弹塑性力学试题
《弹塑性力学》习题-26页精品文档
已知桁架各杆 EA 相同,材料的弹性关系
为 = E 。 A y l
P
C
x
D
B
l
28.09.2019
21
题2-3 左图示梁受荷载
q
作用,试利用虚位移原 M
理 或最小势能原理导出
EI
x
梁的平衡微分方程和力 y
l
的边界条件。
q
题2-4 利用最小余能
原理求左图示梁的弯
EI
x
矩。
l y
28.09.2019
题2-1 图示结构各杆等 截面杆,截面面积为A, 结点C承受荷载P作用, 材料应力—应变关系分
别为(1) =E ,(2) =E 1/2 。试计算结构
的应变能U 和应变余能 Uc。
A
ly
B
P
Cx
C’
l
28.09.2019
20
题2-2 分别利用虚位移原理、最小势能原
理和最小余能原理求解图示桁架的内力。
弹塑性力学部分习题
第一部分 静力法内容
28.09.2019
1
题 1-1 将下面各式展开
(1). 1 2 ij (ui,juj,i) (i,j1,2,3) (2). U01 2ij ij (i,j1,2,3)
(3). F i n iG u i,j u j,i i j e
x
y
其中 V 是势函数,则应力分量亦可用应
力函数表示为
x y 22V,y x 22V,xy x2 y
28.09.2019
11
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
34Fcxy3xcy23q2y2
ox
弹塑性力学试题
考试科目:弹塑性力学试题班号 研 班 姓名 成绩一、 概念题(1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。
(2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。
(3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。
二、已知轴对称的平面应变问题,应力和位移分量的一般解为:利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。
解:边界条件为:a r =时:p r -=σ;0=θτrb r =时:0=r u ;0=θu 。
将上述边界条件代入公式得: 解上述方程组得:则该问题的应力和位移分量的解分别为: 三、已知弹性半平面的o点受集中力p利用上述解答求在弹性半平面上作用着n 这些力到所设原点的距离分别为i y ,y解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: 故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为:四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。
试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。
解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 202221⎰⎰⎥⎦⎤⎢⎣⎡== 外力做功为:⎰=-=ll x kw qwdx T02|21总势能为:l x l lkw qwdx dx dx w d EI T U =⎰⎰+-⎥⎦⎤⎢⎣⎡=-=∏|2121202022 第二步:由最小势能原理可知:0=∏δ等价于平衡微分方程和静力边界条件。
l x l lw kw wdx q dx dx w d dx w d EI =⎰⎰+-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡=|022022δδδ (*) 其中=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰dx dx w d dx w d EI l22022δdx dx dw dx d dx w d EI l ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰δ022 将其代入(*)式并整理可得:由于当0=x 时,0=dxdw ,022=dx w d ;所以平衡微分方程为:0)(2222=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛x q dx w d EI dx d (0≤x ≤l )y静力边界条件为:⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==002222l x lx dx w d dx w d EI dx d kw五、已知空间球对称问题的一般解为:B REA EB R EA E R BR A u T R R 332)1(21)1(221μμσμμσ++-=+--=+=其中R 是坐标变量,R u 是径向位移,R σb a q q ,q 时的解答。
弹塑性力学习题集_很全有答案_
1 γ xy 。 (用弹塑性力学转轴公式来证明) 2
题 2—33 图
2 — 34
设 一 点 的 应 变 分 量 为 ε x = 1.0 × 10 −4 , ε y = 5.0 × 10 −4 , ε z = 1.0 × 10 −4 ,
ε xy = ε yz = 1.0 × 10 −4 , ε zx = 3.0 × 10 −4 ,试计算主应变。
应力 τ 8 。
2 —24* 一点的主应力为: σ 1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
P8 ,正应力 σ 8 ,剪应力 τ 8 。
2—25 试求各主剪应力 τ 1 、 τ 2 、 τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b) 图中有虚线所示的剪应力 τ ′ 时,能否应用平面应力圆求解。
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
态。
