混凝土重力坝毕业设计计算书

合集下载

重力坝计算书

重力坝计算书

MOW3 = -111.9×5.376 = -601.6 KN·m ∑MOW = 6986.7 KN·m ② 静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←) ∑P = -1072.8 KN (→) P1 作用点至 O 点的力臂为: (1105.67-1090)/3 = 5.223m P2 作用点至 O 点的力臂为: (1095.18-1090)/3 = 1.727 m 静水压力对 O 点的弯矩(顺时针为“-” ,逆时针为“+” ) : MOP1 = 1204.4×5.223 = -6290.6 KN·m MOP2 = 131.6×1.727 = 227.3 KN·m ∑MOP = -6063.3 KN·m ③ 扬压力 扬压力示意图请见下图: (→)
由确定坝顶超高计算时已知如下数据:单位:m
平均波长 Lm 波高 h1% 7.644 0.83
坝前水深 H 15.5
波浪中心线至计算水位的高度 hZ
0.283
使波浪破碎的临界水深计算如下:
H cr Lm Lm 2h1% ln 4 Lm 2h1%
将数据代入上式中得到:
H cr 7.644 7.644 2 0.83 ln 1.013 4 7.644 2 0.83
单位: KN、 KN· m
正常使用极限状态 持久状态 1868.6准值
均采用荷载设计值
⑵.由规范 8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩 体进行强度和抗滑稳定计算属于 1)承载能力极限状态,在计算时, 其作用和材料性能均应以设计值代入。基本组合,以正常蓄水位对 应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代 入。 而坝体上、下游面混凝土拉应力验算属于 2)正常使用极限状 态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。 此时结构功能限值 C = 0。 荷载各项标准值和设计值请见附表 1。 ① 坝体混凝土与基岩接触面抗滑稳定极限状态 a、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数 γd1=1.2,结构重要性系数γ0 =0.9。 基本组合的极限状态设计表达式

