一元一次方程比例问题
用一元一次方程解决实际问题比例问题
等量关系:旧工艺的废水排量-200=环保限制的最大量 新工艺的废水排量+100=环保限制的最大量
由得, 旧工艺的废水排量-200=新工艺的废水排量+100 列方程得:5x-200=2x+100 解方程得:x=100 所以2x=200,5x=500 答:新、旧工艺的废水排量分别是200吨、500吨。
举例: (1)已知一个三角形三条边的比是 ?
解析:设最短边为2xcm,中间边为4xcm ,
5x 2x
最长边为 5xcm。
4x
等量关系:最长边-短边=6
列方程为:5x-2x=6
解方程得:x=2 最短边=2×2=4cm,中间边 =4×2=8cm
列方程为:x+2x+14x=25500
解方程得:x=1500 A型为1500台,B型 =2×1500=3000台
C型=14×1500=21000台。
答: A型为1500台,B型为3000台,C型为21000台。
例:某制药厂制造一批药品,如用旧工艺,则废水排 量要比环保限制的最大量还多200吨;如用新工艺, 则废水排量比环保限制的最大量少100吨。新、旧工 艺的废水排量之比为2:5,两种工艺的废水排量各是 多少?
例:机械厂加工车间有85名工人,平均每人每天加 工大齿轮16个或小齿轮10个,已知2个大齿轮与3个 小齿轮配成一套,问需分别安排多少名工人加工大、 小齿轮,才能使每天加工的大小齿轮刚好配套?
解析:假设安排x名工人加工大齿轮,安排(85-x)名工人 加工小齿才能使每天加工的大小齿轮刚好配套。
等量关系:大齿轮数:小齿轮数=2:3
一元一次方程应用题十大题型
有关“一元一次方程应用题”的十大题型有关“一元一次方程应用题”的十大题型如下:1.追及问题:这类问题通常涉及到两个物体或人在不同地点出发,以不同的速度移动,最终在某一点相遇。
求解这类问题需要建立一元一次方程来找出相遇的时间和地点。
2.相遇问题:与追及问题相反,相遇问题涉及到两个物体或人在同一地点出发,以不同的速度移动,最终在某一点相遇。
同样需要建立一元一次方程来找出相遇的时间和地点。
3.比例问题:这类问题涉及到比例关系,如两个量之间的增长或减少的比例。
求解这类问题需要建立一元一次方程来找出未知量。
4.利润与折扣问题:这类问题涉及到商业中的利润和折扣,需要建立一元一次方程来求解未知的利润或折扣。
5.工作与效率问题:这类问题涉及到工作量和效率之间的关系,通常需要建立一元一次方程来求解未知的工作量或效率。
6.行程问题:这类问题涉及到物体或人的运动路程、速度和时间之间的关系。
常见的问题有相遇和追及、环形跑道、过桥等。
需要建立一元一次方程来求解未知的速度或时间。
7.溶液与浓度问题:这类问题涉及到溶液和其中的溶质浓度,通常需要建立一元一次方程来求解未知的浓度或溶质质量。
8.工程与工作量问题:这类问题涉及到工程项目和工作量之间的关系,通常需要建立一元一次方程来求解未知的工作量或完成时间。
9.几何图形问题:这类问题涉及到几何图形的面积、周长、体积等,通常需要建立一元一次方程来求解未知的几何量。
10.生产与利润问题:这类问题涉及到企业的生产和利润之间的关系,通常需要建立一元一次方程来求解未知的生产成本、销售价格或利润。
一元一次方程比例问题解题技巧
一元一次方程比例问题解题技巧
解决一元一次方程比例问题的技巧如下:
1. 理解比例关系:首先要理解比例关系的含义。
在比例问题中,两个量之间存在着相等的比例关系,即两个量之间的比值保持不变。
2. 设定未知数:使用字母(通常是x)来表示未知数。
根据问题中给出的信息,设定一个未知数来表示其中一个量。
3. 建立方程:根据比例关系建立方程。
