水位检测设计

水位检测设计
水位检测设计

摘要

对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色二极管LED阵列对水位高度进行模拟显示利用水位监测模拟传感器以测得水位的状况,通过单片机和显示系统在水位现场以LED的方式显示出来,并通过与之相连的GSM模块将水位信息以一种无线的方式发送给远程终端,起到检测的作用。在终端通过仿人工智能控制算法在大惯性、纯滞后系统中的应用,可克服传统PID控制的相位滞后、积分饱和,解决控制系统的稳定性及准确性的矛盾。在每一个预定水位检测点处,将两个电极安装在容器壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性,两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。系统的软件的核心是两个不断循环执行的中断程序:TMR0中断用于驱动数码管和LED显示:TMR1中断用于采集水位值并且将采集结果送缓冲寄存器供显示部分读取,同时对采集结果进行简单的分析,判断其是否超过水位上限或下限,若超过则点亮相应的报警灯。整个软件部分大体可分为初始化程序、TMR1中断服务程序、数据转化子程序、TMR0中断服务程序4个部分。该系统还设计了报警系统,因为水位检测和显示仪表装置在工业上有着广泛的应用而本设计采用的是一种低成本的数码管显示驱动方案。所以在对成本较敏感的小型系统中,该方案有着一定的参考价值。

关键字:单片机水位检测应用

前言

在当今社会,水在人们正常生活和生产中起着非常重要的作用。给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格

的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。本设计介绍一种利用水位监测模拟传感器以测得水位的状况,通过单片机和显示系统在水位现场以LED的方式显示出来,并通过与之相连的GSM模块将水位信息以一种无线的方式发送给远程终端,起到检测的作用。在终端通过仿人工智能控制算法在大惯性、纯滞后系统中的应用,可克服传统PID控制的相位滞后、积分饱和,解决控制系统的稳定性及准确性的矛盾。将控制算法应用到水位控制,取得了较好的控制效果。

在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。因此给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一.任何时候都能提供足够的水量,平稳的水压,合格的水质是对给水系统提出的基本要求.就目前而言,多数工业,生活供水系统都采用水塔,层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。因此,如何建立一个可靠安全,又易于维护的给水系统是值得我们研究的课题。

水位控制在日常生活及工业领域中应用相当广泛,比如水塔,地下水,水电站等情况下的水位控制。而以往水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,用有线电话及时把水位变化情况报知主控室。然后主控室再开动电机进行给排水.很显然上述重复性的工作无论从人员,时间和资金上都将造成很大的浪费。同时也容易出差错。因此急需一种能自动检测水位,并根据水位变化的情况自动调节的自动控制系统,我所研究的就是这方面的课题。

目录

1系统总体设计 (1)

1.1系统主要功能 (1)

1.2系统工作原理 (1)

2系统硬件电路设计 (2)

2.1单片机系统 (2)

2.1.1单片机简介……………………………………………………………………………

2.1.2单片机发展概述………………………………………………………………………

2.1.3单片机内部结构………………………………………………………………………

2.2水位检测与数据采集………………………………………………………………………

2.2.1PLC16F877芯片介绍…………………………………………………………………

2.2.2CD4051芯片介绍………………………………………………………………………

2.2.3水位检测电路…………………………………………………………………………

2.3数码管与LED显示…………………………………………………………………………

2.3.1相关芯片介绍…………………………………………………………………………

2.3.2显示部分工作原理……………………………………………………………………

2.4报警电路……………………………………………………………………………………

3系统软件程序设计………………………………………………………………………………

3.1初始化程序…………………………………………………………………………………

3.2TMR1中断服务程序…………………………………………………………………………

3.3数据转换子程………………………………………………………………………………

3.4TMR0中断服务程序…………………………………………………………………………

3.5程序清单及注释……………………………………………………………………………

4 结论……………………………………………………………………………………………

致谢

参考文献

1 系统总体设计

水位检测和显示仪表装置在工业上有着广泛的应用。本设计采用的是一种低成本的数码管显示驱动方案。在对成本较敏感的小型系统中,该方案有着一定的参考价值。

1.1系统主要功能

对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色二极管LED阵列对水位高度进行模拟显示。整个装置主要包含水位检测和显示两个部分,现将每部分功能说明如下:

(1)水位检测:在0mm 、±10 mm 、±25 mm 、±50 mm 、±80 mm 、±120 mm 、±160 mm 、±240 mm 共15点基础上,检测水位偏离零点的大小。

(2)水位显示:将上一步检测结果用数码管显示出来,显示值以比实际水位小的最近点为准,例如:水位实际高度为35 mm ,则数码管显示25 mm 。同时,用15个竖直排列的双色LED 阵列直观的模拟当前水位高度,当水位没有达到某点相应的LED 显示红色,达到或超过则显示绿色。当水位低于﹣240 mm 时报警灯显示绿色,高于240 mm 时报警灯显示红色,当水位恢复正常值时报警灯熄灭。

1.2系统工作原理

本设计采用电接点水位检测方法,在每一个预定水位检测点处,将两个电极安装在容器壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性,两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。

本系统由水箱、检测元件、多路开关、单片机系统、数码显示和报警六大部分组成。如下图所示:

图1.1 系统组成框图

2系统硬件电路设计

2.1单片机系统 2.1.1单片机简介

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、

检测元件

多路开关

单 片 机 系 统

数码显示

报警

水 箱

为学习、应用和开发提供了便利条件。同时,学习使用单片机了解计算机原理与结构的最佳选择。

可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。不过,这种电脑,通常是指个人计算机,简称PC机。它由主机、键盘显示器等组成。还有一类计算机,大多数人却不怎么熟悉。这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。因为它体积小,通常都藏在被控机械的“肚子”里。它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品、升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。

2.1.2单片机发展趋势

1946年第一台电子计算机诞生至今,只有50年的时间,依靠微电子技术和半导体技术的进步,从电子管——晶体管——集成电路——大规模集成电路,现在一块芯片上完全可以集成几百万甚至上千万只晶体管,使得计算机体积更小,功能更强。特别是近20年时间里,计算机技术获得飞速的发展,计算机在工农业,科研,教育,国防和航空航天领域获得了广泛的应用,计算机技术已经是一个国家现代科技水平的重要标志。

单片机诞生于20世纪70年代,所谓单片机是利用大规模集成电路技术把中央处理单元(Center Processing Unit,也即常称的CPU)和数据存储器(RAM)、程序存储器(ROM)及其他I/O 通信口集成在一块芯片上,构成一个最小的计算机系统,而现代的单片机则加上了中断单元,定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛。

20世纪70年代,微技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,它还需配上外围的其他处理电路方才构成完整的计算系统。

1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。

在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机。到了80年代初,单片机已发展到了高性能阶段。此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。

80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O 接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM 的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。

1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D 转换通道,高速的I/O处理单元,适用于更复杂的控制系统。

90年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL 的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。

随后,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。

1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。

此期间,单片机园地里,单片机品种异彩纷呈,争奇斗艳。有8位、16位甚至32位机,但8位单片机仍以它的价格低廉、品种齐全、应用软件丰富、支持环境充分、开发方便等特点而占着主导地位。而INTEL公司凭着他们雄厚的技术,性能优秀的机型和良好的基础,目前仍是单片机的主流产品。只不过是九十年代中期,INTEL公司忙着开发他们个人电脑微处理器,已没有足够的精力继续发展自己创导的单片机技术,而由PHILIPS等公司继续发展C51系列单片机。

