2015深圳二模理科数学

合集下载

广东省深圳东方英文书院港台校2015届高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校2015届高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校2015届高考数学二模试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣23.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.44.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.19.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.411.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是.15.(5分)在复数范围内解方程x2+2x+5=0,解为.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是.18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.广东省深圳东方英文书院港台校2015届高考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简可得z=﹣i,由复数的几何意义可得.解答:解:化简可得z=====﹣i,∴复数对应的点为(,),在第三象限,故选:C点评:本题考查复数的代数形式的乘除运算,涉及复数的几何意义,属基础题.2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣2考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,进行复数的乘法运算,化成最简形式,根据复数相等的充要条件写出关于a的方程,解方程即可.解答:解:∵=﹣i,∴∴∴2+=0,∴a=﹣故选B.点评:本题考查复数的代数形式的乘除运算,考查复数相等的充要条件,是一个基础题,这种题目经常出现在2015届高考题目的前三个题目中.3.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4考点:交集及其运算;子集与真子集.专题:计算题.分析:首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.解答:解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B点评:此题考查了交集的运算,属于基础题.4.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题意得,进一步得到,两式作比得答案.解答:解:由题意知,a1=1;当n≥2时,,,两式作比得(n≥2).∴当n≥2,.故选:C.点评:本题考查了数列递推式,考查了作商法求数列的通项公式,是基础题.5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)考点:对数函数的定义域;交集及其运算;指数函数单调性的应用.专题:计算题.分析:根据对数的运算性质和指数的运算性质化简集合A和集合B,然后根据交集的定义可求出所求.解答:解:A={x|lg(x﹣2)<1}={x|lg(x﹣2)<lg10}={x|2<x<12},B={x|<2x<8}={x|2﹣1<2x<23}={x|﹣1<x<3},∴A∩B={x|2<x<3}故选D.点评:本题主要考查了集合的运算,注意指数函数性质的灵活运用,同时考查了计算能力,属于基础题.6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较.分析:利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.解答:解:∵∵,故选A点评:本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:令x<0,则﹣x>0,运用偶函数的定义和已知解析式,即可得到所求的解析式.解答:解:令x<0,则﹣x>0,由于f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则f(﹣x)=﹣x(1﹣)=f(x),即有f(x)=﹣x(1﹣)(x<0)故选C.点评:本题考查函数的奇偶性的运用:求解析式,考查运算能力,属于基础题.8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.1考点:对数的运算性质.专题:计算题.分析:利用基本不等式先求出xy的范围,再根据对数的运算性质进行化简即可求得最大值.解答:解:∵x,y是满足2x+y=20的正数,∴2x+y=20≥2,即xy≤50.当且仅当2x=y,即x=5,y=10时,取等号.∴lgx+lgy=lgxy≤lg50=1+lg5,即最大值为1+lg5.故选C.点评:本题主要考查了函数的最值及其几何意义,最值问题是函数常考的知识点,属于基础题.9.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=ln(1+)=ln,由此利用累加法能求出a n.解答:解:∵在数列{a n}中,a1=2,a n+1=a n+ln(1+),∴a n+1﹣a n=ln(1+)=ln,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+ln2+ln+…+ln=2+ln()=2+lnn.故选:A.点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.4考点:反函数.专题:函数的性质及应用.分析:由函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,说明g(x)是f (x)的反函数,进一步说明f(x)的图象过(2,4),代入求出a的值后再由函数f(x)的函数值为2求得x的值得答案.解答:解:∵函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,∴g(x)是f(x)的反函数,由g(4)=2,得f(2)=4,∴a2﹣1=4,即a=4.∴f(x)=4x﹣1,由4x﹣1=2,解得:x=.∴g(2)=.故选:B.点评:本题考查了函数的反函数,考查了互为反函数的两个函数图象间的关系,是基础题.11.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f(x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个考点:对数函数的图像与性质;函数的周期性.专题:压轴题;数形结合.分析:根据定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,我们易画出函数f(x)的图象,然后根据函数y=f(x)﹣log3|x|的零点个数,即为对应方程的根的个数,即为函数y=f(x)与函数y=log3|x|的图象交点的个数,利用图象法得到答案.解答:解:若函数f(x)满足f(x+2)=f(x),则函数是以2为周期的周期函数,又由函数是定义在R上的偶函数,结合当x∈[0,1]时,f(x)=x,我们可以在同一坐标系中画出函数y=f(x)与函数y=log3|x|的图象如下图所示:由图可知函数y=f(x)与函数y=log3|x|的图象共有4个交点,即函数y=f(x)﹣log3|x|的零点个数是4个,故选B点评:本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.解答:解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故应填﹣1.点评:本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求a而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是1+i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:变形并化简可得z=﹣1﹣i,由共轭复数的定义可得.解答:解:∵复数z0=3+2i,复数z满足z•z0=3z+z0,∴z=====1﹣i,∴复数z的共轭复数=1+i故答案为:1+i点评:本题考查复数的代数形式的乘除运算,涉及共轭复数的求解,属基础题.15.(5分)在复数范围内解方程x2+2x+5=0,解为﹣1±2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用求根公式即可得出.解答:解:=﹣1±2i,故答案为:﹣1±2i.点评:本题实系数一元二次的求根公式,属于基础题.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为﹣7x﹣9.考点:二项式系数的性质.专题:计算题;函数的性质及应用.分析:首先根据题意列出函数关系式f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,②×(x﹣1)﹣①×(x+1)化简即可确定余式.解答:解:根据题意得:∵f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,∴②×(x﹣1)﹣①×(x+1)得:[(x﹣1)﹣(x+1)]f(x)=[h(x)﹣g(x)](x2﹣1)+(x﹣1)﹣8(x+1)=[h(x)﹣g(x)](x2﹣1)﹣7x﹣9∴f(x)除以(x2﹣1)的余式为﹣7x﹣9.故答案为:﹣7x﹣9.点评:本题考查了函数的性质,解题的关键是正确的变形,难度不大.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(3,+∞).考点:对数函数的值域与最值;对数的运算性质.专题:计算题.分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b 化为关于a的一元函数,利用函数单调性求函数的值域即可解答:解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1∴y=a+2b=a+,a∈(0,1)∵y=a+在(0,1)上为减函数,∴y>1+=3∴a+2b的取值范围是(3,+∞)故答案为(3,+∞)点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.考点:基本不等式;二次函数的性质.专题:计算题;压轴题.分析:由于二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以a>0,且△=0,从而得到a,c的关系等式,再利用a,c的关系等式解出a,把转化为只含一个变量的代数式利用均值不等式进而求解.解答:解:因为二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以⇒ac=4⇒c=,所以===1+由于a+≥12(当且仅当a=6时取等号)所以1+≤1+=.故答案为:点评:本题主要考查了基本不等式的应用,以及二次函数的性质,同时考查了计算能力,属于中档题.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.考点:绝对值不等式.专题:计算题;压轴题;分类讨论.分析:(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.解答:解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)根据条件构造等差数列,利用等差数列的通项公式即可求数列{a n}的通项公式;(Ⅱ)利用错位相减法即可求数列{a n}的前n项和S n.解答:解:(Ⅰ)由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得=+1,所以[]﹣[]=1,故{}是以为首项,公差d=1的等差数列,故=n﹣1,则a n=(n﹣1)λn+2n.故数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,则T n==,则数列{a n}的前n项和S n=+2n+1﹣2,当λ=1时,T n=.则数列{a n}的前n项和S n=.+2n+1﹣2.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和,要求熟练掌握构造法以及错位相减法在求解数列中的应用.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a n,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a n+1=a n2+2a n,∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.。

