变频器恒压供水系统(多泵)

合集下载

多台水泵的变频恒压控制系统解决案例

多台水泵的变频恒压控制系统解决案例

多台水泵的变频恒压控制系统解决案例对于多台水泵的供水系统,除了上述的控制过程外,还有一个增减泵的控制,一般情况下需要增加一个plc(或类似的控制装置)。

其控制过程为:当管网压力PV低于设定压力SV时,PID输出增加,变频器频率增加,电动转速增加,随着水泵的加速,PV增加,PID的输出一直增大到最大(20mA)时,变频器的输出频率达到最高频率(50Hz),水泵转速达到额定转速;如果PV仍低于SV,则PID输出压力低的报警(开关量)信号,PLC接到该压力低报警信号,延时一定的时间(一般为30s~15min);如果PV一直小于SV,则说明一台水泵已经不够用了,应使PLC控制第二台水泵投入运行,一直到开泵台数满足要求为止,PV值基本稳定在SV值附近。

当管网压力PV大于设定值SV时,如果PID的输出已经最小(4mA),调速水泵停止运行,如果此时PV仍大于SV,则PID输出压力高的报警信号,PLC接收到此输入信号,延时一定的时间(30s~15min),PLC 控制关掉一台水泵,知道关泵台数满足要求为止,PV值基本稳定在SV值附近。

案例分享以3台泵为例,3台泵的恒压变频控制系统电气控制图如下图所示。

目前,很多变频器本身自带PID和PLC,这样造价也低,所以在选型时可以选择这样的变频器,如富士公司的FRENIC5000-P11变频器、西门子公司的M430变频器和爱默生公司的TD2100变频器等。

在图中,万能转换开关SA2在右边“手动”位置时,①和②接通,③和④接通,⑤和⑥断开,按下起动按钮SB2,交流接触器KM1吸合,电动机M1工频起动;按下停止按钮SB1,交流接触器KM1释放,电动机M1停止运行;按下起动按钮SB4,交流接触器KM2吸合,电动机M2工频起动;按下停止按钮SB3,交流接触器KM2释放,电动机M2停止运行。

在图中,万能转换开关SA2在左边“自动”位置时,①和②断开,③和④断开,⑤和⑥接通,KA3吸合,PLC控制变频器的起动,PID的压力高报警信号和压力低报警信号接在PLC的输入端,PLC测量到压力高报警信号或压力低报警信号,如果一直存在该信号,延时一定时间,则PLC控制电动机M1和电动机M2起动或停止。

各种变频器恒压供水参数

各种变频器恒压供水参数

各种变频器恒压供水参数变频器恒压供水是一种流行的水泵控制方式,它可以根据实际需求自动调节水泵的工作状态,使得水压能够保持在一个设定的恒定水平上。

在各种应用领域中,变频器恒压供水都有着广泛的应用,比如建筑领域、工业生产和农业灌溉等。

下面将介绍一些关于变频器恒压供水的相关参数。

1.额定功率变频器控制的水泵有其额定功率,这是指水泵在标准工况下所能提供的功率。

通常用单位为千瓦(kW)来表示,比如5kW、10kW等。

2.额定电压和额定电流变频器恒压供水系统的水泵通常需要配备相应的电力供应,其额定电压和额定电流是指其正常工作时所需要的电压和电流。

通常情况下,额定电压为单相220V或三相380V,额定电流按具体的功率来确定。

3.变频范围和频率调节精度变频器控制的水泵可以通过调节频率来实现调节水泵的工作状态。

变频范围是指水泵的运行频率范围,通常为0-50Hz或0-60Hz。

频率调节精度是指变频器在设定频率下的精确调节能力,一般为0.01Hz。

4.压力设定范围和压力调节精度变频器恒压供水系统的关键参数是压力设定范围和压力调节精度。

压力设定范围是指变频器能够调节水泵输出的压力的范围,例如0-10bar。

压力调节精度是指变频器在设定压力下的精确调节能力,通常为0.01bar。

5.过载保护和故障保护变频器恒压供水系统通常会具备过载保护和故障保护功能。

过载保护是指当水泵超出额定工作范围时,变频器会自动停机以避免损坏。

故障保护是指当变频器本身出现故障时,自动报警并关机。

6.节能效果和能效等级7.控制方式和参数保存功能变频器恒压供水系统通常具有多种控制方式,包括手动、自动和远程控制等。

同时,系统还会保存用户设定的参数,以便在断电或重新启动之后能够自动加载先前的设定参数。

总结起来,变频器恒压供水系统的参数包括额定功率、额定电压和电流、变频范围、频率调节精度、压力设定范围、压力调节精度、过载保护和故障保护、节能效果和能效等级、控制方式和参数保存功能等。