根据问题中给出的信息,可以得到两个量之间的比值,然后将其转化为一个等式。
使用未知数和已知的数值来建立方程。
4. 解方程:解一元一次方程。
对方程进行运算,将未知数进行求解。
可以使用各种运算法则来简化方程,最终求得未知数的值。
5. 检验答案:将求得的未知数的值代入原问题中进行检验。
将未知数代入比例关系中,确保等式两边成立,验证答案的正确性。
6. 确定问题要求:根据问题要求,确定需要求解的具体内容。
比如求出未知数的值、求出比例中的其他量等。
7. 注意特殊情况:在解决比例问题时,要注意特殊情况。
比如分母为零的情况,或者比例中有其他限制条件的情况。
8. 给出合理的解释:在解决问题后,给出合理的解释和回答。
根据问题的具体要求,解释结果的含义,并确保解答符合问
题的背景和实际意义。
通过以上技巧,你可以更有效地解决一元一次方程比例问题,并得出正确的解答。
记住,在解题过程中要仔细审题,理解问题的要求,并运用合适的数学知识和技巧进行求解。
一元一次方程比例应用题
一元一次方程比例应用题通常涉及到两个量之间的比例关系。
以下是一个典型的一元一次方程比例应用题的例子:
题目:甲、乙两人同时从A地出发前往B地,甲的速度是每小时6公里,乙的速度是每小时4公里。
如果甲比乙早到达B地2小时,那么A、B两地之间的距离是多少?
分析:设A、B两地之间的距离为x公里。
根据题意,甲比乙早到达B地2小时,也就是说甲用的时间比乙少2小时。
因此,我们可以列出一个一元一次方程来求解x。
解:设甲用t小时从A地到B地,则乙用(t+2)小时从A地到B地。
根据速度、时间和距离之间的关系,我们可以列出以下两个方程:
甲的路程方程:6t = x
乙的路程方程:4(t+2) = x
将两个方程相等,得到:6t = 4(t+2)
解这个一元一次方程,得到:t = 4
将t代入甲的路程方程中,得到:x = 6×4 = 24
因此,A、B两地之间的距离是24公里。
初一数学上册一元一次方程的应用12种经典题型汇总
初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
一元一次方程与实际问题
一元一次方程与实际问题一元一次方程是数学中最基础、最常见的方程之一。
它由一个未知数和其他数构成,满足未知数的最高次数为一。
实际问题中,一元一次方程可以帮助我们解决很多实际情境中的数学难题。
例如,我们可以利用一元一次方程解决以下几类问题:1. 比例问题:假设一公斤苹果的价格为x元,那么y公斤苹果的价格可以表示为y * x元。
如果知道y=3公斤苹果的价格为6元,我们可以列出方程3x=6。
通过求解这个方程,我们可以得到每公斤苹果的价格x=2元。
2. 几何问题:假设一个长方形的长度为x米,宽度为2米。
如果知道长方形的面积为6平方米,我们可以列出方程x * 2 = 6。
通过求解这个方程,我们可以得到长方形的长度x=3米。
3. 配平化学方程:在化学反应中,我们常常需要配平化学方程以满足质量守恒定律和原子数守恒定律。
一元一次方程可以帮助我们解决配平化学方程的问题。
例如,对于化学反应Na + H2O → NaOH + H2,我们可以列出方程xNa + yH2O → zNaOH + wH2,其中x、y、z、w分别表示相应的系数。
通过求解这个方程系统,我们可以得到配平后的化学方程。
4. 商业问题:一元一次方程也常用于解决商业问题。
例如,假设某公司每个月固定的营业额为20000元,并且每卖出一件商品可以获利50元。
如果该公司希望达到每月利润6000元的目标,我们可以列出方程20000 + 50x = 26000。
通过求解这个方程,我们可以得知该公司需要卖出120件商品才能实现目标利润。