【11份】广东省各市2015年高考二模数学理试题分类汇编

【11份】广东省各市2015年高考二模数学理试题分类汇编

【11份】广东省各市2015年高考二模数学理试题分类汇编目录集合与常用逻辑用语 ............................................................................................................... 1 不等式....................................................................................................................................... 4 二项式定理 ............................................................................................................................... 5 复数........................................................................................................................................... 5 函数........................................................................................................................................... 6 几何证明选讲选做题 ............................................................................................................... 7 立体几何 ................................................................................................................................... 9 排列组合 ................................................................................................................................. 24 平面向量 ................................................................................................................................. 25 三角函数 ................................................................................................................................. 26 坐标系与参数方程选做题 .. (34)广东省各市2015年高考二模数学理试题分类汇编集合与常用逻辑用语一.选择题1.(2015届潮州市)设集合101x A x x -⎧⎫=<⎨⎬+⎩⎭,{}1B x x a =-<,则“1a =”是“A B ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又必要条件 2.(2015届佛山市)集合{}40 <<∈=x N x A 的子集个数为( )A . 3B .4C .7D .83(2015届佛山市)已知函数)( 11ln )(R a x a x f ∈⎪⎭⎫ ⎝⎛+-=.命题p :)(, x f R a ∈∃是奇函数;命题q :)(, x f R a ∈∀在定义域内是增函数,那么下列命题为真命题的是( )A .p ⌝B .q p ∧C .()q p ∧⌝D .()q p ⌝∧4(2015届佛山市)已知a , b , c 均为直线,α, β为平面.下面关于直线与平面关系的命题:(1)任意给定一条直线a 与一个平面α,则平面α内必存在与a 垂直的直线; (2)任意给定的三条直线a , b , c ,必存在与a , b , c 都相交的直线; (3)α//β,βα⊂⊂b a , ,必存在与a , b 都垂直的直线; (4)βαβαβα⊂⊂=⊥b a c , , , ,若a 不垂直c ,则a 不垂直b . 其中真命题的个数为( ) A . 1 B . 2 C .3D .45(2015届佛山市)若集合P 具有以下性质:① P P ∈∈1, 0; ② 若P y x ∈,,则P y x ∈-,且0≠x 时,P x∈1.则称集合P 是“Γ集”,则下列结论不正确的是( ) A .整数集Z 是“Γ集” B .有理数集Q 是 “Γ集”C .对任意的一个“Γ集”P ,若P y x ∈,,则必有P xy ∈D .对任意的一个“Γ集”P ,若P y x ∈,,且0≠x ,则必有P xy∈ 6(2015届广州市)命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+= 7.(2015届惠州市)若集合{|01,}A x x x x R =<>∈或,{}2,B x x x R =>∈,则 ( )A .AB ⊇ B .A B =C .A B ⊆D .A B φ=8(2015届惠州市)下列命题的说法 错误..的是 ( ) A .若复合命题q p ∧为假命题,则,p q 都是假命题.B .“1=x ”是“2320x x -+=”的充分不必要条件.C .对于命题2:,10,p x R x x ∀∈++> 则2:,10p x R x x ⌝∃∈++≤.D .命题“若2320x x -+=,则1=x ”的逆否命题为:“若1x ≠,则2320x x -+≠”9.(2015届揭阳市)已知{|31,}A x x k k Z ==-∈,则下列表示正确的是A.1A -∉B.11A -∈C.32k A +∉D.231k A -∈ 10(2015届揭阳市)命题P :“2,12x R x x ∃∈+<”的否定P ⌝为A. 2,12x R x x ∃∈+>B.2,12x R x x ∃∈+≥C.2,12x R x x ∀∈+≥D.2,12x R x x ∀∈+<11(2015届茂名市) 设集合{}1,4,5M =,{}0,3,5N =,则M N = ( ).A .{}1,4B .{}0,3C .{}0,1,3,4,5D .{}512(2015届湛江市).已知集合{}231x x M =-<,集合{}13x x N =-<<,则MN =( ).A .MB .NC .{}12x x -<<D .{}3x x <13(2015届肇庆市).对于非空集合A 、B ,定义运算:},|{B A x B A x x B A ∉∈=⊕且.已知}|{b x a x M <<=,}|{d x c x N <<=,其中a 、b 、c 、d 满足d c b a +=+,0<<cd ab ,则=⊕N MA .),(),(c b d aB .),(),(b d a cC .(][)d b a c ,,D .(][)b d c a ,, 答案:A D D B A C A A D C D C D 二.填空题1.(2015届深圳市)已知△ABC 的内角A 、B 、C 所对的边为a 、b 、c ,则“2ab c >”是“π3C <”的 条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种). 2.(2015届湛江市)已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,43214321b b b b a a a a +++<+++,则集合A 的取法共有____________种. 答案:充分非必要 31广东省各市2015年高考二模数学理试题分类汇编不等式1(2015届惠州市)若变量x ,y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则目标函数2z x y =+的最大值等于 ( )A .7B .8C .10D .11 2(2015届惠州市)设0,0a b >>,若1a b +=,则11a b+的最小值为__________. 3(2015届揭阳市)已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥-≤+-≤-+0101205x y x y x ,则y x 的最小值是A.1B. 4C.23D.0 4(2015届茂名市)设变量y x ,满足约束条件2003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则y x z 2+=的最小值为( ).A. -3B. -1 C .13 D .-5 5(2015届茂名市)不等式112≤+--x x 的解集为 . 6(2015届深圳市)若实数x ,y 满足约束条件1311x y x y ≤+≤⎧⎨-≤-≤⎩,则2x y +的取值范围是A .[0,6]B .[1,6]7(2015届深圳市)不等式5|2||1|≤-+-x x 的解集为 .C .[1,5]D .[0,5]8(2015届湛江市)2015某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧<≤-≥-6252x y x y x ,则该校招聘的教师最多是 名.9(2015届肇庆市)不等式0|5||12|>--+x x 的解集为 ▲ .10(2015届佛山市)不等式112<-x 的解集为 . 答案:C 4 C A [)+∞,0 B []2,3- 10 ),34()6,(+∞--∞ (0, 1)广东省各市2015年高考二模数学理试题分类汇编二项式定理1.(2015届潮州市)已知n 为正偶数,且nxx )21(2-的展开式中 第3项的二项式系数最大,则第3项的系数是 .(用数字作答) 2(2015届揭阳市)61(2)x x-展开式中的常数项为 . 答案:32160-广东省各市2015年高考一模数学理试题分类汇编复数1.(2015届潮州市)若复数(2)(1)i ai ++是纯虚数(i 是虚数单位,a 是实数),则a 等于( )A. -1B. 21-C.2D. 3 2.(2015届佛山市)若复数z 满足2)1()1(i z i +=-,其中i 为虚数单位,则在复平面上复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3(2015届惠州市)已知b 为实数,i 为虚数单位,若21b ii+⋅-为实数,则b = ( ) A .1- B .2- C .1 D .24(2015届揭阳市)已知复数1z i =+,则21z z=- A. 2 B. -2 C. 2i D. -2i5(2015届茂名市) 复数311(i i -为虚数单位)在复平面上对应的点的坐标是 ( ). A .(1,1) B .(1,1)- C .(1,1)- D .(1,1)--6(2015届深圳市)设i 为虚数单位,则复数 2015i 等于A .1B .1-C .iD .i -7(2015届湛江市)已知z 是复数,i 是虚数单位,若i zi +=1,则z =( ).A .i +1B .i -1C .i +-1D .i --1 8(2015届肇庆市)设i 为虚数单位,则复数)1(i i z -=对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 答案:C B B B D B A9(2015届广州市)已知i 为虚数单位,复数1i1iz -=+,则z = . 答案: 1广东省各市2015年高考二模数学理试题分类汇编函数1、(2015届广州市)已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭2(2015届广州市)已知函数()4,0,1,0,x x f x x x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .43.(2015届广州市)已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为 A .425B .12C .23D .14(2015届惠州市)下列函数中,既是奇函数又存在极值的函数是 ( ) A .3y x = B .1y x x=+C .e x y x -=⋅D .ln()y x =-5(2015届揭阳市)已知幂函数()y f x =的图象过点1(3,)3,则12log (2)f 的值为 .6(2015届茂名市) 若函数()y f x =在实数集R 上的图象是连续不断的,且对任意实数x 存在常数t 使得()()f t x tf x +=恒成立,则称()y f x =是一个“关于t 函数”.现有下列“关于t 函数”的结论:①常数函数是“关于t 函数”;②“关于2函数”至少有一个零点;③xx f )21()(=是一个“关于t 函数”.其中正确结论的个数是 ( ).A .1B .2C .3D .0 7(2015届茂名市) 已知()f x 是定义在R 上的奇函数,当x >0 时, ()f x =1+x)21(,则(2)f -= .8(2015届深圳市)下列四个函数中,在闭区间]1,1[-上单调递增的函数是A .2x y =B .x y 2=C .x y 2log =D .x y 2sin =9(2015届肇庆市)函数x x y -+-=3)2ln(的定义域 ▲ . 答案:D A B B 1 B 45-B (]3,2 广东省各市2015年高考二模数学理试题分类汇编几何证明选讲选做题1(2015届潮州市)如图所示,⊙O 的两条切线PA 和PB 相交于点P ,与⊙相切于,A B 两点,C 是⊙O 上的一点,若70P ∠=︒,则ACB ∠=________.2(2015届佛山市) 如图1,AB 是圆O 的直径,CD ⊥AB 于D ,且AD =2BD ,E 为AD 的中点,连接CE 并延长交圆O 于F ,若2=CD ,则EF = .3(2015届广州市)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,EA O BDCF图1FAE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 .4(2015届惠州市)如图,PA 与圆O 相切于A ,PCB 为圆O 的割线,并且不过圆心O ,已知30BPA ∠=︒,23PA =,1PC =,则圆O 的半径等于__________.5(2015届揭阳市)如图3,点P 在圆O 的直径AB 的延长线上,且PB=OB=3,PC 切圆O 于C 点,CD ⊥AB 于点D , 则CD 的长为 .6(2015届茂名市)如图,CD 是圆O 的切线,切点为C ,点B在圆O 上,23BC =,060BCD ∠=,则圆O 的面积为 .7(2015届深圳市)如图3,AB 、AC 是⊙O 的两条切线,切点分别为B 、C .若60BAC ∠=︒,6BC =,则⊙O 的半径为 .OABPC第15题图图3⋅ABCO侧视图正视图h58(2015届肇庆市)如图,AB 是圆O 的直径,且AB =6,CD 是弦,BA 、CD 的延长线交于点P ,PA =4,PD =5, 则∠COD = ▲ . 答案:55332 43 7 332π4 23 3π广东省各市2015年高考二模数学理试题分类汇编立体几何1.右图是一个几何体的三视图,根据图中数据,得该几何体的表面积是________.2.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A .13B .7C .433 D .3323.多面体MN ABCD -的底面ABCD 矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为 ( ) A .163B .6C .203D .64.图1中的三个直角三角形是一个体积为330cm 的几何体的三视图, 则侧视图中的h =_________cm .AVCB图22224ABC DMN5. 某三棱锥的三视图如图所示,则该几何体的体积为( ).A .23 B .43 C .83D .4 6.如图1,已知某品牌墨水瓶的外形三视图和尺寸, 则该墨水瓶的容积为(瓶壁厚度忽略不计) A .π8+ B .π48+C .π16+D .π416+答案: 12π B C 6 B C 7(本小题满分14分)如图1,平面五边形SABCD 中SAD ABC DA CD BC AB SA ∆=∠=====,32,2,215π沿AD 折起成.如图2,使顶点S 在底面的射影是四边形ABCD 的中心O ,M 为BC 上一点,21=BM . (1)证明:SOM BC 平面⊥; (2)求二面角C SM A --的正弦值。

2015年广东高考理科数学预测模拟试卷(四)带答案(深圳获奖原创)

2015年广东高考理科数学预测模拟试卷(四)带答案(深圳获奖原创)

2015年深圳市高中数学教师命题比赛(理科)一.选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}|02,|1M x R x N x R x =∈<<=∈>,则=)(N C M R ( ) A.[)1,2 B.()1,2 C.(]0,1 D.[)0,12. i 为虚数单位,复平面内表示复数(1)(2)z i i =++的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图是一个几何体的三视图(单位:cm ),则这个 几何体的表面积是( )A .(42+cm 2B .(62+cm 2C .(6cm 2D .(7 cm 24.已知直线,m n 和平面α,β,使m α⊥成立的一个充分条件是( ) A .,m n ⊥ n ∥α B .m ∥n ,n α⊥C .,m n ⊥n α⊂D .m ∥β, βα⊥5.执行如图所示的程序框图,则输出的结果是( )A .5B .7C .9D .116.由曲线23,y x y x ==围成的封闭图形的面积为( )①A =整数,运算“⊕”为普通加法;②A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有( ) A .①②B .①③C .②③ D.①②③二、填空题:(本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式21x x +-≤的解集是 .10.621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数是 .(用数字作答)11.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =12.若直线220ax by -+=(其中,a b 为正实数)经过圆C :222410x y x y ++-+=的圆心,则41a b+的最小值为 . 13.如图所示,椭圆中心在坐标原点,F 为左焦点,当F B ⊥AB 时,该椭圆被称为“黄金椭圆”,其离心率为12.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于 .(二)选做题:(第14、15题为选做题,考生只能选做一题,两题都做记第一题的得分.) 14.(极坐标与参数方程)在极坐标系中,点2,6π⎛⎫A ⎪⎝⎭与曲线3πθ=(R ρ∈)上的点的最短距离为 . 15.(几何证明选讲)如图,在圆O 中直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若6,1AB AE ==,则DF DB ⋅=____________三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)已知向量(2sin ,cos ),(sin 3cos ,4cos )a x xb x x x ==+,()3,f x a b x R =⋅-∈.(1)求函数()f x 解析式; (2)设10,[0,],(),221213f παπαβ∈-=6()265f βπ+=求()cos αβ+的值.17.(本题满分12分)某校按男女学生人数3:2的比例共抽取100名作为样本以测量身高(单位:cm),所得频率分布表如下:(1)(2)从身高在区间[170,180)上的学生中任选2名,记其中在[175,180)的男学生的人数为,ξ 试求随机变量ξ的分布列与数学期望).(ξE18.(本题满分14分)已知平行四边形ABCD ,4AB =,2AD =,60oDAB ∠=,E 为AB 的中点,把三角形ADE 沿DE 折起至1A DE 位置,使得14AC =,F 是线段1AC 的中点.(1)求证:1//BF A DE 面; (2)求证:面1A DE ⊥面DEBC ; (3)求二面角1A DC E --的正切值.19.(本题满14分)已知数列{}n a 的前n 项和为n S ,且11,2n n S n a n N *+=⋅∈,其中11a = (1)求数列{}n a 的通项公式; (2)若1132n n a b +=-,数列{}n b 的前n 项和为n T ,求证:14n T <20.(本题满分14分)已知点P 是椭圆2212x y +=上的任意一点,12,F F 是它的两个焦点,O 为坐标原点,动点Q 满足12OQ PF PF =+. (I)求动点Q 的轨迹E 的方程;(II)若与坐标轴不垂直的直线l 交轨迹E 于,A B 两点且OA OB ⊥,求三角形OAB 面积S 的取值范围.21.(本题满分14分)已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值;(2)若,k Z ∈不等式()()1k x f x -<在()1+x ∈∞,上恒成立,求k 的最大值; (3)当4n m >≥时,证明:()()mnn m mnnm >.(第18题图)DCBAECDA 1FBE参考答案一、选择题(一)必做题9、1,2⎛⎤-∞- ⎥⎝⎦10、20 11、94 12、9 13 (二)选做题14、1 15、5 三、解答题16. 解:(1)∵()3(2sin ,cos )(sin ,4cos )3f x a b x x x x x =⋅-=-222sin cos 4cos 32cos 22sin(2)6x x x x x x x π=++-=+=+∴()=2sin(2)6f x x π+.………………………6分(2)∵,[0,]2παβ∈, ∴105()2sin()2sin sin ,212661313f απππααα-=-+==⇒=故12cos 13α=,.……8分63()2sin()2cos cos 263655f βπππβββ+=++==⇒=,故4sin 5β=,.…… 10分 ∴()1235416cos cos cos sin sin 13513565αβαβαβ+=-=⋅-⋅=.………………………12分 17. 解:(1)由已知条件得:样本中男学生人数为⨯53,60100=故女学生人数为40……1分由,60100)03.005.016.008.001.0(=⨯+++++m 得,27.0=m同理,40100)01.006.016.006.002.0(=⨯+++++n 得⋅=09.0n ……….3分故身高在)170,160[上的男学生人数为:=⨯+100)16.027.0(,43 女学生人数为:25100)09.016.0(=⨯+………………….5分(2)身高在区间)180,170[上的学生人数为:++03.005.0(,15100)01.006.0=⨯+ 在)180,175[的男学生的人数为3.故随机变量ξ的所有可能的值为0、1、2 …7分 ,3522)0(215212===C C P ξ ,3512)1(21513112===C C C P ξ351)2(21523===C C P ξ……9分ξ的分布列为:…………………11分故数学期望351435123512135220)(=⨯+⨯+⨯=ξE ………………….12分 18. 解:(1)证明:取1DA 的中点G ,连接FG GE 、F 为1AC 中点∴//GF DC ,且12GF DC = E 为平行四边形ABCD 边AB 的中点∴//EB DC ,且12EBDC = ∴//EB GF ,且EB GF = ∴四边形BFGE 是平行四边形∴//BF EGEG ⊂平面1A DE ,BF ⊄平面1A DE∴ //BF 平面1A DE ………………………4分(2)取DE 的中点H ,连接1A H CH 、4AB =,2AD =,60o DAB ∠=,E 为AB 的中点∴DAE ∆为等边三角形,即折叠后1DA E ∆也为等边三角形 ∴1A H DE ⊥,且1A H在DHC ∆中,1DH =,4DC =,60oHDC ∠=根据余弦定理,可得2222212cos 6014214132oHC DH DC DH DC =+-⋅=+-⨯⨯⨯= 在1A HC ∆中,1A H =,,13=HC 14AC =,∴22211AC A H HC =+,即1A H HC ⊥ 又11A H DEA H HCDE DEBC HC DEBC DE HC H⊥⎧⎪⊥⎪⎪⊂⎨⎪⊂⎪=⎪⎩面面,所以1A H DEBC ⊥面 又11A H A DE ⊂面∴面1A DE ⊥面DEBC ……………………………10分CD A 1FBEHCD A 1FO(3)过H 作HO DC ⊥于O ,连接1AO HO 、1A H DEBC ⊥面1A H DC ∴⊥又1A HHO H =1DC A HO ∴⊥面1,DC AO DC HO ∴⊥⊥∴1AOH ∠是二面角1A DC E --的平面角 在1Rt A HO∆中,1A H =,sin 60122o HO DH =⋅=⨯=,故1t a n 2A O ∠=所以二面角1A DC E --的正切值为2……………………14分19. 解:(1)令1n =,得1212S a =,即1212a a =,由已知11a =,得22a =………1分 把式子11,2n n S n a n N *+=⋅∈中的n 用1n -替代,得到11(1),(2)2n n S n a n -=-⋅≥由111(1)21(1)(2)2n n n n S n a n S n a n +-⎧=⋅≥⎪⎪⎨⎪=-⋅≥⎪⎩可得1111(1)22n n n n S S n a n a -+-=⋅--⋅即111(1)22n n n a n a n a +=⋅--⋅,即111(1)22n n n a n a ++⋅=⋅即得:11,(2)n n a n n a n++=≥,……………………4分 所以:1312213,(3)122n n n n a a a n n n a a a n n ----⋅⋅⋅=⋅⋅⋅≥--即2,(3)2n a n n a =≥………………6分又22a =,所以3n a =又11a =,,n a n n N *∴=∈……………7分(2)n a n =,11113232n n a n b ++∴==-- 111113233223+3223n n n n n nb +===≤-⋅-⋅-⋅……………………11分 123123123111111111111()(1)2323232323333434n n n n n T b b b b ∴=+++<++++=++++=-<⨯⨯⨯⨯ ……………………14分20. 解:(I)由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2PO →=-2OP →,……………………2分设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=⎝ ⎛⎭⎪⎫-x2,-y 2,……………………4分即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y2,又P 在椭圆上,则有22()2()122xy -+-=,即22184x y +=. ……………………6分 (II) 当OA斜率不存在或为零时,由图可知122S =⨯⨯=7分 当OA 斜率存在且不为零时,设OA :(0)y kx k =≠,代入2228x y +=得222222288,2121k x y k x k k =∴==++ 222228(1)||21k OA x y k +∴=+=+ ……………………8分OA OB ⊥ 以1k -代换k 同理可得2228(1)||2k OB k +=+ ……………………9分 22422222224242116(1)16(21)||||8(1)4(21)(2)252252k k k k S OA OB k k k k k k +++∴====-++++++2218(1)225k k=-++ ……………………11分2222222224k k k k+≥=当且仅当1k =±时等号成立。