变频恒压供水一拖二

变频恒压供水一拖二

变频恒压供水一拖二
一、变频恒压供水系统主电路和控制线路图:
系统由变频器、PLC和两台水泵构成。

利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。

具有自动/手动切换功能。

变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达
到恒压供水的目的。

当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。

至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。

如此循环不已。

(素材和资料部分来自网络,供参考。

可复制、编制,期待您的好评与关注)。

一控四变频恒压供水原理

一控四变频恒压供水原理

一控四变频恒压供水原理一控四变频恒压供水系统是一种应用智能控制技术和变频控制技术的水泵供水系统。

它通过控制中心对水泵运行状态进行监测和控制,实现自动调节水泵的运行频率和输出压力,从而保持供水系统的恒定压力。

该系统由一台控制中心和四台水泵组成,其中控制中心负责监测供水系统的压力变化,并根据设定的压力范围和流量要求,调节水泵的运行频率和输出压力。

四台水泵根据控制中心的指令,通过变频控制技术调节电机的转速,进而控制水泵的输送水量和输出压力。

整个供水系统的工作原理可以概括为以下几个步骤:1.接收传感器信号:供水系统中安装了压力传感器,用于实时监测系统的压力变化。

传感器将压力信号转换为电信号,并传输给控制中心。

2.控制中心判断:控制中心收到传感器的信号后,会根据设定的压力范围和流量要求进行判断。

如果当前的压力低于设定值,就会启动水泵;如果当前的压力高于设定值,就会停止或调整水泵的运行。

3.控制水泵频率:控制中心通过变频控制技术,调节水泵电机的转速,进而改变水泵的运行频率。

当压力较低时,控制中心会增大水泵的频率,加大输出流量,提高供水系统的压力;当压力较高时,控制中心会减小水泵的频率,减少输出流量,降低供水系统的压力。

4.平衡供水系统:通过不断的监测和调整,控制中心可以实现供水系统的恒压供水。

它可以根据供水系统的需求,自动控制水泵的运行状态,保持恒定的输出压力,并且能够自动适应供水系统的变化。

一控四变频恒压供水系统具有以下几个优点:1.节能高效:系统通过变频控制技术调节水泵的运行频率,根据实际需求调整输出流量和压力,避免了传统供水系统频繁启停的能耗损失,从而达到节能的目的。

2.自动调节:系统能够自动监测和调整供水系统的压力变化,无需人工干预,减少了操作的复杂性和人为误操作的可能性。

3.稳定可靠:系统通过不断地监测和调整,能够保持恒定的供水压力,提高供水系统的稳定性和可靠性。

4.扩展性强:一控四的设计,可以同时控制多台水泵的运行,能够适应不同规模和需求的供水系统。

水泵变频恒压供水

水泵变频恒压供水

水泵变频恒压供水恒压变频泵属于变频恒压供水设备种一种供水形式,也就是单个水泵带变频运行的,实则其运行原理与其一致,就是相比普通水泵,变频也就是可调节频率,变频电机就是可以调节转速调节流量,达到节能的目的,还有启动电流小,维护工作量小的优点。

恒压供水设备是一种水利系统的供水方式,供水是国民生产生活中不可缺少的重要一环。

传统供水方式占地面积大,水质易污染,基建投资多,而最主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。

其工作原理如下:变频恒压供水自动控制装置以变频方式工作时,水泵马达以软启动方式启动后开始运转,由远传压力表检测供水管网实际压力,管网实际压力与设定压力经过比较后输出偏差信号,由偏差信号控制调整变频器输出的电源频率,改变水泵转速,使管网压力不断向设定压力趋近,这个闭环控制系统通过不断检测、不断调整的反复过程实现管网压力恒定,从而使水泵根据需求水量自动调节供水量,达到节能节水的目的。

变频控制原理如下:用变频调速来实现恒压供水,与用调节阀(使用材料:铸铁、铸钢、不锈钢等)门来实现恒压供水相比,节能效果十分显著(可根据具体情况计算出来)。

其优点是:A、起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;B、由于泵的平均转速降低了,从而可增加泵和阀门等的使用的时长;C、可以消除起动和停机时的水锤(又称水击)效应;一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。