[学士]重力坝毕业设计

[学士]重力坝毕业设计

第一部分重力坝毕业设计第一章基本资料设计洪水位(P = 5 %)上游:510.15m下游:480.12m校核洪水位(P = 1 %)上游:510.64m下游:481.10m正常蓄水位上游:509m死水位:488m可利用河底高程478.5m混凝土容重:24 KN/m3坝前淤沙高程:486m泥沙浮容重 10 KN/m3,内摩擦角为20°混凝土与基岩间抗剪断参数值:f `= 0.6c `= 0.3Mpa坝基基岩承载力:[f]=1000Kpa坝基垫层混凝土:C15坝体混凝土:C15= 22m/s50年一遇最大风速为:v`= 16m/s多年平均最大风速为:v吹程 D =1000m第二章重力坝的断面选取与荷载计算第一节流量-水位关系曲线计算流量-水位关系曲线计算表注:流量-水位关系曲线河谷断面图第二节重力坝坝体断面1.坝顶高程的确定①. 正常水位时gD/v2=9.81×1000/222=20.279.81h/222=0.0076×22-1/12×(9.81×1000/222)1/3h=0.79m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.98m9.81Lm/222=0.331×22-1/2.15×(9.81×1000/222)1/3.75Lm=8.65mh z =π×0.982/8.65×cth(2πH/ Lm)hz=0.35m△h=h1%+h z+h c=0.98+0.35+0.4=1.73m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δsεmB(2g)1/2]}2/3={66.18/[1×1×0.502×24×(2×9.81) 1/2]}2/3 =1.15m设计洪水位=509+1.15=510.15m坝顶高程=509+1.73=510.73m②校核洪水位时gD/v2=9.81×1000/162=38.329.81h/162=0.0076×16-1/12×(9.81×1000/162)1/3h=0.53m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.66m9.81Lm/162=0.331×16-1/2.15×(9.81×1000/162)1/3.75Lm=6.29mh z =π×0.662/6.29×cth(2πH/ Lm)hz=0.22m△h=h1%+hz+hc=0.66+0.22+0.3=1.18m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δεmB(2g)1/2]}2/3={112.56/[1×1×0.502×24×(2×9.81) 1/2]}2/3s=1.64m校核洪水位=509+1.64=510.64m坝顶高程=510.64+1.18=511.82m,故取坝顶高程为512m而该坝的开挖深度为1.5m ∴坝高=512-478.5=33.5m2.坝顶宽度的确定坝顶宽度取坝高的9%,则坝顶宽度=33.5×9%=3.015m,故坝顶宽度取3.5m3.坝面坡度的确定下游面的坡度采用1:0.84.坝基防渗与排水设施的拟订距距坝踵5m处设一个帷幕灌浆断面图如下:第三节荷载计算摩檫系数f 'Γk 、粘聚力C 'ΓK 的材料性能分项系数分别为1.3、3.0, 则相应的设计值:摩檫系数f 'Γ=0.6/1.3=0.46 粘聚力C 'Γ=300/3=100 Kpa选用砼为C15,抗压强度性能分项系数为1.5,则设计值 fc=15000/1.5=10000 Kpa 扬压力系数α为0.2(查表得出) 1.设计洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.98+0.35+8.65/2)×8.65/2=119.97 KNP 2=1/2γL m 2/4=1/2×9.81×8.652/4=91.75 KNP n = P 1+P 2 =119.97-91.75=28.22 KN P=1.2×P n =1.2×28.22=33.86 KNM 1n =-P 1×[1/3×(h 1%+h z +L m /2)+H 1-L m ]=-119.97×[1/3×(0.98+0.35+8.65/2)+31.65-8.65/2]=-3504.32 KN ·NM1=1.2M1n=1.2×(-3504.32)=-4205.18 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=91.75×(1/3×8.65/2+31.65-8.65/2)=2639.34 KNM2=1.2M2n=1.2×2639.34=3167.21 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×1.62×1.62×0.8=10.30 KNW=W1+W2+W3=10960.66 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8136.36×(26.8/2-3.5-23.3/2)=17357.57 KN·NM3=-W3L3=-10.30×(26.8/2-1/3×1.62×0.8)=-133.57 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×31.652=4913.45 KNM1=-P1L1=-4913.45×1/3×31.65=-51836.90 KN·N下游:P2=1/2γH22=1/2×9.81×1.622=12.87 KNM2=P2L2=12.87×1/3×1.62=6.95 KN·N⑸.浮托力P浮=γH2LB=9.81×1.62×26.8=425.91 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[31.65-1.62-0.2×(31.65-1.62)=589.19 KNW2=γA2=9.81×5×0.2×(31.65-1.62)=294.59 KNW3=γA3=9.81×1/2×(26.8-5)×0.2×(31.65-1.62)=642.22 KNWK =W1+W2+W3=1526 KNW=1.2×1526=1831.2 KNM 1K =-W 1L 1=-589.19×(26.8/2-5/3)=-6913.17 KN ·N M 1=1.2 M 1K =8160.35 KN ·NM 2K =-W 2L 2=-1.2×294.59×(26.8/2-5/2)=-3211.03 KN ·N M 2=1.2 M 2K =-3853.24 KN ·NM 3K =-W 3L 3=-1.2×642.22×[26.8/2-5-(26.8-5)/3] =-727.85 KN M 3=1.2 M 3K =-873.42 KN ∑P=5099.91 KN ∑W=8284.51 KN∑M=-16296.96 KN ·N 2.校核洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.66+0.22+6.29/2)×6.29/2=62.09 KN P 2=1/2γL m 2/4=1/2×9.81×6.292/4=48.52 KNP n = P 1+P 2 =62.09-48.52=13.57 KN P=1.2×P n =1.2×13.57=48.52 KNM1n =-P1×[1/3×(h1%+hz+Lm/2)+H1-Lm]=-62.09×[1/3×(0.66+0.22+6.29/2)+32.14-6.29/2]=-1883.60 KN·NM1=1.2M1n=1.2×(-1883.60)=-2260.32 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=48.52×(1/3×6.29/2+32.14-6.29/2)=1457.70KNM2=1.2M2n=1.2×1457.70=1749.24 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×2.6×2.6×0.8=26.53 KNW=W1+W2+W3=10976.89 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8555.4×(26.8/2-3.5-23.3/3)=17357.57 KN·NM3=-W3L3=-26.53×(26.8/2-1/3×2.6×0.8)=-337.11 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×32.142=5066.76 KNM1=-P1L1=-5066.76×1/3×32.14=-54281.89 KN·N下游:P2=1/2γH22=1/2×9.81×2.62=33.16 KNM2=P2L2=33.16×1/3×2.6=28.74 KN·N⑸.浮托力P浮=γH2LB=9.81×2.6×26.8=683.56 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[32.14-2.6-0.2×(32.14-2.6)=579.57 KNW2=γA2=9.81×5×0.2×(32.14-2.6)=289.79 KNW3=γA3=9.81×1/2×(26.5-5)×0.2×(32.14-2.6)=631.74 KNWK =W1+W2+W3=1501.1 KNW=1.2×1501.1=1801.32 KNM1=-1.2W1L1=-1.2×579.57×(26.8/2-5/3)=-8160.35 KN·NM2=-1.2W2L2=-1.2×289.79×(26.8/2-5/2)=-3790.45 KN·NM3=-1.2W3L3=-1.2×631.74×[26.8-5-(26.8-5)/3] =-859.17 KN∑P=5215.35 KN∑W=8072.97 KN∑M=-18184.32 KN·N3. 抗滑稳定极限状态⑴基本组合时,取持久状况对应的设计状况系数ψ=1.0,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×1.0×5099.91 =5099.91 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8284.51+100×26.8) =5409.06 KN∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,取偶然状况对应的设计状况系数ψ=0.85,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×0.85×5215.35 =4433.05 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8911.05+100×26.8) =6837.38 KN∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求4. 坝址抗压强度极限状态⑴基本组合时,设计状况系数ψ=1.0,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×1.0×[8284.51/26.8-6×(-16296.96)/26.82] ×(1+0.82) =730.23 Kpa≈0.73 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,设计状况系数ψ=0.85,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×0.85×[8072.97/26.8-6×(-18184.32)/26.82] ×(1+0.82) =631.68 Kpa≈0.63 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求5.上游坝踵不出现拉应力极限状态因上游坝踵不出现拉应力极限状态属正常使用极限状态,故设计状况系数,作用分项系数和材料性能分项系数均采用1.0,扬压力系数直接用0.2代入计算,此处,结构功能的极限值C=0。