广东深圳市2015届高三下学期第二次调研考试数学理试题word版含解析

广东深圳市2015届高三下学期第二次调研考试数学理试题word版含解析

2015年深圳市高三年级第二次调研考试数学(理科)第I卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的•1.设i为虚数单位,则复数i2015等于A. 1B. -1C. iD. - i【答案】D【解析】试题分析:i2015 =i2012?i3 i3 =-i,故选D.考点:复数的运算•2.平面向量a 二(1, -2) , b = (-2, x),若a // b,则x 等于A. 4 B . -4 C . -1 D . 2【答案】A【解析】试题分析:根据向量共线的条件,可知1?x (- 2)?( 2) =4,所以x = 4.考点:向量共线的坐标表示•3.下列四个函数中,在闭区间[-1,1]上单调递增的函数是A. y =x2B. y =2xC. y=log2xD. y=sin2x【答案】B【解析】试题分析:y = x2在[-1,0]上是减函数,故A不对,y = log2x在[-1,0]上没有意义,故C 不对,y二si n2x在[p,1]上是减函数,故D不对,只有y = 2x在[-1.1]上是增函数,故选 B.4考点:函数的单调性的判断.侧视图卜1- 2 - 1-正视图俯视图4.如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)A. 8 nB. 8 4 nC. 16 nD. 16 4 n【答案】C【解析】试题分析:根据所给的三视图,可知该几何体为一个长方体和一个圆柱的组合体,故其容积2为V =4鬃2+P鬃1=16+p,故选C.考点:根据几何体的三视图求其体积•11三x v三35.若实数x,V满足约束条件,则2x v的取值范围是—1兰x —y兰1A [0,6]B . [1,6]C. [1, 5] D . [0,5]【答案】C【解析】试题分析:i^2x+ v = m(jr+ + = + 则有彳,解得*= 11 ix+y£3 S 3 a 1 1 1根据* - ” 一「所以-(“刃丘―一],-<x-j)e[—所以有2工十川[1.5]・故选U2 2 2 2 2 2考点:不等式的性质•6.如图2,在执行程序框图所示的算法时,若输入-1 ,则输出v的值为侧视图卜1 ”,2…1 ‘A. -2B. 2C. -8D. 8【答案】D【解析】试题分析:起始值i = 3,输入a3= 1, v = 0?3 1 = 1 , i = 2,输入a? = - 3, v = 1 ?3 3 = 0 , i =1,输入= 3 , v = 0 ?3 3 = 3 , i = 0 输入a0= -1, v = 3?3 1 =8 , i = -1,输出v =8,故选D.考点:程序框图•7.从1,2,2,3,3,3这六个数字中任取五个,组成五位数,则不同的五位数共有A. 50 个B. 60 个C . 100 个 D. 120 个【答案】B【解析】试题分析主当选定的五个数为22363时,组成册五位数为©-@ = 10个,当选定的五个数兀U33* 时,组成的五位魏为思当选定的五位数为12 233时,组戚的五位鞭沟© W = 个, 所以总共有10十20十范=60个.故选E考点:两个计数原理,排列组合数•8.设X是直角坐标平面上的任意点集,定义X*={(1-y,x-1)|(x,y)・X}.若X^X ,则称点集X “关于运算*对称”.给定点集A二{(x,y)|x2 y—1} , B 二{( x, y)| y = x-1} , C 二{( x, y)||x-1| | y"},其中“关于运算*对称”的点集个数为A. 0B. 1C. 2D. 3【答案】B【解析】a3, a2 , a1试题分析:将(1- y,x- 1)带入x2+ y2=1,化简得x + y=1,显然不行,故集合A不满足关于运算*对称,将(1- y,x- 1)带入y = x - 1,即x-1 =1 -y-1 ,整理得x + y =1 ,显然不行,故集合B不满足关于运算*对称,将(1- y,x- 1)带入x- 1 +y = 1,即1 - y-1 + x- 1 =1 ,化简得x- 1 + y =1,故集合C满足关于运算*对称,故只有一个集合满足关于运算*对称,贝U P(X _2)= 【答案】0.2 【解析】试题分析:根据正态分布的特定,可知P(X ?1) 0.5,而1P(X ? 2) P(X ? 0)-- P(0 < X ? 1) =0.5- 0.3 = 0.2. 2考点:正态分布.故选B.考点:新定义问题的求解•二、填空题(本大题共 7小题,考生作答 6小题,每小题5分,满分30分•本大题分为必做 题和选做题两部分,将答案填在答题纸上)9.不等式|x-1| |x-2|乞5的解集为【答案】[-1,4]【解析】试题分析:原不等式等价于如下不等式组:a x <1(1) 'i ? 1?x?1- x + 2- x? 5(2) 21 #x 2蓿 1x?2, (3)?x- 1+2 - x ? 5a x>2 '1?x- 1所以原不等式的解集为[-1,4] • 考点:绝对值不等式的解法 10.已知随机变量 X 服从正态分布 N(1,二 2),若 P(0 :: X <1^0.3 ,11.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与抛物线y 2 =4x 的准线围成的三角形面积为1,则此双曲线的离心率等于【答案】2【解析】试题分析:抛物线的准线x = -1与双曲线的渐近线y=?b x的交点分别为(-1,- -),(-1,b), a a' a 所以对应的三角形的面积为丄鬃2b = b = 1,所以该双曲线为等轴双曲线,故其离心率为2 a a2.考点:双曲线的离心率•12.设等差数列{a n}的前n项和为S n,已知S3 =15,S g =153,则S6 = .【答案】66【解析】试题分析:根据等差数列的性质,可知禺;心-禺;国-片成等差数列,即2(^-15)= 15十153■心,解得盼66考点:等差数列的性质n 13.已知△ ABC的内角A、B、C所对的边为a、b、c,则“ ab c2”是“ C :::—”3的条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).【答案】充分非必要【解析】2 2 2 2 2试题分析:由余弦定理可知cosC = a +b -c ?g^- =ab+ab-c >辿=1,所以ab 2ab 2 ab 2abC <P,故满足充分性,取三角形的边长为3,4,5,令cosC =- , C <P,但是,3 5 3ab = 3?5 15<16= c2,所以不满足必要性,故为充分非必要条件.考点:余弦定理,重要不等式,充要条件的判断(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.1 x = 1 亠S14.(坐标系与参数方程选做题)在直角坐标系中,已知直线l : (S为参数)与曲ly = 2 — s"x =t +3线C : <2(t 为参数)相交于 A 、B 两点,贝U AB = ________7 =t【答案】2【解析】所以 AB 二 J i 2 +12 S i - S 2 二 J2.考点:直线的参数方程,曲线的参数方程,直线被曲线截得的弦长问题15. (几何证明选讲选做题)如图3, AB 、AC 是O O 的两条切线,切点分别为 B 、C •若EBAC =60 , BC = 6,则O O 的半径为【答案】2,3 【解析】试题分析:连结 BO,CO ,则? BOC所以RS .;* 考点:圆的性质三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)设函数 f (x) = Acos(2x +9)(其中 A A 0 , 0< n , R ).已知 x =— 时,f (x)取得 6最小值-2 .(1)求函数f (x )的解析式;nn (2)若角二满足2si n(r) = f L),且0空汗n ,求sin (二-)的值.332 n【答案】(1) f(x) =2cos(2x —)3(2) sin( v -卫)=丄3 2试题分析:x = 1 s曲线C 可化为y = (x-3)2,将 l y = 2 -s带入 y = (x- 3)2,化简解得 s 1 =1,S 2 =2,C【解析】试题分析:对于第一问,根据函数的性质,结合题的条件,确定出相应的参数的值,从而求出函数的解析式,对于第二问,可以用倍角公式,结合着角的取值范围,求出相应的三角函数值,也可以用诱导公式求解,结合着角的范围求出角的三角函数值试题解析:(1)由f(x)最小值一2且A .0 ,所以A = 2•1分n n因为f(—)=—2,所以cos(—1, (2)6 3分由0 :::•「::n可得亠上」::匕,所以丄•「二n, (3)3 3 3 3分所以,二® (4)3分2 n故f (x)的解析式为f (x) = 2cos(2 x ——)• (5)3分(2)(法1)由(1),得sin(日 +丄)=cos(2日+2n),3 3即sin(日+n) =1 —2sin2(B +-), 2sin2(日+n) +sin(0 + -)-^0 ,3 3 3 38分所以sin(丁f) = 一1 或sin()” = 1 •10分又0 " ::: n,所以-- n■■■:.士.3 3 3所以sin(日+」)=—•......3 212分即cos(-日)=cos(2日十手)•11分= cos("爭(法2)由(1),得sin(v所以 2「3= 2k n 或 2k n-, k ・ Z . ............................... 10 分3636即二=2kn _n 或门-2k n-5n , k ・ Z .3 6 6又0 *:: v ::: n 所以二-上........................................... ii 分2所以 sin (B + 兀)=1 .....................................................................................3 212分 考点:y 二Acos (,x •的性质,倍角公式、解三角方程、特殊角的三角函数值 17.(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占 20%通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一 半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:(1) 采取分层抽样的方式从 30至50岁的人中抽取10人,求其中各种意向人数; (2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;(3) 用样本估计总体,在全体市民中任意选取 4人,其中摇号申请电动小汽车意向的人数记 为•,求的分布列和数学期望.【答案】(1)抽取的人10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:3人、6人1人、试题分析:第一问注意分层抽样的条件,注意把握随机事件发生的概率,对于第三问,注意(3)分布列略, 【解析】 Ex =4人数占总体的比例分另U 为50500 110150 3 500 一 10300 6 500 _10所以,抽取的人 10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:—10 =1 人、 10 —10 =3 人、—10 =6 人;10 10 (2)由题意可知,在上述 10人中有竞价申请意向的人数为10型=6人,500所以,4人中恰有2人竞价申请意向的概率为Cf >C;Cw(3) n =4 , ■的可能取值为0, 1, 2, 3,4. 因为用样本估计总体,任取一人,其摇号电动小汽车意所以,随机变量•服从二项分布,即〜B(4,1 ).5P(=。

