七年级数学竞赛试题及答案
七年级数学竞赛试题及答案
3.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,E a+2000的值不能是().1998⨯1998+1998,b=-1999⨯1999+1999,c=-2000⨯2000+2000,CF=BC,则长方形ABCD的面积是阴影部分面积的d+2000,则a,b,c,d的大小关系是(9.有理数-3,+8,-12,0.1,0,,-10,5,-0.4中,绝对值小于1的数共有_____个;所有七年级数学竞赛(时间100分钟满分100分)一、选择题:(每小题4分,共32分)1.(-1)2000的值是().(A)2000(B)1(C)-1(D)-2000二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a、b、c在数轴上的位置如图所示:若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=_________.A D2.a是有理数,则11若△BDF的面积为6平方厘米,则长方形ABCD的面积6(A)1(B)-1(C)0(D)-20003.若a<0,则2000a+11│a│等于().(A)2007a(B)-2007a(C)-1989a(D)1989a 是________平方厘米.F4.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=____.B C5.某商店将某种超级VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”4.已知a=-1999⨯1999-1999则abc=().2000⨯2000-20002001⨯2001-2001的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价是________.6.如图,C是线段AB上的一点,D是线段CB的中点.已知图(A)-1(B)3(C)-3(D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利()(A)25%(B)40%(C)50%(D)66.7%6.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且A D13 ()倍.E中所有线段的长度之和为23,线段AC的长度与线段CB的A C D B长度都是正整数,则线段AC的长度为_______.7.张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇.相遇后,甲、乙步行速(A)2(B)3(C)4(D)57.若四个有理数a,b,c,d满足B 1111a-1997=b+1998=c-1999=)F C度都提高了1千米/小时.当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A、B两地的距离是_________千米.(A)a>c>b>d(B)b>d>a>c;(C)c>a>b>d(D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是().(A)2(B)3(C)4(D)513正数的平方和等于_________.10.设m和n为大于0的整数,且3m+2n=225.(1)如果m和n的最大公约数为15,则m+n=________.(2)如果m和n的最小公倍数为45,则m+n=________.11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数a 2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为ab,bc都是7的倍数(如图),则可组成三位数abc共_______个;圆心,边长为半径的圆弧.则阴影部分的面积是多其中的最大的三位数与最小的三位数的和等于_________.b c少?(取3).三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买.现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?a - 1997 = 2. ∵a 是有理数, ∴不论a 取任何有理数, 11当选(D)时, 111998 ⨯ (1998 + 1) =- 1999 ⨯19981998 ⨯1999 = -1 ,1999 ⨯ (1999 +1) =- 2000 ⨯ (2000 +1) =- 2001 ⨯20002000 ⨯2001 = -1 ,FQ= 1 b,FG= 12 BC ·FQ= 1因△BFC 的面积= 12 a · 2 2 · b · 4 解之得 x= 36= 18ab)= 1 2 ab-(48 ab ∴ x 所以若按标价出售可获利为 3 ⎩-b 3a 1 5 ,b=- 2解之得 a=- 12 b,又∵以FC= 1 ∴ BE= 1∴a +b = 1 5 .23 a ⨯ b = ∴阴影部分的面积= 1答案:7.由 1 1 b + 1998 = 1 c - 1999 =1d + 2000 ,一、选择题1. 由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).a + 2000 的值永远不会是0. ∴选(C).但要注意a + 2000 这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a │=-a,∴ 2000a+11│a │=2000a-11a=1989a,所以应选(D).4.∵ a=- 1999 ⨯ (1999 - 1)可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由 此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D). 二、填空题1.