2.1.3单片机的内部结构

单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:

1.中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。

2. 数据存储器(RAM): 8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。

3. 程序存储器(ROM):8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。

4. 定时/计数器(ROM):8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。

5. 并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。

6. 全双工串行口:8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

7. 中断系统:8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。

8. 时钟电路: 8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051单片机需外置振荡电容。

2.2水位检测与数据采集

2.2.1PLC16F877芯片介绍

PIC16F877单片机有双列直插式40引脚及表面贴装式44引脚等几种封装形式。

PIC16F877单片机是目前世界上片内集成外围模块最多,功能最强的单片机品种之一。所有接口引脚除具有输入/输出功能以外。一般都设计有第2功能,甚至第3功能。它采用引脚复用技术,以便即使增加功能但却不增大体积及引脚数量。为了便于记忆可将PIC16F877单片机引脚分成两大类。即7个系统配置引脚和33个输入/输出功能引脚。

1.系统配置引脚

(1)电源和接地引脚(均配置2组)

DD

V :正电源端 SS

V :接地端

(2)时钟复位引脚

OSC1/CLKIN : 时钟振荡器晶体连接端1/外部时钟源输入端 OSC2/CLKOUT :时钟振荡器晶体连接端2/外部时钟源输出端 (3)主复位引脚

MCLR /PP

V :人工复位输入端(低电平有效)编程电压输入端

2.输入/输出功能引脚

PIC16F877单片机配置有5个端口,多达33个双向输入/输出引脚。每个引脚都具有较强的对外电路驱动能力。都可以独立设置成所需要的输入/输出状态。

(1) 端口A 是一个双向输入/输出可编程端口,只有当对ADCON1进行设置后才能用作 为数字量输入/输出引脚。端口A 的引脚还有第2、3功能。 RA0/AN0 RA0/第0路模拟信号输入端 RA1/AN1

RA0/第1路模拟信号输入端

RA2/AN2/V REF _ RA2/第2路模拟信号输入端/负参考电压端 RA3/AN3/V REF RA3/第3路模拟信号输入端/正参考电压端 RA4/TOCKI RA4/定时器0时钟输入端

RA5/AN4/SS RA5/第4路模拟信号输入端/SPI 通信从动选择 (2) 端口B 引脚

端口B 是一个双向输入/输出可编程端口。当其用作输入时,内部有可编程的弱上拉电路,此外,端口B 的引脚还有第2、第3功能。考虑到MPLAB-IDE 集成开发环境借用RB 端口的3个引脚。一般在扩展外围电路中应避免使用RB3、RB6和RB7。如果必须要用,则应采取相应的措施。

RB0/INT RB0 /外部中断输入端 RB1 RB1 RB2 RB2

RB3/PGM RB3 /低电平电压编程输入端 RB4 RB4 (具有电压变化中断功能)

RB5 RB5 (具有电压变化中断功能)

RB6/PGC RB6 (具有电压变化中断功能)/在线调试输入端和串行编程时钟输

入端

RB7/PGD RB7 (具有电压变化中断功能)/在线调试输入端和串行编程数据输

入端

(3)端口C引脚

端口C是一个双向输入/输出可编程端口。该引脚主要投入有两大类功能:捕捉/比较/脉宽调制/模块CCP和各类串行通信模块。

RC0/T10SO/T1CKI RC0/定时器1的振荡器输出端/定时器1时钟输入端

RC1/T10SI/CCP2 RC1/定时器1的振荡器输入端/捕捉器2输入端或比较器2输出端或

脉宽调制器PWM2的输出端

RC2/CCP1 RC2/捕捉器/输入端或比较器1输出端或脉宽调制器PWM1的输出端RC3/SCK/SCL RC3/SPI 和I2C串行口的同步时钟输入或输出端

RC4/SDI/SDA RC4/SPI 串行口的数据输入端和I2C串行口的数据输入或输出端

RC5/SD0 RC5/SPI 串行口的数据输出端

RC6/TX/CK RC6/USART全双工异步发送端/ USART半双工同步传送时钟端

RC7/RX/DT RC7/USART全双工异步接受端/ USART半双工同步传送数据端

(4)端口D引脚

端口D是一个双向输入/输出可编程端口。其全部引脚都有第2功能,RD0~RD7/PSP0~PSP7:RD0~RD7/作从动并行口与其他微处理器总线连接。

(5)端口E引脚

端口E是一个双向输入/输出可编程端口,只有当对ADCON1进行设置后,才能用作为数字量输入/输出引脚。

RE0/RD/AN5 RE0/并行口读出控制端/第5路模拟信号输入端

RE1/WR/AN6 RE1/并行口写入控制端/第6路模拟信号输入端

RE2/CS/AN7 RE2/并行口片选控制端/第7路模拟信号输入端

2.2.2 CD4051芯片的介绍

本设计采用电接水位检测方法,在每一个预定水位检测点处,将两个电极安装在电容壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极

等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。

多路开关的主要用途是把模拟信号分时地送入A/D转换器,或者把经计算机处理后的数据由D/A转换器转换成的模拟信号,按一定的顺序输出到不同的控制回路中去。前者称为多路开关,完成多到一的转换;后者称为反多路开关或多路分配器,完成一到多的转换。CD4051是双向8通道多路开关,其内部结构如图所示。它由电平转换、译码/驱动和开关电路三部分组成,其中电平转换可实现CMOS到TTL逻辑电平的转换,因此,加到通道选择输入端的控制信号的电平幅度可为3V-20V。同时,最大模拟量信号的峰值可达20V。CD4051带有三个通道选择输入端A,B,C和一个禁止端INH。当CBA为000-111B时,可产生8选1控制信号,使8路通道中的某一通道的输入与输出接通。当INH为0 时,允许通道接通;当INH为1时,禁止通道接通。其真值表如表所示。IN/OUT0-7 及OUT/IN的传递方向,可用做多路开关和反多路开关。

CD4051具有低接通电阻和低关断电流的特点,其引脚定义如图2.1所示,真值表如表2.1所示:

图2.1 CD4051引脚图

表2.1 CD4051真值表

INH C B A 接通通道号

0 000 IN0

0 001 IN1

0 010 IN2

0 011 IN3

0 100 IN4

0 101 IN5

0 110 IN6

0 111 IN7

1 XXX _

使用禁止端INH,可以很方便地实现通道数的扩展。例如使用两片CD4051可组成16路

的多路开关。当通道选择码D

3D

2

D

1

D

取0000~1111B之一时,便惟一的选中这16路通道中的某

一通道。

2.2.3水位检测电路

尽管水位检测原理简单,但应用时却不能仅仅用每路的通段来判断水位是否没过该路的电极。实际上,水的电阻因水中所含成分不同有很大的差异,例如蒸馏水就不导电,就不能用这种方法来检测,而本设计所应用的场合经试验测得水阻在几欧到几十欧不等;另一方面,空气电阻也不是无穷大,也跟其成分有关,例如饱和蒸汽的阻值就大概在1欧左右。所以不

能通过判断单片机的数据采集引脚输入水平高低来判断水位是否到达某点,否则,对介于高低水平之间的电平状态就无法做出判断,而这种情况是可能存在的。一个可靠的方法是对输入引脚的数据进行采样,然后将采样结果与一个阈值进行比较,从而得出正确的结论。根据这个原理设计的水位检测电路如图2.2所示:

图2.2 水位检测电路图

从图中可以看出,通过RD0~RD3口进行采样通道地址译码,在不同时刻选通16通道中的1个。当水位上升到某一对电极高度时,相应通道的采样电压将会降低;若水位没有上升到电极高度,那么上拉电阻将会把采样值钳位到+5v。RA0口作为A/D采样通道输入口。

2.3 数码管与LED显示

模拟水位高度由15个双色发光二极管(LED)来完成,共分为4组。在某一特定时刻,每组LED与一个数码管一起被选通(4组LED对应4个数码管),两个8为的移位寄存器74LS164级联,将单片机送出的2个字节串行数据转化为16位并行数据,分别送选通的LED和数码管。在不同时刻,系统对4组LED和数码管快速地循环扫描,就完成了面板显示的功能。

2.3.1 相关芯片介绍

显示部分用到的芯片包括移位寄存器74LS164、数据缓冲器74LS244以及多路开关CD4051。下面就74

位寄存器。移位寄存器根据移位情况的不同可分单向移位寄存器和双向移位寄存器。8位单向移位寄存器74LS164为串行输入/串行(并行)输出,其引脚排列如图所示:

图2.3 74LS164引脚图

移位寄存器74LS164状态表

1.数据缓冲器74LS244

74LS244 缓冲器常用作三态缓冲或总线驱动,+5V供电,其高电平时输出最大电流可达15mA,低电平输出时最大电流可达24mA,足以驱动数码管和LED工作。74LS244共8个输入输出通道,通过门控端G1和G2来选择其通断,其功能原理及引脚如图2.4所示:

图2.4 74LS244内部结构及引脚图

从图中可以看出,当引脚1G为低电平时,输入通道1A~1A4与输出通道1Y1~1Y4连通;当引脚1G为高电平时则截止。同理引脚2G控制着输入通道2A1~2A4与输出通道2Y1~2Y4的通断。

2.3.2 显示部分工作原理

发光二极管是一种利用正偏时PN结两侧的多子(N区的电子、P区的空穴)直接复合释放出光能的光发射器件,是另一种特殊的二极管,这种管子通过电流时能发出光。发光二极管是由磷、砷、镓等半导体化合物制作的,发光二发光二极管简称极管有可见光、不可见光和激光等类型。其中可见光LED的发光颜色有红、黄、绿、橙等。光的颜色取决于制造时所使用的材料。不可见光LED常将的是红外LED;而激光二极管具有良好的串色性。由于发光二极管体积小、工作电压低、寿命长、单色性好和响应速度快,因此应用很广。如电平指示器、指示灯、七段数字显示器等。

首先介绍一下双色二极管的功能和用法。如图2.5所示,1个双色二极管有3个引脚,

引脚1、2均为信号“﹢”端,引脚3为GND端(信号“——”)。引脚电平(TTL电平)与LED显示颜色如表2.5所示:

图2.5 双色二极管外观图

表2.5双色二极管功能表

引脚1 引脚2 二极管状态

0 0 熄灭

0 1 绿色

1 0 红色

1 1 混合色

2.LED显示器

LED即发光二极管。LED显示器有单个、七段和点阵式等几种类型。单个LED显示器常用于显示仪器的状态。仪器内微处理器经数据总线D0~D7,输出待显示的代码,送至输出接口,当其输出端Q0为低电平时,LED显示器正向导通并发亮,反之则熄灭。

七段LED显示器由数个LED组成一个阵列,并封装于一个标准的外壳中。为适用于不同的驱动电路,有共阳极和共阴极两种结构。用七段LED显示器可组成0~9数字和多种字母。为了适应个中装置的需要,这种显示中还提供有一个小数点,所以实际共有八段。

为了显示某个数或字符,就要点亮对应的段,这就需要译码。译码有硬件译码和软件译码之分。硬件译码电路的优点是计算机时间的开销比较小,但是硬件开支大。与硬件电路相比,软件译码显示电路省去硬件译码器,其BCD码转换为对应的段码这项工作由软件来完成。共阳极和共阴极显示器的段码互为反码。微处理器有较强的逻辑控制能力,采用软件译码并不复杂。采用软件译码不仅可使硬件电路简化,而且其译码逻辑可随编程设定,不受硬件逻辑的限制。所以智能仪器使用较多的是软件译码方式。

七段LED显示器只能显示数字和部分字符,并且字符显示的形状与印刷体相差很大,识别比较困难。点阵式LED显示器是以点阵格式进行显示的,因而显示的符号比较逼真。这是

点阵式显示器的优越之处。点阵式显示器电路不足之处是接口电路及控制程序较复杂。

点阵式显示器的格式一般有4×7,5×7,7×9等几种,最常用的是5×7点阵。5×7点阵字符显示器由35只LED显示单元排成5列×7行矩阵格式。

3.数码管及LED显示电路

数码管及LED显示电路如图2.3所示,RC5口作为串行数据的同步时钟端,与74LS164的数据输入端相连;RC3口作为串行数据的同步时钟端,与74LS164的数据输出端均与SPI 方式时端口一样;实际应用中,若不用SPI方式,而用模拟数据串行口,可以用任何普通I/O 断口代替。两片移位寄存器74LS164的并行数据输出端则分别与两片数据缓冲器74LS244的输入端相连,RD7口作为数据缓冲器74LS244的门控信号输出端,控制74LS244的通断。每4个双色二极管和1个数码管一组,二极管的8个信号“﹢”端,分别与第一片74LS244的8位数据输出端相连,数码管的8位数据输入端,分别与第二片74LS244的8位数据输入端相连,每组二极管和数码管的GND端都与CD 405的1个输入通道相CD4051的输出端与系统的“地”相连。RE0~RE1口作为地址译码输出端口,用于多路开关CD4051的4路通道选择,每一时刻只有一组共4个二极管和1个数码管被选通,其GND端同系统的“地”构成通路,其他的二极管与数码管则不能构成通路。每向74LS164传送两个字节共16位数据,通过RD7口使能74LS244,将数据送到二极管和数码管的输入口,然后通过RE0~RE1口打开一条通道,则被选通的数码管和二极管就会按照接收的数据进行相应的显示。不断地发送新数据并利用CD4051循环的扫描4个通道,则所有的二极管和数码管就会持续的发光显示。

2.4报警电路

用一个双色二极管作为报警灯,RD5口与二极管的引脚1相连,RD4口与二极管的引脚2相连。

3系统软件程序设计

本系统的软件的核心是两个不断循环执行的中断程序:TMR0中断用于驱动数码管和LED 显示:TMR1中断用于采集水位值并且将采集结果送缓冲寄存器供显示部分读取,同时对采集结果进行简单的分析,判断其是否超过水位上限或下限,若超过则点亮相应的报警灯。整个软件部分大体可分为初始化程序、TMR1中断服务程序、数据转化子程序、TMR0中断服务程序4个部分,以下分别加以描述。

3.1初始化程序

初始1.I/O端口方向控制寄存器

A/D输入口RAD设置为输入方式,串行时钟及串行数据输出端口RC,采样通道地地址码端口RD、显示部分地址译码几报警输出端口RE均设置为输出方式。

2.TMR1初始化

TMR1初始化程序步骤如下:

●将第一位外设中断标志寄存器PIRI中的中断标志位TMR1IF清零。

●将第一位外设中断屏蔽寄存器PIE1中的中断允许位TMR1IE置位。

●通过TMR1中断控制器I1CON设置时钟及分频比等。

●给TMR1计数器TMR1H、TMR1L赋初值。

●将中断控制寄存器INTCON中的全局中断屏蔽位GIE置位。

●将外设中断屏蔽位PEIE置位。

3. TIMR0初始化

TIMR0初始化步骤如下:

●通过选项寄存器OPTION_REG设置TMR0的分频比及时钟。

●将INTCON寄存器中的TMR0中断标志位清零并将中断屏蔽位置位。

●给TMR0计数器赋初值。

设计系统的水位值刷新时间为1s,即单片机每秒对采样通道一遍A/D转换。软件上则设定TMR1定时器每秒产生一次中断,执行数据采样程序,从最高水位采样通道向下执行,并不断将每次采样结果与系统设定的门限值比较,当检测到水位超过某一对电极时,则退出采样程序。接下来判断水位是否越限,若是则点亮相应的报警灯,否则使报警灯灭。然后调用数据转换子程序,将水位采样结果转化为相应数码管和LED显示段码值,存入显示数据缓冲寄

存器。由于PIC单片机的中断矢量只有一个,而本设计用到两个中断,故而在中断服务程序入口处,需要对中断源进行判断,这是通过判断相应的中断标志寄存器实现的。

设置TMR1定时器分频比为1:8,采用内部时钟源,系统采用2M晶振。那么TMR1的时钟脉冲周期为2 s,由于分频比为1:8,则每16s计数一次,1s需要计数62500次,即从计时开始到62500个计数周期后,TMR1寄存器达到上限65536并产生溢出,所以TMR1寄存器初始值为65536-62500=3036,即0BDCH。

TMR1中断服务程序流程图如图3.1所示:

图3.1 TMR1 中断服务程序流程图

3.3数据转换子程序

在进行水位检测后,会产生一个水位的高度值(设为HEIGHT),但它并不是一个真实的水位值,只是一个标志水位高度的通道号,其值为0-15中的某个数,分别表示没有水以及15种水位高度共16种情况。故而需要将其转化为LED和数码管显示数据SEG1-SEG4d的对应关系,表3.2则为数码管的七段码值与显示符号对应关系。

表3.2 高度值与显示段码对照表

HEIGHT LED1 LED2 LED3 LED4 SEG1 SEG2 SEG3 SEG4

0 0F0H 0F0H 0F0H 0F0H ————————

1 0E1H 0F0H 0F0H 0F0H ——

2 4 6

2 0C3H 0F0H 0F0H 0F0H —— 1 6 0

3 87H 0F0H 0F0H 0F0H —— 1 2 0

4 0FH 0F0H 0F0H 0F0H ——8 0

5 0FH 0E1H 0FH 0FH —— 5 0

6 0FH 0C3H 0FH 0FH —— 2 0

7 0FH 87H 0FH 0FH —— 1 0

8 0FH 0FH 0FH 0FH 0

9 0FH 0FH 0E1H 0FH 1 0

10 0FH 0FH 0C3H 0FH 2 5

11 0FH 0FH 87H 0FH 5 0

12 0FH 0FH 0FH 0FH 8 0

13 0FH 0FH 0FH 0E1H 1 2 0

14 0FH 0FH 0FH 0C3H 1 6 0

15 0FH 0FH 0FH 87H 2 4 0

注:空白处表示不显示任何数据

表3.3 数码管七段码

共阳极七段码共阴极七段码显示符号共阳极七段码共阴极七段码显示符

0 0C0H 3FH 6 82H 7DH

1 0F9H 06H 7 0F8H 07H

2 0A4H 5BH 8 80H 7FH

3 0B0H 4FH 9 90H 6FH

4 99H 66H ——0BFH 40H

5 92H 6DH 全灭FFH 00H

有3种方法对LED和数码管显示缓冲寄存器写入数据:第一种是采用查表方法,将各个高度值对应的数据预先存入一块缓冲区内,通过对指令指针赋值来访问特定数据单元,返回转换后的数值;第二种是采用逐个比较的方法,将采样结果与0~15的数逐个比较,若相等则向缓冲区赋相应的值;第三种是根据表的特征来赋值,例如当HEIGHT≥8时,LED1的值为0FFH 时,SEG2没有显示。

3.4 TMR0中断服务程序

TMR0中断用于数码管及LED显示,每次中断将两个字节的数据串行发送至移位寄存器,后经74LS244驱动1组LED和1个数码管发光。出于每个LED或数码管两次被选通的时间最大不能超过100 (利用人的视觉暂留现象,否则就会出现闪烁),加之TMR1中断可能占用的时间,所以每次TMR0中断溢出时间不能太长;另一方面,TMR0中断溢出时间又不能太短,必须保证串行发送完毕。综合这两个方面因素,将TMR0溢出时间设为10 。

TMR0寄存器初始值计算方法与TMR1初始值计算方法类似,只是分频比设为1:128,计算结果为0D9H。如图3.4所示:

清溢出标志位

根据当前显示通道数查询待发送根据当前显示通道送待发字节数

关闭输出缓冲器待发送字节TX-LED送暂存寄存

待发送字节

TX-LED送暂存

发送位计数器赋初

TMR0 中断子程序

图3.4 TMR0中断服务程序流程图

3.5程序清单及注释

******************************************************************** LIST P=16F877

INCLUDE P=16F877.INC

STATUS EQU 03H ;定义状态寄存器地址

水位检测仪系统文献综述

高精度水位监测仪的设计 一.高精度水位监测仪意义 中国水之源总量居世界第六位,人均占有水资源量仅为世界人均占有量的四分之一,并且在 地域上分布很不平衡,长江以北的广大地区,特别是北方大、中城市大部分地区处于缺水状态,水资源短缺已成为制约我国经济发展的一个重要因素。合理的利用水资源已成为我国现在面临的一个重要问题。 为了达到水资源的合理利用,除了要在兴修水利工程和提高全民节水意识等方面努力提高。而更重要的是应用新的技术信息,实时准确的了解和掌握各种水情信息,以此根据做出正确的水资源调度和管理,做到防患于未然,尽可能减少水资源的浪费。再加上长久以来水情水位测量一直是水文、水利部门的重要课题。为及时发现事故苗头,防患于未来,经济实用、可靠的水位无线监测系统将会发挥巨大的作用。水位是水库大坝安全、水利排灌调度、蓄水、泄洪的重要参数之一。水位的自动化监测、传输和处理为水库现代化建设提供了良好的基础资料。在工农业生产的许多领域都需要对水位进行监控。在现场可能无法靠近或无需人力来监控时,我们就可以通过远程监控,坐在监控室里对着相关的仪器就能对现场进行监控,既方便又节省人力。 为了保证水利发电站的安全生产,提高发电效率,水电站生产过程需要对水库水位、拦污栅压差和尾水位进行监测。但是,由于不同电站有着不同的实际情况,因此就有着不同的技术要求,而且水位参数的测量方法和测量位置不同,对监测设备的要求亦有所不同。这样往往造成监测系统设备专用化程度高,品种多,互换性差,不利于设备维护,亦增加了设备设计、生产、安装的复杂性。因此,在综合研究水电站水位监测的实际情况以及特点的基础上,利用现代电子技术,特别是单片机技术,设计开发一种通用性好,可靠性高,维护方便,精度高的水位监测系统具有重要的实际意 义{1}。 二.高精度水位监测仪的发展历史 目前我国水文自动测报系统建设的三个阶段:初级阶段、发展阶段以及网络化阶段。上一世纪七十年代中期开始到八十年代中期为初级阶段。八十年代中后期开始的十余年为(小流域)水文自动测试系统建设的发展期。九十年代后期为适应防汛和水利调度现代化、信息化的要求,以及近代通信、嵌入式、计算机和网络技术高速发展的时代特点,水文自动测试系统的建设进入了网络化阶段。 近三十年的发展历史,水位自动测报系统的建设和技术有了巨大的进步。在不同的历史时期,所建系统快速采集的数据,为防汛和水利调度的决策提供了依据和参考,发挥了相当大的社会经济效益。不少系统除常规水雨情信息外,闸门开度、大坝渗压渗流、灌区水位流量、土壤墒情、风向风速、温度湿度、地下水位乃至在线水质监视参数陆续纳入遥测系统,使遥测系统的功能大为扩展,从而可为防汛、水利调度、水环境管理等各应用服务提供了更多的实时数据。 水位自动测报系统运用的先进技术有: ·可靠的传感技术:各种类型的传感技术,声学、光学、力学和化学的传感技术。系统的可自动监测的参数不断丰富。