2015年深圳清华公立二模调研模拟试卷(5)2015.4

2015年深圳清华公立二模调研模拟试卷(5)2015.4

2015年深圳清华公立二模调研模拟试卷(5)2015.4一、选择题(本题共有12小题,每小题3分,共36分.)1.﹣3的相反数是()A .3 B.C.﹣3 D.﹣2.数据:1,2,3,3,4,5的中位数是()A .2 B.3 C.4 D.53.地球绕太阳公转的速度用科学记数法表示为1.1×105 km/h,把它写成原数是A.1100000 km/h B.110000 km/h C.11000 km/h D.0.000011 km/h4.如图是由几个小方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()5.有3 cm,3 cm,6 cm,6 cm,12 cm,12 cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为A.1 B.2 C.3 D .46.在一个暗箱里装有3个红球、5个黄球和7个绿球,它们除颜色外都相同.搅拌均匀后,从中任意摸出一个球是红球的概率是()A .B.C.D.7.已知二次函数y=x2+2x﹣10,小明利用计算器列出了下表:x ﹣4.1 ﹣4.2 ﹣4.3 ﹣4.4x2+2x﹣10﹣1.39 ﹣0.76 ﹣0.11 0.56那么方程x2+2x﹣10=0的一个近似根是()A .﹣4.1 B.﹣4.2 C.﹣4.3 D.﹣4.48.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A .B.C.D.9.我校七年级某班的师生到距离8千米的农场学农,出发小时后,小亮同学骑自行车从学校按原路追赶队伍,结果他们同时到达农场.已知小亮骑车的速度比队伍步行的速度每小时快6千米.若设队伍步行的速度为每小时x千米,则可列方程()A.B.C.D.10.(4分)(2015•温州模拟)在△ABC中,已知AB=7,点C到AB的距离为4,则△ABC周长的最小值是()A.5+4B.+7 C.2+D.以上都不对11、如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x 表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提供的信息,有下列说法:(1)食堂离小明家0.4 km;(2)小明从食堂到图书馆用了3 min;(3)图书馆在小明家和食堂之间;(4)小明从图书馆回家的平均速度是0.04km/min.其中正确的有A.4个B.3个C.2个D.1个12.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH上的点N处,并使折痕经过点B,折痕BM交GH于点I.若AB=4 cm,则GI的长为A.410cm B.43cm C.54cm D.515cm二、填空题(本题共有4小题,每小题3分,共12分)13.已知3x=4y,则=.14.如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为度.15.如图,身高为1.6米的小华站在离路灯灯杆8米处测得影长2米,则灯杆的高度为米.16.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.A .B.C.D.y /kmO x/min8 25(第11题)28 58 680.40.6(第12题)IAB CDE FG HMN第16题第15题第14题2015年深圳清华公立二模调研模拟试卷(5)答题卡2015.4一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题:13、14、15、16、三、解答题(本题共有7小题,共52分)17.(1)计算:;(2)先化简再求值:求(2x+y)(2x﹣y )﹣(2x+y)2+2y2的值,其中.18.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.19.如图,有甲,乙两个三角形,请你用一条直线把每一个三角形分成两个等腰三角形,并标出每个三角形各角的度数.20.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?21、小红和小明在操场做游戏,规则是:每人蒙上眼睛在一定距离外向设计好的图形内掷小石子,若掷中阴影部分则小红胜,否则小明胜,未掷入图形内则重掷一次.(1)若第一次设计的图形(图1)是半径分别为20cm和30cm的同心圆.求游戏中小红获胜的概率你认为游戏对双方公平吗?请说明理由.(2)若第二次设计的图形(图2)是两个矩形,其中大矩形的长为80cm、宽为60cm,且小矩形到矩形的边宽相等.要使游戏对双方公平,则边宽x应为多少cm?22.已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,.请求出:(1)∠AOC的度数;(2)线段AD的长(结果保留根号);(3)求图中阴影部分的面积.23.(14分)(2015•温州模拟)如图,已知抛物线y=ax2+bx+c经过A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M 落在坐标轴上时直线AP的解析式.2015年浙江省温州市中考数学模拟试卷(三)参考答案一、选择题(本题共有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.A 2.B 3.C 4.B 5.D 6.C 7.C 8.B 9.D 10.B二、填空题(本题共有6小题,每小题5分,共30分)11.12.130 13.8 14.48 15.50 16.<t<3三、解答题(本题共有8小题,共80分)17.18.19.20.21.22.23.30-x8(30-x)24.。

广东深圳2015届高三第二次调研考试数学理试题(扫描版含答案)

广东深圳2015届高三第二次调研考试数学理试题(扫描版含答案)

2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k=,5b k=,3c k =()0k >,…………………………………………………………2分由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-. (4)分(2)由(1)知,1cos 2A =-, 因为A 是△ABC 的内角,所以s i A ==6分由(1)知5b k =,3c k =, 因为△ABC的面积为,所以1sin 2bc A =8分即15322k k ⨯⨯⨯= 解得k =. (10)分由正弦定理2sin aR A=,即71432s nk R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =. (1)分第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分(2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分依题意X的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:X 0 1 2P25 815 115所以280151EX =⨯+⨯+⨯=. (12)分18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法:(1)证明:连接1A B ,11B D ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分………………………………………10分C 1ABA 1B 1D 1CDM NEFE 1F 1在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN. (4)分所以1MN DE .所以M,N,1E ,D四点共(2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B ,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E ,()M ,…………………………8分则3,02BC ⎛⎫= ⎪ ⎪⎝⎭,()10,3,3DE =-,()2,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n 即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z = 所以(23,33=n 是平面1MN E D 的一个法向量.………………………………………………12分设直线BC 与平面1MNE D 所成的角为θ,则sinBCBCθ=nn==.故直线BC与平面1MNE D所成角的正弦值为.………………………………………………14分第(1)(2)问均用向量法:(1)证明:以点E为坐标原点,EA,ED,1EE所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则()B,9,02C⎫⎪⎪⎝⎭,()0,3,0D,()10,0,3E,()M,()N,……………2分所以()10,3,3DE=-,()0,1,1MN=-.………………3分因为13DE MN=,且MN与1DE不重合,所以1DE MN.…………………………………………5分所以M,N,1E,D四点共面.………………………………………………………………………6分(2)解:由(1)知,022BC⎛⎫=-⎪⎪⎝⎭,()10,3,3DE=-,()2,0DM=-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z=n是平面1MNE D的法向量,则10,0.DEDM⎧=⎪⎨=⎪⎩nn即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z = 所以(23,33=n 是平面1MN E D 的一个法向量.………………………………………………12分设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==. 故直线BC与平面1MNE D所成角的正弦值为.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN. (4)C 1BA 1B 1 D 1CDMNEFE 1F 1所以1MN DE .所以M,N,1E ,D四点共面.………………………………………………………………………6分 (2)连接AD ,因为BCAD ,所以直线AD 与平面1M N E D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ, 则sin hADθ=.……………………………………………………………………………………………8分因为A DV V--=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF 中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =在Rt △DAN 中,6DA =,1AN =,所以DN =在Rt △AMN 中,1AM =,1AN =,所以MN =在△DMN 中,DM =DN MN =由余弦定理可得,cosDMN ∠=,所以sin DMN ∠= 所以1s i2DMN S MN DM DMN ∆=⨯⨯⨯∠=. (11)分又12AMN S ∆=,……………………………………………………………………………………………所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin h AD θ==故直线BC与平面1MNE D所成角的正弦值为.………………………………………………14分 19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-. 所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++.所以()222211310n PP n n n +=+=.………………………………………………………………………7分所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++⎪⎝⎭.……………………………………8分因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分 所以2212116nP P ++. (14)分 20.(本小题满分14分) 解:(1)方法一:设圆C的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-, 所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分解得1a =-,1r =. 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分因为直线l的方程为1122y x -=+,即1y x =+,……………………………………………………2分所以圆心C的坐标为()1,0-.…………………………………………………………………………3分 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤. (5)分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-, 则点A 的坐标为()0100,y k x -, 同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110xx k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以12A B =-x =9分因为()220044y x =--,所以AB =10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max 2225564fx f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为⎦.…………………………………………………………………14分方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤. (5)分设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a,b为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===9分因为()220044y x =--,所以AB =10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以2AB =-=12分当532t =时,max AB =, 当14t =时,min AB = 所以AB的取值范围为4⎦.…………………………………………………………………14分21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<, 即()221xa x ≥+……………………………………………………………………………………………2分212x x =++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立,所以12a ≥. 故实数a的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<, 即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意.当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a ⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥.综上所述,实数a的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分 (2)证明:因为函数()e xg x =,所以()e xg x '=.过点(),e bP b ,(),e b Q b --作曲线C 的切线方程为:1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-. (9)分 设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t=-+()1t >, 则()212ln 1u t t t '=+-. 当1t >时,l n t >,2110t ->,所以()212ln 10u t t t'=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分因为当1t >时,210t ->,所以()()2202+1ln 101t t t x t --=>-. (14)分 方法二:由①得0x ()221+e 11e b b b --=--.设2e b t -=,…………………………………………………………………………………………………8分因为0b >,所以01t <<,且ln 2t b =-.于是21ln b t-=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分已知0b >,所以0210ln 1t x b t t +⎛⎫=+> ⎪-⎝⎭.…………………………………………………………………………14分。

2015市二模理科数学

2015市二模理科数学

理科数学试题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分.)CBDA A BCBAD CC. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.23π. 14. 23n n a =. 15.14. 16. 2016 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)11sincos 2222ααα-=,11c o s 22αα-=,所以1sin()62πα-=,又因为α为锐角,所以3πα=. ………………6分(Ⅱ)2()cos 22sin 2sin 2sin 1f x x x x x =+=-++,令sin t x =,则2221(11)y t t t =-++-≤≤,由二次函数的图像知:当12t =时,max 32y =;当1t =-时,min 3y =-, 所以函数()f x 的值域为3[3,]2-. ………………12分18.(本小题满分12分) 解:(Ⅰ)证明:PD ⊥平面ABCD ,BC Ü平面ABCD ,BC PD ∴⊥,又,BC CD CD PD D ⊥=,BC PCD ∴⊥面,又PC PCD 面Ü,∴BC PC ⊥. …………6分(Ⅱ)因为,//BC CD AD BC ⊥,所以AD DC ⊥,以D 为原点建立空间直角坐标系D xyz -,不妨设1AD =,则(1,0,0)A ,(0,0,2)P ,(0,2,0)C ,(2,2,0)B ,设平面PBC 的一个法向量为(,,)m x y z =,又(2,0,0)BC =-,(0,2,2)PC =-,由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩得20220x y z -=⎧⎨-=⎩,不妨取1y =,则(0,1,1)m =,(1,0,2)PA =-,∴PA 与平面PBC 所成角θ的正弦值sin cos ,52PA m PA m PA mθ⋅=<>===⋅. ……………12分19.(本小题满分12分)解:(Ⅰ)由图知,m 名学生中星期日运动时间少于60分钟的频率为:111()30750300020+⨯=,所以1520m ⨯=,所以100m =;设星期日运动时间在[)90,120内的频率为x ,则1111111()3013000750300100200300600x ++++++⨯+=,所以14x =.所以星期日运动时间在[)90,120内的频率为14. ……………6分 (Ⅱ)由图知,第一组有1人、第二组有4人、第七组有10人,第八组有5人,四组共20人,其中星期日运动时间少于60分钟的有5人.所以ξ可能取值为0,1,2,3,且3515320()(0,1,2,3)i i C C P i i C ξ-⋅===.所以ξ的分布列为所以ξ的期望=0+1+2+3==2282282282282284E ξ⨯⨯⨯⨯. …………12分20.(本小题满分12分) 解:(Ⅰ)由c a =,及222a b c =+,设2,,(0)a k c b k k ===>,则由四个顶点构成的四边形面积为4得12242a b ⋅⋅=,即14242k k ⋅⋅=,解得1k =, ∴椭圆22:14x C y +=. ……………5分 (Ⅱ)设直线:l x ty m =+,即0x ty m --=,1m ≥,则由直线l 与圆221x y +=相切得1=,即221t m =-, 由222244()44x y ty m y x ty m⎧+=⇒++=⎨=+⎩,即222(4)240t y tmy m +++-=,易知0∆>恒成立,设1122(,),(,)A x y B x y ,由韦达定理知:12221222444tm y y t m y y t -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,∴由弦长公式得12AB y =-21212)4]y y y y =+-⋅==,∵1m ≥,∴23AB m m ==≤=+,当且仅当3m m =,即m =时等号成立,所以max 2AB =,所以OAB ∆的面积最大值为12112⨯⨯=. ……………12分21.(本小题满分12分) 解:(Ⅰ)由已知得,221ln ln ()=ex xf x x x--'=.由()0f x '>得01x <<;由()0f x '<得1x >.所以函数()y f x =的单调增区间为:(0,1),单调减区间为(1,)+∞.……………5分(Ⅱ)不等式()()f x g x ≥恒成立⇔不等式1+ln 1x kx x ≥+恒成立 ⇔不等式(1)(1+ln )x x k x+≤恒成立,令(1)(1+ln )1()1(1+ln )(1)x x h x x x x x +⎛⎫==+≥ ⎪⎝⎭,则min ()k h x ≤.因为2ln ()x x h x x-'=,令()l n (1)x x xx ϕ=-≥,则()h x '与()x ϕ同号,因为1()0x x x ϕ-'=≥(当且仅当1x =时取等号),所以()x ϕ在[1,)+∞上递增,所以()(1)10x ϕϕ≥=>,所以()0h x '>,所以()h x 在[1,)+∞上递增,所以min ()(1)2h x h ==,所以 2.k ≤ ……………12分22.证明:(Ⅰ)因为A C B D =,所以ABC BCD ∠=∠.又因为EC 与圆相切于点C ,故ACE ABC∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故B C C DB E B C=.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分23.解:(Ⅰ)曲线1:2cos C ρθ=化为普通方程为:22(1)1x y -+=;直线2C的参数方程x ty =⎧⎪⎨=⎪⎩ (t 为参数).0y -=.所以曲线1C 是以1C ()1,0为圆心,1r =为半径的圆.所以圆心1C ()1,00y -=的距离为:d ==.所以1AB ==.………………5分 (Ⅱ)由(Ⅰ)知,圆10分 24.解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x≥⎧⎨>⎩,解得12x <-,所以不等式()2f x x >的解集为12x x ⎧⎫<-⎨⎬⎩⎭. ……………5分(Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。