当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。

但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。

变频控制技术引入到供水系统中,也是适应了一直提倡节能,节水需求,给我们生活(生活)带来方便。

恒压供水设备能够保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。

多泵并联恒压供水水泵的合理配置

多泵并联恒压供水水泵的合理配置

多泵并联恒压供水水泵的合理配置由多泵并联恒压供水原理,一台变频泵与多台工频泵并联恒压供水,其最大供水流量等于各并联泵在恒压工频转速下流量之和。

在恒压供水过程中,工频泵的流量是恒定的(恒压工频转速下的流量),变频泵的流量随用水流量而变化。

为保证能在零到最大流量范围内均能获得恒压供水,在配泵时要求变频泵是所有泵中的最大者。

考虑到变频器的价格与其功率成正比,最经济的配泵方案是所有泵的大小、型号相同。

6 多泵并联恒压供水时各泵的自动投入和退出方式由多泵并联恒压供水原理可知,多泵并联恒压供水,只要变频泵在所有泵中是最大的,即可实现恒压供水。

随用水流量变化,各并联泵可自动投入或退出。

其自动投入或退出的方式有二种:(1) 以工频状态自动投入或退出第一种方式是基本方式,各台工频泵以工频状态自动投入或退出。

具体方式如下,当用水流量增加,变频泵的转速上升,当上升到工频转速,如用水流量继续增加,下一台工频泵以工频状态自动投入,反之,在多泵并联恒压供水过程中,当用水流量减少,变频泵转速下降,当其转速下降到零流量的阈值,最后投入的一台工频自动停泵退出,采用这种控制方式的电控系统比较简单、可靠,是一种工程实用的控制方式。

设有变频恒压供水控制硬件、软件的abb变频器采用的是这种控制方式。

如果要实现变频泵与工频泵定时轮换,可以利用abb变频器的pfc应用宏控制软件以达到所要求的定时轮换控制。

在这种情况下,每台泵可由变频驱动也可由工频驱动,由变频控制以实现定时轮换。

(2) 循环软起动并按先开先停的原则进行控制第二种方式称之为循环软起动并按先开先停的原则进行控制。

具体控制过程如下:当用水流量增加,变频泵转速上升,当转速上升到工频转速,由变频控制器控制使该变频泵切换到工频运行,然后由控制器控制变频软起动一台新泵,新起动的泵是变频泵,它与工频泵并联运行以实现恒压供水。

当用水流量减少,变频泵的转速下降,当转速下降到零流量的阈值,由变频控制器控制使最先开启的一台泵停泵,以实现先开先停的控制原则,要实现先开后停的原则,变频控制器中要应用单片机,由以上可见,采用这种控制方式,其控制系统要复杂得多,其性价比如何尚有待使用实践的检验。

变频恒压供水系统工作原理

变频恒压供水系统工作原理

变频恒压供水系统工作原理变频恒压供水系统是一种新型的供水系统,它采用了变频技术和恒压控制技术,能够实现水泵的自动控制和恒压供水。

本文将从工作原理、优点和应用范围三个方面来介绍变频恒压供水系统。

一、工作原理变频恒压供水系统的工作原理是将水泵的电机与变频器相连,通过变频器对电机进行调速,从而实现水泵的自动控制。

同时,系统还配备了压力传感器和控制器,通过对压力传感器的监测和控制器的调节,实现恒压供水。

具体来说,当水压下降到一定程度时,压力传感器会发出信号,控制器接收到信号后,会自动启动水泵,通过变频器对电机进行调速,使水泵的流量和压力达到设定值。

当水压达到设定值时,控制器会自动停止水泵的运行,从而实现恒压供水。

二、优点1. 节能环保:变频恒压供水系统采用变频技术,能够根据实际需求对水泵进行调速,避免了传统供水系统中水泵长时间运行的情况,从而节约了能源,减少了二氧化碳的排放。

2. 稳定可靠:系统采用恒压控制技术,能够保持水压稳定,避免了传统供水系统中水压波动的情况,从而保证了供水的稳定性和可靠性。

3. 操作简便:系统采用自动控制技术,能够实现水泵的自动启停和恒压供水,操作简便,减少了人工干预的需求。

4. 维护成本低:系统采用先进的技术,能够自动检测和报警,及时发现故障并进行维修,从而降低了维护成本。

三、应用范围变频恒压供水系统适用于各种供水场合,如住宅小区、商业楼宇、工业园区、医院、学校等。

特别是在高层建筑中,由于水压的变化会影响到供水的稳定性和可靠性,因此采用变频恒压供水系统能够有效解决这一问题。

变频恒压供水系统还可以与太阳能、风能等新能源相结合,实现绿色供水,为环保事业做出贡献。

变频恒压供水系统是一种先进的供水系统,具有节能环保、稳定可靠、操作简便、维护成本低等优点,适用于各种供水场合,是未来供水系统的发展方向。

变频器恒压供水系统(多泵)-(2)

变频器恒压供水系统(多泵)-(2)

目录1 变频器恒压供水系统简介 01.1变频恒压供水系统理论分析 01.1.1变频恒压供水系统节能原理 01.1.2 变频恒压控制理论模型 (1)1.2恒压供水控制系统构成 (2)1.3 变频器恒压供水产生的背景和意义 (2)2 变频恒压供水系统设计 (4)2.1 设计任务及要求 (4)2.2 系统主电路设计 (5)2.3 系统工作过程 (5)3 器件的选型及介绍 (7)3.1 变频器简介 (7)3.1.1 变频器的基本结构与分类 (7)3.1.2 变频器的控制方式 (7)3.2 变频器选型 (8)3.2.1 变频器的控制方式 (8)3.2.2 变频器容量的选择 (9)3.2.3 变频器主电路外围设备选择 (11)3.3 可编程控制器(PLC) (13)3.3.1 PLC的定义及特点 (13)3.3.2 PLC的工作原理 (14)3.3.3 PLC及压力传感器的选择 (15)4 PLC编程及变频器参数设置 (16)4.1 PLC的I/O接线图 (16)4.2 PLC程序 (16)4.3 变频器参数的设置 (20)4.3.1 参数复位 (20)4.3.2 电机参数设置 (20)总结 (21)参考文献 (22)1 变频器恒压供水系统简介1.1变频恒压供水系统理论分析1.1.1变频恒压供水系统节能原理供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1所示。