∵ 2150000=2.16× 106∴ 用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴ │a+b │=-(a+b),│b-1│=1-b,│a-c │=c-a,│1-c │=1-c, ∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)b= 2000 ⨯ (2000 -1) 2000 ⨯1999 1999 ⨯2000 = -1,=-20003.如图所示.设这个长方形ABCD 的长为a 厘米,宽为b 厘米.即BC=a,AB=b,则其面积为ab 平方厘米. ∵ E 为AD 的中点,F 为CE 的中点,∴过F 作FG ⊥CD,FQ ⊥BC 且分别交CD 于G 、BC 于Q,则c= 2001⨯ (2001 -1)∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得:80%x=(1+20%)y2 y .3y = 2 ,这就是说标价是进价的1.5倍,12 y - y = 2 y ,即是进价的50%,所以应选(C).6.设长方形ABCD 的长为a,宽为b,则其面积为ab.在△ABC 中, ∵ E 是AB 的中点,12 CD= 2 4 a.1 1 1b,同理△FCD 的面积= ∴△BDF 的面积△= BCD 的面积-( △BFC 的面积△+ CDF 的面积),即1 1 ab+∴ ab=48.∴ 长方形ABCD 的面积是48平方厘米.⎧-a = 2b + 1 4.∵ a 的相反数是2b+1,b 的相反数是3a+1,由此可得: ⎨5 .a,2 3 a,∴ BF= 3a,2 212 1 ∴ △EBF 的面积为 ⨯ 21 1 6 ab △但 ABC 的面积=2 ab , 5.设每台超级VCD 的进价为x 元,则按进价提高35%,然后打出“九折”的出售价每台为x ·(1+35%)×90%元,由题意可列方程为:1 12 ab - 6 ab =3 ab ,∴ 长方形的面积是阴影部分面积的3倍,故应选(B).x · ((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=2583∴ AC= 23 - 7CD9.绝对值小于1的数共有5个.所有正数的平方和等于89 109x=12001 ∴ 每台超级VCD 的进价是1200元.∴ 阴影部分面积=4 π R 2 = 6.由图知,图中共有六条线段,即AC 、AD 、AB 、CD 、CB 、DB.又因D 是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即 3AC+7CD=233 ,∵ AC 是正整数,∴ 23-7CD ∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v 1千米,乙每小时行v 2千米,则甲乙两地的距离就是2(v 1+v 2)千米.由题意可得:3.6·(v 1+v 2+2)=4(v 1+v 2),0.4(v 1+v 2)=7.2, v 1+v 2=18.∴2(v 1+v 2)=2×18=36,即A 、B 两地的距离为36千米.900 .10.∵ m 、n 为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若 ab , b c 都是7的倍数,则可组成 abc 的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126. 三、 解答题1.∵ 每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x 角y 分,则3193∣ xy ,显然 xy =31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).25 ⨯ 34 = 18.752.根据已知可得,S Δ ABC =S 梯形BCDE∴S Δ ABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δ cdf = S Δ aef。
人教版七年级数学竞赛试题含答案
七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。
七年级上学期数学竞赛试题(含答案)
学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
七年级数学竞赛试题及答案
七年级数学竞赛试题一、选择题(每小题4分,共40分)1、如果m 是大于1的偶数,那么m 一定小于它的……………………( )A 、相反数B 、倒数C 、绝对值D 、平方2、当x=-2时,37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、17 3、255,344,533,622这四个数中最小的数是………………………( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 …………………………….. ( ).A 、21B 、24C 、33D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是……( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………………………………………………… ( )图1 图2A 、1B 、2C 、3D 、48、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………( )A. a>-1B. a>1C. a ≥-1D. a ≥19、122-+-++x x x 的最小值是…………………………………( )A. 5B.4C.3D. 210、某动物园有老虎和狮子,老虎的数量是狮子的2倍。
七年级数学竞赛练习卷(2)(含答案)-
七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。
A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。
则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。
