专题复习-电磁感应

合集下载

高中物理-电磁感应知识点汇总

高中物理-电磁感应知识点汇总

电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律
第1讲 电磁感应现象、楞次定律
高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

高中物理-电磁感应-知识点归纳

高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。

(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。

(3)磁场强度B变化或有效面积S变化。

(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。

从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。

(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。

2.阻碍相对运动,即“来拒去留”。

3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。

高三高考物理复习专题练习:电磁感应

高三高考物理复习专题练习:电磁感应

电磁感应1.[多选]如图甲所示,电阻R1=R, R 2=2 R,电容为C的电容器,圆形金属线圈半径为广2,线圈的电阻为R半径为r1(r1<r2)的圆形区域内存在垂直线圈平面向里的匀强磁场,磁感应强度B随时间t 变化的关系图象如图乙所示,t「12时刻磁感应强度分别为B「B2,其余导线的电阻不计,闭合开关S,至11时刻电路中的电流已稳定,下列说法正确的是 ()图甲图乙A.电容器上极板带正电B.11时刻,电容器的带电荷量为:孙而C.11时刻之后,线圈两端的电压为;D.12时刻之后,R1两端的电压为■ ■2.[多选]如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M W是匀强磁场区域的水平边界并与线框的bc 边平行,磁场方向与线框平面垂直现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象.已知金属线框的质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的匕、v2、v3、t p 12、13、14均为已知量(下落过程中线框abcd始终在竖直平面内,且bc边始终水平).根据题中所给条件,以下说法正确的是()图甲图乙A.可以求出金属线框的边长B.线框穿出磁场时间(t4-t3)等于进入磁场时间(t2-t1)C.线框穿出磁场与进入磁场过程所受安培力方向相同D.线框穿出磁场与进入磁场过程产生的焦耳热相等3.[多选]如图所示,x轴上方第一象限和第二象限分别有垂直纸面向里和垂直纸面向外的匀强磁场,且磁感应强度大小相同,现有四分之一圆形线框。

〃乂绕。

点逆时针匀速转动,若规定线框中感应电流/顺时针方向为正方向,从图示时刻开始计时,则感应电流I及ON边所受的安培力大小F随时间t的变化示意图正确的是()A BCD4.[多选]匀强磁场方向垂直纸面,规定垂直纸面向里的方向为正方向,磁感应强度B随时间t的变化规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令11、12、13分别表示Oa、ab、bc段的感应电流工、力、力分别表示感应电流为11、12、13时,金属环上很小一段受到的安培力.则()A.11沿逆时针方向,12沿顺时针方向B.12沿逆时针方向,13沿顺时针方向C f1方向指向圆心石方向指向圆心D外方向背离圆心向外右方向指向圆心5.[多选]如图所示,光滑水平面上存在有界匀强磁场,磁感应强度大小为B,方向垂直纸面向里, 质量为m、边长为a的正方形线框ABCD斜向穿进磁场,当AC刚进入磁场时线框的速度大小为%方向与磁场边界所成夹角为45°,若线框的总电阻为凡则()A.线框穿进磁场的过程中,框中电流的方向为D T C T B T A T DB AC刚进入磁场时线框中感应电流为一,镇铲。

(word完整版)高中物理电磁感应专题复习

(word完整版)高中物理电磁感应专题复习

高考综合复习——电磁感应专题复习一电磁感应基础知识、自感和互感编稿:郁章富审稿:李井军责编:郭金娟总体感知知识网络考纲要求内容要求电磁感应现象磁通量法拉第电磁感应定律楞次定律自感、涡流I I II II I命题规律1.从近五年的高考试题可以看出,本专题内容是高考的重点,每年必考,命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。

2.本专题在高考试卷中涉及的试题题型全面,有选择题、填空题和计算题,选择题和填空题多为较简单的题目,计算题试题难度大,区分度高,能很好地考查学生的能力,备受命题专家的青睐。

