相似三角形的判定(SSS)(精选.)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B E D
C 备课日期 2012年10月8日 教出日期 主备课人:段中明 审核人
课题: 相似三角形判定(一)
目标: 1.培养学生的观察﹑发现﹑归纳能力,感受两个三角形相似的判定方法1
2.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
教学重、难点::两个三角形相似的判定引例﹑判定方法1
学 习 内 容 与 要 求 学 习
指 导
一.新课引入:1。复习相似多边形的定义及相似多边形相似比的定义
2.相似三角形的定义及相似三角形相似比的定义
3.回顾全等三角形的概念及判定方法(SSS )
4.相似三角形的概念及判定相似三角形的思路。
二.合作探究:
探究方法:探究1:在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。(学生小组交流)
在学生小组交流的基础上引导学生思考证明探究所得结论的途径。
分析:作A 1D=AB ,过D 作DE ∥B 1C 1,交A 1C 1于点E ⇒
∆A 1DE ∽∆A 1B 1C 1。用几何画板演示∆ABC 平移至∆A 1DE 的过程
⇒ A 1D=AB ,A 1E=AC ,DE=BC ⇒∆A 1DE ≌∆ABC
⇒ ∆ABC ∽∆A 1B 1C 1
↓
归纳:如果两个三角形的
三组对应边的比相等,那
么这两个三角形相似。
↓
若11AB
A B =11BC B C =11
CA k C A =,则⇒ ∆ABC ∽∆A 1B 1C 1
三.课堂练习:
1:根据下列条件,判断△ABC 与△A ’B ’C ’是否相似,并说明理由.
(1)∠A=1200,AB=7cm ,AC=14cm ,∠A ′=1200,A ′B ′=3cm ,A ′C ′=6cm.
解:∵=''B A AB , =''C A AC . ∴=''B A AB . 且∠ =∠ ∴ ∽ ( ) (2)AB=4 cm ,BC=6cm ,AC=8cm, A ′B ′=12cm,B ′C ′=18cm ,A ′C ′=24cm. 解:∵=''B A AB , =''C A AC ,=''C B BC 。 ∴=''B A AB = . ∴ ∽ ( ) 2.如图,在大小为4×4的正方形网格中,是相似三角形的是( ) A 、①和② B 、②和③ C 、①和③ D 、②和④ 3.(2011•深圳)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( ) A 、 B 、 C 、 D 、 四课堂检测: 已知:BC DE AC AE AB AD ==,求证:∠BAD =∠CAE . 五、 总结反思 这节课你有什么收获?
A A
B
C A 1
D
E B 1 C 1
最新文件仅供参考已改成word文本。方便更改