七年级数学竞赛试题(附答案)
七年级数学竞赛试题一、填空题(每题3分,共27分)1.下图列出了国外几个城市与北京的时差,如果现在的北京时间是2013年12月28日10点,则现在的纽约时间是.2.把一张长方形纸片按如图那样折叠后,B,C两点分别落在点B',C'处,若∠CEF=53°,则∠DEC'的度数为.3.如图为某正方体的展开图,已知该正方体中x与y分别和它对面上的数字互为相反数,则x+y= .4.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=88,且AO=3BO,则a+b的值为.5.2013年12月 14日21时11分,嫦娥三号成功着陆在月球西经19.5度、北纬44.1度的虹湾以东区域.嫦娥三号从地球到月球飞行的直线距离约为38万千米,38万千米用科学计数法表示为米.6.某种商品的价格原来为a元,现在先提高15%,再降价15%,那么该商品现在的价格为元.7.过多边形一个顶点的对角线把该多边形分成了2013个三角形,则该多边形的边数为 .8.如果2a 3b m 与-b 2a n 是同类项,那么m -n 的相反数等于 .9. 如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…….假设操作能一直进行下去,那么要得到2013个小正方形,则需要操作的次数至少是 次.二、选择题(每题3分,共18分)10.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .11.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,其中AB =BC .如果a c b >>, 那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边12.你认为下列各式正确的是( ) A .22()a a =-B .22||a a -=-C . 33()a a =-D .33||a a = 13.下列说法正确的是( )A .-a 的绝对值是aB .-a 的相反数是aC .-a 的倒数是 a1- D .-a 一定小于a 14.想用一个含有17°角的三角板画出下列度数的角,7°、10°、27°、51°,他能画出的有( )A .1个B .2个C .3个D .4个AB C a b c15.若线段AB=3cm ,BC=5cm ,那么线段AC 的长为( )A .2cmB .8cmC .2cm 或8cmD .以上答案都不对三、解答题16.计算(1)-(3265133--)×78 (2)3)2()2()5332(302-⨯⎥⎦⎤⎢⎣⎡-÷+-- 17.已知A=21-a 2+b 2,B=3a 232-b 2,C=-a 2+b 2,求4A -3B -11C 的值. 18.一个由一些大小相同的小立方块搭成的几何体,从正面看和从左面看看到的形状完全相同,如图所示,请画出该几何体从上面看到的所有形状图,并在相应位置的小正方形中标出该位置的小正方块的个数.19.已知a+b+c=0且abc<0.若x=cc b b a a ++,y=3(a -b -1)-2(a -2c)-(2c -a -5b) 求x 2013-y 3的值.20.数轴上两点间的距离等于这两点所表示的两数差的绝对值.例如:A 点表示的数是-1,B 点表示的数是3,则有AB=31--=4.请你根据上述思想,解决下列问题:数轴上若A 点对应的数是a ,B 点对应的数是b ,求AB 中点C 对应的数x.(用含a 、b 的代数式表示)21.如图,已知OM 、ON 分别是∠AOB 、∠BOC 的平分线,OP 平分∠AOC.探究∠AOP 与∠MON 有怎样的大小关系,并说明理由.22.如图,已知AB=10,BC=6,D 、E 分别是AC 和BC 的中点.(1)求线段DE 的长;(2)有人说,DE 的长与BC 的长短无关,你认为正确吗?请说明理由.23.知识储备:要求几个连续整数的和,例如:求1+2+3+4+5的和,我们可以采用如下方法: 设 s=1+2+3+4+5 ①把上式倒序排列得 s=5+4+3+2+1 ②①与 ②两边分别相加得: 2s=(1+5)+(2+4)+……+(5+1)=(1+5)×5所以 s=25)51(⨯+=15 这种求和的方法叫做倒序求和法方法运用:请你用上面方法求 1+2+3+4……+(n -1)+n 的和.问题解决:在一条直线上标出2013个点,求该直线上以这些点为端点的线段的总条数.拓展延伸:如图,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,求第(n )个图有多少个相同的小正方形.(1) (2) (3) (4)…… ……竞赛试题参考答案一、填空题(每题3分,共27分)1. 2013年12月27日21点2. 74°3.04. -445. 3.8×1086.(1-15%)(1+15%)a7. 20158.19.671二、选择题(每题3分,共18分)10~15分别为 CCA BDD三、解答题16.(每题4分,共8分,注意按步骤得分)(1)99 (2)154-17.解:4A -3B -11C=4(21-a 2+b 2)-3(3a 232-b 2)-11(-a 2+b 2) ……………………2分 =-2a 2+4b 2-9a 2+2b 2+11a 2-11b 2 ……………………5分 =-5b 2 ……………………7分18.(每个1分,共9分)19.解:因为a+b+c=0,abc<0所以a 、b 、c 中只有一个负数 ……………………2分所以x=cc b b a a ++=1 ……………………4分 又因为y=3(a -b -1)-2(a -2c)-(2c -a -5b)=3a -3b -3-2a+4c -2c+a+5b=2a+2b+2c -3=-3 ……………………8分所以x 2013-y 3=12013-(-3)3=28. ……………………10分20.解:可得:AC=x a -=x -a BC=b x -=b -x ……………………4分因为AC=BC 所以x -a =b -x ……………………6分所以 x=2b a + ……………………8分21.