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽
弹塑性力学试卷及弹性力学教材习题及解答
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学(工学专业工程硕士研究生)复习题
复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷
中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷一.选择题(共10小题,每小题3分,共30分)1.力系简化时若取不同的简化中心,则( )。
(A)力系的主矢、主矩都会改变;(B)力系的主矢不会改变,主矩一般会改变;(C)力系的主矢会改变,主矩一般不改变;(D)力系的主矢、主矩都不会改变,力系简化时与简化中心无关。
2.当作用在质点系上的外力系的主矢恒为零时,则( )。
(A) 只有质点系的动量守恒; (B) 只有质点系的动量矩守恒;(C) 只有质点系的动能守恒; (D) 质点系的动量和动能均守恒。
3.关于瞬时平移时下列叙述正确的是:()(A) 速度相同,加速度不同; (B) 速度不同,加速度不同;(C) 速度不同,加速度相同; (D) 速度相同,加速度相同。
4.平面一般力系的二力矩平衡方程为是( )(A) 合力的作用线必然通过A点和B 点的连线 (B) x轴与A点和B点的连线不相互垂直;(C) x轴与A点和B点的连线相互垂直; (D) 合力与x轴相互垂直。
5.圆盘作定轴转动,若某瞬时其边缘上A、B 、C三点的速度、加速度如图所示,则的运动是不可能的()。
(A) 点A,B;(C) 点B,C;(B) 点A,C;(D) 点A,B,C。
6.刚体作平面运动,某瞬时平面图形的角速度为の,角加速度为α,则其上任意两点A、B的加速度在A、B连线上的投影()。
(A) 必相等; (B) 相差AB·w²;(C) 相差AB·α; (D) 相差(AB·w²+AB·α)。
7.在图示系统中,A点的虚位移大小δr₄与C点的虚位移大小δrc的比值δr₄:δrc=()(A)Icosβlh;(B)l/(hcos β);(C)lcos²βlh;(D)Ih/cos²β。
8.已知刚体质心C 到相互平行的z'、z轴之间的距离分别为a、b,刚体的质量为m,对 z 轴的转动惯量为J,则的计算公式为( )。
弹塑性力学-例题
y
例 题4.5
半无限空间体受均布荷载作用
q x
z
根据问题的对称性,位移应只是z的函数 uz=w(z) 体积应变是
u x u y u z dw v x y z dz
T1 n111 n2 21 n331
T2 n112 n 2 22 n3 32
T3 n113 n 2 23 n3 33
1 1 1 5 2 ( 4) 0 5 2 2 2 2 2
1 1 1 3 1 5 2 7 2 2 N T1n1 T2 n2 T3 n3 ( 2 2 ) 2 2 2 2 2 2 2 2
2 x 2 Xx 2cx 6dy y
2 y 2 Yy 6ax 2by gy x
• 满足边界条件 在y=0上, y=0 xy=0
在斜面 y = xtan,l = sin,m = cos x(sin)+ xycos = 0 xy(sin)+ ycos = 0 代入边界条件得常数a、b、c和d分别是
A r 2 B(1 2 ln r ) 2C r
A B(3 2 ln r ) 2C 2 r
力边界条件: (r)r=a = qa (r)r=a = 0 (r)r=b = qb
(r)r=b = 0
前面两个边界条件可求出A、C,后两个条件自然满足。 使用位移单值条件求常数B
代入协调方程
1 d 4 f () d 2 f () 4 0 2 4 2 r d d
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
(完整word版)弹塑性力学试卷
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学作业(含答案)
2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。
(2):如以ϕ为应力函数,求出应力分量的表达式。
(3):指出在图示矩形板边界上对应着什么样的边界力。
(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学试题
弹塑性力学试题(土木院15研)考试时间:2小时 考试形式:笔试,开卷一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小题3 分,共21分)1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。
( )2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz zwdy y v dx x u u ∂∂+∂∂+∂∂+( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。
( ) 4. 塑性力学假设卸载时服从初始弹性规律。
( )5. 弹性力学空间问题应变状态第二不变量为222- yz xz xy z y z x y x γγγεεεεεε--++。
( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。
( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。
( )二﹑填空及简答题(填空每小题3分,共23分)1. 弹性力学平面问题,结构特点是( ),受力特点是( )。
2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。
2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。
3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。