今后高考对本专题内容的考查可能有如下倾向:①判断感应电流的有无、方向及感应电动势的大小计算仍是高考的重点,但题目可能会变得更加灵活。

②力学和电学知识相结合且涉及能量转化与守恒的电磁感应类考题将继续扮演具有选拔性功能的压轴题。

复习策略1.左手定则与右手定则在使用时易相混,可采用“字形记忆法”:(1)通电导线在磁场中受安培力的作用,“力”字的最后一撇向左,用左手定则;(2)导体切割磁感线产生感应电流,“电”字最后一钩向右,用右手定则;总之,可简记为力“左”电“右”。

2.矩形线框穿越有界匀强磁场问题,涉及楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。

3.电磁感应图象问题也是高考常见的题型之一;滑轨类问题是电磁感应中的典型综合性问题,涉及的知识多,与力学、静电场、电路、磁场及能量等知识综合,能很好的考察考生的综合分析能力。

本章知识在实际中应用广泛,如日光灯原理、磁悬浮原理、电磁阻尼、超导技术应用等,有些问题涉及多学科知识,不可轻视。

第一部分电磁感应现象、楞次定律知识要点梳理知识点一——磁通量▲知识梳理1.定义磁感应强度B与垂直场方向的面积S的乘积叫做穿过这个面积的磁通量,。

高考物理专项复习《电磁感应》十年高考真题汇总

高考物理专项复习《电磁感应》十年高考真题汇总
A.选用铜质弦,电吉他仍能正常工作 B.取走磁体,电吉他将不能正常工作 C.增加线圈匝数可以增大线圈中的感应电动势 D.弦振动过程中,线圈中的电流方向不断变化 24.(2012·海南卷)图中装置可演示磁场对通电导线的作用。电磁铁上下两磁极之间某一水平 面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端 a、 b,导轨两端 e、f,分别接到两个不同的直流电源上时,L 便在导轨上滑动。下列说法正确 的是
挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是
A. 开关闭合后的瞬间,小磁针的 N 极朝垂直纸面向里的方向转动 B. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向里的方向 C. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向外的方向 D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的 N 极朝垂直纸面向外的方向转动 8.(2011·北京卷·T19)某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A、开 关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S,小灯泡发 光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时 出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡末闪亮的原因 是
A.T1>mg,T2>mg B.T1<mg,T2<mg
C.T1>mg,T2<mg D.T1<mg,T2>mg
13.(2016·上海卷)磁铁在线圈中心上方开始运动时,线圈中产生如图方向的感应电流,则磁

A.向上运动
B.向下运动
C.向左运动
D.向右运动
14.(2016·海南卷)如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆

电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。

③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。

)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。

再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。

然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。

按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。

最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。

【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。

中考物理专题复习11:电磁感应(磁生电)

中考物理专题复习11:电磁感应(磁生电)

中考物理专题复习11:电磁感应(磁生电)20XX年中考物理专题复习11:电磁感应(磁生电)专题11 电磁感应(磁生电)典例1 电动机是一种高效、低污染的动力设备,广泛地应用研究在日常生活和生产实践中。

下列家用电器中应用到电动机的是()A.电热水器B.电饭锅C.洗衣机D.电热毯解析:电动机的工作特点是通电以后,电动机的转子会发生转动.所以要判断哪个用电器应用了电动机,就看哪个用电器通电以后,会发生转动。

洗衣机通电时,滚筒会发生转动,表明洗衣机内部有电动机,所以洗衣机应用了电动机;电热水器、电饭锅、电热毯通电时,电能转化为内能,它们是利用了电流的热效应。

本题答案为C.点评:电动机工作时的能量转化是电能转化为机械能,电热器工作时的能量转化是电能转化为热能,它们的能量转化截然不同,比较容易辨别。

典例2 微风吊扇通电后扇叶转动,此过程中能转化为动能.拔下插头,在插头处接发光二极管,用手旋转叶片,发光二极管发光,这是生电的现象,人们利用这一原理制成了(发电机/电动机).解析:吊扇工作时消耗电能,将电能转化为动能;用手旋转叶片时,线圈在磁场中做切割磁感线运动,产生了感应电流;感应电流通过发光二极管时,使发光二极管发光,此时的吊扇就是一个发电机。