解:∠AOP 与∠MON 相等. ……………………2分理由:因为OM 、ON 分别是∠AOB 、∠BOC 的平分线所以∠MOB=21∠AOB ,∠BON=21∠BOC ……………………4分 所以∠MON=∠MOB+∠BON=21∠AOB+21∠BOC =21(∠AOB+∠BOC )=21∠AOC ……………………7分 又因OP 平分∠AOC ,所以∠AOP=21∠AOC ……………………9分 所以∠MON=∠AOP ……………………10分 22.解:(1)因为BC=6,点E 是BC 的中点所以BE=3 ……………………2分又因为AB=10,点D 是AC 的中点所以DC=8 ……………………4分所以DE=8-3=5. ……………………5分(2)正确. ……………………6分因为 DE=DC -EC=21AC -21BC=21(AB+BC)-21BC=21AB ……………………10分 所以DE 的长与BC 无关. ……………………11分23.方法运用;解:设s=1+2+3+4……+(n -1)+n ①把上式倒序排列得 s= n+(n -1)+……+2+1 ② ……………………1分①与②两边分别相加得 2s=(1+n )+(2+n -1)+……+(n -1+2)+(n+1)=n (1+n ) ……………………3分所以 s=2)1(+n n (或22n n +) ……………………44分 问题解决:解:以左边第1个点为端点的线段有2012条,不与前边重复,以左边第2个点为端点的线段有2011条,……,以左边第2012个点为端点的线段有1条, ……………………6分故共有线段:2012+2011+……+2+1=2)12012(2012+⨯=2025078(条) ……………………8分 拓展延伸:解:因为 第(1)个图小正方形的个数为 2×1第(2)个图小正方形的个数为 2×1+2×2第(3)个图小正方形的个数为 2×1+2×2+2×3第(4)个图小正方形的个数为 2×1+2×2+2×3+2×4 ……………………9分 所以第(n )个图小正方形的个数为: 2×1+2×2+2×3+2×4+……+2×n ……………………10分 =2(1+2+3+……+n )=2×22n n =n 2+n ……………………12分。
世界青少年奥林匹克数学竞赛(中国区)选拔赛七年级数学试题(含答案)
1 / 12017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A 卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个 C.2001000个 D.2001999个12、如图已知 分别 为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.420 14、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a 15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c),试确定c b a 、、的值。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。
12. 如果5个连续的整数的和是45,那么中间的数是______。
13. 一个数的2倍与7的和是35,那么这个数是______。
14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。
15. 一本书的价格是35元,如果打8折出售,那么现价是______元。
16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。
17. 一个数的3/4加上它的1/2等于5,那么这个数是______。
18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。
七年级数学上册竞赛试题(含答案)
一、选择题1、已知代数式3x y +的值是4,则代数式261x y ++的值是( ) A 、10 B 、9C 、8D 、不能确定【答案】2、用四舍五入得到的近似数中,含有三个有效数字的是( ) A 、0.5180 B 、0.02380C 、800万D 、4.0012【答案】3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9∶15记为-1,10∶45记为1等等,依此类推,上午7∶45应记为( ) A 、3 B 、-3C 、-2.15D 、-7.45【答案】4、x 、y 、z 在数轴上的位置如图所示,则化简y z y x -+-的结果是( )A 、x z -B 、z x -C 、2x z y +-D 、以上都不对【答案】5、观察下列图形,并阅读图形下面的相关文字两直线相交,最多1个交点 三条直线相交最多有3个交点 四条直线相交最多有6个交点像这样的十条直线相交最多的交点个数为( ) A 、40个 B 、45个 C 、50个 D 、55个 【答案】6、如图棋盘上有黑、白两色棋子若干,找出所有只要有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条?.( ) A 、2条 B 、3条 C 、4条 D 、5条 【答案】7、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压, 所以就按销售价的70%出售。
那么每台实际售价为( ). A 、(1+25%)(1+70%)a 元 B 、70%(1+25%)a 元 C 、(1+25%)(1-70%)a 元 D 、(1+25%+70%)a 元 【答案】8、现定义两种运算“⊕”,“*”。