图1-1供水系统的基本特征由图可以看出,流量Q越大,扬程H越小。

由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。

而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。

管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。

恒压供水变频器参数设置

恒压供水变频器参数设置

恒压供水变频器参数设置引言恒压供水变频器是一种用于控制水泵的设备,它可以通过调整水泵的转速,实现恒定的水压输出。

这在很多供水系统中是非常重要的,因为水压的稳定性直接影响到供水质量和供水设备的寿命。

本文将介绍恒压供水变频器的参数设置方法,以帮助用户正确使用这一设备。

选定工作方式在进行参数设置之前,首先需要确定使用的工作方式。

恒压供水变频器通常提供两种工作方式:压力差控制方式和流量控制方式。

用户可以根据实际需求选择合适的工作方式。

•压力差控制方式:该方式适用于要求水压稳定的场合,变频器会根据设定的压力差值来控制水泵的转速,从而保持恒定的供水压力。

这种方式适用于大部分常规的供水系统。

•流量控制方式:该方式适用于要求水流量稳定的场合,变频器会根据设定的流量值来控制水泵的转速,保持恒定的供水流量。

这种方式适用于一些特殊需求,例如需要保持一定流量的喷泉系统。

设置最大频率和最小频率恒压供水变频器需要设置最大频率和最小频率,来控制水泵的转速范围。

参数设置时,可以根据水泵的额定功率和实际需求来确定最大频率和最小频率的数值。

•最大频率:一般情况下,最大频率设置为水泵的额定频率。

在需要提供较大供水流量的情况下,可以适当增加最大频率,但不得超过水泵的额定频率。

•最小频率:最小频率的设置取决于水泵能否在较低频率下正常运行。

一般建议将最小频率设置为水泵的起动频率,以确保水泵能够在低负荷时正常启动。

设定PID参数PID参数是恒压供水变频器控制水泵的核心参数,它能够根据检测到的供水压力或流量与设定值的偏差,调整水泵的转速以实现恒压供水。

•比例增益(P)参数:P参数用于根据实际偏差与设定值之间的差异来控制水泵的速度调整。

P参数的数值越大,控制的响应速度越快,但可能引起控制的震荡和不稳定。

•积分时间(I)参数:I参数用于根据供水压力或流量的累积误差来控制水泵的速度调整。

I参数的数值越大,控制的静态精度越高,但可能引起控制的过冲。

•微分时间(D)参数:D参数用于根据供水压力或流量的变化率来控制水泵的速度调整。

变频恒压供水系统的构成及原理

变频恒压供水系统的构成及原理

变频恒压供水系统的构成及原理一、变频恒压供水系统的构成及原理变频恒压供水控制系统通过测到的管网压力,经变频器的内置PID调节器运算后,调节输出频率,实现管网的恒压供水。

变频器的频率超限信号(一般可作为管网压力极限信号)可适时通知PLC进行变频泵逻辑切换。

为防止水锤现象的产生,泵的启停将联动其出口阀门。

系统工作原理间图如下所示。

假设整个系统由四台水泵,一台变频器,一台PLC 和一个压力变送器及若干辅助部件构成。

各部分功能如下:安装于供水管道上的压力变送器将管网压力转换成1—5伏的电信号;变频调速器用于调节水泵转速以调节流量;PLC用于逻辑切换。

此外,上述系统还配备了外围辅助电路,以保障自动控制系统出现故障时可通过人工调节方式维持系统运行,保证连续生产。

二、设备选型说明变频恒压供水系统主要由变频控制柜、压力传感器、水泵等组成。

变频控制柜由断路器、变频器、接触器、中间继电器、PLC等组成。

1. 供水系统选用原则(1)蓄水池容量应大于每小时最大供水量。

(2)水泵扬程应大于实际供水高度。

(3)水泵流量总和应大于实际最大供水量。

(4)变频控制柜选型:用户可根据供水量和供水高度确定水泵型号及台数,然后对控制柜进行选型。

2. 变频器根据工艺要求,建议配用ABB ACS600系列变频器。

ACS 600系列变频器是ABB 公司采用直接转矩控制(DTC)技术,结合诸多先进的生产制造工艺推出的高性能变频器。

它具有很宽的功率范围,优良的速度控制和转矩控制特性,完整的保护功能以及灵活的编程能力,较高的可靠性和较小的体积。

主要技术数据:功率范围:2.2-3000kW电源电压:380/400/415/440/460/480/500VAC 3相±10%;电源频率:48-63Hz控制连接:2个可编程的模拟输入(AI);1个可编程的模拟输出(AO);5个可编程的数字输入(DI);2个可编程的数字输出(DO)。