20XX年中考物理专题复习11:电磁感应(磁生电)答案:电;磁;发电机点评:发电机主要是由线圈和磁体组成的,电动机的主要组成部分也是线圈和磁体,它们的工作原理不同,工作时的能量转换不同。

典例3 科学家经过长期研究,发现了电和磁有密切关系,其中最重要的两项研究如图所示,下列判断中不正确的是()A.左图是电动机的原理图B.右图是发电机的原理图C.在左图中,接通电源,导体ab上下运动D.在右图中,电路闭合,导体ab左右运动,电路中有感应电流解析:理解清楚教材中关于通电导体在磁场中受力和电磁感应的演示实验的装置图即可得到答案。

在左图中,闭合开关,电路中有电流,通电直导线在磁场中受力而运动;在右图中,没有电源,当导体在磁场中做切割磁感线运动时,通过电流表的指针是否偏转,来体现电路中是否产生感应电流,这是用来演示电磁感应现象的实验装置。

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象一、电磁感应的基本概念电磁感应是指在导体周围的磁场发生变化时,导体中会产生电动势的现象。

这个现象是由英国科学家迈克尔·法拉第在1831年发现的,因此也被称为法拉第电磁感应定律。

1.1 感应电动势当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生电动势,这个电动势称为感应电动势。

数学表达式为:[ = - ]其中,( ) 表示感应电动势,( _B ) 表示磁通量,( t ) 表示时间。

负号表示楞次定律,即感应电动势的方向总是阻碍磁通量的变化。

1.2 楞次定律楞次定律是描述感应电动势方向的重要定律。

它指出,感应电动势的方向总是使得其产生的电流所产生的磁通量变化方向与原磁通量变化方向相反。

1.3 法拉第电磁感应定律法拉第电磁感应定律是描述感应电动势大小的重要定律。

它指出,感应电动势的大小与磁通量的变化率成正比,即:[ = N ]其中,( N ) 表示闭合导体回路的匝数。

二、电磁感应现象电磁感应现象是指在电磁感应过程中,导体中会产生电流的现象。

2.1 感应电流的产生当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生感应电流。

感应电流的产生遵循楞次定律和法拉第电磁感应定律。

2.2 感应电流的方向根据楞次定律,感应电流的方向总是使得其产生的磁通量变化方向与原磁通量变化方向相反。

2.3 感应电流的大小根据法拉第电磁感应定律,感应电流的大小与感应电动势的大小成正比,与闭合导体回路的电阻成反比。

即:[ I = ]其中,( I ) 表示感应电流,( R ) 表示闭合导体回路的电阻。

三、电磁感应的应用电磁感应现象在生产和生活中有广泛的应用。

3.1 发电机发电机是利用电磁感应现象将机械能转化为电能的装置。

它通过旋转磁场和线圈之间的相对运动,产生感应电动势,从而产生电流。

3.2 变压器变压器是利用电磁感应现象改变电压的装置。

它通过两个或多个线圈之间的互感现象,实现电压的升高或降低。

2023届高考物理二轮专题复习:电磁感应+电容+试题

2023届高考物理二轮专题复习:电磁感应+电容+试题

电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。

(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。

模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。

电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。

金属棒运动时,金属棒与导轨始终垂直且接触良好。

请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

请分析导体棒的运动情况。

4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。

电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。

两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。

炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。

首先开关S 接1,使电容器完全充电。

电磁感应专题复习

电磁感应专题复习

【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。

及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

高考物理总复习 11专题十一 电磁感应 专题十一 电磁感应(讲解部分)

高考物理总复习 11专题十一 电磁感应 专题十一 电磁感应(讲解部分)