广东省深圳市龙岗区2015届中考数学二模试卷含答案解析

广东省深圳市龙岗区2015届中考数学二模试卷含答案解析

2015年广东省深圳市龙岗区中考数学二模试卷一、选择题1.16的平方根是()A.4 B.16 C.±4 D.±162.2015年春节长假期间,全国旅游消费非常强劲,实现旅游收入1400亿元,1400亿元用科学记数法表示为()A.1.4×103元B.1.4×1011元C.14×1010元D.0.14×1012元3.一个几何体的三视图如图所示,则这个几何体可能是()A.圆锥 B.球C.圆柱 D.圆4.已知点P(x,3﹣x)关于x轴对称的点在第三象限,则x的取值范围是()A.x<0 B.x<3 C.x>3 D.0<x<35.一鞋店试销一种新款女鞋,卖出情况如下表所示:这个鞋店的经理最关心的是那种型号的鞋销量最大,则对他来说,下列统计量中,最重要的是()A.平均数B.众数 C.中位数D.方差6.要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象()A.向左平移2个单位 B.向右平移2个单位C.向左平移6个单位 D.向右平移6个单位7.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°8.“剪刀石头布”比赛时双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出相同手势,则算打平,则两人只比赛一局,出相同手势的概率为()A.B.C.D.9.设a,b是方程x2+x﹣2015=0的两个根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.201710.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1:3 B.2:3 C.:2 D.:311.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b12.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16二、填空题:13.因式分解:x2﹣4x=.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.15.如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=.16.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为.三、解答题:(共7小题,总分52分)17.计算:﹣22++(π﹣1)0﹣3×|﹣1+tan60°|.18.解不等式组,并将解集在数轴上表示出来.19.某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?20.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.21.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】22.如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC 向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P 运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)求AC的长;(2)在P,Q点运动过程中,∠APQ的度数变化吗?如果不变,求出大小;如果变化,说明理由;(3)以P为圆心,PQ长为半径作圆,问:在整个运动过程中,t为怎样的值时,⊙P与边BC只有1个公共点?23.如图,直线y=x+b经过点B(﹣,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线y=x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C 上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.2015年广东省深圳市龙岗区中考数学二模试卷参考答案与试题解析一、选择题1.16的平方根是()A.4 B.16 C.±4 D.±16【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±4)2=16,∴16的平方根是±4,故选:C.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.2.2015年春节长假期间,全国旅游消费非常强劲,实现旅游收入1400亿元,1400亿元用科学记数法表示为()A.1.4×103元B.1.4×1011元C.14×1010元D.0.14×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1400亿=1.4×1011,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,则这个几何体可能是()A.圆锥 B.球C.圆柱 D.圆【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选C.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.已知点P(x,3﹣x)关于x轴对称的点在第三象限,则x的取值范围是()A.x<0 B.x<3 C.x>3 D.0<x<3【考点】关于x轴、y轴对称的点的坐标;解一元一次不等式组.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得不等式组,根据解不等式组,可得答案.【解答】解:点P(x,3﹣x)关于x轴对称的点在第三象限,得,解得0<x<3故选:D.【点评】本题考查了关于x轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.一鞋店试销一种新款女鞋,卖出情况如下表所示:这个鞋店的经理最关心的是那种型号的鞋销量最大,则对他来说,下列统计量中,最重要的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择.【分析】鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最大的鞋号.【解答】解:由于众数是数据中出现最多的数,鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最多的鞋号.故鞋店的经理最关心的是众数.故选B.【点评】本题考查学生对统计量的意义的理解与运用.要求学生对统计量进行合理的选择和恰当的运用.6.要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象()A.向左平移2个单位 B.向右平移2个单位C.向左平移6个单位 D.向右平移6个单位【考点】一次函数图象与几何变换.【分析】根据“左加右减”的平移法则求解即可.【解答】解:要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象向右平移2个单位即可.故选B.【点评】本题考查了一次函数图象与几何变换,掌握“左加右减,上加下减”的平移法则是解题的关键.7.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°【考点】三角形内角和定理.【分析】利用三角形角平分线的定义和三角形内角和定理可求出.【解答】解:AD平分∠BAC,∠BAD=30°,∴∠BAC=60°,∴∠C=180°﹣60°﹣40°=80°.故选B.【点评】本题主要利用三角形角平分线的定义和三角形内角和定理,关键是熟练掌握相关性质.8.“剪刀石头布”比赛时双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出相同手势,则算打平,则两人只比赛一局,出相同手势的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出相同手势情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两人出相同手势情况数是3种,∴出相同手势情况数概率==.故选B.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.设a,b是方程x2+x﹣2015=0的两个根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.2017【考点】根与系数的关系;一元二次方程的解.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a+b+2015,∵a,b是方程x2+x﹣2015=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2015=﹣1+2015=2014.故选A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1:3 B.2:3 C.:2 D.:3【考点】相似三角形的判定与性质;等边三角形的判定与性质.【分析】首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.【解答】解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,=,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故选:A.【点评】此题考查了相似三角形的判定与性质,以及直角三角形的性质.此题难度不是很大,解题时要注意仔细识图.11.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.【解答】解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.由m<n,可知对称轴左侧交点横坐标为m,右侧为n.由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.综上所述,可知m<a<b<n.故选:A.【点评】本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.12.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( )A .10B .12C .14D .16【考点】正方形的性质;三角形的面积. 【专题】几何图形问题;数形结合.【分析】连DB ,GE ,FK ,则DB ∥GE ∥FK ,再根据正方形BEFG 的边长为4,可求出S △DGE =S △GEB ,S △GKE =S △GFE ,再由S 阴影=S 正方形GBEF 即可求出答案. 【解答】解:如图,连DB ,GE ,FK ,则DB ∥GE ∥FK ,在梯形GDBE 中,S △DGE =S △GEB (同底等高的两三角形面积相等), 同理S △GKE =S △GFE . ∴S 阴影=S △DGE +S △GKE , =S △GEB +S △GEF , =S 正方形GBEF , =4×4 =16 故选:D .【点评】本题主要考查正方形的性质,三角形和正方形面积公式以及梯形的性质,属于数形结合题.二、填空题:13.因式分解:x2﹣4x=x(x﹣4).【考点】因式分解-提公因式法.【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为(2+2)米.【考点】解直角三角形的应用-坡度坡角问题.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.【点评】本题中求地毯的长度其实就是根据已知条件解相关的直角三角形.15.如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=12.【考点】反比例函数的性质.【专题】压轴题.【分析】欲求k,可由平移的坐标特点,求出双曲线上点的坐标,再代入双曲线函数式求解.【解答】解:设点A的坐标为(a,a),∵=2,取OA的中点D,∴点B相当于点D向右平移了个单位,∵点D的坐标为(a,a),∴B点坐标为(+a,a),∵点A,B都在反比例函数y=的图象上,∴a×a=a×(+a),解得a=3或0(0不合题意,舍去)∴点A的坐标为(3,4),∴k=12.【点评】本题结合图形的平移考查反比例函数的性质及相似形的有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且相等的性质.16.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为n2﹣n+1.【考点】规律型:图形的变化类.【专题】规律型.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.三、解答题:(共7小题,总分52分)17.计算:﹣22++(π﹣1)0﹣3×|﹣1+tan60°|.【考点】实数的运算.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=﹣4+3+1﹣3×|﹣1+|=﹣4+3+1﹣3(﹣1)=﹣4+3+1﹣3+3=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x<8,由②得:x≥2,∴不等式组的解集是2≤x<8,把不等式组的解集在数轴上表示为:【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.19.某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=8,b=0.08;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?【考点】频数(率)分布直方图;频数(率)分布表;概率公式.【专题】图表型.【分析】(1)根据频数分布图中每一组内的频数总和等于总数据个数,得到总人数,再计算故a的值;根据频率=频数÷数据总数计算b的值;(2)据(1)补全直方图;(3)不低于90分的学生中共4人,小华是其中一个,故小华被选上的概率是:.【解答】解:(1)根据频数分布图中每一组内的频数总和等于总数据个数,且知总人数为50人,故a=50﹣2﹣20﹣16﹣4=8,根据频数与频率的关系可得:b==0.08;(2)如图:(3)小华得了93分,不低于90分的学生中共4人,故小华被选上的概率是:.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.【考点】翻折变换(折叠问题);直角三角形全等的判定;矩形的性质.【专题】几何综合题.【分析】(1)由折叠的性质知,CB′=BC=AD,∠B=∠B′=∠D=90°,∠B′EC=DEA,则由AAS得到△AED≌△CEB′;(2)延长HP交AB于M,则PM⊥AB,PG=PM,PG+PH=HM=AD,∵CE=AE=CD﹣DE=8﹣3=5在Rt△ADE中,由勾股定理得到AD=4,∴PG+PH=HM=AD=4.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、全等三角形的判定和性质,矩形的性质,勾股定理求解.21.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】【考点】一次函数的应用.【专题】压轴题.【分析】(1)以10元/千克的价格销售,那么每天可售出300千克;以13元/千克的价格销售,那么每天可获取利润750元.就相当于直线过点(10,300),(13,150),然后列方程组解答即可.(2)根据利润=销售量×(销售单价﹣进价)写出解析式,然后利用配方法求最大值.【解答】解:(1)当销售单价为13元/千克时,销售量为:千克设y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:∴∴y与x的函数关系式为:y=﹣50x+800(x>0)(2)∵利润=销售量×(销售单价﹣进价)∴W=(﹣50x+800)(x﹣8)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.22.如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC 向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P 运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)求AC的长;(2)在P,Q点运动过程中,∠APQ的度数变化吗?如果不变,求出大小;如果变化,说明理由;(3)以P为圆心,PQ长为半径作圆,问:在整个运动过程中,t为怎样的值时,⊙P与边BC只有1个公共点?【考点】圆的综合题.【分析】(1)连接BD交AC于点E,由菱形的性质可知△AEB为直角三角形且∠EAB=30°,依据特殊锐角三角函数值可求得AE的长,从而得到AC的长;(2)依据两边对应成比例且夹角相等的两三角形相似证明△APQ∽△ACB,从而得到∠APQ=∠ACB=30°;(3)①当圆P与BC相切时,⊙P与边BC只有1个公共点,②当圆P与BC相交时,先求得圆P 经过点B和点C时的t的取值,从而可确定出t的取值范围.【解答】解:(1)连接BD交AC于点E.∵ABCD为菱形,∠DAB=60°,∴∠EAB=30°,∠AEB=90°,AE=CE.∴AE=AB×=2×=.∴AC=2.(2)∵由题意可知AP=t,AQ=t,∴==.又∵=,∴.又∵∠PAQ=∠CAB,∴△APQ∽△ACB.∴∠APQ=∠ACB=∠DCB=30°.(3)如图2所示:当圆P与BC相切时.∵∠PAQ=∠APQ=30°,∴PQ=AQ.又∵PQ=PE,∴AQ=PE.∵BC为圆P的切线,∴∠PEC=90°.∵在△PEC中,∠PEC=90°,∠PCE=30°,∴PC=2PE=2AQ=2t.∵AP+PC=2,AP=t,∴+2t=2.∴t=4﹣6.∴当t=4﹣6时,圆P与BC只有一个交点.如图3所示:当圆P经过点B时,连接PB.∵PQ=PB,∠PQB=60°,∴PQ=PB=QB.∵AQ=PQ,∴AQ=QB=t.∵AQ+QB=AB,∴2t=2.解得;t=1.如图4所示,当圆P经过点C时.∵AQ=PQ,PQ=PC,∴AQ=PC=t.∵AP=t,∴t+t=2.解得:t=3﹣.∴当1<t<3﹣时,圆P与BC只有一个交点.综上所述,当t=4﹣6或1<t<3﹣时,圆P与BC只有一个交点.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了菱形的性质、相似三角形的性质和判定、特殊锐角三角函数值、等边三角形的性质和判定,根据题意画出图形,求得圆P经过点B和点C时的t的取值是解题的关键.23.如图,直线y=x+b经过点B(﹣,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线y=x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C 上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)因为点B(﹣,2)在直线y=x+b上,所以把B点坐标代入解析式即可求出未知数的值,进而求出其解析式.根据直线解析式可求出A点的坐标及直线与y轴交点的坐标,根据锐角三角函数的定义即可求出∠BAO的度数.(2)根据抛物线平移的性质可设出抛物线平移后的解析式,由抛物线上点的坐标特点求出E点坐标及对称轴直线,根据EF∥x轴可知E,F,两点关于对称轴直线对称,可求出F点的坐标,把此坐标代入(1)所求的直线解析式就可求出未知数的值,进而求出抛物线C的解析式.(3)根据特殊角求出D点的坐标表达式,将表达式代入解析式,看能否计算出P点坐标,若能,则D点在抛物线C上.反之,不在抛物线上.【解答】解:(1)设直线与y轴交于点N,将x=﹣,y=2代入y=x+b得b=3,∴y=x+3,当x=0时,y=3,当y=0时x=﹣3∴A(﹣3,0),N(0,3);∴OA=3,ON=3,∴tan∠BAO==∴∠BAO=30°,(2)设抛物线C的解析式为y=(x﹣t)2,则P(t,0),E(0,t2),∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,t2),把x=2t,y=t2代入y=x+3得t+3=t2解得t1=﹣,t2=3∴抛物线C的解析式为y=(x﹣3)2或y=(x+)2.(3)假设点D落在抛物线C上,不妨设此时抛物线顶点P(m,0),则抛物线C:y=(x﹣m)2,AP=3+m,连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,又∵∠BAO=30°,∴△PAD为等边三角形,PM=AM=(3+m),∴tan∠DAM==,∴DM=(9+m),OM=PM﹣OP=(3+m)﹣m=(3﹣m),∴M=[﹣(3﹣m),0],∴D[﹣(3﹣m),(9+m)],∵点D落在抛物线C上,∴(9+m)=[﹣(3﹣m)﹣m]2,即m2=27,m=±3;当m=﹣3时,此时点P(﹣3,0),点P与点A重合,不能构成三角形,不符合题意,舍去.当m=3时P为(3,0)此时可以构成△DAB,所以点P为(3,0),∴当点D落在抛物线C上,顶点P为(3,0).【点评】此题将抛物线与直线相结合,涉及到动点问题,翻折变换问题,有一定的难度.尤其(3)题是一道开放性问题,需要进行探索.要求同学们有一定的创新能力.。