混凝土重力坝毕业设计任务书

混凝土重力坝毕业设计任务书

混凝土重力坝毕业设计任务书混凝土重力坝枢纽毕业设计任务书及指导书华北水利水电学院二??七年一月混凝土重力坝枢纽毕业设计任务书一、枢纽概况及工程目的:潘家口水库位于河北省唐山承德两地区交界处坝址位于迁西县洒河桥上游十公里扬查子村的滦河干流上。

控制流域面积33700平方公里~总库容为25.5亿立米。

水库枢纽由主坝、电站及泄水底孔等组成~水库主要任务是调节水量~供天津市和唐山地区工农业用水城市人民生活用水~结合引水发电。

并兼顾防洪要求~尽可能使其工程提前受益~尽早建成。

根据水库的工程规模及其在国民经济中的作用~枢纽定为一等工程~主坝为?级建筑物~其它均按?级建筑物考虑。

二、设计基本资料(参见附录一):设计任务和基本要求:(一)设计任务:1、根据地质、地形条件和枢纽建筑物的作用进行坝型的选择~枢纽布臵方案比较通过初步分析确定。

绘制枢纽下游立视图。

2、进行非溢流坝,挡水坝,的剖面设计~内容包括:拟定挡水坝剖面~稳定、应力分析等~并绘制设计图。

3、进行细部构造设计包括:混凝土标号分区、分缝、止水、廓道、排水。

4、设计绘图要求结构合理、工艺性好、表达完整清晰~符合GB规定~体现CAD绘图能力。

(二)基本要求:1、设计者必须发挥独立思考能力~创造性的完成设计任务~在设计中应遵循技术规范~尽量采用国内外的先进技术与经验。

2、设计者对待设计计算绘图等工作~应具有严肃认真一丝不苟的工作作风~以使设计成果达到较高水平。

3、设计者必须充分重视和熟悉原始资料~明确设计任务~在规定的时间内圆满完成要求的设计内容~成果包括:设计说明计算书一份、设计图纸2,3张,1#,。

1附录一潘家口水库混凝土重力坝毕业设计基本资料一、水文分析:1、年径流:滦河水量较充沛潘家口站多年平均年径流量为24.5亿立方米占全流域的53%~年内分配很不均匀~主要集中汛期七、八,—40%~而且年际变月份。

丰水年时占全年50,60%~枯水年占30化也很大。

2、洪水:多发生在七月下旬至八月上旬有峰高量大涨落迅速的特点~据调查近一百年来有六次大水。

混凝土重力坝毕业设计计算书

混凝土重力坝毕业设计计算书

混凝土重力坝毕业设计计算书1兵团广播电视大学开放教育(专科)题目:混凝土重力坝设计分校:姓名:学号:专业:指导教师:目录目录 (1)第一章非溢流坝设计 (5)1.1坝基面高程的确定 (5)1.2坝顶高程计算 (5)1.2.1基本组合情况下: (5)1.2.1.1 正常蓄水位时: (5)1.2.1.2 设计洪水位时: (6)1.2.2特殊组合情况下: (6)1.3坝宽计算 (7)1.4 坝面坡度 (7)1.5 坝基的防渗与排水设施拟定 (8)第二章非溢流坝段荷载计算 (9)2.1 计算情况的选择 (9)2.2 荷载计算 (9)2.2.1 自重 (9)2.2.2 静水压力及其推力 (9)2.2.3 扬压力的计算 (11)2.2.4 淤沙压力及其推力 (13)2.2.5 波浪压力 (14)2.2.6 土压力 (15)第三章坝体抗滑稳定性分析 (17)3.1 总则 (17)3.2 抗滑稳定计算 (18)3.3 抗剪断强度计算 (19)第四章应力分析 (21)4.1 总则 (21)4.1.1大坝垂直应力分析 (21)4.1.2大坝垂直应力满足要求 (22)4.2计算截面为建基面的情况 (22)34.2.1 荷载计算 (23)4.2.2运用期(计入扬压力的情况) (24) 4.2.3运用期(不计入扬压力的情况) (24) 4.2.4 施工期 (24)第五章溢流坝段设计 (26)5.1 泄流方式选择 (26)5.2 洪水标准的确定 (26)5.3 流量的确定 (26)5.4 单宽流量的选择 (27)5.5 孔口净宽的拟定 (27)5.6 溢流坝段总长度的确定 (27)5.7 堰顶高程的确定 (28)5.8 闸门高度的确定 (29)5.9 定型水头的确定 (29)5.10 泄流能力的校核 (29)5.11.1 溢流坝段剖面图 (30)5.11.2 溢流坝段稳定性分析 (30)(1)正常蓄水情况 (30)(2)设计洪水情况 (31)(3)校核洪水情况 (31)第六章消能防冲设计 (32)6.1洪水标准和相关参数的选定 (32)6.2 反弧半径的确定 (32)6.3 坎顶水深的确定 (33)6.4 水舌抛距计算 (34)6.5 最大冲坑水垫厚度及最大冲坑厚度 (35)第七章泄水孔的设计 (37)7.1有压泄水孔的设计 (37)7.2孔径D的拟定 (37)7.3 进水口体形设计 (37)7.4 闸门与门槽 (38)7.5渐宽段 (38)7.6 出水口 (38)7.7 通气孔和平压管 (39)参考文献 (40)5 第一章非溢流坝设计1.1坝基面高程的确定由《混凝土重力坝设计规范》可知,坝高100~50米时,重力坝可建在微风化至弱风化中部基岩上,本工程坝高为50~100m ,由于本坝址岩层分布主要为石英砂岩,故可确定坝基面高程为832.0 m 。