ΔΦ=Φ2-Φ1 ΔΦ=B·ΔS ΔΦ=S·ΔB
ΔΦ ΔS
Δt =B·Δt
ΔΦ ΔB
Δt =S·Δt
注意 穿过某个面有方向相反的磁场,则 开始时和转过180°时平面都 既不表示磁通量的大小,也
不能直接用Φ=B·S求解,应考虑相 与磁场垂直,穿过平面的磁 不表示磁通量变化的多少,
反方向的磁通量抵消后所剩余的 通量是一正一负,ΔΦ=-2BS而 实际它就是单匝线圈上产生
磁通量
不是0
的电动势
附注
ΔΦ
线圈绕垂直于磁场的轴做匀速圆周运动,线圈平面与磁感线平行时,Φ=0,但 Δt 最大;线圈平面
ΔΦ
ΔΦ
与磁感线垂直时,Φ最大,但 Δt =0;Φ、ΔΦ、 Δt 都与线圈匝数无关
考点二 法拉第电磁感应定律
一、法拉第电磁感应定律 1.法拉第电磁感应定律:闭合电路中感应电动势的大小与穿过这一电路的
答案 AD
拓展三 导体棒切割磁感线产生电动势的分析与计算
(1)公式:E=BLv。 (2)关于求解导体切割磁感线的感应电动势公式的两点说明: ①公式中的B、L、v要求两两互相垂直。当L⊥B,L⊥v,而v与B成θ夹角时, 导体切割磁感线的感应电动势大小为 E= BLv sin θ。 ②若导体不是直的,则E=BLv sin θ中的L为切割磁感线的导体的有效长 度。如图中,导体的有效长度为a、b间的距离。
ΔI
的变化率,表示为E=② L Δt 。
(3)自感系数:E=L ΔI 中的比例系数L叫做自感系数,简称自感或电感。线圈
Δt
的长度越长,线圈的横截面积越大,单位长度上匝数越多,线圈的自感系数 越大,线圈有铁芯比无铁芯时自感系数③ 大得多 。 三、涡流 线圈中的电流变化时,在附近导体中产生感应电流,这种电流在导体内形成 闭合回路,很像水的漩涡,因此把它叫做涡电流,简称涡流。在冶炼炉、电 动机、变压器、探雷器等实际应用中都存在着涡流,它是整块导体发生的 电磁感应现象,同样遵守电磁感应定律。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。