总之,一元一次方程是解决实际问题中的数学工具之一。
通过学习和应用一元一次方程,我们可以解决各种实际情况下的计算难题,并在日常生活中运用数学思维解决实际问题。
一元一次方程的应用(比例分配问题)
2 未知数
未知数是在方程中代表未知量的变量。
一元一次方程定义
一元一次方程是只涉及到一个未知数的一次方程。它的一般形式为: ax + b = c 其中,a、b 、c是已知的数。
比例分配问题的引入
比例分配问题涉及将一个量按比例分配给不同的部分。我们可以使用一元一次方程来解决这类问题。
应用一元一次方程求解比例分配问题
1
步骤一
确定总量和各部分的比例关系。
2
步骤二
设定未知数,并建立方程。
3
步骤三
解一元一次方程,得到各部分的具体数值。
解决实际问题的例子
让我们通过一个实际问题来应用我们所学的知识。假设有一笔资金需要按照比例分配给三个人:
人员A
占比40%
人员B
占比30%
未知数为总资金量x,并建立以下方程: 0.4x + 0.3x + 0.3x = x 通过解这个方程,我们可以得到各人员的具体分配金额。
一元一次方程的应用(比 例分配问题)
本演示将介绍一元一次方程的应用,特别是在比例分配问题中的应用。通过 解决实际问题的例子,我们将探索这个有趣的数学概念。
方程和未知数的介绍
我们首先要了解方程和未知数的基本概念。方程是一个含有等号的数学表达式,未知数则是我们需要求解的量。
1 方程
方程是用来表示数学关系的表达式。
错误分析和解决方法
在解决比例分配问题时,出现错误是常见的。以下是一些常见的错误和解决方法:
错误:未正确设置未知 数。
解决方法:仔细阅读问题, 并明确设置未知数。
错误:方程计算错误。
一元一次方程应用题6----比例问题、数字问题QQQ
----比例、数字问题
小虎钓了4条鲫鱼,小华钓了5条鲫鱼,鱼的大 小差不多。 游客留了18元表示感谢,他们各分多少才比较 合理?
一足球由黑白两种皮子缝制而成共32块,
已知黑白皮子数的比为3:5,求各多少块?
按比例分配的应用题的设元和找相等关系
各有什么特点? 设元是间接设元,一般设其中的一份为x, 必要时要求连比 相等关系一般是总量等于部分量的和或 找题中的话,也可以是整个题中始终不变的量
答 :原两位数是84。
课本P97 练习1、2 例7 :一个两位数的十位上的数是个位上的数的两倍,若把两个数字 对调,则新得到的两位数比原两位数小36,求原两位数。 分析 :题中数量关系如下表 (若设原数的个位数字为X)
十位数字 原两位数 新两位数 个位数字 X 本数
可知相等关系为: 原两位数+36=新两位数 解 :设原两位数的个位数字为X,则其十位数字为2X。
一元一次应用题
一元一次应用题
以下是10道一元一次方程应用题:
1.速度、时间、距离问题
小明从家里骑自行车到学校,速度是15千米/小时,用了20分钟。
小明家离学校多远?
2.年龄问题
小红今年12岁,她妈妈今年40岁。
多少年后,妈妈的年龄是小红的2倍?
3.价格与数量问题
某超市的苹果每千克5元,小明买了3千克。
他一共需要支付多少钱?
4.打折问题
一件衣服原价200元,现在打8折销售。
打折后这件衣服多少钱?
5.存款与利息问题
小华在银行存了1000元,年利率是2%。
一年后,小华可以得到多少利息?
6.追及问题
小明和小华在环形跑道上跑步,小明每秒跑3米,小华每秒跑2米。
如果小明从后面追上小华,需要多长时间?
7.和差问题
两个数的和是30,差是10。
求这两个数。
8.分配问题
有30个苹果和20个橙子,要分给5个人,每个人得到的苹果和橙子数量要相等。
每个人能得到多少个水果?
9.数字问题
一个两位数,个位数字是7,十位数字是个位数字的2倍。
这个两位数是多少?