对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-, 则(6⊕8)*(3⊕5)的结果是( ) A 、60 B 、69 C 、112 D 、90【答案】9、在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分;那么,他至少选对了多少道题?( )A 、15B 、16C 、19D 、20 【答案】10、如图,已知每个小正方形的边长为1,则数轴上 点A 表示的数为( )A 、5 B、 C、【答案】 二、填空题:11、已知()2230x y -++=,则xy =__ __【答案】12、关于x 的一元一次方程(2m -6)x │m │-2=m 2的解为 . 【答案】13、某商品价格为a 元, 降低10%后, 又降低10%, 销售量猛增, 于是商店决定再提价20%,此时这种商品的价格为___ ___元. 【答案】14、根据下图程序,当输入n =5时,输出的值为 。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题1. 已知a = 3,b = -4,则下列哪一个式子是正确的?A. a + b = 7B. a - b = -1C. a × b = -12D. a ÷ b = -3答案:B2. 如果a × b = 20,且b = 5,求a的值。
A. 4B. 5C. 10D. 25答案:C3. 打折前售价为120元的商品现以原价的95%出售,打折后的价格是多少?A. 108元B. 114元C. 119元D. 123元答案:B4. 若一边长为5的正方形的面积是矩形的面积的四分之一,则矩形的长为多少?A. 5B. 10C. 15D. 20答案:C5. 以下哪个数不是素数?A. 17B. 19C. 21D. 23答案:C二、解答题1. 一个数减去13等于19,求这个数是多少?解答:设这个数为x,根据题目可得方程x - 13 = 19,将方程两边同时加上13,则x = 32。
因此,这个数是32。
2. 计算1/4 + 2/3的值,结果用最简分数表示。
解答:首先计算通分,得到3/12 + 8/12 = 11/12。
因此,1/4 + 2/3 = 11/12。
3. 六边形ABCDEF的周长是42 cm,已知AB = CD = EF = 5 cm,BC = DE = 6 cm。
求六边形的面积。
解答:六边形由三个边长相等的正三角形组成,而正三角形的面积公式为S = (边长^2 * √3) / 4。
根据题目可得六边形的面积为3 * [(5^2 * √3) / 4] = (75√3) / 4。
因此,六边形的面积为(75√3) / 4。
4. 如图所示,一个长方体的表面积为94 cm²,其中长、宽和高的比为1:2:3。
求长方体的体积。
解答:设长、宽和高分别为x、2x和3x,则根据长方体的表面积公式2(x * 2x + 2x * 3x + x * 3x) = 94,化简为14x^2 = 94,解得x =√(94/14) = √(47/7)。
(名师整理)数学七年级竞赛试题及答案解析
七年级上数学竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。
其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,( )A.y=x +12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数 C. 2 D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C.D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )122503.002.003.05.09.0x 4.0-=+-+x xA.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB 和线段CD 的重合部分CB 的长度是线段AB 长的,M 、N 分别是线段AB 和线段CD 的中点,AB=18,MN=13,则线段AD 的长为( ) A. 31 B. 33 C. 32 D. 34 10.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度. 13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____.14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20.计算:(1)×24-×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;3(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。
(名师整理)数学七年级竞赛试题及答案解析
1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。
七年级上学期数学竞赛试题(含答案)
七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+ C 、2245a b ab ab -=- D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( )A 、1B 、21k -C 、21k +D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A 、125元B 、135元C 、145元D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x xx -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少”( ) A 、0 B 、 2 C 、 1 D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( )A 、11B 、8C 、7D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . A00201003...-x 0020003...-14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________.15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程是______________________________.16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________.18、一系列方程:第1个方程是32=+xx ,解为2=x ;第2个方程是532=+x x ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分)19、计算:(每题4分,共8分) (1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。