传感器测量系统设计

课程设计说明书 学生姓名:学号: 学院: 班级: 题目: 传感器测量系统设计 高 指导教师:高敏职称: 副教授 年 12 月 26 日

摘要 在工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 关键词:电动机,单片机,传感器,晶振电路,流程图

目录 1 概述 (3) 1.1本课题设计的目的和意义 (3) 1.2数字式转速测量系统的发展背景 (3) 2 单片机 (4) 2.1 单片机AT89C51介绍 (4) 3 系统方案提出和论证(传感器的选择) (7) 3.1 方案一霍尔传感器测量方案 (7) 3.2 方案二光电传感器 (8) 4 转速测量系统的原理 (9) 4.1 转速测量方法 (9) 4.2 转速测量原理 (9) 5 系统硬件设计 (11) 5.1 转速信号采集 (11) 5.2 转速信号处理电路设计 (13) 5.3 最小系统的设计 (14) 5.3.1 复位电路(图4.8) (14) 5.3.2 晶振电路 (16) 5.3.3 最小系统的仿真 (17) 总结 (18) 参考文献 (19)

1 概述 1.1 本设计课题的目的和意义 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体内容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。 1.2 数字式转速测量系统的发展背景 目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。

压力检测系统设计

单片机系统课程设计 成绩评定表 设计课题:压力检测系统设计 学院名称:电气工程学院 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 设计地点 : 31-505 设计时间 : 2015-12-28~2016-01-08

单片机系统 课程设计课程设计名称:压力检测系统设计 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 课程设计地点: 31-505 课程设计时间: 2015-12-28~2016-01-08 单片机系统课程设计任务书

目录 1绪论 (3) 1、1压力检测系统概述 (3) 2总体方案设计原理 (4) 2、1 基于单片机的智能压力检测的原理 (4) 2、2 压力传感器 (4) 2、2、1 压力传感器的选择 (4) 2、2、2金属电阻应变片的工作原理 (5) 2、3 A/D转换器 (5) 2、3、1 A/D转换模块器件选择 (5) 2、3、2 A/D转换器的简介 (5) 2、4单片机 (6) 2、4、1 AT89C51单片机简介 (6) 2、4、2主要特性 (7) 2、4、3 管脚说明 (7) 2、5单片机于键盘的接口技术 (8) 2、5、1 键盘功能及结构概述 (8) 2、5、2 单片机与键盘的连接 (9) 2、6 LED显示接口 (10)

2、6、1 LED显示器 (10) 2、6、2七段数码显示器 (11) 2、6、3LED数码管静态显示接口 (12) 3软件设计 (14) 3、1 A/D转换器的软件设计 (14) 3、1、1 ADC0832芯片接口程序的编写 (14) 3、2 单片机与键盘的接口程序设计 (15) 3、3 LED数码管显示程序设计 (16) 总结 (18) 参考文献 (19) 附录A (19) 附录B (20) 1绪论 1、1压力检测系统概述 压力就是工业生产过程中的重要参数之一。压力的检测或控制就是保证生产与设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计就是基于AT89C51单片机的测量与显示。就是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据与命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果就是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

利用压力传感器实现液位控制系统的设计课程设计报告1

目录 一、前言 (4) (一)概述 (4) (二)发展前景 (4) (三)设计思想 (4) 二、液位控制系统分析 (5) (一)液位控制系统的工作原理 (5) (二)液位控制的实现方式 (5) 1、简单的机械式控制方式 (5) 2、复杂控制系统控制方式 (5) 3、方案选择 (6) 三、液位控制系统的设计 (6) (一)硬件设计 (6) 1、传感器的选用 (6) 2、放大器的选用 (7) 3、比较器的选用 (8) 4、三极管电子开关 (9) 5、继电器的选择 (10) 6、输出显示部分 (10) (二)调试过程 (10) 1、液位控制系统模型框图 (11) 2、调试 (11) 五、遇到的问题分析 (11) 六、总结 (12) 参考文献 (12)

液位控制系统设计 一、前言 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器。液位控制在多个领域都有使用,所以实现其自动化检测具有非常重要的意义。通过压力传感器实现液位控制系统,具有体积小,实际应用系统简单实用,成本低,效益好;具有较高的性能价格比;系统不易受到干扰,可靠性高等优势。 (一)概述 在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。在该液位控制系统的设计方案中,所使用的传感器为六角测压测重传感器,将水重量产生的压强转化为电压值输出,通过对电压大小的控制,从而实现传感器在液位控制中的功能。(二)发展前景 由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。 国外液位控制系统的发展已相当成熟,我们国内也在朝着这方面努力,而且好多企业与国际接轨,有了不菲的成绩。比如单片机控制的智能型液位控制系统的运用等等。总的来说,发展方向有: (1)高速化,高效化,低能耗。提高液位控制系统的工作效率,降低生产成本。 (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个控制系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液位控制系统的自动化和智能化提供了充分的条件。智能化不仅仅体现的在液位控制,应能够实现对系统的自动诊断和调整,具有与液面不接触的特点。 (三)设计思想 该课程设计是通过相关硬件组合调试实现对液位高度的控制,通过一系列的放大比较将模拟信号转化为数字化的信号,然后通过对数字信号的各种处理实现类比,将液位高度的变化通过数字信号的不同反映出来,显示结果,实现对液位高度的实时监控。 通过在水箱底部安装压电传感器,水箱水位高度发生变化时,引起水压强产生波动,然后传感器把水压转换成电压信号,经放大器放大后输送到电压比较器。经比较后的输出电压有高低两种电平,若为低电平则表明水位正常,高电平时启动接在后面的三极管电子开关,集电极继电器导通,电流流经发光二极管,从而实现水位的显示控制。

水位检测设计

摘要 对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色二极管LED阵列对水位高度进行模拟显示利用水位监测模拟传感器以测得水位的状况,通过单片机和显示系统在水位现场以LED的方式显示出来,并通过与之相连的GSM模块将水位信息以一种无线的方式发送给远程终端,起到检测的作用。在终端通过仿人工智能控制算法在大惯性、纯滞后系统中的应用,可克服传统PID控制的相位滞后、积分饱和,解决控制系统的稳定性及准确性的矛盾。在每一个预定水位检测点处,将两个电极安装在容器壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性,两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。系统的软件的核心是两个不断循环执行的中断程序:TMR0中断用于驱动数码管和LED显示:TMR1中断用于采集水位值并且将采集结果送缓冲寄存器供显示部分读取,同时对采集结果进行简单的分析,判断其是否超过水位上限或下限,若超过则点亮相应的报警灯。整个软件部分大体可分为初始化程序、TMR1中断服务程序、数据转化子程序、TMR0中断服务程序4个部分。该系统还设计了报警系统,因为水位检测和显示仪表装置在工业上有着广泛的应用而本设计采用的是一种低成本的数码管显示驱动方案。所以在对成本较敏感的小型系统中,该方案有着一定的参考价值。 关键字:单片机水位检测应用 前言 在当今社会,水在人们正常生活和生产中起着非常重要的作用。给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格