10.比例问题
甲、乙两地的距离是120千米,一辆汽车从甲地开往乙地,用了2小时。
这辆汽车的速度是多少?。
一元一次方程实际问题类型
一元一次方程实际问题类型
一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是已知常数,x 是未知数。
实际问题类型主要包括以下几种:
1. 比例问题:当两个变量之间的关系是比例关系时,可以建立一元一次方程来解决。
例如,如果一辆车以每小时50公里的速度行驶,问行驶 t 小时后行驶了多少公里?可以建立方程50t = d,其中 d 表示行驶的距离。
2. 货币问题:当涉及到货币金额的问题时,可以建立一元一次方程来解决。
例如,小明手里有一些零钱,如果用 5 元的纸币换成 1 元和 0.5 元的硬币,一共得到 120 个硬币,求小明原来有多少零钱?可以建立方程 5x = 1 × y + 0.5 × z,其中 x 表示小明原来的零钱数,y 表示 1 元硬币数量,z 表示 0.5 元硬币数量。
3. 行程问题:当涉及到行程、时间和速度的问题时,可以建立一元一次方程来解决。
例如,一辆车以每小时 60 公里的速度行驶,已行驶 4 小时后与另一辆以每小时 80 公里的速度行驶的车相遇,求另一辆车行驶了多少小时?可以建立方程 60 × 4 = 80x,其中 x 表示另一辆车行驶的小时数。
这些只是一元一次方程实际问题的一些典型例子,实际问题类型还有很多,需要根据具体情况来确定方程的建立。
一元一次方程应用100题
七年级一元一次方程应用百题集一、比例问题1. 某种三色冰淇淋45g,咖啡色、红色、和白色配料的比1:2:6,这种冰淇淋中咖啡色、红色、和白色配料分别是多少?(提示比例问题最常用的设元方法是设1份为x)2.某洗衣机厂今年计划生产洗衣机2550台,其中I型、II型、III型三种洗衣机的数量之比为1:2:14,请问这三种洗衣机计划各生产多少台?二、足球比赛问题3.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分。
甲队胜了多少场?平了多少场?4.某排球队参加排球联赛,得分规则:胜一场得2分,负一场得1分。
(1)若该队全胜,共得20分,请问该队胜了多少场?(2)若该队负了2场,共得20分,请问该队胜了多少场?(3)若该队赛了12场,共得20分,请问该队胜了多少场?(4)若得分规则改为:胜一场得2分,平一场得1分,负一场得0分。
该队赛了14场,负了5场,共得13分,问这个队胜了几场?5.某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分。
在这次足球联赛中,小平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场?6-1.一位教师和一群学生一起去看足球赛,教师门票按全票价每人70元,学生只收半价。
如果门票总价910元,那么学生有多少人?6-2.甲、乙两球队开展足球比赛,规定胜一场得3分,平一场得1分,负一场得0分。
甲、乙两队共比赛6场,甲队保持不败,共得14分。
甲队胜了几场?三、收费问题7.某城市按以下规定收取每月煤气费:用煤气如果不超过60m3,按每立方米0.8元收费,如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?8.某市居民用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按基本电价的70%收费。
一元一次方程的应用:比例问题
按比例分配问题,应用分配比例 的方法设元。当不能或难以直接设 未知数时,常用间接设未知数的方 法。
例题分析
例1: 三个作业队共同使用水泵排涝,如果三个作业队 的面积之比为4︰5︰6,而这一次装运水泵和耗用的电 力费用共计120元,三个作业队按土地面积比各应该负 担多少元?
解:设每份土地排涝分担费用x元,那么三个 作业队应负担费用分别为4x元,5x元,6x元,根 据题意,可得方程
例题分析
3. 某车间有男女职工若干人,男职工与女职工的人数 之比为4:3,后因工作需要调走了12名女职工,这时男 职工人数恰好是女职工人数的2倍,求原来的男职工和 女职工人数?