混凝土重力坝毕业设计

混凝土重力坝毕业设计

长江工程职业技术学院大专学生毕业设计(论文)题目混凝土重力坝设计姓名学号系部水利工程系专业水利水电建筑工程指导教师2008年12 月25 日毕业设计任务书设计题目:混凝土重力坝设计(二)适用专业:水利水电工程指导老师:学生姓名:长江工程职业技术学院目录第一部分总则一、设计目的及要求 (2)二、设计方法 (2)第二部分设计资料和任务一、设计内容 (3)二、基本资料 (3)三、设计指导 (4)四、设计内容和时间安排 (6)五、设计成果要求 (6)六、参考文献 (7)第一部分总则一、设计目的及要求1、巩固、充实、加深、扩大学生的基本理论和专业知识通过实际工程的设计,使学生掌握混凝土重力坝的结构选型、尺寸拟定、工作条件、作用荷载及设计依据、内容、方法、步骤等。

从而达到较全面、系统地巩固、充实、提高所学的基础理论和专业知识,使之系统化。

2、培养学生独立工作、解决实际问题的能力学生在全面了解设计任务和熟悉给定资料的基础上,学会查找规范、手册、技术文献等参考资料及前人经验。

结合工程实际,在教师的指导下,独立进行工程设计。

3、训练学生的基本技能培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到较全面的锻炼和提高。

4、培养学生形成正确的设计思想,树立严肃认真、实事求是和刻苦钻研的工作作风。

二、设计方法1、由于设计时间短、任务紧,应尽量避免重作或返工。

但必须认识到,设计工作是逐步深入的,因此某些重作是正常的,甚至是必要的。

2、每个阶段设计中,趁进入角色之机,应及时收集资料,草写阶段设计说明并备全草图,这样既可及时校对,发现错误,又为最后的文字成果整理提供素材。

3、在学生与教师研讨问题时,学生应在充分钻研的基础上,先提出自己的看法和意见,不能请老师代作和决断。

老师只向学生提出启发性的意见、解决问题的途径和工作方向、建议等。

在采纳教师建议时,也必须自我消化、理解,但不强求一定纳用。

在设计过程中,提倡开拓精神,鼓励提出新的方案或见解,同时也要遵循严肃认真的科学态度。

混凝土重力坝毕业设计计算书

混凝土重力坝毕业设计计算书

目 录目 录 (1)第1章非溢流坝设计 (2)1.1坝基面高程的确定 (2)1.2坝顶高程计算 (2)1.2.1基本组合情况下: (2)1.2.2特殊组合情况下: (3)1.3坝宽计算 (4)1.4 坝面坡度 (4)1.5 坝基的防渗与排水设施拟定 (5)第二章非溢流坝段荷载计算 (5)2.1 计算情况的选择 (5)2.2 荷载计算 (5)2.2.1 自重 (6)2.2.2 静水压力及其推力 (6)2.2.3 扬压力的计算 (7)2.2.4 淤沙压力及其推力 (10)2.2.5 波浪压力 (11)2.2.6 土压力 (12)第3章坝体抗滑稳定性分析 (13)3.2 抗滑稳定计算 (15)3.3 抗剪断强度计算 (16)第4章应力分析 (17)4.1 总则 (17)4.1.1大坝垂直应力分析 (17)4.1.2大坝垂直应力满足要求 (18)4.2计算截面为建基面的情况 (19)4.2.1 荷载计算 (19)4.2.2运用期(计入扬压力的情况) (20)4.2.3运用期(不计入扬压力的情况) (21)毕业设计(论文)任务书W M --∑∑计算截面上全部垂直力之和;计算截面上全部垂直力及水平力对于计算截面形心的力矩之和。

4.1.2大坝垂直应力满足要求由《混凝土重力坝设计规范》SL319—2005可知:重力坝坝基面:运用期:要求上游面垂直正应力不小于0,下游面垂直正应力应小于坝基容许压应力4.0Mpa=4000Kpa。

;施工期:坝趾垂直应力可允许由小于0.1Mpa(100Kpa)的拉应力;重力坝坝体截面:运用期:坝体上游面不出现拉应力(计扬压力),下游面垂直正应力应不大于混凝土压应力值,采用C15混凝土,故混凝土压应力值为15/4=3.75Mpa=3750Kpa。

施工期:坝体任何截面上的主压应力应不大于混凝土的允许压应力,下游面可允许有不大于0.2Mpa(200Kpa)的主拉应力。

4.2计算截面为建基面的情况第五章溢流坝段设计5.1 泄流方式选择为了使水库具有较大的超泄能力,采用开敞式孔口,WES实用堰。

重力坝设计计算书

重力坝设计计算书

院:土木工程学院专业:水利水电工程专业年级: 2012学号:学生姓名:杨林指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.横缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.横缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