基于单片机的压力检测系统设计

常熟理工学院 电气与自动化工程学院 《传感器原理与检测技术》课程设计 题目:基于AT89C51单片机的 压力检测系统的设计 姓名:李莹 学号: 160509240 班级:测控 092 指导教师:戴梅 起止日期: 2012年7月2日-9日

电气与自动化工程学院 课程设计评分表 课程名称:传感器原理与检测技术 设计题目:压力检测系统的设计 班级:测控092学号:160509240 姓名:李莹 指导老师:戴梅 年月日

课程设计答辩记录 自动化系测控专业 092 班级答辩人:李莹课程设计题目压力检测系统的设计

目录第一章概述 1.相关背景和应用简介 2.总体设计方案 2.1总体设计框图 2.2各模块的功能介绍 第二章硬件电路的设计 1.传感器的选型 2.单片机最小系统设计 3.模数转换电路设计 4.传感器接口电路设计 5.显示电路设计 6.电源电路设计 7.原理图 第三章软件部分的设计 1.总体流程图 2.子程序流程图及相关程序 第四章仿真及结果 第五章小结 参考文献

第一章概述 1.传感器的相关背景及应用简介 近年来,随着微型计算机的发展,传感器在人们的工作和日常生活中应用越来越普遍。压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。 此次设计是基于单片机的压力检测系统,选择的单片机是基于AT89C51单片机的测量与显示,将压力经过压力传感器转变为电信号,经过放大器放大,然后进入A/D 转换器将模拟量转换为数字量显示,我们所采样的A/D转换器为ADC0808。 2.总体设计方案 本次设计是基于AT89C51单片机的测量与显示。电路采用ADC0809模数转换电路,ADC0809是CMOS工艺,采用逐次逼近法的8位A/D转换芯片,片内有带锁存功能的8路模拟电子开关,先用ADC0809的转换器对各路电压值进行采样,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。然后用LED进行显示。本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

液位传感器课程设计

目录 摘要 (2) 1绪论 (3) 引言 (3) 电容式液位测量技术的发展 (4) 电容式液位测量现状 (4) 电容式液位测量存在的问题 (5) 电容式液位传感器的发展趋势 (5) 2本设计的电容式液位测量方法 (6) 测量原理及实现思路 (6) 液体的物理参数对液位测量的影响 (8) 极板设计 (9) 液位测量系统的基本构成 (11) 3硬件设计 (12) 电源电路设计 (12) 电容测量电路设计 (13)

放大调零电路设计 (14) A/D转换电路设计 (16) 4误差分析 (17) 电容测量误差对精度的影响 (17) 影响液位测量的主要因素 (18) 5总结 (19) 参考文献 (20) 摘要 在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。

本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。 消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。 最后在整体设计和理论分析的基础之上,从硬件各部分进行具体的设计,包括硬件电路和各环节的信号量匹配等。通过理论计算和数据分析,验证了此液位仪具有良好的性能,达到了要求的技术指标,同时指出了需要改进和完善的地方。 1绪论

环境监测仪器项目规划设计方案

环境监测仪器项目规划设计方案 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “环境监测仪器项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx投资公司(盖章) xxx年xx月xx日

项目概要 环境监测仪器,是用于监测室内外环境各项参数的仪器总称,通过对 影响环境质量因素的代表值的测定,确定环境质量(或污染程度)及其变 化趋势。 该环境监测仪器项目计划总投资8044.12万元,其中:固定资产 投资5584.12万元,占项目总投资的69.42%;流动资金2460.00万元,占项目总投资的30.58%。 达产年营业收入18097.00万元,总成本费用14207.24万元,税 金及附加154.27万元,利润总额3889.76万元,利税总额4580.55万元,税后净利润2917.32万元,达产年纳税总额1663.23万元;达产 年投资利润率48.36%,投资利税率56.94%,投资回报率36.27%,全部投资回收期4.26年,提供就业职位313个。 重视环境保护的原则。使投资项目建设达到环境保护的要求,同时,严格执行国家有关企业安全卫生的各项法律、法规,并做到环境 保护“三废”治理措施以及工程建设“三同时”的要求,使企业达到 安全、整洁、文明生产的目的。 报告主要内容:项目承担单位基本情况、项目技术工艺特点及优势、项目建设主要内容和规模、项目建设地点、工程方案、产品工艺 路线与技术特点、设备选型、总平面布置与运输、环境保护、职业安

水位检测仪系统

数理与信息工程学院课程设计 题目:水位检测仪系统 专业: 班级: 姓名:学号: 实验地点:数理与信息工程学院电子系统设计室指导老师: 成绩:

目录 第1节引言 (1) 1.1 设计背景 (1) 1.2 系统功能说明 (1) 第2节硬件设计基本原理与实现方法 (2) 2.1 水位检测与数据采集 (2) 2.2 数码管LED显示 (4) 2.2.1 相关芯片简介 (4) 2.2.2 显示部分工作原理 (5) 第3节系统软件设计 (8) 3.1 初始化程序 (8) 3.2 TMR1中断服务程序 (9) 3.3 数据转换子程序 (10) 3.4 TMR0中断服务程序 (11) 3.5 程序清单 (13) 第4节结束语 (22) 参考文献 (22)

水位检测仪系统 第1节引言 水位检测和显示仪表装置在工业上有着广泛的应用。本设计采用的是一种低成本的数码管显示驱动方案。在对成本较敏感的小型系统中,该方案有着一定的参考价值。 1.1 设计背景 键盘和显示器是单片机系统中人机对话不可缺少的一部分。在许多智能仪表的设计中,多用LED数码管来显示。这是因为LED数码管驱动简单,成本较低并且能适应恶劣的环境。用于数码管显示驱动的芯片有很多种,常见的有MAX7219、MAX7221、ZLG7290、IMC7218B以及8279等。这些专用芯片使用方便、功能教强,但价格偏高。本设计中采用的循环扫描的方式,充分利用单片机快速的处理能力对各显示单元分时选通,只需普通的串行移位芯片,就可以达到显示驱动的目的。这种方法对单片机的CPU占用率相对较高,不适宜于CPU任务繁忙的场合,但是对那些功能相对简单,CPU相对空闲的中小型系统非常实用,能够大大降低系统成本。 1.2系统主要功能 该装置对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色发光二极管LED阵列对水位高度进行模拟显示。整个装置主要包含水位检测和显示两个部分,现将每部分功能说明如下:(1)水位检测:在0mm、±10mm、±25mm、±50mm、±80mm、±120mm、±160mm、±240mm共15点基础上,检测水位偏离零点的大小。 (2)水位显示:将上一步检测结果用数码显示出来,显示值以比实际水位小的最近点为准,例如:水位实际高度为35mm,则数码管显示25mm。同时,用15个竖直排列的双色LED阵列直观的模拟当前水位高度,当水位没有达到某点相应的LED显示红色,达到或超过则显示绿色。当水位低于-240mm时报警灯显示绿色,高于+240mm时报警灯显示红色,当水位恢复正常值时报警灯熄灭。