变式训练2
1、三角形三个内角的度数之比为1:2:3,求这 三个内角的度数? 2、某车间有工人90人,每个工人平均每天生产 螺栓7600个或螺母8800个,如果一个螺栓配两 个螺母,请问车间调度室如何安排人员进行生产, 才能恰好使生产的螺栓与螺母恰好配套?
变式训练: 某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种 零件分别取3个、2个才能配成一套,现要在90天内生产最多的成 套产品,问怎样安排生产甲、乙两种零件的天数?
分析:生产甲、乙两种零件的天数之和为90天,甲、乙两种零
件的件数之比为3:2。
解:设生产甲种零件用x天,则生产乙种零件用(90-x)天,且该车间能生产甲 种零件120x个,生产乙种零件100(90-x)个*, 由题意,得
2×120x=3×100(90-x), 解得 x=50 , 90-x=40
答:生产甲种零件用50天,则生产乙种零件用40天。
作业:
(1)、某校组织师生春游,如果只租用45座客车,刚 好坐满;如果只租用60座客车,可少租一辆,且余30个 座位.请问参加春游的师生共有多少人?
一元一次方程应用题8种类型
一元一次方程应用题8种类型
1、一元一次方程解题:此类型题目要求将一个未知数从一元一次方程中求出。
例如:求x+7=8的解。
2、解一元一次不等式题:此类型题目要求将一元一次不等式的解集求出。
例如:求x+7≥8的解集。
3、一元一次比例方程解题:此类型题目要求将一元一次比例方程中的未知数求出。
例如:已知A:B=2:3,求A=?
4、分式比例方程解题:此类型题目要求将分式比例方程中的未知数求出。
例如:已知A/B=2/3,求A=?
5、一元一次定义方程解题:此类型题目要求将一元一次定义方程中的未知数求出。
例如:已知y=2x+1,求x=?
6、一元一次函数图像解题:此类型题目要求根据一元一次函数的图像求出未知数。
例如:求y=2x+1图像上x=-2时的y值。
7、一元一次函数求导题:此类型题目要求求出一元一次函数的导数。
例如:求f(x)=2x+1的导数。
8、一元一次方程换元题:此类型题目要求将一个未知数从一元一次方程中求出,但是此方程可能有两个及以上的未知数,此时就需要进行换元法求解。
例如:已知
x+y=8,求x=?。
一元一次方程应用题类型
一元一次方程应用题类型
一元一次方程是一种最基本的方程,形式为:ax + b = 0。
其中,a和b是常数,x是未知数。
一元一次方程的解法很简单,只需要将所有的x移到同一边,然后除以系数a即可。
在应用中,一元一次方程有许多不同的类型,具体有:
1.比例问题:在比例问题中,一元一次方程可以用来解决两个量之
间的比例关系。
例如,假设有两个数a和b,它们的比值是c,那么就有a/b=c。
这是一个一元一次方程。
2.费用问题:在费用问题中,一元一次方程可以用来解决价格与数
量之间的关系。
例如,假设有一件商品的单价是p元,购买数量是x件,那么购买费用就是p*x元。
这是一个一元一次方程。
3.比率问题:在比率问题中,一元一次方程可以用来解决两个量之
间的比率关系。
例如,假设有两个数a和b,它们的比率是c,那么就有a:b=c。
这是一个一元一次方程。
4.剩余问题:在剩余问题中,一元一次方程可以用来解决物品剩余
量的问题。
例如,假设有一件商品,总共有a个,已经卖出b个,那么剩余的就是a-b个。
这是一个一元一次方程。
5.比值问题:在比值问题中,一元一次方程可以用来解决两个量之
间的比值关系。
例如,假设有两个数a和b,它们的比值是c,那么就有a:b:c。
这是一个一元一次方程。
6.平衡问题:在平衡问题中,一元一次方程可以用来解决物品重量
的平衡关系。