(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。
(5分)三﹑计算题(共56分)1. 写出圆形薄板轴对称弯曲的弹性曲面方程。
若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。
(8分)2. 已知应力函数)(A 23xy x +=ϕ,A 为常数。
试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试科目:弹塑性力学试题班号 研 班 姓名 成绩一、概念题(1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。
(2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。
(3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。
二、已知轴对称的平面应变问题,应力和位移分量的一般解为:,)11(2)11(10,2,2222=⎥⎦⎤⎢⎣⎡--+-+--==+-=+=θθθμμμμμτσσu Cr r A E u C r A C r A r r r利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。
解:边界条件为:a r =时:p r -=σ;0=θτrb r =时:0=r u ;0=θu 。
将上述边界条件代入公式得:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎢⎣⎡--+-+--=-=+=0)11(2)11(1222μμμμb C b A E u p C a Abr r 解上述方程组得:()()()⎪⎪⎩⎪⎪⎨⎧+--=+---=]21[221212222222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:()()()()()()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---+-⎪⎪⎭⎫ ⎝⎛-+-+--==+--+--=+--+---=∙∙011)]21([11)]21([)21(1021121212112121222222222222222222222222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r三、已知弹性半平面的o 点受集中力222222222223)(2)(2)(2y x yx Py x xy Py x x Pxyy x +-=+-=+-=πτπσπσ利用上述解答求在弹性半平面上作用着n个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。
解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为:yy()()()()[]()()()()()[]()()()()()[]⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-++-+-=-++-+-=-+++-=222222222223222i i i xy i i i y ii x y y a x y y a x P y y a x y y a x P y y a x a x P πτπσπσ故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为:()()()()[]()()()()()[]()()()()()[]⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-++-+-==-++-+-==-+++-==∑∑∑∑∑∑======n i i i ni i xy xy n i ii n i i y y n i ini i x x y y a x y y a x P y y a x y y a x P y y a x a x P 122221122221122231222πττπσσπσσ四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。
试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。
解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 202221⎰⎰⎥⎦⎤⎢⎣⎡==外力做功为:⎰=-=ll x kw qwdx T 02|21总势能为:l x l l kw qwdx dx dx w d EI T U =⎰⎰+-⎥⎦⎤⎢⎣⎡=-=∏|2121202022第二步:由最小势能原理可知:0=∏δ等价于平衡微分方程和静力边界条件。
l x l l kw wdx q dx dx w d EI =⎰⎰+-⎥⎦⎤⎢⎣⎡=∏|2121202022δδδδl x l lw kw wdx q dx dx w d dx w d EI =⎰⎰+-⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=|022022δδδ (*) 其中=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰dx dx w d dx w d EI l22022δdx dx dw dx d dx w d EI l ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰δ022 dx dx dw dx w d EI dx d dx w d dx w d EI l l ⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰δδ022022|wdx dx ddx w d EI dx d dx dw dx w d EI l