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

传感器设计 泡沫液位传感器课程设计(借鉴分享)

泡沫液位传感器课程设计 摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白,本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示,一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析。 关键词:泡沫;液位检测;传感器;两相流; Abstract:The foam is a special phase com pared w ith liqu id and gas.It ha s m any dif f erent cha r acters in m ech anics,therm oties,photology and soon,For different methods to generate fo amsand its special mechanism,even today there have not created a perfect theory system to deal with foam mediums.Foam level meas urement is also nearly to be all unreachable field by now.A kind of foam level sensor based on thermoties theory has be endeveloped,Introduces its structure 、principle 、analyses error and dynam icresponse of sensor. Key Words : Foam ;Level Detecting ;Sensor;8051Single chip microcomputer;

基于单片机的空气质量检测仪的设计与实现

龙源期刊网 https://www.360docs.net/doc/104017053.html, 基于单片机的空气质量检测仪的设计与实现作者:彭玲 来源:《科学与信息化》2017年第08期 摘要本文主要介绍了基于arduino单片机和夏普GP2Y1010AUOF粉尘传感器的空气质量PM2.5测量设计系统。该系统通过传感器多次采集空气粉尘浓度数据,把相应的模拟量传回单片机,系统通过模数转换、滤波算法,最后把检测到PM2.5浓度数值显示到OLED显示屏 上,如果检测值超过了污染指标,就发出警报提醒使用者,除此之外,还加入了温湿度和时间,增加了设备的实用性。该设计对检测空气质量,提高人们的生活质量以及环境意识,促使人们改善环境,具有重要的意义,因此应用前景非常广泛。 关键词单片机;传感器技术;滤波算法;PM2.5 引言 由种种环境空气污染带来的危害是人所皆知的,人们也越来越渴望有个空气干净的居住环境,每天都看不到雾霾天气,呼吸新鲜空气。对PM2.5进行更深入细致地研究,可以有助于 我们了解身边的空气质量。天气预告往往只能给出某一个地区的近期空气质量大体情况,带有不少的时间、地域局限性。因此设计出一款轻便、小巧的PM2.5、温湿度检测仪对我们实时了解身边空气质量具有重要的意义和市场价值。 2 总体设计 本设计将单片机与传感器相结合,开发和研究时采用模块化设计的方案,系统架构图如图1所示,实现集成温湿度、空气PM2.5监测为一体的环境质量检测系统。 3 硬件设计 3.1 MCU(微控制单元) 本设计采用Arduino uno R3核心板作为开发单片机,是Arduino USB接口系列的最新版,集成了USB接口贴片芯片ATmega16U2和ICSP在线串行编程接口。其MCU是使用ATMEGA328P-PU芯片,是一款高性能、低功耗的8位AVR微处理器。另外最重要的是它分别集成了6个独立的ADC模拟输入口和6个PWM数字输出口,这极大地方便了传感器等设备在其身上的应用。 3.2 PM2.5粉尘传感器 本设计采用的是一款GP2Yl010AUOF光学空气质量传感器,其内部结构为对角安放着红外线发光二极管和光电晶体管,使其能够探测到空气中尘埃反射光[1]。相对于同类产品

水位监测课 程 设 计

电子技术基础课程设计题目:水位检测器 姓名: 院系: 专业: 学号: 指导教师: 2015年1月6日

电路说明:本电路的功能是检测容器内的水位。把探头装在容器的底部、中部和顶部,通过导线与电路板连接,而3个LED灯分别代表不同的水位。最右侧的代表满,中间的代表一半的水位,最左侧的代表空。探头用用的是电路的接触通电的原理,然后用导线连接到电路板上的对应焊接孔上。 目录 一、电路的设计 1、电路设计功能和原理 2、介绍电路各个元件模块在整体电路中的工作原理 二、电路设计的要求 1、电路的制作过程 2、注意事项 三、总结 附录1、实物图展示 附录2、所用元器件清单 一、电路设计 (一)、功能 此次的数字电子技术课程设计,我们运用模电的知识制作水位检测器。水位检测器所具有的功能是:可以自动检测不同的水位,用不同的灯表示出来,如果外界水泵或电磁阀则可以做到自动加水和排水的功能,让水位维持在一定范围内。

原理: 工作电压:5V 继电器触点容量:3A/250V 液位控制器可实现以下两种功能:(功能1和2通过按键S1切换) 1. 三种颜色LED分别指示低(红色)、中(黄色)、高(绿色)水位,低水位时继电器吸合(外接水泵工作),开始加水,水位升高到高水位时继电器断开(水泵停止工作),待水位再次降到低水位时继电器再次吸合,上述过程循环。此功能应用在自动加水设备中,可让水位维持在低水位和高水位之间。 2. 三种颜色LED分别指示低(红色)、中(黄色)、高(绿色)水位,高水位时继电器吸合(外接电磁阀工作),开始排水,水位降到低水位时继电器断开(电磁阀停止工作),待水位再次升高到高水位时继电器再次吸合,上述过程循环。此功能应用在自动排水设备中,可让水位维持在低水位和高水位之间。 工作原理: 整个系统由振荡电路、LED指示电路、继电器驱动电路、基准电压、电源电路及传感器电路构成。 1.振荡电路:U1A及外围元个组成一个多谐振荡器,工作在放大比较 器状态。R1和R12对5V进行分压,R3为正反馈电阻,共同作为同相输入3脚的基准电压V+,反相输入端2脚V-取自R2、C1组成的积分电路C1两端。V+与V-进行比较决定输出SIG电压的高低,

光电测量系统设计报告

光电测量系统设计报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

光电测量系统设计报告 一、干涉的基本原理 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。 由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。 1、劈尖的等厚干涉测细丝直径 设入射光波为λ,则第m级暗纹处空气劈尖的厚度 由上式可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N级条纹,则待测细丝直径 2、利用干涉条纹检验光学表面面形 检查光学平面的方法通常是将光学样板(平面平晶)放在被测平面之上,在样板的标准平面与待测平面之间形成一个空气薄膜。当单色光垂直照射时,通过观测空气膜上的等厚干涉条纹即可判断被测光学表面的面形。 (1)待测表面是平面 (2)待测表面呈微凸球面或微凹球面 当手指向下按时,空气膜变薄,各级干涉条纹要发生移动,以满足式(2), 3 式中λ为入射光的波长,δ是空气层厚度,空气折射率n ≈ 1。 当程差Δ为半波长的奇数倍时为暗环,若第m个暗环处的空气层厚度为m,则有:R,即,可得: 式中是第m个暗环的半径。由式(2)和式(3)可得: 可见,我们若测得第m个暗环的半径便可由已知λ求R,或者由已知R求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m。为此,我们将式(4)作一变换,将式中半径换成直径,则有: 对第m+n个暗环有 将(5)和(6)两式相减,再展开整理后有 可见,如果我们测得第m个暗环及第(m+n)个暗环的直径、,就可由式(7)计算透镜的曲率半径R。 经过上述的公式变换,避开了难测的量和m,从而提高了测量的精度,这是物理实验中常采用的方法。