2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化。

理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B 感方向)判断感应电流(I 感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
L v
例9、如图所示,一个矩形闭合线圈abcd的边
长分别为ab=l1和ac=l2,匝数为n,总电阻为R, 在匀强磁场中绕垂直于磁场方向的轴OO以角
速度ω匀速转动,磁场的磁感强度大小为B。
①求线圈从图示位置转过90°的过程中,线圈
中的电流。
②求线圈从图示位置转过90°的位置时,线圈
中的电流。
O
a
c
2. 电磁感应现象中能的转化 电磁感应现象中,克服安培力做功,其它形式的能
转化为电能。
3. 法拉第电磁感应定律:
(1)决定感应电动势大小因素:穿过这个闭合电路中 的磁通量的变化快慢(即磁通量的变化率)
(2)注意区分磁通量,磁通量的变化量,磁通量的变 化率的不同
φ—磁通量,
Δφ—磁通量的变化量,
Δφ/Δt=( φ2 - φ1)/ Δt ----磁通量的变化率
I A
例5、下列是一些说法:正确的是( B D )
A. 在闭合金属线圈上方有一个下端为N极的条形 磁铁自由下落,直至穿过线圈的过程中,磁铁减少 的机械能等于线圈增加的内能与线圈产生的电能之 和
B. 将一条形磁铁缓慢和迅速地竖直插到闭合线圈 中的同一位置处,流过导体横截面的电量相同
C. 两个相同金属材料制成的边长相同、横截面积 不同的正方形线圈,先后从水平匀强磁场外同一高 度自由下落,线圈进入磁场的过程中,线圈平面与 磁场始终垂直,则两线圈在进入磁场过程中产生的 电能相同
dL a
L B0 e
b
c f
L vt
例13、如图示:abcd是粗细均匀的电阻丝制成的长 方形线框,导体棒MN有电阻,可在ad边与bc边上无
摩擦滑动,且接触良好,线框处在垂直纸面向里的 匀强磁场B中,在MN由靠近ab边向dc边匀速滑动的
过程中,下列说法正确的是: ( BD)
A.矩形线框消耗的功率一定先减小后增大
一边a、b两点间的电势差绝对值最大的是 ( B )
v
ab
ab
a bv
ab
v
A.
B.
C.
D.
v
例3、江苏04年高考 如图所示,一个有界匀强磁场区域,
磁场方向垂直纸面向外,一个矩形闭合导线框abcd,沿纸面
由位置1(左)匀速运动到位置2(右),则( D )
A.导线框进入磁场时,感应电流方向为a →b → c → d → a
分析:ab 在F作用下向右加速运动,切割磁感应线,产生感应 电流,感应电流又受到磁场的作用力f,画出受力图:
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最后,当f=F 时,a=0,速度达到最大,
F=f=BIL=B2 L2 vm /R
a
vm=FR / B2 L2
vm称为收尾速度.
R f1
F
F
ቤተ መጻሕፍቲ ባይዱ
f2
其中水平放置的电容器两极板相距d=10mm,定值电 阻R1= R3 = 8Ω, R2=2Ω,导轨的电阻不计。磁感强度 B=0.4T的匀强磁场垂直穿过导轨面。当金属棒ab沿导 轨向右匀速运动(开关S断开)时,电容器两极板之 间质量m=1×10-14 kg、带电量q= - 1 ×10-15 C的微粒 恰好静止不动;当S闭合时,微粒以加速度a=7m/s2 向 下做匀加速运动,取g=10 m/s2 。求
(3)定律内容:感应电动势大小与穿过这一电路磁
通量的变化率成正比。
(4)感应电动势大小的计算式: E n
(5)几种题型
t
①线圈面积S不变,磁感应强度均匀变化:
E n SB nS B
t
t
②磁感强度B不变,线圈面积均匀变化:
E n BS nB S
t
t
③B、S均不变,线圈绕过线圈平面内的某一轴转动时
I=E感/r= kL2 /r
电流为逆时针方向
(2) t =t 1时磁感应强度 B1=B0-+kt1
外力大小 F=F安=B1 I L =( B0-+kt1 ) kL3 /r
(3)要使棒不产生感应电流,即要回路中abed中
磁通量不变 即
BLL vt B0 L2
∴ t s时磁感强度
B B0 L
例12、如图示,固定于水平桌面上的金属框架cdef, 处在竖直向下的匀强磁场中,金属棒ab搁在框架上, 此时adeb构成一个边长为L的正方形,棒的电阻为r,
其余部分电阻不计,不计摩擦,开始时磁感应强度为
B0. (1)若从t=0 时刻起,磁感应强度均匀增加,每秒
增量为k,同时保持棒静止,求棒中的感应电流,在 图上标出感应电流的方向。
