPGPAPBPCPGAGBGCG是,则点反之,若=或(=++0++)(其中为平面任意一点).+0=3ABCGABC分别是三角形的重心和三个顶点,且坐在向量的坐标表示中,若,,,△的重心.xxxyyy++++311223yCxyxyGxxByyxA.,则有),=,),(,),()(标分别为,,(,=31221333.→→→ABCOOAOBOCSSS的值,试求∶+2∶+3. 例已知△内一点=满足关系0AOBCOABOC△△△OBBBBOBOCCCCOCABACBC.至,,使解如图,延长,连接至,使==2,延长,11111111→→→→OBOBOCOC. =,则3=211→→→OAOBOC=0,+由条件,得+11OABC的重心∴点.是△111SBOCSCOASAOBSSABC的面积从而=△,其中△=表示△△=.SSSSSSBOCSBOCS.1111113111111=△,==,×==△∴BOCCOAAOB1△1△△19622318111SSS=∶∶∶=1∶2∶3.∶于是OAOBOCGAGBGC=0与三角形的重心性质+本题条件+2++3 AOBBOCCOA△△△1896→→→→→→十分类似,因此我们=0点评O成为辅助三角形的重心,而三角形的重心与顶点通过添加辅助线,构造一个三角形,使点的连线将三角形的面积三等分,从而可求三部分的面积比.→→→ABCOOAOBOCSSS=0,则+λ∶+λ∶引申推广已知△=内一点λ满足关系AOBBOCCOA△△△321λ∶λ∶λ. 3122.垂心H是.在向量表达形式中,若三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边→→→→→→→→→→→→→→222222ABCHAHBHBHCHCHAHABCHBCAHCABHAHB··+=.·=或反之,若+△的垂心,则=·+=→→→→HBHCHCHAHABC的垂心=. ·=是△·,则3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距→→→→→→IABCBCIACAIBABIC=|·的内心,则有||·|·++|离相等.在向量表达形式中,若点是△|→→→→→→BCIACAIBABICIABC的内心,则点|. |·0.反之,若|是△|·=+||·0+4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶→→→→→→OABCOAOBBAOBOCCB)·是△=的外心,则((++)·点的距离相等.在向量表达形式中,若点→→→→→→→→→OCOAACOAOBOCOAOBOCOABC的外,则点==反之,若==或(=+)·=0||||||.||||||是△.心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 平面向量1 向量和差作图全攻略两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.一、向量a 、b 共线例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →=a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .事实上a -b 可看作是a +(-b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:二、向量a 、b 不共线如果向量不共线,可以应用三角形法则或平行四边形法则作图.例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则)(1)一般情况下,应在两已知向量所在的位置之外任取一点O .第一步:作OA →=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →与a 同向.第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →作成与b 的方向相反.)第三步:作OB →,即连接OB ,在B 处打上箭头,OB →即为a +b . 作图如下:(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →即为a -b . 作图如下:点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”.作法2 (应用平行四边形法则)在平面上任取一点A ,以点A 为起点作AB →=a , AD →=b ,以AB ,AD 为邻边作▱ABCD ,则AC →=a +b ,DB →=a -b .作图如下:点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.2 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →); (2)124[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →)=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)124[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=124(-18a +36b ) =-34a +32b .点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量. 二、求参数例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 如图,因为MA →+MB →+MC →=0,即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,所以D 是BC 边的中点,所以AM →=2MD →, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,所以m =3. 答案 3点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量例3 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.解 因为DE ∥BC ,AD →=23AB →,所以AE →=23AC →=23b ,BC →=AC →-AB →=b -a ,由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ),又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=13(b -a ),AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.3 平面向量的基本定理应用三技巧技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用⎩⎪⎨⎪⎧x 1=x 2y 1=y 2来求解.例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →. 解 ∵B ,P ,M 共线,∴存在常数s ,使BP →=sPM →, 则OP →=11+s OB →+s 1+s OM →.即OP →=11+s OB →+s 3(1+s )OA →=s3(1+s )a +11+sb . ①同理,存在常数t ,使AP →=tPN →, 则OP →=11+t a +t 4(1+t )b .②∵a ,b 不共线,∴⎩⎪⎨⎪⎧11+t =s 3(1+s )11+s =t4(1+t ),解之得⎩⎪⎨⎪⎧s =92t =83,∴OP →=311a +211b .点评 这里选取OA →,OB →作为基底,构造OP →在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.例2 如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b.(1)用a 、b 表示OM →;(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →,求证:17p +37q =1.(1)解 设OM →=m a +n b ,则 AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线, ∴12(m -1)-(-1)×n =0,∴m +2n =1.①而CM →=OM →-OC →=(m -14)a +n b ,CB →=-14a +b .∵C 、M 、B 共线,∴CM →与CB →共线, ∴-14n -(m -14)=0.∴4m +n =1.②联立①②可得m =17,n =37,∴OM →=17a +37b .(2)证明 EM →=(17-p )a +37b ,EF →=-p a +q b ,∵EF →与EM →共线,∴(17-p )q -37×(-p )=0. ∴17q -pq =-37p ,即17p +37q=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →.解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →=0, ∴AQ →+3QP →+2BQ →+3CP →=0,又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →=0, ∴(λ+2)BQ →+(3+3μ)QP →=0.而BQ →,QP →为不共线向量,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴λ=-2,μ=-1.∴CP →=-QP →=PQ →. 故CQ →=CP →+PQ →=2CP →=2p .