广东省深圳东方英文书院港台校高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校2015届高考数学二模试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣23.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.44.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.19.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.411.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是.15.(5分)在复数范围内解方程x2+2x+5=0,解为.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是.18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.广东省深圳东方英文书院港台校2015届高考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简可得z=﹣i,由复数的几何意义可得.解答:解:化简可得z=====﹣i,∴复数对应的点为(,),在第三象限,故选:C点评:本题考查复数的代数形式的乘除运算,涉及复数的几何意义,属基础题.2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣2考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,进行复数的乘法运算,化成最简形式,根据复数相等的充要条件写出关于a的方程,解方程即可.解答:解:∵=﹣i,∴∴∴2+=0,∴a=﹣故选B.点评:本题考查复数的代数形式的乘除运算,考查复数相等的充要条件,是一个基础题,这种题目经常出现在2015届高考题目的前三个题目中.3.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4考点:交集及其运算;子集与真子集.专题:计算题.分析:首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.解答:解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B点评:此题考查了交集的运算,属于基础题.4.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题意得,进一步得到,两式作比得答案.解答:解:由题意知,a1=1;当n≥2时,,,两式作比得(n≥2).∴当n≥2,.故选:C.点评:本题考查了数列递推式,考查了作商法求数列的通项公式,是基础题.5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)考点:对数函数的定义域;交集及其运算;指数函数单调性的应用.专题:计算题.分析:根据对数的运算性质和指数的运算性质化简集合A和集合B,然后根据交集的定义可求出所求.解答:解:A={x|lg(x﹣2)<1}={x|lg(x﹣2)<lg10}={x|2<x<12},B={x|<2x<8}={x|2﹣1<2x<23}={x|﹣1<x<3},∴A∩B={x|2<x<3}故选D.点评:本题主要考查了集合的运算,注意指数函数性质的灵活运用,同时考查了计算能力,属于基础题.6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较.分析:利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.解答:解:∵∵,故选A点评:本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:令x<0,则﹣x>0,运用偶函数的定义和已知解析式,即可得到所求的解析式.解答:解:令x<0,则﹣x>0,由于f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则f(﹣x)=﹣x(1﹣)=f(x),即有f(x)=﹣x(1﹣)(x<0)故选C.点评:本题考查函数的奇偶性的运用:求解析式,考查运算能力,属于基础题.8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.1考点:对数的运算性质.专题:计算题.分析:利用基本不等式先求出xy的范围,再根据对数的运算性质进行化简即可求得最大值.解答:解:∵x,y是满足2x+y=20的正数,∴2x+y=20≥2,即xy≤50.当且仅当2x=y,即x=5,y=10时,取等号.∴lgx+lgy=lgxy≤lg50=1+lg5,即最大值为1+lg5.故选C.点评:本题主要考查了函数的最值及其几何意义,最值问题是函数常考的知识点,属于基础题.9.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=ln(1+)=ln,由此利用累加法能求出a n.解答:解:∵在数列{a n}中,a1=2,a n+1=a n+ln(1+),∴a n+1﹣a n=ln(1+)=ln,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+ln2+ln+…+ln=2+ln()=2+lnn.故选:A.点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.4考点:反函数.专题:函数的性质及应用.分析:由函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,说明g(x)是f (x)的反函数,进一步说明f(x)的图象过(2,4),代入求出a的值后再由函数f(x)的函数值为2求得x的值得答案.解答:解:∵函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,∴g(x)是f(x)的反函数,由g(4)=2,得f(2)=4,∴a2﹣1=4,即a=4.∴f(x)=4x﹣1,由4x﹣1=2,解得:x=.∴g(2)=.故选:B.点评:本题考查了函数的反函数,考查了互为反函数的两个函数图象间的关系,是基础题.11.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f(x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个考点:对数函数的图像与性质;函数的周期性.专题:压轴题;数形结合.分析:根据定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,我们易画出函数f(x)的图象,然后根据函数y=f(x)﹣log3|x|的零点个数,即为对应方程的根的个数,即为函数y=f(x)与函数y=log3|x|的图象交点的个数,利用图象法得到答案.解答:解:若函数f(x)满足f(x+2)=f(x),则函数是以2为周期的周期函数,又由函数是定义在R上的偶函数,结合当x∈[0,1]时,f(x)=x,我们可以在同一坐标系中画出函数y=f(x)与函数y=log3|x|的图象如下图所示:由图可知函数y=f(x)与函数y=log3|x|的图象共有4个交点,即函数y=f(x)﹣log3|x|的零点个数是4个,故选B点评:本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.解答:解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故应填﹣1.点评:本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求a而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是1+i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:变形并化简可得z=﹣1﹣i,由共轭复数的定义可得.解答:解:∵复数z0=3+2i,复数z满足z•z0=3z+z0,∴z=====1﹣i,∴复数z的共轭复数=1+i故答案为:1+i点评:本题考查复数的代数形式的乘除运算,涉及共轭复数的求解,属基础题.15.(5分)在复数范围内解方程x2+2x+5=0,解为﹣1±2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用求根公式即可得出.解答:解:=﹣1±2i,故答案为:﹣1±2i.点评:本题实系数一元二次的求根公式,属于基础题.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为﹣7x﹣9.考点:二项式系数的性质.专题:计算题;函数的性质及应用.分析:首先根据题意列出函数关系式f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,②×(x﹣1)﹣①×(x+1)化简即可确定余式.解答:解:根据题意得:∵f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,∴②×(x﹣1)﹣①×(x+1)得:[(x﹣1)﹣(x+1)]f(x)=[h(x)﹣g(x)](x2﹣1)+(x﹣1)﹣8(x+1)=[h(x)﹣g(x)](x2﹣1)﹣7x﹣9∴f(x)除以(x2﹣1)的余式为﹣7x﹣9.故答案为:﹣7x﹣9.点评:本题考查了函数的性质,解题的关键是正确的变形,难度不大.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(3,+∞).考点:对数函数的值域与最值;对数的运算性质.专题:计算题.分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b 化为关于a的一元函数,利用函数单调性求函数的值域即可解答:解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1∴y=a+2b=a+,a∈(0,1)∵y=a+在(0,1)上为减函数,∴y>1+=3∴a+2b的取值范围是(3,+∞)故答案为(3,+∞)点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.考点:基本不等式;二次函数的性质.专题:计算题;压轴题.分析:由于二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以a>0,且△=0,从而得到a,c的关系等式,再利用a,c的关系等式解出a,把转化为只含一个变量的代数式利用均值不等式进而求解.解答:解:因为二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以⇒ac=4⇒c=,所以===1+由于a+≥12(当且仅当a=6时取等号)所以1+≤1+=.故答案为:点评:本题主要考查了基本不等式的应用,以及二次函数的性质,同时考查了计算能力,属于中档题.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.考点:绝对值不等式.专题:计算题;压轴题;分类讨论.分析:(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.解答:解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)根据条件构造等差数列,利用等差数列的通项公式即可求数列{a n}的通项公式;(Ⅱ)利用错位相减法即可求数列{a n}的前n项和S n.解答:解:(Ⅰ)由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得=+1,所以[]﹣[]=1,故{}是以为首项,公差d=1的等差数列,故=n﹣1,则a n=(n﹣1)λn+2n.故数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,则T n==,则数列{a n}的前n项和S n=+2n+1﹣2,当λ=1时,T n=.则数列{a n}的前n项和S n=.+2n+1﹣2.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和,要求熟练掌握构造法以及错位相减法在求解数列中的应用.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a n,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a n+1=a n2+2a n,∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.。

2015高考二模 广东省重点中学2015届高三模拟理科数学试题 Word版含答案

2015高考二模 广东省重点中学2015届高三模拟理科数学试题 Word版含答案

广东重点中学2015届高三理科数学模拟试题本试卷共4页,21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 是z 的共轭复数,若1z i =+(i 是虚数单位),则z z ⋅=A .2-B .1-C .0D .22.已知集合2{|20}A x xx =--…,{|ln(1)}B x y x ==-,则A B =A .(1,2)B .(1,2]C .[1,1)-D .(1,1)-3.已知椭圆E 的焦点与双曲线221412x y -=的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆E 的离心率等于 A.35 B. 45 C. 54 D. 344. 已知数列{}n a 为等比数列,191,3a a ==,则5a =A. 2B.C. D. 5. 给出下列四个命题,其中假.命题是 A .从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是分层抽样;B .样本方差反映了样本数据与样本平均值的偏离程度;C .在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;D .设随机变量X 服从正态分布(0,1)N ,若(1),P x p >=则1(10)2P x p -<<=-. 6. 若如下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是A. 7k =?B. 6k …?C. 6<k ?D. 6>k ?7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是ODCBAPA. 14l l ⊥B. 14//l lC. 14,l l 既不垂直也不平行D. 14,l l 的位置关系不确定8. 对于各数互不相等的正数数组(12,,...,n i i i )(n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有“顺序”“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组1234(,,,a a a a ,5)a 的“顺序数”是4,则54321(,,,,)a a a a a 的“顺序数”是A. 7B. 6C. 5D. 4二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—13题) 9. 不等式112x x +≥-的解集是_________.10. 曲线ln1)y x =-(2在点(1,0)处的切线方程为_________. 11. 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为_________. 12. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为_________.13. 已知实数,a b 满足13a b ≤+≤且11a b -≤-≤,则42a b +的取值范围为_________. (二)选做题(14—15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在极坐标系中,圆θρsin 4=的圆心到直线3πθ= 的距离是________.15.(几何证明选讲选做题)如图所示,AB 是半径等于3的圆O 的直径,CD 是圆O 的弦,BA ,CD 的延长线交于点P ,若4PA =,5PD =,则CBD ∠=_________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数.cos 2sin cos 32)(2x x x x f += (1)求()6f π;(2) 求()f x 的最小正周期; (3)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求函数)(x f 的值域. 17.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。

各市高考二模数学理试题分类汇编.doc

各市高考二模数学理试题分类汇编.doc

广东省各市2015年高考二模数学理试题分类汇编集合与常用逻辑用语一.选择题1.(2015届潮州市)设集合101x A x x -⎧⎫=<⎨⎬+⎩⎭,{}1B x x a =-<, 则“1a =”是“A B ≠∅I ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又必要条件2.(2015届佛山市)集合{}40 <<∈=x N x A 的子集个数为( )A . 3B .4C .7D .83(2015届佛山市)已知函数)( 11ln )(R a x a x f ∈⎪⎭⎫ ⎝⎛+-=.命题p :)(, x f R a ∈∃是奇函数;命题q :)(, x f R a ∈∀在定义域内是增函数,那么下列命题为真命题的是() A .p ⌝B .q p ∧C .()q p ∧⌝D .()q p ⌝∧ 4(2015届佛山市)已知a , b , c 均为直线,α, β为平面.下面关于直线与平面关系的命题:(1)任意给定一条直线a 与一个平面α,则平面α内必存在与a 垂直的直线;(2)任意给定的三条直线a , b , c ,必存在与a , b , c 都相交的直线;(3)α//β,βα⊂⊂b a , ,必存在与a , b 都垂直的直线;(4)βαβαβα⊂⊂=⊥b a c , , , I ,若a 不垂直c ,则a 不垂直b .其中真命题的个数为( )A . 1B . 2C .3D .45(2015届佛山市)若集合P 具有以下性质: ① P P ∈∈1, 0; ② 若P y x ∈,,则P y x ∈-,且0≠x 时,P x∈1. 则称集合P 是“Γ集”,则下列结论不正确的是( )A .整数集Z 是“Γ集”B .有理数集Q 是 “Γ集”C .对任意的一个“Γ集”P ,若P y x ∈,,则必有P xy ∈D .对任意的一个“Γ集”P ,若P y x ∈,,且0≠x ,则必有P xy ∈ 6(2015届广州市)命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+= 7.(2015届惠州市)若集合{|01,}A x x x x R =<>∈或,{}2,B x x x R =>∈,则 ( )A .AB ⊇ B .A B =C .A B ⊆D .A B φ=I 8(2015届惠州市)下列命题的说法 错误..的是 ( ) A .若复合命题q p ∧为假命题,则,p q 都是假命题.B .“1=x ”是“2320x x -+=”的充分不必要条件.C .对于命题2:,10,p x R x x ∀∈++> 则2:,10p x R x x ⌝∃∈++≤.D .命题“若2320x x -+=,则1=x ”的逆否命题为:“若1x ≠,则2320x x -+≠” 9.(2015届揭阳市)已知{|31,}A x x k k Z ==-∈,则下列表示正确的是A.1A -∉B.11A -∈C.32k A +∉D.231k A -∈10(2015届揭阳市)命题P :“2,12x R x x ∃∈+<”的否定P ⌝为A. 2,12x R x x ∃∈+>B.2,12x R x x ∃∈+≥C.2,12x R x x ∀∈+≥D.2,12x R x x ∀∈+<11(2015届茂名市) 设集合{}1,4,5M =,{}0,3,5N =,则M N I = ( ).A .{}1,4B .{}0,3C .{}0,1,3,4,5D .{}5 12(2015届湛江市).已知集合{}231x x M =-<,集合{}13x x N =-<<,则M N =I ( ).A .MB .NC .{}12x x -<<D .{}3x x <13(2015届肇庆市).对于非空集合A 、B ,定义运算:},|{B A x B A x x B A I Y ∉∈=⊕且.已知}|{b x a x M <<=,}|{d x c x N <<=,其中a 、b 、c 、d 满足d c b a +=+,0<<cd ab ,则=⊕N M A .),(),(c b d a Y B .),(),(b d a c Y C .(][)d b a c ,,Y D .(][)b d c a ,,Y 答案:A D D B A C A A D C D C D二.填空题1.(2015届深圳市)已知△ABC 的内角A 、B 、C 所对的边为a 、b 、c ,则“2ab c >”是“π3C <” 的 条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).2.(2015届湛江市)已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,43214321b b b b a a a a +++<+++,则集合A 的取法共有____________种.答案:充分非必要 31。