数字显示压力测量系统设计

数字显示压力测量系统设计 一、数字显示仪表的设计原理 工业生产过程中常用的数字式仪表有数字式温度计、数字式压力计、数字流量计、数字电子秤等。数字式仪表的出现适应了科学技术及自动化生产过程中高速、高准确度测量的需要,它具有模拟仪表无法比拟的优点。数字仪表的主要特点有:准确度高、分辨率高、无主观读数误差、测量速度快、能以数码形式输出结果。同时数字量传输信息,可使得传输距离不受限制。 数字仪表按工作原理可分为:带微处理器的和不带微处理器的。不带微处理器的仪表,通常用运算放大器和中、大规模集成电路来实现;带微处理器的仪表,是借助软件的方式来实现有关功能。 1.传感器输出信号的特点: (1)传感器的输出会受温度的影响,有温度系数变化。 (2)传感器的输出顺着输入的变化而变化,但之间的关系不一定是线性比例关系。 (31传感器的动态范围很宽。 (4)传感器的种类多,输出的形式也多种多样。 (5)传感器的输出阻抗较高,到测量电路时会产生较大的信号衰减。 2.传感器信号的二次变换 根据上述的传感器输出信号的特点来看,传感器输出的信号一般是能直接用于仪器、仪表显示作控制信号用,往往需要通过专门的电子电路对传感器输出信号进行“加工处理”。如将微弱的信号给予放大,经过滤波器将有害的杂波信号滤掉,将非线性的特性曲线线性化,如有必要再加温度补偿电路。这种信号变换一般称为二次变换。完成二次变换的电路称为传感器电子电路,一般也称为测量电路,仪表电子电路或调理电路。

3.传感器二次变换的组成 传感器电子电路主要是模拟电路,它与数字电路一样,是由一些单元电路组成。这些单元电路有:各种信号放大电路、有源及无源滤波电路、绝对值检测电路、峰值保持电路、采样.保持电路、A/D及D/A 变换电路、V/F及F/V变换电路、调制解调电路温度补偿电路及非线性特性化补偿电路等。 4.传感器信号的调理电路 信号调理是指测量系统的组成部分,它的输入时传感器的输出信号,输出为适合传输、显示、记录或者能更好的满足后续标准设备或装置要求的信号。信号调理电路通常具有放大、电平移动、阻抗匹配、滤波、解调功能。 传感器输出信号通常可以分为模拟量和数字量两类。对模拟量信号进行调整匹配时,传感器的信号调理环节相对复杂些,通常需要放大电路、调制与解调电路、滤波电路、采样保持电路、A/D及AD/A 转换电路等。而对于数字量信号进行调理匹配时,通常只需使信号通过比较器电路及整形电路,控制計数器技术即可。 5.DVM的概述 模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差。数字电压表(DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。目前,DVM多组成多功能式的,因此又称数字多用表。 DVM是将模拟电压变换为数字显示的测量仪器,这就要求将模拟量变换成数字量。这实质上是个量化过程,即将连续的无穷多个模拟量用有限个数字表示的过程,完成这种变换的核心部件是A/D转换器,最后用电子计数器计数显示,因此,DVM的基本组成是A/D 转换器和电子计数器。 二、压力测量数显系统设计 测量系统的整机电路包括:P3000S-102A压力传感器、恒流源、

电容式液位传感器课程设计 1

电容式智能液位仪

目录 目录 摘要 (2) 1.导言 (3) 2.传感器 (4) 2.1理想的电容式传感器 (4) 2.2电路模型 (5) 2.3传感器特性 (6) 2.4传感器结构 (7) 3.硬件电路设计 (11) 3.1硬件电路划分 (11) 3.2单片机的选用 (11) 3.3直流充放电式电容测量电路设计 (13) 3.4信号调理电路设计 (14) 3.5单片机电路及模数转化电路设计 (15) 3.6通信电路设计 (16) 4.系统软件设计 (18) 4.1编程环境与编程语言 (18) 4.2软件总体设计 (18) 5.电容测量电路的实验结果和分析 (19) 5.1实验过程及结果 (19) 5.2实验分析 (21) 参考文献 (22) 摘要

设计一种多功能智能化液位检测装置,采用A Tmega8作为硬件电路核心,以圆柱形电容探头为液位检测传感器,利用电容频率转换原理将电容变化为频率变化,利用单片机检测频率,软件计算液位高度。本装置具有机械去液面波动,用软件进行温度修正、线性校正、用户自校正,通信和多液体选择等功能。 本文主要创新之处是提出一种适合于波动液面液位检测的智能液位仪,具有温度补偿、用户自校正和通信等功能。本文设计了高度为100cm的柱形电容液位检测传感器,电容器具有结构简单,电路实现容易,利用555振荡电路实现了电容到频率的转换,利用程序实现频率到高度转换,理论正确可靠,推算过程合理,利用软件分段修正减小了线性误差。在电容的两端装有液位缓冲器,采用机械的方式减小液面波动。由实验测试可知,本液位检测装置性能稳定,检测可靠,测量精度达到1cm, 分辨率可0.1cm,达到车载式喷雾机液位检测的要求。利用此方案可根据需要设计各种量程的液位检测装置,适用性较广。 ·2· 1.导言

智能环境监测系统的设计说明

智能环境监测系统的设计 Design on the intelligent system of monitoring environment

摘要 系统主要由数据采集端和移动监控终端两部分组成。采用16位单片机SPCE061A为处理核心,在数据采集端,利用两片CD4067BE分别挂接16只DHT11温湿度传感器和16只光照强度传感器;采用10位ADC实现对环境声音的实时录制,加入OV7670摄像头进行实时拍照监控,最后把所采集到的数据帧通过NRF905无线传输模块传送到移动监控终端。在移动监控终端,通过NRF905接收数据,将处理后的环境参数数据进行显示,接收到的语音压缩编码通过10位DAC进行解码播放,通过按键切换进入全屏环境参数显示模式或全屏监控照片显示模式,并将接受到的环境参数、声音、照片存储到SD卡中。本文以SPCE061A超低功耗单片机为核心,设计了通用智能终端和智能温湿度传感器,重点介绍了该终端和传感器的任务、硬件、软件以及控制算法的设计与实现。硬件方面,介绍了系统各个部分的设计思想、原理电路以及,并给出了系统总硬件原理图;另外,为了实现系统的低成本和低功耗,在满足设计要求的前提下,尽可能选用了价格低廉和低功耗的元器件。软件方面,采用了时间触发的混合调度器模式设计,对系统各个任务进行了设计,并给出了系统软件低功耗设计方法。 关键词:SPCE061A;多节点;无线传输;HMI Abstract The system is designed for two parts of data acquisition terminal and mobile monitoring terminal. Its processing core is SPCE061A which is a 16 bits mcu. In the data acquisition terminal, 16 DHT11 of single bus temperature, humidity sensor and 16 light intensity sensor are hung on two CD4067BE. The environmental sound is recorded to coding and compression with 10 bits ADC which is built in the mcu at any time. Add OV7670 which is a camera module to monitor at anytime. ALL collected data is transmitted to the mobile monitoring terminal through NRF905 of wireless transmission module. In the mobile monitoring terminal, the data is received through NRF905.The environmental parameter data is displayed after dealing with and the compression coding of speech is decoded to play with 10 bits DAC.We can switch to full-screen environment parameter display mode or full-screen picture display mode with the keys. At last, the environmental parameter, sound and photos are stored to the SD card.Based on the SPCE061A ultra low power microcontroller as the core, a general intelligent terminal and intelligent temperature and

相关文档
最新文档