例如,假设有两个物品,重量分别为a和b,那么它们的总重量就是a+b。
这是一个一元一次方程。
一元一次方程的应用1(比例与数字)
一元一次方程的应用(比例)[目标] 能列出一元一次方程解简单的比例问题的应用题。
[知识点]①甲、乙、丙三个数的比是7:9:12,可设甲数为7x,乙数为9x,丙数为12x②甲:乙=2:7,乙:丙=3:7,为了统一起来,利用分数的基本性质,使第一个比中的乙与第二个比中的乙所占的份数相同;甲:乙=2×3:7×3,即甲:乙=6:21。
乙:丙=3×7:7×7,既乙:丙=21:49,从而得,甲:乙:丙=6:21:49[习题]列方程解应用题1、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额之比是5:2:3,问它们各应投资多少万元?2、甲、乙、丙三个数的比是7:9:12,甲、乙两数的和减去丙数的差等于20,求这三个数。
3、黑色火药是由硫磺、木炭、火硝三种原料配成的,它们的比是2:3:15,要配黑色火药150公斤,三种原料各需多少公斤?4、甲、乙、丙三个仓库共储煤2280吨,甲、乙两仓库储煤量之比为2:7,乙、丙两仓库储煤量之比为3:7,求三个仓库各储煤多少吨?5、甲、乙、丙三人每天生产的工件个数比为3:4:5,而丙生产的件数比甲、乙的和少36件,求每人每天生产的工件数是多少个?6、学生90人编成三组参加义务劳动,甲组与乙组的人数比为3:2,乙组与丙组的人数比为7:5,问每组各有多少人?一元一次方程的应用(数字)[目标] 能列出一元一次方程解简单的数字问题的应用题。
[知识点]①一个两位数,十位数字是a,个位数字是b,那么这个数可表示为10a+b②一个三位数,百位数字是x, 十位数字是y,个位数字是z,那么这个数可表示为100x+10y+z [习题] (从第2题开始,列方程解应用题)1一个两位数,它的两个数字之和是11,若十位数字是x,则个位数字可表示为__________;这个两位数可表示为_______________________;若将该两位数的个位和十位数字交换位置,则所得新两位数可表示为_______________2一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的,求这个两位数。
七年级一元一次方程应用题所有题型大全
七年级一元一次方程应用题所有题型大全
一、整数应用题
1.小明的妈妈给了他100元,他花了其中的四分之三,然后剩下的钱
还多少?
2.一条绳子长5米,剪成两段,其中一段比另一段多2米,求两段的
长度各是多少米。
3.某商品原价250元,打八五折后的价格是多少?
二、比例应用题
1.小李走了200米,小王走了300米,两人一共走了多少米?
2.一队篮球队员有男生8个,女生5个,男生人数是女生人数的几倍?
3.小华种了一些白菜和胡萝卜,白菜的重量是胡萝卜的3倍,总重量
是12千克,求胡萝卜的重量是多少千克。
三、距离速度时间应用题
1.两点之间的距离为80千米,汽车以每小时60千米的速度开,需要
多长时间到达?
2.小明骑自行车去了一半的路程,速度是10千米每小时,走了2个小
时,求剩下的路程还有多远?
3.水管从一个水塔底部向上喷水,水的喷射速度为10米每秒,水喷到
高度为50米时离水面还有多远?
四、工程应用题
1.甲组工人一天修150米路,乙组工人一天修120米路,如果两组工
人合作修路,一天可以修多少米路?
2.甲组工人修一段路需要7天,乙组工人修同样的路需要10天,如果
两组工人合作修路,完成同等工程需要几天?
3.水库中原有水量是6000立方米,通过排水口每小时流失200立方米,
如果连续5小时不停排水,水库中剩余多少水量?