连续负载能力:150% In,每10分钟允许1分钟串行通讯能力:标准的RS—485接口可使变频器方便地与计算机连接。

变频恒压供水系统

变频恒压供水系统

变频恒压供水系统变频恒压供水系统是一种利用变频器控制水泵以实现恒压供水的系统。

在传统的供水系统中,由于水泵的固定转速和无法根据需求实时调整,常常导致供水压力不稳定或过高。

通过使用变频器来控制水泵的频率和转速,可以有效地解决这些问题,提高供水质量和效率。

本文将介绍变频恒压供水系统的工作原理、优势以及使用注意事项,以便读者能够更好地了解和应用这一技术。

工作原理变频恒压供水系统由变频器、传感器、控制器和水泵组成。

其工作原理如下:1.传感器感知水压:水泵出口处安装有压力传感器,用于实时感知供水管道的压力情况。

2.控制器监测水压:控制器接收传感器传来的压力信号,并根据预设的压力范围进行比较和调整。

3.变频器控制水泵:根据控制器的指令,变频器调整水泵的电频和电流,进而控制水泵的转速和出水量。

当压力过低时,变频器会提高水泵的转速;当压力过高时,变频器会降低水泵的转速。

4.恒压供水:通过不断调整水泵的转速,系统能够保持供水管道的压力在预设范围内,实现恒压供水。

优势使用变频恒压供水系统带来以下几点优势:1.节能环保:传统的供水系统通常采用固定转速的水泵,无法根据实际需求进行调节,造成能源的浪费。

而变频器可以实时调整水泵的转速,根据实际需要提供合适的供水压力,从而达到节能的效果。

2.提高供水质量:传统供水系统由于压力不稳定,易导致供水管道的漏水、爆管等问题,影响供水质量。

而变频恒压供水系统可以保持恒定的供水压力,有效地解决了这些问题,提高了供水质量。

3.增加设备寿命:传统供水系统由于波动的水压对水泵产生较大的冲击和磨损,导致设备寿命大大缩短。

而变频恒压供水系统能够保持稳定的供水压力,减轻了水泵的工作负荷,延长了设备的使用寿命。

4.方便维护管理:通过变频器实时监测和调整水泵的工作状态,系统可以及时检测到故障并进行报警,方便用户及时进行维护和管理。

使用注意事项在安装和使用变频恒压供水系统时,需要注意以下几点:1.安全电气接线:根据相关的电气安装规范进行接线操作,确保供水系统的安全可靠。

变频器恒压供水方案

变频器恒压供水方案

变频器恒压供水方案1. 引言变频器恒压供水方案是一种应用于供水系统中的控制方案,通过使用变频器控制水泵的运行速度,实现供水系统中恒定的水压。

该方案广泛应用于城市建设、工业生产等领域,在提高供水系统效率、降低能耗方面具有重要意义。

本文将详细介绍变频器恒压供水方案的工作原理、特点以及实施步骤。

2. 工作原理变频器恒压供水方案的核心在于使用变频器控制水泵的转速,从而调整供水系统中的水流量和水压。

其工作原理如下:1)传感器检测水压信号:在供水系统的出口处安装压力传感器,用于监测当前的水压情况。

2)变频器感知信号并调整频率:压力传感器监测到的水压信号经过变频器转换为电信号,并通过内置的算法进行分析和处理。

变频器根据水压信号的变化调整水泵的转速,使得供水系统中的水压保持在设定的恒定水压范围内。

3)控制水泵运行状态:根据变频器调整的水泵转速,控制水泵的启停和运行,以及水泵的工作时间。

4)实时监测和反馈:通过变频器的显示屏或远程监控系统,实时监测供水系统的运行状态,包括水泵的转速、水压情况等,并可通过网络等方式将监测数据反馈给相关人员。

3. 特点和优势变频器恒压供水方案相比传统的供水系统,具有以下特点和优势:•省能节能:通过变频器控制水泵的转速,减少水泵的运行时间和功率消耗,降低能源消耗和运行成本。