重力坝毕业设计

重力坝毕业设计

目录前言 (1)第一部分设计说明书1基本资料 (2)1.1自然条件及工程 (3)1.2坝址与地形情况 (2)1.3水库规划资料 (3)2枢纽布置 (4)2.1 枢纽组成建筑物及其等级 (4)2.2枢纽布置 (5)3洪水调节 (6)3.1基本资料 (6)3.2洪水调节基本原则 (7)3.3调洪演算 (8)4非溢流坝剖面设计 (10)4.1设计原则 (10)4.2剖面拟订要素 (11)4.3抗滑稳定分析与计算 (12)4.4应力计算 (13)5.溢流坝段设计 (15)5.1泄水建筑物方案比较 (15)5.2工程布置 (16)5.3溢流坝剖面设计 (16)5.4消能设计与计算 (17)6细部构造设计 (17)6.1坝顶构造 (17)6.2廊道系统 (18)6.3坝体分缝 (20)6.4坝体止水与排水 (20)6.5基础处理 (22)第二部分设计计算书1.调洪演算 (25)1.1调洪演算的目的 (25)1.2调洪演算的基本原理和方法 (25)1.3调洪的基本资料 (27)1.4调洪演算的过程计 (27)1.5调洪计算结果 (40)2坝体剖面设计 (40)2.1非溢流坝段计算 (40)2.2溢流坝剖面设计 (43)2.3下游消能设计 (47)2.4 WES堰面水面线计算 (49)3.荷载计算及组合 (53)3.1抗滑稳定分析 (53)4.稳定分析. (60)5.应力分析 (62)5.1弯矩计算 (62)6.应力分析计算 (65)参考文献 (68)致谢 (69)ST重力坝毕业设计前言本次毕业设计是根据根据教学要求,对水利水电专业本科毕业生进行的最后一项教学环节。

本毕业设计内容为宁溪水利枢纽工程,它基本包括了一般水利枢纽所需进行的坝工初步设计的全过程。

ST水电站位于贵州省东北部沿河县境内,系乌江干流规划开发的第七个梯级,上游120.8公里为思林水电站,下游7公里为沿河县城。

沙沱水电站以发电为主,兼顾航运、防洪及灌溉等任务。

(完整版)重力坝设计计算书

(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

重力坝毕业设计计算书

重力坝毕业设计计算书
3.3.1 反弧段半径及特征点的确定.................................... - 32 3.3.2 水面线的计算................................................ - 33 3.3.3 直线段与曲线段的切点计算.................................... - 34 3.3.4 自然掺气后水面线的确定 ...................................... - 35 3.4 闸门设计 ..........................................................- 35 3.5 边墙设计 ..........................................................- 36 3.6 堰顶上游剖面设计 ..................................................- 36 -
参考文献 .................................................. - 44 -
精品资料
_______ቤተ መጻሕፍቲ ባይዱ______________________________________________________________________________________________________
1.1 建筑物级别 .........................................................- 1 1.2 设计洪水的计算 .....................................................- 1 -

重力坝计算书

重力坝计算书
第一章非溢流坝设计计算
1.1堤顶及防浪墙顶高程确定
1.1.1堤顶高程计算公式
本工程设计洪水标准为30年一遇,校核洪水标准为300年一遇,坝顶高程应大于坝前水位+坝顶超高。而坝顶超高=累计频率1%的波高+风壅高度+安全加高
(1.1)
1.1.2安全加高
本工程堤防级别为4级,设计洪水时,安全加高应为0.40m,校核洪水时,安全加高应为0.30m。
下游水位218.00m,下游水深218.00-210.50=7.50m
水平向:
一区:
三区:
垂直向:
二区:
四区:
表1.10正常使用工况下静水压力汇总表
分区
水平力(kN)
垂直力(kN)
力臂(m)
力矩(kN m)
一区
4562.88
10.17
-46404.49
二区
684.43
12.88
8815.46
三区
-275.91
1.82
1.76
1.70
1.66
1.52
1.45
1.34
1.00
0.4
2.01
1.78
1.68
1.64
1.60
1.56
1.44
1.39
1.30
1.01
0.5
1.80
1.63
1.56
1.62
1.49
1.46
1.37
1.33
1.25
1.01
1.1.4坝顶超高的计算
表1.3超高值Δh 的计算的基本数据
设计洪水位
9643.65
三区
-593.51
3.67
2178.18

水库混凝土重力坝设计书

水库混凝土重力坝设计书

水库混凝土重力坝设计书第1章基本资料一、枢纽工程概况:P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。

控制流域面积3.37万km2,总库容为14.39亿m3。

P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。

并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。

根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。

二、气象:P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。

表一多年平均气温、水温表单位:℃本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。

流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。

流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六:表二多年月平均降水天数及降水量表单位:mm三、水文分析:1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。

年分配很不均匀,主要集中汛期七、八月份。

丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。

2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。

其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。

洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。

毕业设计任务书(碾压砼重力坝)

毕业设计任务书(碾压砼重力坝)