点评 这里选取BQ →,QP →两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.4 直线的方向向量和法向量的应用直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程例1 已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解 ①求中线方程由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →=(-41,-12),也就是⎝ ⎛⎭⎪⎫1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=1241(x -18),整理得12x -41y +153=0. ②求高线方程由于k AB =9+3-7-2=-43,因而AB 的方向向量为⎝ ⎛⎭⎪⎫1,-43,而AB 边上的高CE ⊥AB ,则直线CE 的方向向量为⎝ ⎛⎭⎪⎫1,34, 那么高线CE 的方程为y -9=34(x -18),整理得3x -4y -18=0. ③求∠C 的内角平分线方程CB→|CB →|=(-1,0),CA →|CA →|=⎝ ⎛⎭⎪⎫-45,-35,则∠C 的内角平分线的方向向量为 CB→|CB →|+CA→|CA →|=⎝ ⎛⎭⎪⎫-95,-35,也就是⎝ ⎛⎭⎪⎫1,13, 因而内角平分线CF 的方程为y -9=13(x -18),整理得x -3y +9=0.点评 一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0.(2)求直线夹角例2 已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π4,求m 的值.解 直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π4,∴|cos〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2=22, 化简得18m 2+9m -2=0.解得m =-23或m =16.点评 一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|1+k 21·1+k 22;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|A 21+B 21·A 22+B 22.二、直线的法向量 1.定义直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用(1)判断直线的位置关系例3 已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.解 直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,l 1⊥l 2.(2)若l 1∥l 2,则n 1∥n 2,∴a 2-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1a≠2.∴a =-1±2时,l 1∥l 2.点评 一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即A 1B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合.(2)求点到直线的距离例4 已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |A 2+B 2.证明 设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,B ).则M (x 0,y 0)到直线l :Ax +By +C =0的距离d 等于向量PM →在n 方向上投影的长度,如图所示.d =|PM →|·|cos〈PM →,n 〉|=|PM →·n ||n |=|(x 0-x 1,y 0-y 1)·(A ,B )|A 2+B 2=|A (x 0-x 1)+B (y 0-y 1)|A 2+B 2=|Ax 0+By 0-(Ax 1+By 1)|A 2+B 2.∵点P (x 1,y 1)在直线l 上,∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C ,∴d =|Ax 0+By 0+C |A 2+B 2.点评 同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.证明过程如下:设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离.d =|P 1P 2→||cos 〈P 1P 2→,n 〉|=|P 1P 2,→·n ||n |=|(x 2-x 1,y 2-y 1)·(A ,B )|A 2+B 2=|A (x 2-x 1)+B (y 2-y 1)|A 2+B 2=|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|A 2+B 2.5 向量法证明三点共线平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例 已知OB →=λOA →+μOC →,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路 通过向量共线(如AB →=kAC →)得三点共线.证明 如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →=μ(OC →-OA →),∴AB →=μAC →, ∴A 、B 、C 三点共线.思考 1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →+μOC →,且λ+μ=1.揭示了三点共线的又一个性质;3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →的中点,揭示了△OAC 中线OB 的一个向量公式,应用广泛. 应用举例例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD .利用向量法证明:M 、N 、C 三点共线.思路分析 选择点B ,只须证明BN →=λBM →+μBC →,且λ+μ=1.证明 由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA →+13BC →.又点M 是AB 的中点,∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →.而23+13=1.∴M 、N 、C 三点共线. 点评 证明过程比证明MN →=mMC →简洁.例2 如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =14BA .思路分析 可以借助向量知识,只需证明: BE →=14BA →,而BA →=BO →+BC →,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →=λBO →+μBD →,从而得到BE →与BA →的关系.证明 由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →,则BE →=kBO →+kBC →,①又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →,且λ+μ=1. 又BD →=13BC →,∴BE →=λBO →+13μBC →,②根据①②得⎩⎪⎨⎪⎧k =λ,k =13μ,λ+μ=1,解得⎩⎪⎨⎪⎧k =14,λ=14,μ=34.∴BE →=14BA →,∴BE =14BA .点评 借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.6 平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(PA →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →=0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.例 已知△ABC 内一点O 满足关系OA →+2OB →+3OC →=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解 如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1.则OB 1→=2OB →,OC 1→=3OC →. 由条件,得OA →+OB 1→+OC 1→=0, ∴点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积.∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S .于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3.点评 本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.引申推广 已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →=HB →·HC →=HC →·HA →,则H 是△ABC 的垂心. 3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0,则点I 是△ABC 的内心. 4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →|,则点O 是△ABC 的外心.。

相关文档
最新文档