•精确控制供水压力:采用恒压控制方法,可精确控制供水系统的水压,避免水压过高或过低对供水系统和设备造成的损坏。

•减少水泵启停次数:通过变频器调整水泵转速,使得水泵运行平稳,减少启停频繁,延长水泵的使用寿命。

•自动调节:当供水系统的水压发生变化时,变频器能够及时感知并调整水泵的运行状态,保持恒定的水压。

•实时监测:变频器可实时监测供水系统的运行状态,通过显示屏或远程监控系统提供供水系统的数据和报警信息,方便运维人员进行管理和维护。

4. 实施步骤实施变频器恒压供水方案的步骤如下:1)系统设计:根据实际需求,确定供水系统的流量要求、所需水压范围等参数,进行系统设计。

变频器恒压供水原理

变频器恒压供水原理

变频器恒压供水原理变频器恒压供水系统是一种智能化、节能高效的供水系统,它通过变频器对水泵的电机进行调速控制,实现对供水系统的恒压供水。

在传统的供水系统中,水泵的运行一般是采用定速运行,这样会导致在不同用水量的情况下,水压不稳定,浪费能源。

而变频器恒压供水系统则可以根据实际用水情况,智能调节水泵的运行速度,保持供水系统的稳定压力,提高供水效率,降低能耗。

变频器恒压供水系统的原理是通过变频器对水泵的电机进行调速控制,根据压力传感器实时监测的水压信号,实现对水泵的智能调速。

当用水量增加时,压力传感器检测到水压下降,变频器会自动调节水泵的运行速度,增加供水流量,保持系统的恒压供水。

当用水量减少时,压力传感器检测到水压上升,变频器会自动调节水泵的运行速度,减少供水流量,保持系统的恒压供水。

这样就可以实现在不同用水量的情况下,保持供水系统的稳定压力,提高供水效率,降低能耗。

变频器恒压供水系统的优势在于可以根据实际用水情况智能调节水泵的运行速度,实现恒压供水,避免了传统供水系统中因为水泵定速运行导致的水压不稳定、能源浪费的问题。

同时,变频器恒压供水系统还可以实现软启动、软停止功能,延长水泵的使用寿命,减少维护成本。

另外,由于变频器恒压供水系统可以根据实际用水情况智能调节水泵的运行速度,所以可以实现多泵并联运行,提高供水系统的可靠性和稳定性。

总的来说,变频器恒压供水系统利用变频器对水泵的电机进行调速控制,根据实际用水情况智能调节水泵的运行速度,实现恒压供水,提高供水效率,降低能耗,延长水泵的使用寿命,是一种智能化、节能高效的供水系统。

随着节能环保理念的不断深入人心,相信变频器恒压供水系统将会在供水领域得到更广泛的应用。

双水泵恒压供水原理

双水泵恒压供水原理

双水泵恒压供水原理双水泵恒压供水系统是一种高效而又经济的水力输送系统,它通过两个水泵并联工作,在保证水量充足的前提下,通过恒定的水压来向供水管网提供清洁饮用水和生产用水。

双水泵恒压供水系统最大的特点在于能够排除水压波动,使供水管网的水压保持恒定不变,从而保证了用户的用水质量和安全。

一、原理双水泵恒压供水系统的工作原理可以简化为:通过两个电动水泵并联进水,用变频器控制电机转速,使水泵输出的流量和水压保持稳定。

当有用户使用水时,系统通过传感器检测到管网压力下降,并自动启动第二个水泵,使其协同工作,提高供水压力,并自动控制电机的转速调节水泵的流量,以保证供水的稳定性。

1.1 水泵原理水泵原理是双水泵供水系统的核心,涉及到液体运动的基本原理。

水泵的作用是将电能转化为水能,利用液体的静压差推动液体运动,将水从低压区域输送到高压区域,实现水的运输和输送。

在双水泵供水系统中,两个水泵会在一起协同工作,通过控制电机的转速来实现供水流量和压力的稳定输出。

水泵的输出流量和水压与转速成正比例,转速越高,输出的水量和水压就越大,调节水泵输出量的最基本方法就是控制电机的转速。

双水泵供水系统的控制策略是关键,它不仅涉及到水泵的工作状态和控制逻辑,在处理各类故障和异常情况时也显得尤为重要。

控制策略的主要目的是确保供水管网的水压和水量始终保持在一定的范围内,从而根据用户的用水量和用水质量要求提供清洁饮用水和生产用水。

控制器根据管网的需求来控制水泵的开关和转速,同时对水泵的运行状态进行监控,如果发现故障或异常情况,系统会自动进行报警并采取相应的措施。

二、构造双水泵恒压供水系统的构造非常重要,它包括水泵、控制器、管道、阀门、传感器等组成部分。

水泵是整个系统的核心,它提供了恒定的水体积和水压,控制器则是系统的智能核心,它可以根据外部的控制信号调节水泵的工作状态,使其始终保持在理想状态。

管道和阀门则负责将水从水源输送到供水管网,同时对其进行控制和调节,以保证供水系统的稳定性和可靠性。

变频恒压供水系统

变频恒压供水系统

供水系统方案图变频恒压供水系统构成及工作原理1系统的构成图3-1 系统原理图如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。

三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。

从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。

(1)执行机构执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型:调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。