以上为七年级一元一次方程应用题的一些常见题型,通过解决这些问题,可以
帮助学生更好地理解和应用一元一次方程的知识。
一元一次方程应用题比例分配问题
比例分配问题1、某种三色冰淇淋50 克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?2、足球表面由若干个黑色五边形和六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32 个皮块,黑色皮块和白色皮块各有多少?3、某把面积是16亩的一块地分成两部分,使它们的面积的比等于 3 : 5, 则每一部分的面积是多少?4、甲、乙、丙三人同做某种零件,已知在相同的时间内,甲、乙两的完成零件个数之比为3: 4,乙与丙完成零件的个数比为5: 4,现在甲、乙、丙三人一起做了1581 个零件,问甲、乙、丙三人各做了多少个零件?5、甲、乙两人合资办一个企业,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资额的比例为3:4,首年利润为38500 元,问甲、乙两人可获得利润分别为多少元?6、甲、乙二人去商店买东西,他们所带钱数的比是7:6,甲用掉50 元,乙用掉60 元,则二人余下的钱数比为3:2,求二人余下的钱数分别是多少?7、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120 吨,求这三丙汽车各运多少吨货物?8、甲、乙、丙三个粮仓共存粮80 吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是 1 :2.5,求甲、乙、丙三仓各存粮多少吨?9、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元?10、甲乙丙三个工人每天所生产的机器零件数,甲和乙的比为2:3,乙和丙的比是4:5,若甲乙丙每天共生产零件1575 个,问每天每个工人各生产多少个机器零件?11、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运货物12 吨,则三辆卡车共运货物多少吨。
12、甲、乙两个工程队分别有188 人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1 ,问应从甲、乙两队各抽出多少人?。
3.4.2一元一次方程应用题专题——按比例分配问题
——喜悦杜鹃花花语快乐学习轻松做题一元一次方程应用题专题(二)——按比例分配问题在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
一、什么是“按比例分配”?•二、比例基本知识:•1、两个数的比就是求两个数的商,用分数表示。
•表示方法:A:B 或表示为: •例如:甲数:乙数= 6:5 •2、表示两个比相等的式子叫做比例,如,x :y =m :n.•其中:x 、n 叫做比例外项;y 、m 叫做比例内项。
•3、比例之间的关系:内项之积等于外项之积。
•4、多个数的比就是这些数的倍数比。
其中的每个数叫做•比例系数,各个比例系数的和叫做比例总量。
其中的一份•叫做“一份的量”。
•例如:甲:乙:丙= 3x : 5 x: 7 x • 3 x+ 5x+ 7x = 12x (x 叫做一份的量,12x 叫做总量)•三、使用技巧:•1、在多个比例中,通常用一份的量表示比例分量。
•2、各个比例分量的和等于总量。
•3、“比例尺”:表示图上距离比上实际距离。
B A•想一想?我们学过的比例知识?•1、求下列各式的比•(1) 5 : 25 •(2)15 : 45 •(3)4 : 64•(4)(5x) : (3x) (其中x≠0)•(5)2m : 3m : 7m (其中m≠0)•(6)4n : 6n : 18n (其中n≠0)1:51:31:165:32:3:72:3:9•求下列各式中的未知数。
•(1) x : 2 = 60 : 15 •(2) 26 :y = 8 : 4•(3) (m+3) :6 = 2m : 5•解:根据比例的性质:•(1) x : 2 = 60 : 15 •2×60=x ×15(内项之积等于外项之积)所以x=____ •(2) 26 :y = 8 : 4•26×4=8y (同上)所以y=____•(3) (m+2) :7 = m : 5•7×m=5(m+2)(同上)•化简得:7m=5m+10 所以m=____8135做一做比例的知识?在现实生活中怎样应用•例1:一个养殖场计划养200只鸡鸭,其中养鸡120只,养鸭80只,养鸡和养鸭各占总数的几分之几?养鸡和养鸭的比是多少?•解:分析找量:•总数=•分量:•养鸡占总数:•养鸭占总数:•养鸡和养鸭的比:200只养鸡120只,养鸭80只。
4.3 用一元一次方程解决问题第1课时比例分配问题 苏科版七年级数学上册教学课件
课程讲授
1 比例分配问题
例1 某车间有22名工人,每人每天可以生产1200个螺钉 或2000个螺母. 1个螺钉需要配 2个螺母,为使每天生产 的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名?