【免费下载】广东省深圳市2015年高三第一次调研考试数学理试卷

【免费下载】广东省深圳市2015年高三第一次调研考试数学理试卷


A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
6、执行如图 2 所示的程序框图,则输出 S 的值为(
A. 16
B.25
C.36
7、在 ABC 中, a,b, c 分别为 A, B, C 所对的边,若函数
f (x) 1 x3 bx2 (a2 c2 ac)x 1有极值点,则 B 的范围是( 3
边.三棱锥 P ABC 的三视图如图 5 所示,其中侧视图和俯视图均为直角三角形. (1)请在图 6 中,用斜二测画法,把三棱锥 P ABC 的直观图补充完整(其中点 P 在 xOz 平面内),并指出三棱锥 P ABC 的哪些面是直角三角形; (2)求二面角 B PA C 的正切值; (3)求点 C 到面 PAB 的距离.
C 900 ,D 是 AB 边上的一点,以 BD 为直径的⊙ O 与 AC 相切于点 E. 若 BC=6,则 DE 的长为
图3
三、解答题 16、(本小题满分 12 分)
函数 f (x) 2sin(x π ) ( 0 )的最小正周期是 π . 3
(1)求
(2)若 sin x0
z
2
正视图
俯视图
2
4 侧视图
设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015年深圳二模理科数学

2015年深圳二模理科数学

2015年深圳市高三年级第二次调研考试数学(理科) 2015.41.设i 为虚数单位,则复数 2015i 等于A .1B .1-C .iD .i -2.平面向量(1,2)=-a ,(2,)x =-b ,若a // b ,则x 等于A .4B .4-C .1-D .2 3.下列四个函数中,在闭区间]1,1[-上单调递增的函数是A .2x y =B .x y 2=C .x y 2log =D .x y 2sin =4.如图1,已知某品牌墨水瓶的外形三视图和尺寸, 则该墨水瓶的容积为(瓶壁厚度忽略不计) A .π8+ B .π48+C .π16+D .π416+5.若实数x ,y 满足约束条件1311x y x y ≤+≤⎧⎨-≤-≤⎩,则2x y +的取值范围是A .[0,6]B .[1,6]C .[1,5]D .[0,5]6.如图2,在执行程序框图所示的算法时,若输入3a ,2a ,1a ,0a 的值依次是1,3-,3,1-,则输出v 的值为A .2-B .2C .8-D .87.从1,2,2,3,3,3这六个数字中任取五个, 组成五位数,则不同的五位数共有A .50个B .60个C .100个D .120个8.设X 是直角坐标平面上的任意点集,定义}),(|)1,1{(*X y x x y X ∈--=.若X X =*,则称点集X “关于运算*对称”.1正视图 侧视图俯视图图2给定点集}1|),{(22=+=y x y x A ,}1|),{(-==x y y x B ,}1|||1||),{(=+-=y x y x C , 其中“关于运算 * 对称”的点集个数为A .0B .1C .2D .3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.不等式5|2||1|≤-+-x x 的解集为 .10.已知随机变量X 服从正态分布),1(2σN ,若(01)0.3P X <≤=,则=≥)2(X P .11.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与抛物线24y x =的准线围成的三角形面积为1,则此双曲线的离心率等于 .12.设等差数列}{n a 的前n 项和为n S ,已知153=S ,1539=S ,则=6S .13.已知△ABC 的内角A 、B 、C 所对的边为a 、b 、c ,则“2ab c >”是“π3C <” 的 条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种). (二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程选做题)在直角坐标系中,已知直线l :12x sy s =+⎧⎨=-⎩(s 为参数)与曲线C :23x t y t=+⎧⎨=⎩(t 为参数)相交于A 、B 两点,则AB =_________.15.(几何证明选讲选做题)如图3,AB 、AC 是⊙O 的两条切线,切点分别为B 、C .若60BAC ∠=︒,6BC =,则⊙O 的半径为 .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)设函数)2cos()(ϕ+=x x f (其中π0<<ϕ,R ∈x ).已知21)0(-=f . (1)求函数)(x f 的解析式;(2)若角θ满足)()3πsin(θθf =+,且π0<≤θ,求角θ的值.图3A深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数; (2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图4,已知三棱锥O ABC -的三条侧棱OA ,OB ,OC 两两垂直,△ABC 为等边三角形, M 为△ABC 内部一点,点P 在OM 的延长线上,且PB PA =. (1)证明:OB OA =; (2)证明:平面⊥PAB 平面POC ; (3)若PA ,OP =,求二面角B OA P --的余弦值.O图4BCPM∙设数列}{n a 的前n 项和为n S ,满足4231-⋅-=++n n n n a S ,*N ∈n ,且42,,321+a S a 成等比数列. (1)求1a ,2a ,3a 的值; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的通项公式; (3)证明:对一切正整数n ,有++2143a a (12)<++na n .20.(本小题满分14分)已知平面上的动点P 与点(0,1)N 连线的斜率为1k ,线段PN 的中点与原点连线的斜率为2k ,1221k k m=-(1m >),动点P 的轨迹为C . (1)求曲线C 的方程; (2)是否存在同时满足以下条件的圆:①以曲线C 的弦AB 为直径;②过点N;③直径AB =.若存在,指出共有几个;若不存在,请说明理由.21.(本小题满分14分)已知函数x b ax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图像在1=x 处切线过点)5,0(-,求a 的值;(2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围.2015深二模理科数学答案一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.[]2,3- 10.0.211.12.66 13.(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分. 1415.(几何证明选讲选做题)三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.解:(1)由()f x 最小值2-且0A >,所以2A =. …………………………………………1分 因为π()26f =-,所以πcos()13ϕ+=-, ……………………………………………………2分 由0π<<ϕ可得ππ4π333ϕ<+<,所以ππ3ϕ+=, ………………………………………3分 所以2π3ϕ=. ……………………………………………………………………………………4分 故)(x f 的解析式为2π()2cos(2)3f x x =+. …………………………………………………5分 (2)(法1)由(1),得)3π22cos()3πsin(+=+θθ, 即)3π(sin 21)3πsin(2+-=+θθ,01)3πsin()3π(sin 22=-+++θθ, ……………………8分所以1)3πsin(-=+θ或21)3πsin(=+θ. ………………………………………………10分又0πθ≤<,所以ππ4π333θ≤+<. …………………………………………………11分 所以21)3πsin(=+θ. ………………………………………………………………………12分 (法2)由(1),得)3π22cos()3πsin(+=+θθ,充分非必要即)3π22cos()6πcos(+=-θθ. ………………………………………………………8分 所以θθ-+=+6ππ23π22k 或θθ+-=+6ππ23π22k ,Z ∈k . …………………………10分即6π3π2-=k θ或65ππ2-=k θ,Z ∈k .又0πθ≤<,所以2π=θ. …………………………………………………………11分所以21)3πsin(=+θ. ………………………………………………………………………12分【说明】本题主要考查cos()y A x ωϕ=+的性质,倍角公式、解三角方程、特殊角的三角函数值,考查学生的运算能力.17.解:(1)因为30至50岁的人中有意向参与摇号电动小汽车、非电动小汽车和竞价的人数占总体的比例分别为:50150010=、150350010= 、300650010=. ………………………………………2分 所以,抽取的人10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:110110⨯=人、310310⨯=人、610610⨯=人. ……………………………………4分 (2)由题意可知,在上述10人中有竞价申请意向的人数为650030010=⨯人, 所以,4人中恰有2人竞价申请意向的概率为734102426=C C C . …………………………………6分 (3)4=n ,ξ的可能取值为4,3,2,1,0. ………………………………………7分因为用样本估计总体,任取一人,其摇号电动小汽车意向的概率为511000200==p ,……………8分所以,随机变量ξ服从二项分布,即ξ~)51,4(B . …………………………………………9分62525651151)0(4004=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,62525651151)1(3114=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 6259651151)2(2224=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,6251651151)3(1334=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 625151151)4(0444=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ. 即ξ的分布列为:……………………………………………………………………………11分 ξ的数学期望为:54514=⨯==np E ξ. …………………………………………12分 【说明】本题主要考查分层抽样、排列组合、古典概型、二项分布等知识,考查了考生读取图表、数据处理的能力.18.证明:(1)因为OA ,OB ,OC 两两垂直, 所以222AC OC OA =+,222BC OC OB =+.又△ABC 为等边三角形,BC AC =, 所以=+22OC OA 22OC OB +,故OB OA =. …………………………………………………………………………3分 (2)因为OA ,OB ,OC 两两垂直,所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥OAB OB OA OOB OA OB OC OA OC 平面, ⊥⇒OC 平面OAB , 而⊂AB 平面OAB ,所以OC AB ⊥. …………………………………………………………5分取AB 中点D ,连结OD ,PD . 由(1)知,OB OA =,所以OD AB ⊥. 由已知PB PA =,所以PD AB ⊥.所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POD PD OD DPD OD PD AB OD AB 平面, ⊥⇒AB 平面POD , 而⊂PO 平面POD ,所以PO AB ⊥. …………………………………………………7分所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POC PO OC OPO OC PO AB OC AB 平面, ⊥⇒AB 平面POC , 又PAB AB 平面⊂,所以,平面⊥PAB 平面POC . …………………………………………9分 解:(3)(法一)由(2)知AB ⊥平面POD , 所以平面OAB ⊥平面POD , 且平面OAB平面POD OD =,过点P 作PH ⊥平面OAB ,且交OD 的延长线于点H ,连接AH , 因为OC PA 5=,OC OP 6=,由(1)同理可证OC OB OA ==, 在△POA 中,222OP PA OA =+, 所以OA PA ⊥,又因为PH ⊥OA , 所以OA ⊥平面PAH ,图4OBCPM∙DH所以PAH ∠为二面角B OA P --的平面角, ………………………………………………11分 在直角△PHA 中,cos AHPAH PA∠=, ……………………………………………………12分 由(2)知45AOD ∠=︒,所以△OAH 为等腰直角三角形, 所以AH OA OC ==,所以cos AH PAH PA ∠==, 所以,二面角B OA P --…………………………………………………14分 (法2)如图6,以OA ,OB ,OC 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系. 由(1)同理可证OC OB OA ==, 设1===OC OB OA ,则)0,0,1(A ,)0,1,0(B ,)1,0,0(C ,(1,0,0)OA =,(1,1,0)AB =-.设),,(z y x P ,其中0>x ,0>y ,0>z . 由(,,)OP x y z =,(1,,)AP x y z =-.由(2)知OP AB ⊥,且5PA OC ==,6OP OC =得()222222(1)0615x y x y z x y z ⎧-⨯+=⎪⎪++=⎨⎪-++=⎪⎩. 解之,得1x y ==,2z =. ……………………………11分 所以,(1,1,2)OP =设平面POA 的法向量为),,(1111z y x =n ,由1OA ⊥n ,1OP ⊥n ,得1111020x x y z =⎧⎨++=⎩.取11=z ,得12y =-,1(0,2,1)=-n .由(2)知,平面OAB 的法向量为2(0,0,1)OC ==n , ………………………………………13分 记二面角P OA B --的平面角为θ,由图可得θ为锐角, 所以12cos |cos ,|5θ=〈〉==n n . 所以,二面角B PC A --的余弦值为5. ……………………………………………………14分【说明】本题主要考察空间点、线、面的位置关系,线面垂直、面面垂直的判定与性质,用空间向量求二面角,考查空间想象能力、运算能力和逻辑推理能力.图6 Pz19.解:(1)由已知,得⎪⎩⎪⎨⎧-=+-=+=+.68,20,)()42(3212122131a a a a a a a a a …………………………………………2分解之,得41=a ,242=a ,963=a . …………………………………………………4分 (2)(法1)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n , ……………………………6分即12(1)n n b b n +=++,2≥n .所以,3243123242n n b b b b b b n -=+⨯⎫⎪=+⨯⎪⎬⋅⋅⋅⋅⋅⋅⎪⎪=+⎭相加,得()()223n b b n n =+-+. ……………………………8分由(1)知242=a ,所以26b =,所以2≥n 时,()1n b n n =+, ……………………9分 又41=a ,12b =也符合上式,所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分 (法2)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n ,即12(1)n n b b n +=++,2≥n . ……………………………………………………………6分由(1)知22141⨯⨯==a ,2223224⨯⨯==a ,3324396⨯⨯==a . 可得1212b ==⨯,2623b ==⨯,31234b ==⨯.猜想()1n b n n =+,*N ∈n . …………………………………………………………8分 以下用数学归纳法证明之:(i )当1=n 时或2=n 时,猜想显然正确.(ii )假设k n =(2≥k )时,猜想正确,即()1n b k k =+.那么1+=k n 时,12(1)k k b b k +=++(1)2(1)k k k =+++(1)(2)k k =+⋅+.[](1)(1)1k k =+++ 即1+=k n 时,猜想也正确.由(i )(ii ),根据数学归纳法原理,对任意的*N ∈n ,猜想正确.所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分(3)对一切正整数n ,因为nn n n n n n n n a n 2)1(1212)1(221⋅+-⋅=⋅++=+-, …………12分 所以,++2143a a …+⨯⨯+⨯⨯=++21232422132n a n …n n n n 2)1(2⋅+++ +⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=2110231*********…⎥⎦⎤⎢⎣⎡⋅+-⋅+-n n n n 2)1(121112)1(11<⋅+-=nn . ………………………………………14分【说明】本题主要考查等比数列的定义,处理n S 与n a 的递推公式,用累加法求数列通项,数学归纳法,理解裂项求和,考查考生运算求解、推理论证、归纳猜想的能力. 20.解:(1)设直线MN ,OP 的斜率分别为1k ,2k ,因为1(,)22x y P +, ………………1分 所以11y k x-= (0x ≠),2122y k x += (0x ≠), ……………………………………3分由12k k λ=可得:()1122y y x x λ+⎛⎫-⋅⎪⎝⎭=⋅(0x ≠), ……………………………………4分 化简整理可得221x y λ-+=(0x ≠),所以,曲线C 的方程为221x y λ-+=(0x ≠). ………………………………………5分 (2)由题意()0,1N ,且NA NB ⊥,当直线NA 的斜率为0,则N 与A 重合,不符合题意, 所以直线NA 、NB 的斜率都存在且不为0,设直线NA 的斜率为k , 所以直线NB 的斜率为1k-,不妨设0k >, 所以直线NA 的方程为1y kx =+,直线NB 的方程为11y x k=-+,………………………6分 将直线NA 和曲线C 的方程联立,得2211y kx x y λ=+⎧⎨-+=⎩,消y 整理可得()2220k x kx λ-+=, 解得22A k x k λ=--,所以22k NA k λ=-,以k 1-替换k,可得222211k NB kkλλ==--, …………………………8分由NA NB =22221k k k λλ=--, ………………………………9分所以320k k k λλ+--=,即()()2110k k k λλλ⎡⎤-+++=⎣⎦,……………………………10分(1)当 113λ-<<-时, 方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+-<,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有唯一解1k =; ……………………………11分(2)当13λ=-时,()()211k k k λλλ⎡⎤-+++=⎣⎦()31103k --=,解得1k =; ………12分 (3)当103λ-<<时,方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+->, 且()2111310λλλλ⨯++⨯+=+≠,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.综上,当 113λ-<≤-时,有一个圆符合题意;当103λ-<<时,有三个符合题意的圆. ……………………………………………………………………………………14分 (注:(3)也可直接求解: 当103λ-<<时, 方程()210k k λλλ+++=,因为()()()22143110λλλλ∆=+-=-+->,所以1,2k =,又因为()2111310λλλλ⨯++⨯+=+≠,所以1,21k ≠,故方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.)【说明】本题主要考查曲线与方程,直线与椭圆的位置关系,弦长问题,一元二次方程根的个数问题,考查考生数形结合、函数与方程的数学思想方法及运算求解能力.21.(本小题满分14分)已知函数x b ax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图象在1=x 处的切线经过点)5,0(-,求a 的值; (2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围.解:(1)在0)1()(=+xf x f 中,取1=x ,得0)1(=f , 又b a b a f +-=+-=1ln )1(,所以a b =. ……………………………………1分从而x a ax x x f +-=ln )(,)11(1)(2xa x x f +-=',a f 21)1(-='. 又510)1(5)1(=---='f f , 所以521=-a ,2-=a . ………………………………………………………………2分(2)2ln 22ln 2222ln )2(3322--+=+-=a a a a a a a f . 令2ln 22ln 2)(3--+=x x x x g ,则24222)1(432322)(xx x x x x x g -+-=--='. 所以,)1,0(∈x 时,0)(<'x g ,)(x g 单调递减, …………………………………4分故)1,0(∈x 时,1()(1)2ln 21ln e 02g x g >=-->-=. 所以,10<<a 时,0)2(2>a f . ……………………………………………………6分 (3)222)11(1)(xa x ax x a x x f -+-=+-='. ①当0≤a 时,在),0(∞+上,0)(>'x f ,)(x f 递增,所以,)(x f 至多只有一个零点,不合题意; …………………………………………8分 ②当21≥a 时,在),1(∞+上,0)(≤'x f ,)(x f 递减, 所以,)(x f 也至多只有一个零点,不合题意; ……………………………………10分 ③当210<<a 时,令0)(='x f ,得124111<--=a a x ,124112>-+=a a x . 此时,)(x f 在),0(1x 上递减,),(21x x 上递增,),(2∞+x 上递减,所以,)(x f 至多有三个零点. …………………………………………………………12分 因为)(x f 在)1,(1x 上递增,所以0)1()(1=<f x f .又因为0)2(2>a f ,所以),2(120x a x ∈∃,使得0)(0=x f . ……………………………13分 又0)()1(00=-=x f x f ,0)1(=f , 所以)(x f 恰有三个不同的零点:0x ,1,01x . 综上所述,当)(x f 存在三个不同的零点时,a 的取值范围是)21,0(. ………………14分 【说明】本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.。