(2)在上述(1)情况中,始终保持棒静止,当
t=t1 末时需加的垂直于棒的水平拉力为多大? (3)若从t=0 时刻起,磁感应强度逐渐减小,当棒
以恒定速度v向右匀速运动时,可使棒中不产生感应
电流,则感应强度应怎样随 d L a
c
时间t 变化?(写出B与t
L
B0
的关系式)
e b
f
解: (1)E感=SΔB/ Δt=kL2
解:当金属棒速度恰好达到最大速度时,受 力分析,则mgsinθ=F安+f 据法拉第电磁感应定律:E=BLv 据闭合电路欧姆定律:I=E/R ∴F安=ILB=B2L2v/R =0.2N ∴f=mgsinθ-F安=0.3N 下滑过程由动能定理得:
mgh-fh/sinθ -W = mv2/2 解得W=1J , ∴此过程中电阻中产生的热量Q=W=1J
E n BS cos2 BS cos1 nBS cos2 cos1
t
t
楞次定律的应用
(1)楞次定律的应用操作顺序: a.弄清原磁场的方向。 b.弄清磁通量的增减情况。 c.应用楞次定律判断感应电流的磁场的方向。 d.应用安培定则确定感应电流的方向。
(2)楞次定律中“阻碍”的含义: ①阻碍原磁通量的变化(线圈面积或磁感应强
度发生变化)
②阻碍物体间的相对运动(因相对运动而引起
的感应电流)
③阻碍原电流的变化(自感现象)
二. 导体切割磁感线时产生感应电动势大小的计算:
1. 公式:
E Blvsin
2. 若导体在磁场中绕着导体上的某一点转动时,
E 1 Bl 2
2
3. 矩形线圈在匀强磁场中绕轴匀速转动时产生交流电
从中性面计时 e = Em sin ωt
最大值
Em =nBωS
三. 楞次定律应用题型 1. 阻碍原磁通的变化, 即“增反减同” 2. 阻碍(导体间的)相对运动, 即“来拒去留” 3. 阻碍原电流的变化,(线圈中的电流不能突变) 应用在解释自感现象的有关问题。
四. 综合应用题型 1. 电磁感应现象中的动态过程分析
2. 用功能观点分析电磁感应现象中的有关问题
I
B. A环有扩张的趋势
C. A环向左运动
A
D. A环向右运动
解:画出磁感应线的分布如图示(左视图)
由于A环内的磁感应线由两部分叠加, 且点多于叉,合磁场向外,当I 逐渐减 小时,磁感应强度B减小,向外的磁通
量要减小,由楞次定律,感应电流的效 果要阻碍产生感应电流的原因, A环收 缩可以阻碍向外的磁通量减小。
(1)金属棒ab运动的速度多大?电阻多大?
(2)S闭合后,使金属棒ab做
匀速运动的外力的功率多大? R1 R3
· S
R2
C
a P
v0
bQ
B=0.4T m=1×10-14 kg q= - 1 ×10-15 C d=10mm l =1m a=7m/s2
解:(1)带电微粒在电容器两极间静止时,
mg = qU1/d 求得电容器板间电压为:
D. 通电导线所受的安培力是作用在运动电荷上的 洛仑兹力的宏观表现
例6、下图a中A、B为两个相同的环形线圈,共轴 并靠近放置,A线圈中通有如图(b)所示的交流
电i ,则( A B C )
A. 在t1到t2时间内A、B两线圈相吸 B. 在t2到t3时间内A、B两线圈相斥 C. t1时刻两线圈间作用力为零 D. t2时刻两线圈间吸力最大
B. MN棒中的电流强度一定先减小后增大
C. MN两端的电压一定先减小后增大
D. MN棒上拉力的功率一定先减小后增大
aM
d
解:在ad中点时,并联电阻最
大,电流最小,路端电压最大,
v0 B
安培力最小。
bN
c
例14、如图示,光滑的平行导轨P、Q间距l =1m,处
在同一竖直面内,导轨的左端接有如图所示的电路,
A
B
i
a
i
0
t3
t1 t2
t4
t
b
例7、如图所示,竖直放置的U形导轨宽
为L,上端串有电阻R(其余导体部分的
电阻都忽略不计)。磁感应强度为B的
匀强磁场方向垂直于纸面向外。金属棒
ab的质量为m,与导轨接触良好,不计
摩擦。从静止释放后ab保持水平而下滑。
试求ab下滑的最大速度vm
R
a mL b
例8、一个边长为L、匝数为N的正方形线圈的 总电阻为R,以恒定的速率 v 通过磁感应强度 为B的匀强磁场区域,线圈平面与磁场方向垂 直,磁场宽度为b,如图所示,整个线圈通过 磁场。在下列两种情况下:(1) L<b;(2) L>b, 问线圈产生的热量各是多少?
S闭合时,带电粒子向下做 匀加速运动,
8Ω R1 8Ω R3
mg –qU 2/ d =ma
· 2Ω
S
R2
Er C
S闭合时电容器两板间电压为:
U 2=m(g-a)d/q=0.3V 这时电路的感应电流为: I 2= U2 / R2=0.15A
U1= mg d /q = 1V
相关文档
最新文档