提示:等量关系:螺母总量=螺钉总量×2
课程讲授
1 比例分配问题
解:设应安排 x 名工人生产螺钉,(22-x)名工人生产螺母. 依题意,得 2000(22-x)=2×1200x . 解方程,得 5(22-x)=6x 110-5x=6x 11x=110 x=10 22-x=12
随堂练习
2.一个两位数,个位上的数字是a,十位上的数字比个位 上的数字多4,把它的个位和十位上的数字交换位置,得 到的新的两位数与原来的两位数的和是88,则这个两位 数是____6_2____.
随堂练习
4.用白铁皮做罐头盒,每张铁皮可以做盒身16个或盒底 43个,一个盒身与两个盒底配成一个罐头盒.现有 150张白铁皮,用多少张做盒身,用多少张做盒底, 才能使做出的盒身与盒底正好配套?
1 比例分配问题
解:设共做了x张桌子. 根据题意.得
0.03x+4×0.002x=3.8. 解这个方程.得
x=100. 答:共做了100张桌子.
课程讲授
1 比例分配问题
比例分配问题解题思路: 用一元一次方程解决问题,通常先用字母表示适当的未 知数,并用含有这个字母的代数式表示其他相关的量, 再根据题中的相等关系列出方程,然后解这个方程,写 出问题的答案
1 比例分配问题
问题1:一张桌子有一张桌面和四条桌腿,做一张桌面 需要木料0.03 m3,做一条桌腿需要木料0.002 m3.用 3.8 m3木材可做多少张这样的桌子(不计木材加工时 的损耗)?
一元一次方程 比例问题
比例问题1.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?2.甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?3.某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?4.甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口多少不等,只有按2:3: 6的比例摊派才较合理,问甲、乙、丙三个村庄各派出多少个劳动力?5.现在有甲乙两种酒精,甲种浓度为60%,乙种浓度为90%,现在要配制70%的酒精300克,每种酒精各需多少?6.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银40%,现在要熔制含银31%的合金100千克,两种合金应各取多少?7.有若干4%的盐水,蒸发了一些水分后变成了10%的盐水,再加入300克4%的盐水,混合或变成6.4%的盐水,问最初加入的盐水质量?8.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?9.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
10.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
11.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.12.有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?13.某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?14.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).15.小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结
按比例分配问题,应用分配 比例的方法设元(未知数)。当 不能或难以直接设未知数时,常 用间接设未知数的方法。
课后作业
课本97页练习第2题和习题3.2第4、6题。
分析:各个作业队应负担费用与排涝的土地面 积成正比,且三个作业队各自应负担费用之 和等于120元,由于共有土地4+5+6=15份, 因而120元可以由15份分担。据此,可得解 法如下:
解:设每份土地排涝分担费用为X元,那 么三个作业队应分担的费用比分别为4x元、 5x元、6x元,根据题意,得
4 x 5 x 6 x 120
1、李阿姨购买了25000元某公司1年期的债券,1年 后扣除20%的利息税之后得到本息和26000元, 那么,这种债券的年利率是多少? 解:设这种债券的年利率是x,依题意,得: 25000 + 25000x - 25000x × 20% = 26000 20000x = 1000 x = 0.05 即: x = 5%
x8
解方程,得
4 x 32,5x 40,6 x 48
答:三个作业队各应该负担32元、40元、48元。 (本题采用了间接设未知数的方法,当不能或难 以直接设未知数的时候,常采用此法)
练习巩固
1. A、B、C三个公司合作一项工程,计划派 出91名技术人员,按公司的投入比例 3:4:6派出人员,则A、B、C三个公司派出 的技术人员的人数各是多少人?
答:这种债券的年利率是5%。
一元一次方程的实际应用
----工程比例问题
本节重点
按比例分配问题,应用分配比 例的方法设元(未知数)。当不 能或难以直接设未知数时,常用 间接设未知数的方法。
例5.三个作业队共同使用水泵排涝, 如果三个作业队排涝的土地面积之比为 4:5:6,而这一次装运水泵和耗用的电力 费用共计120元,三个作业队按土地面 积比各应负担多少元?