l δδ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰220022|将其代入(*)式并整理可得:wdx q dx w d EI dx d dx dw dx w d EI l l δδδ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∏02222022|0||0022=+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-l l w kw w dx w d EI dx d δδ 由于当0=x 时,0=dx dw ,022=dxwd ; 所以平衡微分方程为:0)(2222=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛x q dx w d EI dxd (0≤x ≤l )静力边界条件为:⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==002222l x lx dx w d dx w d EI dx d kw五、已知空间球对称问题的一般解为:BR EA EB R EA E RB R A u T R R 332)1(21)1(221μμσμμσ++-=+--=+=其中R 是坐标变量,R u 是径向位移,T Rσ,匀内外压b a q q ,时的解答,然后在此基础上导出无限大体中有球形孔洞,半径为a ,内壁受有均匀压力q 时的解答。
解:(1)相应空心球受均匀内外压b a q q ,时的边界条件为:a R =:a R q -=σb R =:b R q -=σ将上述边界条件代入得:⎪⎪⎩⎪⎪⎨⎧-=+---=+--baqB b E A E q B a E A E33)1(221)1(221μμμμ 可解得:()()()()()()⎪⎪⎩⎪⎪⎨⎧-+-=---=E b a b a q q B E b a a q b q A a b a b 333333332121μμ 故空心球受均匀内外压b a q q ,时的解为:b()()()()()()()()()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--+--=-----=-+-+---=∙∙∙∙33333333333333333323333333312112121R b a b a q q b a a q b q R b a b a q q b a a q b q R E b a b a q q R E b a a q b q u a b a b T a b a b R a b a b R σσμμ (2)当无限大体中有球形孔洞,半径为a ,内壁受有均匀压力q 时,即在上式中令q q a = 、0=b q 、∞→b ,则可得:()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333323221R qa R qa ER qa u T R R σσμ 六、已知ijij ij i j j i ij i j ij e u u F μεδλσεσ2)(210,,,+=+==+推导以位移分量表示的平衡微分方程。
解:由)(21,,i j j i ij u u +=ε得 k k k k k k kk u u u e ,,,)(21=+==ε将上述两式代入ij ij ij e μεδλσ2+=,得到()i j j i ij k k ji ij u u u ,,,++==μδλσσ代入0,=+i j ij F σ得()0,,,=+++i ij j jj i ij kj k F u u u μδλ而ji j ki k ij kj k u u u ,,,λλδλ==,ij j ji j u u ,,= 故平衡方程可写成()0,,=+++i ji j jj i F u u μλμ由因为i i i j j jij x e e u u ∂∂===,,,)()(;i i jj i jj i u u zy x u u 2222222,,)()(∇=∂∂+∂∂+∂∂== 所以以位移分量表示的平衡微分方程的最终形式为:0)(2=+∂∂++∇i ii F x eu μλμ。
七、证明弹性力学功的互等定理(用张量标记)。
证明:(1)先证可能功原理考虑同一物体的两种状态,这两种状态与物体所受的实际荷载和边界约束没有必然的联系。
第一状态全用力学量(()s iF 、()s iP 、()s ijσ)来描述,它在域内满足平衡方程()()0,=+s i s j ij F σ并在全部边界条件上满足力的边界条件:()()s i j s ij P =υσ第二状态全用几何量(()()k ik iju ,ε)来描述。
它在域内满足几何方程()()())(21,,k i j k j i k ij u u +=ε且要求全部边界位移等于域内所选位移场在边界处的值。
从而利用力的边界条件和高斯积分定理,可得()()()()()()()()()()()()*,,,dVu dV u dVu dS u dS u P Vk j i s ij Vk i s j ij jVk is ij j Sk i s ij S k i s i ⎰⎰⎰⎰⎰+===σσσυσ利用平衡方程,式(*)右端第一项可化为()()()()⎰⎰-=Vk i s i Vk i s j ij dV u F dV u ,σ第二项利用张量的对称性和几何方程可改写成()()()()()()()()()()dV dV u u dVu u dV u V k ij s ij V k i j k j i s ij Vk j i k j i s ij Vk j i s ij ⎰⎰⎰⎰=+=+=εσσσσ)(21)(21,,,,,即式(*)成为()()()()()()()()()()()()()**dVdS u P dV u F dVdV u F dS u P Vk ij s ij Sk i s i Vk i s i Vk ij s ij Vk i s i Sk i s i ⎰⎰⎰⎰⎰⎰=+⇒+-=εσεσ式(**)即为可能功原理。