C H A N G C H U N I N S T I T U T E O F T E C H N O L O G Y毕业设计任务书论文题目:学生姓名:学院名称:专业名称:班级名称:学号:指导教师:教师职称:学历:年月日长春工程学院毕业设计任务书水环学院水利水电工程专业2012届注:任务书中的数据、图表及其他文字说明可作为附件附在任务书后面,并在主要要求中标明:“见附件”附件:(隆化水利枢纽具体资料)1、工程条件1.1地理位置隆化水利水电枢纽工程位于河北省承德市隆化县境内,由龙山水库和南湾水电站两部分工程组成,水库坝址在旧屯乡龙山村北500m的滦河干流上,距隆化县城约75km,距承德市约130km,是以发电为主,结合防洪、灌溉、水产养殖等综合利用的中型水利枢纽工程,控制流域面积14742km2,占滦河流域总面积的33%,总库容2406万m3,装机3.0万kW。

1.2工程选址、工程总布置及主要建筑物1.2.1工程等别及设计标准根据《水利水电工程等级划分及洪水标准》(SL252-2000),水库库容在1000~10000万m3之间,灌溉面积在5~50万亩之间,枢纽建成后向下游承德钢厂和滦河电厂供水,供水对象为中等城市,因此本工程为Ⅲ等工程,其主要建筑物拦河坝、泄洪底孔及引水隧洞等按3级建筑物设计,电站厂房等按4级进行设计。

主要建筑物拦河坝、泄洪底孔及引水隧洞等设计洪水标准采用50年一遇,校核洪水标准采用500年一遇。

溢流坝和泄洪底孔的消能防冲建筑物设计洪水标准为30年一遇。

水电站厂房的洪水标准为30年一遇洪水设计,100年一遇洪水校核.根据河北省地震局,河北省质量技术监督局2001年转发的《中国地震动参数区划图》(GB18306-2001),工程区域地震动峰值加速度g为0.05g,地震动反应谱特征周期s为0.45s,相当于地震基本烈度Ⅵ度区。

根据《水工建筑物抗震设计规范》(SL203-97),地震设计烈度为6度。

混凝土重力坝毕业设计

混凝土重力坝毕业设计

分类号编号华北水利水电大学继续教育学院North China Institute of Water Conservancy and Hydroelectric Power 毕业设计题目混凝土重力坝设计专业:水利水电建筑工程层次:姓名:学号:指导教师年 3 月 3 日摘要901水电站枢纽位于H河上游,是第四个梯级电站,系日调节电站,主要任务是发电,兼顾灌溉、供水、调洪。

坝址以上H河流域面积14万平方公里,占H河总流域面积的19%,坝址处多年平均径流量占全流域年平均径流量的47%,水库正常蓄水位为2005米,总库容5.5亿m3,装机容量150万千瓦,工程规模属于一等大型工程。