恒速泵:水泵运行只在工频状态,速度恒定。

它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。

(2)信号检测在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。

②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。

该信号为开关量信号。

(3)控制系统供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。

①供水控制器:它是整个变频恒压供水控制系统的核心。

供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。

②变频器:它是对水泵进行转速控制的单元。

变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

ABB变频器ACS510 应用于多泵PID恒压供水系统

ABB变频器ACS510 应用于多泵PID恒压供水系统

ABB变频器ACS510 应用于多泵PID恒压供水系统一、前言北京ABB电气传动系统有限公司,作为全球传动行业的龙头企业,它的产品广泛地用于各行各业之中。

ACS510 作为其中的一款产品广泛地用于工业领域,还针对风机、水泵应用做了特别的优化,典型的应用包括恒压供水,冷却风机,铁和隧道通风机等等。

ACS510产品系列功率范围从0.75 KW至132 KW。

不仅性能稳定,质量可靠,而且功能强大,它的SPFC(循环软启动控制)功能很方便实现恒压供水系统,无需要使用额外的PLC。

二、ABB ACS510变频器特点简介1.完美匹配风机水泵:●增强的PFC应用:最多可控制7 (1+6) 各水泵:能切换更多的泵。

●SPFC:循环软启功能:可依次调节每个泵,最多可拖动6台水泵,无须使用额外的PLC。

●多点U/F曲线:可自由定义5段U/F曲线;可灵活广泛的应用。

●超越模式:应用于隧道风机的火灾模式;应用于紧急情况下。

●PID调节器:两个独立的内置PID控制器,PID1和PID2。

2.更经济:●直觉特性:噪音最优化,当传动温度降低时增加开关频率;可控的冷却风机,仅在需要时启动;可随机分布开关频率,从而降低噪音,极大改善了电机噪音,降低了传动噪音并提高功效。

●连接性:简单安装,可并排安装,容易连接电缆,通过多种I/O连接和即插式可选件方便地连接到现场总线系统上;减少安装时间,节约安装空间,可靠的电缆连接。

3.更环保●EMC:适用于第一及第二环境的RFI滤波器为标配;不需要额外的外部滤波器。

●电抗器:变感电抗器:根据不同的负载匹配电感量,因此抑制和减少谐波,降低总谐波。

三SPFC功能概述SPFC 功能,又称循环软启动功能,内置在ACS510变频器中。

该功能不同于PFC功能之处在于,SPFC功能每次启动新电机的时候,都是用变频器来启动的,而变频器刚刚拖动过的电机,将投切到工频上。

下面将以1台ACS510变频器拖动3台水泵为例介绍SPFC功能在恒压供水系统中的实现。

变频一拖一-五台联动恒压供水控制系统讲解学习

变频一拖一-五台联动恒压供水控制系统讲解学习

增压泵变频一拖一,五台联动恒压供水控制系统1.1 变频恒压供水系统的理论分析1.1.1 电动机的调速原理水泵电机多采用三相异步电动机,而其转速公式为:式中:f表示电源频率,p表示电动机极对数,s表示转差率。

根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。

连续调节电源频率,就可以平滑地改变电动机的转速。

但是,单一地调节电源频率,将导致电机运行性能恶化。

随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。

1.1.2 变频恒压供水系统的节能原理变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。

通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。

因此,供水系统变频的实质是异步电动机的变频调速。

异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

在供水系统中,通常以压力或者流量为控制目的,常用的控制方法为阀门控制法和转速控制法。

阀门控制法是通过调节阀门开度来调节流量,水泵电机转速保持不变。

其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。

由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。

转速控制法是通过改变水泵电机的转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。

因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。

变频调速供水方式属于转速控制。

其工作原理是根据用户用水量的变化自动地调整水泵电机的转速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。

2.2 变频恒压供水系统控制方案的确定2.2.1控制方案的比较和确定恒压变频供水系统主要有压力变送器、变频器、恒压控制单元、水泵机组以及低压电器组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 变频器恒压供水系统简介 (1)1.1变频恒压供水系统理论分析 (1)1.1.1变频恒压供水系统节能原理 (1)1.1.2 变频恒压控制理论模型 (2)1.2恒压供水控制系统构成 (3)1.3 变频器恒压供水产生的背景和意义 (4)2 变频恒压供水系统设计 (5)2.1 设计任务及要求 (5)2.2 系统主电路设计 (5)2.3 系统工作过程 (6)3 器件的选型及介绍 (8)3.1 变频器简介 (8)3.1.1 变频器的基本结构与分类 (8)3.1.2 变频器的控制方式 (8)3.2 变频器选型 (9)3.2.1 变频器的控制方式 (9)3.2.2 变频器容量的选择 (10)3.2.3 变频器主电路外围设备选择 (12)3.3 可编程控制器(PLC) (14)3.3.1 PLC的定义及特点 (14)3.3.2 PLC的工作原理 (15)3.3.3 PLC及压力传感器的选择 (15)4 PLC编程及变频器参数设置 (16)4.1 PLC的I/O接线图 (16)4.2 PLC程序 (17)4.3 变频器参数的设置 (21)4.3.1 参数复位 (21)4.3.2 电机参数设置 (21)总结 (22)参考文献 (23)1 变频器恒压供水系统简介1.1变频恒压供水系统理论分析1.1.1变频恒压供水系统节能原理供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1所示。