七年级数学上册竞赛试题及附答案
七年级数学上册竞赛试题及附答案一、选择题,(3′×10=30分)1.如图1是一个长为a,宽为b的矩形,两个阴影图形都是一对以c为底,边在矩形对边上的平行四边形,则矩形中未涂阴影部分的面积为()A.B.CD.2.两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于—1,现将两个正方体并列放置,看得见的五个面上的数字如图2所示,则看不见的七个面上的数的和等于()A.—21B.—19C.—5D.—13.如图3,a,b为数轴上的两个点表示的有理数,在,,中,负数的个数有()A.1个B.2个C.3个D.4个4.若=,则等于()A.或B.C.D.零5.若,则一定是()A.正数B.负数C.非负数D.非正数6.…=()A.153B.150C.155D.1607.奶奶说:“如果不算星期天的话,我84岁了”她实际上有多少岁?()A.90B.91C.96D.988.、都是钝角,甲、乙、丙、丁计算的结果依次为:50°,26°,72°,90°.其中所得结果正确的是()A.甲B.乙C.丙D.丁9.已知a是任意有理数,在下面各题中,结论正确的个数是() (1)方程的解是,(2)方程的解是,(3)方程的解是,(4)方程的解是。
A.0B.1C.2D.310.甲、乙两人沿边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以下72米/分的速度行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上一、填空题(每小题4分,共40分)1.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.计算(-2124+7113÷24113-38)÷1512=___。
3.已知与是同类项,则=__。
4.有理数在数轴上的位置如图1所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____.6.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。
初中七年级数学竞赛试题及参考答案
21七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( )x图①图②图③ 图④A .15B .16C .18D .19 二.填空题(每题4分,共28分) 9.定义a*,若3*31,则x 的值是。
北师大版数学七年级竞赛试题附参考答案
七年级数学竞赛试题一、选择题(每小题3分,共18分) 1.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变成右边的( )2.观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A. 4521 B. 4519 C. 6521D. 65193. 己知AB=6cm ,P 是到A ,B 两点距离相等的点,则AP 的长为( ) A .3cm B .4cm C .5cm D .不能确定4. 五位朋友a 、b 、c 、d 、e 在公园聚会,见面时候握手致意问候,已知:a 握了4次手,b 握了1次,c 握了3次,d 握了2次,到目前为止,e 握了( ) 次 A.1 B. 2 C. 3 D 、45、若14+x 表示一个整数,则整数x 可取值共有( ).A .3个B . 4个C . 5个D . 6个6、四个互不相等的整数a 、b 、c 、d ,如果abcd=9,那么a+b+c+d 等于( )A 、0B 、8C 、4D 、不能确定二、填空题(每小题3分,共30分) 7、在数轴上1,的对应点A 、B , A 是线段BC 的中点,则点C 所表示的数是 。
8.化简2004120011200112002120021200312003120041---+-+- =________________9、观察下列单项式,2x,-5x 2, 10x 3, -17x 4 ,…… 根据你发现的规律写出第5个式子是 ____________第8个式子是 __________ 。
10.如图,己知点B ,C ,D ,在线段AE 上,且AE 长为8cm ,BD 为3cm ,则线段AE 上所有线段的长度的总和为 。
ABACCCD学校:_______________;班级:______________;姓名:______________;考号:____________CA BD M 第(17)题第14题11、如果2-x +x -2=0,那么x 的取值范围是________________.12、已知a 1+a 2=1,a 2+a 3=2,a 3+a 4=3,…,a 99+a 100=99,a 100+a 1=100,那么a 1+a 2+a 3+…a 100= 。
初中数学竞赛题(七年级)含答案