901水电站枢纽大坝选用砼重力坝,坝段分为非溢流坝段,溢流坝段和底孔坝段。

非溢流坝段:总长316.5m,最大坝高132m,坝体宽13m,最大坝底宽为111.75m;溢流坝段:总长40.5m,分3孔,堰面为WES型,消能方式为挑流式。

底孔段坝:总长48m,底孔与施工导流相结合,出口按二十年一遇洪水控制高程。

水库回水长52km左右,库区分为川、峡两部分,库直段长18km 的峡谷,地形陡峻,河流蜿蜒曲折,谷内发育二级阶地。

库盘为震旦系片麻岩、花岗岩等坚硬基岩组成。

两岸有滑坡10处,较大的一处在右岸距坝2.2km,前沿高程为2240m。

库尾段长32km为地形较开阔的水地川(尖扎盆地)库盘表部主要为第三系及第四系泥岩,砾石层及土层组成,库区两岸山体雄厚,基岩环抱,水库大部分地段库岸是稳定的。

坝址区河流呈近东西向,河道较平直,河谷狭窄,两岸较陡峻。

901水电站枢纽的建设运行,将对H河域的生态环境、经济发展等起到举足轻重的作用,建设此枢纽工程的意义十分深远。

关键词:水电站枢纽砼重力坝生态环境经济发展目录设计说明书 (1)1 工程概况 (1)1.1 枢纽任务与规模 (1)1.2 主要建筑物型式尺寸 (1)1.3 水库特性 (1)1.3.1 水库水位 (1)1.3.2 水电站下游水位 (2)1.3.3 水电站特征参数 (2)1.3.4 溢洪道下游水位 (2)1.3.5 底孔 (2)2 基本设计资料 (3)2.1 水文特性及自然条件 (3)2.2 工程地质 (4)2.2.1 库区地质概况 (4)2.2.2 坝址工程地质条件 (4)2.2.3 地震烈度 (4)2.3 建筑物材料及水源 (4)2.4 坝基岩石的物理力学性质 (5)2.5 水电站枢纽有关参数确定 (5)3 坝型选择与枢纽布置 (6)3.1 坝型选择 (6)3.2 坝轴线选择 (7)3.3坝顶高程确定 (7)3.3.1坝顶高程设计参数 (7)3.3.2坝顶高程的确定 (8)3.3.3枢纽布置 (9)4 非溢流坝段设计 (10)4.1 坝体剖面尺寸 (10)4.2坝体稳定及应力分析 (10)4.2.1 荷载及其组合 (10)4.2.2 作用在坝基面以上的荷载 (11)4.2.3 非溢流坝的稳定计算 (13)4.2.4 非溢流坝的应力计算 (14)5 溢流坝设计 (22)5.1 溢流坝断面尺寸的拟定 (22)5.1.1溢流道尺寸的拟定 (22)5.1.2 堰面尺寸校核 (23)5.1.3 闸墩断面拟定 (23)5.2 下游冲刷坑验算 (23)5.3 溢洪道边墙尺寸拟定 (23)5.4 溢流坝段稳定及应力计算 (24)5.4.1 荷载计算 (24)5.4.2 稳定及应力计算成果分析 (24)6 坝体细部构造 (30)6.1 坝顶细部构造 (30)6.2 廊道系统构造设计 (30)6.3 坝体止水及排水 (31)6.3.1 坝体排水 (31)6.3.2 坝体止水 (31)6.4 坝体分缝 (31)6.5 坝体砼分区 (32)7坝基处理 (33)7.1 地基开挖线的确定 (33)7.2 断层处理 (33)7.3 防渗处理 (33)计算说明书 (34)8 分项计算 (34)8.1 坝顶高程的确定 (34)8.1.1 设计情况下 (34)8.1.2 校核情况下 (34)8.2 非溢流坝段的稳定及应力计算 (34)8.2.1作用在坝基面以上的荷载 (34)8.2.2 作用于错误!嵌入对象无效。

(完整版)重力坝设计计算书

(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4
坝址处基础节理裂隙发育,岩石软弱,综合枢纽的布置及下游的消能防冲要求,单宽流量取20 m3/(s.m)。
5.5
孔口净宽拟定,分别计算设计和校核情况下溢洪道所需的孔口宽度,计算成果如下表:
表5.1孔口净宽
计算情况
流量(m3/s)
单宽流量q〔m3/(s.m)〕
孔口净宽B(m)
设计情况
115.75
20
D-风区长度;m
L--波长;M
H--坝前水深
1.2.1.2 设计洪水位时:
根据水库总库容在 之间可知,大坝工程安全级别为 级
计算风速 取相应洪水期多年平均最大风速的1.8倍,即 =47.7m/s
根据公式 ,可知波浪高度 =2.71m
根据公式 ,可知波长L=23.19m
根据公式 ,可知波浪中心线超静水位高度 =0.994274m
1.2
1.2.1
1.2.1.1 正常蓄水位时:
坝顶高程分别按设计和校核两种情况,用以下公式进行计算:
波浪要素按官厅公式计算。公式如下:
库水位以上的超高 :
式中 --波浪高度,m
--波浪中心线超出静水位的高度,m
--安全超高,m
--计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年平均最大风速的1.5~2.0倍;校核洪水位时,宜用相应洪水期多年平均最大风速,m/s
图1.1重力坝剖面图
1.5
由于防渗的需要,坝基须设置防渗帷幕和排水孔幕。据基础廊道的布置要求,初步拟定防渗帷幕及排水孔廊道中心线在坝基面处距离坝踵5.5m。
第二章
2.1
作用在坝基面的荷载有:自重、静水压力、扬压力、淤沙压力、浪压力、土压力,常取 坝长进行计算。
2.
2.2.1
自重 在正常蓄水位、设计洪水位、校核洪水位完全一样计算步骤如下;
①静水压力 与作用水头 有关,所以在正常蓄水位、设计洪水位、校核洪水位时静水压力 各不相同,应分别计算;
②静水压力是作用在上下游坝面的主要荷载,计算时常分解为水平压力 和垂直压力 两种。
的计算公式为:
式中:
——计算点的作用水头, ;
——水的重度,常取 ;
(1)基本组合:
正常蓄水位情况:
F1=0.5 9.81 582=16500.42KN
重力坝坝基面:
运用期:
要求上游面垂直正应力不小于0,下游面垂直正应力应小于坝基容许压应力4.0Mpa=4000Kpa。;
施工期:
坝趾垂直应力可允许由小于0.1Mpa(100Kpa)的拉应力;
重力坝坝体截面:
运用期:坝体上游面不出现拉应力(计扬压力),下游面垂直正应力应不大于混凝土压应力值,采用C15混凝土,故混凝土压应力值为15/4=3.75Mpa=3750Kpa。
5.79
校核情况
176
20
8.8
根据以上计算,溢流坝孔口净宽取B=16m,假设每孔宽度为b=8m,则孔数n为2。
5.6
溢流坝段总长度(溢流孔口的总宽度)的确定:根据工程经验,拟定闸墩的厚度。初拟中墩厚d为2.5 m,边墩厚t为3m,则溢流坝段的总长度B0为:
B0=n×b+(n-1)×d+2×t = 2×8+(2-1)×2.5+2×3=24.5(m)
施工期:坝体任何截面上的主压应力应不大于混凝土的允许压应力,下游面可允许有不大于0.2Mpa(200Kpa)的主拉应力。
4.
(1)自重力矩
自重如下图所示:
图4.2自重力矩计算图示
W1=2118.96KN;
W2=8772.494KN;
W3=44856.62KN
自重力矩计算如下:
M1=2118.96 28.31=59987.76 KNm
W1=0.5 (58+28) 6 9.81=2538.72KN
设计洪水位情况:
F1=0.5 9.81 58.092= 16551.67KN
F2=-0.5 9.81 21.72= -2309.715KN
W1=0.5 (58.09+28.09) 6 9.81= 2536.277KN
W2=0.5 21.7 27.125 9.81= 2887.144KN
坝体自重 的计算公式:
式中:
可知:
W1=0.5 6 30 2.4 9.81=2118.96KN
W2=6 62.1 2.4 9.81=8772.494KN
W3=0.5 66.5 57.3 2.4 9.81=44856.62KN
W=W1+W2+W3=55748.47KN
坝体自重 =55748.47KN
2.2.2
4.2.
(1)上游面垂直正应力:
T=109.45
(2)下游面垂直正应力:
第五章
5.1
为了使水库具有较大的超泄能力,采用开敞式孔口,WES实用是Ⅲ级建筑物,根据GB50201—94表6.2.1,采用50年一遇的洪水标准设计,500年一遇的洪水标准校核。
5.3
流量的确定:根据基础资料可知,设计情况下,溢流坝的下泄流量为115.75m3/s;在校核情况下溢流坝的下泄流量为176m3/s。
式中:
表3.1坝基面抗滑稳定安全系数K′
荷载组合
K′
基本组合
3
特殊组合
(1)
2.5
(2)
2.3
表3.2全部荷载计算结果
荷载
水平力
垂直力
正常工况
设计工况
校核工况
正常工况
设计工况
校核工况
自重
144598.97
144598.97
144598.97
水压力
67144.54
60426.6
60333.51
9025.20
M2=8772.494 24.2=212294.4 KNm
M3=44856.62 2.03=91058.94KNm
M =M1+M2+M3=363341.1KNm
4.2.
(1)上游面垂直正应力:
T=109.45
(2)下游面垂直正应力:
4.2.
(1)上游面垂直正应力:
T=109.45
(2)下游面垂直正应力:
规范:当坝基设有防渗帷幕和排水孔时,坝底面上游(坝踵)处的扬压力作用水头为 ,排水孔中心线处为 ( ,下游(坝趾)处为 ,其间各段依次以直线连接,则:
A坝踵处的扬压力强度为 ,坝址处的扬压力强度为 ,帷幕灌浆和排水孔处的渗透压力为 ( , 的取值如表2-1所示)。
B扬压力的大小等于扬压力分布图的面积。
2.2.6
(1)正常蓄水情况:
(2)设计及校核洪水位情况:
第三章
3.1总则
A、按抗剪断强度的计算公式进行计算,按抗剪断强度公式计算的坝基面抗滑稳定安全系数 值应不小于表3-1规范规定;
B、它认为坝体混凝土与坝基基岩接触良好,属于交界面;
C、基础数据:


A=1 78.5=78.5 m2。
此时其抗滑稳定安全系数 的计算公式为:
可知库水位超高 =4.1m
可知坝顶高程=890.00+4.1=894.1m1.2.1.2校核洪水位时:
计算风速 取相应洪水期多年平均最大风速,即 =26.5m/s
根据公式 ,可知波浪高度 =1.30m
根据公式 ,可知波长L=7.0034m
根据公式 ,可知波浪中心线超静水位高度 =0.7577m
可知库水位超高 =2.355m
∑P=17061.85 KN
K′=3.190789>2.3
> 2.3
故非溢流坝段抗滑稳定满足设计规范要求。
第四章
4.1
4.1.1
根据SL319-2005《混凝土重力坝设计规范》,按下列公式进行应力计算:
图4.1应力计算图示
(1)上游面垂直正应力:
(2)下游面垂直正应力:
式中:
4.
由《混凝土重力坝设计规范》SL319—2005可知:
U4=0
Ucc=-(0+1962.981+5718.249+0)=-7681.23 KN
(2)设计洪水情况:
H1=890.9-832.0=58.09
H2=21.7
U1=γH2=-212.877 KN
U2=-11.5 0.3 9.81 58.09=-1966.027 KN
U3=-0.5 67 0.3 9.81 58.09=-5727.122 KN
0.2
0.15
0.5
空腹重力坝
0.25
-
-
岸坡
实体重力坝
0.35
-
-
宽缝重力坝
0.3
-
-
则:帷幕灌浆处的 ,排水孔处的 。
(1)正常蓄水情况下:
H1=890.0-832.0=58.0
H2=0
U1=γH2=0
U2=-11.5 0.3 9.81 58=-1962.981 KN
U3=-0.5 67 0.3 9.81 58=-5718.249 KN
可知坝顶高程=890.00+2.355=892.355m
1.2.2
Vo=26.5m/s
故按莆田试验站公式计算:
=6.43×10-3
故hm=0.4603 m
=1.1146
故Tm=3.011 s
综合(1)、(2),可知最大坝顶高程取894.1m
1.3
为了适应运用和施工的需要,坝顶必须有一定的宽度。一般地,坝顶宽度取最大坝高的8%~10%。,且不小于3m
(2)特殊组合:
校核蓄水位情况:
F1=0.5 9.81 60.332=17852.77KN
F2=-0.5 9.81 17.52=-1502.156KN
相关文档
最新文档