图1-1供水系统的基本特征由图可以看出,流量Q越大,扬程H越小。

由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。

而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。

管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。

由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。

由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。

因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。

扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。

在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。

图1-1供水系统的基本特征。

变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。

通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。

因此,供水系统变频的实质是异步电动机的变频调速。

异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

1.1.2 变频恒压控制理论模型变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。

设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。

所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上从图1-2中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。

该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。

如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此而减小。

同样,最后调节的结果是实际供水压力和设定压力相等。

图1-2变频恒压控制原理图1.2恒压供水控制系统构成变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。

通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。

因此,供水系统变频的实质是异步电动机的变频调速。

异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

图1-3恒压供水系统方框图水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。

由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。

同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。

西门子系列PLC编程采用STEP7软件,它是西门子PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。

系统程序包括主程序和起动子程序,主程序包括参与调节程序和电机切换程序;电机切换程序又包括加电机程序和减电机程序。

起动子程序实际上是清零子程序。

在主程序中,设置两个变频器频率上下限到达滤波时间继电器,用于稳定系统。

1.3 变频器恒压供水产生的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需要大量消耗能量,提高泵站效率;降低能耗,对国民经济有重大意义。

我过泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等原因,至使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。

目前,大量的动能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当大的比例。

因此,研究提水系统的能量模型,找出能够节能的控制策略方法是目前较为重要的一件事。

以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。

采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

2 变频恒压供水系统设计2.1 设计任务及要求本系统是以一个供水系统作为被控对象,PLC与变频器协调控制电机的转速与启动和停止。

系统控制要求:(1) 工艺参数: 供水系统由3台水泵组成:母管压力H≥0.8时,一台定速,一台变速,一台备用。

母管压力H≤0.64时,一台定速或变速,二台备用。

母管压力H≤0.52时,一台变速,二台备用。

(2) 电动机参数:型号:JD-L-39-4功率:75KW额定频率:50Hz额定电压:380V AC;额定转速:1470 r/min额定电流:126.6 A(3) 水泵电机的起动/停止、正转、调速控制。

(4) 变频器采用远方控制方式。

(5) 通过母管压力变送器测得实际压力大小,同时和压力给定组成闭环控制。

(6) 变频器的运行状态指示(如运行、停止、过流、低压等)。

(7) 变频器的报警处理。

2.2 系统主电路设计图2.1 系统主电路图由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。

变频器可以对任何一台水泵启动和恒压供水控制。

空气开关(QL)是当电动机过载时自动将电动机从电网中断开热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。

2.3 系统工作过程1、减泵过程当用水量减少、水压上升、变频器输出频率低于下限值时,但管网压力仍偏高时,则各泵将依次退出运行,依次退出运行的方式有两种。

(1)先开先停方式。

PLC接收到下限频率到达信号,延时一定时间后,接触器1KM2失电复位,水泵M1脱离工频电源停止运行。

变频器输出频率仍然低于下限值,重复上述过程,水泵M2脱离工频电源停止运行,变频器驱动水泵M3恒压供水,水压稳定在设定值上。

这种方式称为循环方式,通常用于各台水泵的容量都相等的供水系统中。

其优点是可以自动的使各泵运行的时间比较均衡;缺点是工频运行状态直接停机时,可能由于停机太快而使管网压力发生较大波动。

(2)先开后停方式。

首先使正在变频运行的M3减速停机,然后使变频器的输出频率升至50Hz,将M2切换为变频工作,依此类推这种方式通常用于各台水泵的容量不相等的供水系统中,其优点是水泵的停机比较缓慢,管网压力比较稳定;缺点是不能自动地循环变换。

2、加泵过程首先由M1在变频控制的情况下工作。

当用水量增大、水压下降,变频器输出频率上升到50Hz时水压仍然不足,经过短暂的延时,将M1切换为工频工作,同时变频器的输出频率迅速降低为0,然后使M2投入变频运行。

当M2也达到额定频率而水压仍不足时,重复开始运行时的过程,水泵M2脱离变频器驱动,由工频供电全速运行,变频器驱动水泵M3变频运行,使水压恒定在设定值上。

3 器件的选型及介绍3.1 变频器简介3.1.1 变频器的基本结构与分类1、变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。

变频器包括控制电路、整流电路、中间直流电路及逆变电路组成。

其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

2、变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

3.1.2 变频器的控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

相关文档
最新文档