永阳中学七年级数学竞赛试题一、选择题(每小题3分,共30分)1、若21)1(22)1(1)1(32=+-⨯--⨯-+--M ,则)(=M A .2- B .1- C .1 D .22、若N 是能够被所有小于8的正整数整除的第二小的正整数,则N 的各数字之和是( )A .12B .10C .8D .63、在△ABC 中,∠A+∠C=2∠B ,2∠A+∠B=2∠C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4、△ABC 外角的度数之比为3:4:5,则与之对应的三个内角度数之比为( )A .5:4:3B .3:4:5C .3:2:1D .1:2:35、若2011999=a ,20121000=b ,20131001=c ,则( ) A .a<b<c B .b<c<a C .c<b<a D .a<c<b6、下列命题中,正确的是( )A .若0>a ,则a a >2;B .一个数的绝对值的相反数和这个数的相反数的绝对值不可能相等;C .倒数等于其自身的数只有1;D .负数的任意次幂都不会是0;7、电视机的售价连续两次下降10%,降价后每台电视机的售价为a 元,该电视机的原价为( ) A .a 81.0 B .a 21.1 C .21.1a D .81.0a 8、一个多边形的内角和为900°,则从这个多边形的某一个顶点引出的对角线有( )A .3B .4C .5D .69、△ABC 的三边长分别是a ,b ,c ,如果)(22a c b a bc c b -+=-+,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形10、用8个相同的小正方形搭成一个几何体,其俯视图如图4所示,那么这个几何体的左视图一定不是( )二、填空题(每小题4分,共48分)11、以小于20的质数为边长的各边不等的三角形有________个;12、已知 a □b=2a -3b+ab , a ★b=a+b -ab ,则 [2□(-3)] ★[3□(-2)]=___________;13、如图6,射线OC 、OD 、OE 、OF 分别平分∠AOB 、∠COB 、∠AOC 、∠EOC ,若∠FOD=24°,则∠AOB=_____________14、李强用15分钟完成了某项工作的254,若他将工作效率提高到原来的23倍,则他再需________小时即可完成这项工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普定县城关镇第一中学2011——2012学年度第一学期
七年级数学竞赛试题
学校: 班级: 姓名:
★亲爱的同学,经过这段时间的中学数学学习,你的数学能力一定有了较大的提高,展示你才能的机会来了!祝你在这次数学竞赛中取得好成绩!别忘了要沉着冷静、细心答题哟!
一、选择题(每小题6分,共36分)
1、如果m 是大于1的偶数,那么m 一定小于它的……………………( )
A 、相反数
B 、倒数
C 、绝对值
D 、平方
2、当x=-2时, 37ax bx +-的值为9,则当x=2时,3
7ax bx +-的值是
( )
A 、-23
B 、-17
C 、23
D 、17
3、255
,344
,533
,622
这四个数中最小的数是………………………( )
A. 255
B. 344
C. 533
D. 622
4、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ).
A 、21
B 、24
C 、33
D 、37
5、有理数的大小关系如图2所示,则下列式子中一定成立的是……
( )
A 、c b a ++>0
B 、c b a <+
C 、c a c a +=-
D 、a c c b ->-
6、某动物园有老虎和狮子,老虎的数量是狮子的2倍。
每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… …… ( )
A 、 625千克
B 、 725千克
C 、825千克
D 、9
25千克
二、填空题(每小题6分,共36分)
7、定义a*b=ab+a+b,若3*x=27,则x 的值是_____
图1
图2
8、三个有理数a、b、c之积是负数,其和是正数,当x =
c
c b
b a
a +
+
时,则
______29219=+-x x 。
9、当整数m =_________ 时,代数式
1
36
-m 的值是整数。
10、A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是______ 。
11、甲从A 地到B 地,去时步行,返回时坐车,共用x 小时,若他往返都座车,则全程
只需x
3
小时,,若他往返都步行,则需____________小时。
12、
._______2007
20061431321211=⨯+⨯+⨯+⨯ 三、解答题(共28分)
13、现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数。
(14分)
(1)设任意一个这样的正方形框中的最小数为n ,请用n 的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和。
(用n 的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数。
14、电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子跳蚤的初始位置K 0点所表示的数。
(14分)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 · · · · · · ·
1996 1997 1998 1999 2000 2001 2002
2003 2004 2005 2006 2007 2008 2009
七年级数学竞赛试题答案
7、6 ;8、-89 ; 9、 0 ,1 ; 10、 E ; 11、 x 35 12、2007
2006
;
三、解答题
13、答案:1、 n n+1 n+2 n+3
n+7 n+8 n+9 n+10 n+14 n+15 n+16 n+17 n+21 n+22 n+23 n+24
这16个的和=16n+192=16(n+12)
2、设 16(n+12)=832 n=40 ∴存在最小为40,最大40+24=64
16(n+12)=2000 n=113 ∴存在最小为113,最大为137,16(n+2)
=2008 n=125.5, ∴不存在。
14. 答案 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,12x -+,
123x -+-,…,123499100x -+-+-+. 由题意知:123499100x -+-+-+=20所
以x=- 30.。