广东省深圳市2015届高三第二次调研考试理科综合试卷 扫描版含答案.pdf

广东省深圳市2015届高三第二次调研考试理科综合试卷 扫描版含答案.pdf

2015年深圳二模化学参考答案 7891011122223ABBCBCADBD30. (16分)(1)C5H4O2(2分) 3(2分) (2)BD(2分) (3)或 (2分) (4)NaOH水溶液、加热 (2分) HOOCCH2COOH+2CH3CH2OHCH3CH2OOCCH2COOCH2CH3+2H2O(3分) (5) (3分)(0分) 31. (16分)(1)-40 kJ?mol-1(2分,不带单位,没有负号不给分) 6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g) (2分) (2)AB(2分,选一个且正确给1分,只要有错选不给分) (3)7.7%(3分)增大压强,或增大n(H2)/n(CO2)的比值,(H2)或将产物气体分离出来(2分,多答且正确不扣分,每多答一条但不正确扣1分,直至扣完为止) ()负极(2分),2CO2+12H++12e-→CH2=CH2+4H2O(3分,反应物与生成物有错不给分,配平错误扣1分) 32. (16分)(1)Al3+、Fe3+、H+(2分,少答一个只答一个) (2)铁与铝形成原电池,加快了铝的腐蚀(2分) (3)300(2分) 用硫酸吸收气体(氨气)循环到焙烧过程中等(2分) (4)过滤(2分) Al3++4OH-=AlO2-+2H2OAl3++4OH-=Al(OH)4-(2分) (5)Al4C3+Al2O3Al+3CO↑或者3SiC+Al2O33Si+2Al+3CO↑ (2分) (6)(2分) 33. (16分)Ⅰ.(1)NH3·H2O + CaO=Ca(OH)2 + NH3 (2分) 将湿润的红色石蕊试纸靠近瓶口c,试纸变蓝色,证明NH3已收满。

或:将蘸有浓盐酸的玻璃棒靠近瓶口c,有白烟生成,证明NH3已收满。

(分,操作、现象各1分) (2)D (2分) Ⅱ.()碱式滴定管(或移液管)(2分) ()0.0450 (分,有效数字1分)c(NH4+)×c(OH-)/c(NH3·H2O)(2分),2.2×10-5 (2分) ()A(2分,对一个得1分,有错选得0分) 12e-。

2015年深圳市高三年级第二次调研考试理科综合(配答案)精校版.

2015年深圳市高三年级第二次调研考试理科综合(配答案)精校版.

绝密★启用前试卷类型:B 2015年深圳市高三年级第二次调研考试理科综合2015.4本试卷共12页,36小题,满分300分.考试用时150分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.5. 可能用到的相对原子质量H 1 C 12 N 14 O 16 S 32Cl 35.5 Si 28 Na 23 Al 27 Fe 56一、单项选择题:本大题共16小题,每小题4分,共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1. 用分解磷脂的酶处理以下细胞结构,影响最大的是A. 中心体B. 染色体C. 核糖体D. 溶酶体2.人体吞噬细胞不能A. 脱水缩合形成肽键B. 分化成记忆细胞C. 合成和水解三磷酸腺苷D. 参与特异性免疫3.科学家以正常人及某种病患者的相应mRNA为模板合成了cDNA。

已查明该患者相应蛋白质中只有32号氨基酸与正常人不同,cDNA中只有一个位点的碱基发生改变。

对比结果见下表。

以下有关分析合理的是(注:组氨酸的密码子为CAU、CAC)研究对象cDNA的碱基位点32号氨基酸及密码子94 95 96 密码子氨基酸正常人G C G CGC 精氨酸C G C患者G 组氨酸CA. cDNA 所含的碱基数等于96B. 合成cDNA 时需要DNA 解旋酶C. 患者第94号位点碱基缺失 D .患者相应氨基酸密码子为CAC 4. 关于微生物培养基的说法正确的是A .牛肉膏不能提供碳源B .培养硝化细菌不加有机碳C .刚果红使纤维二糖染色D .酵母菌酿酒时需持续供氧 5. 下列有关实验对应的试剂、现象和原因,正确的是6. 图示某生态系统中碳循环过程下列相关叙述正确的是 A .乙与丙的存在使碳循环速度大大减缓 B .b ~d 过程中碳移动的形式均为无机物C .甲、乙、丙、丁构成了该生态系统的生物群落D .因呼吸消耗,乙对食物的同化量远小于摄入量7.下列说法正确的是A .漂白液中添加醋酸可提高漂白速率B .石油裂化是为了除去石油中的杂质C .淀粉溶液可鉴别加碘盐的真伪D .蛋白质、淀粉、纤维素都能在人体内水解并提供能量 8.下列体系中,离子能大量共存的是A .无色透明的酸性溶液:MnO 4-、K +、C1-、SO 42-B .使酚酞变红的溶液:K +、Na +、NO 3-、Cl -C .滴加KSCN 显红色的溶液:NH 4+、K +、Cl -、I -D .0.1 mol·L -1 NaHCO 3溶液: Na +、Ba 2+、NO 3-、OH -9.下列叙述Ⅰ和Ⅱ均正确且有因果关系的是 选项 叙述Ⅰ叙述ⅡA 往AgNO 3溶液中滴加氨水至过量,先有沉淀后溶解AgOH 是两性氢氧化物 B 常温下浓H 2SO 4能使铝钝化通常用铝槽车贮运浓H 2SO 4 C 硅的熔点高硬度大 晶体硅可用做半导体材料DNO 2溶于水生成HNO 3NO 2是酸性氧化物选项 实验 试剂 现象 原因 A 观察洋葱 表皮细胞 龙胆紫溶液 未见分裂 的细胞 分裂速 度慢 B鉴定小麦根尖 中提取的DNA二苯胺 试剂 绿色明显 DNA 进行了复制 C以紫叶李(一种植物)叶片为材料进行色素提取和分离无水 乙醇 滤纸条出现紫色的第5条色素带 液泡内含 有花青素 D观察蓝藻细胞健那绿染液未见线粒体染色时 间过短10.设N A为阿伏加德罗常数。

广东省深圳东方英文书院港台校高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校高考数学二模试卷(含解析)

广东省深圳东方英文书院港台校2015届高考数学二模试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣23.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.44.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.19.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.411.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是.15.(5分)在复数范围内解方程x2+2x+5=0,解为.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是.18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.广东省深圳东方英文书院港台校2015届高考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简可得z=﹣i,由复数的几何意义可得.解答:解:化简可得z=====﹣i,∴复数对应的点为(,),在第三象限,故选:C点评:本题考查复数的代数形式的乘除运算,涉及复数的几何意义,属基础题.2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣2考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,进行复数的乘法运算,化成最简形式,根据复数相等的充要条件写出关于a的方程,解方程即可.解答:解:∵=﹣i,∴∴∴2+=0,∴a=﹣故选B.点评:本题考查复数的代数形式的乘除运算,考查复数相等的充要条件,是一个基础题,这种题目经常出现在2015届高考题目的前三个题目中.3.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4考点:交集及其运算;子集与真子集.专题:计算题.分析:首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.解答:解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B点评:此题考查了交集的运算,属于基础题.4.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题意得,进一步得到,两式作比得答案.解答:解:由题意知,a1=1;当n≥2时,,,两式作比得(n≥2).∴当n≥2,.故选:C.点评:本题考查了数列递推式,考查了作商法求数列的通项公式,是基础题.5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)考点:对数函数的定义域;交集及其运算;指数函数单调性的应用.专题:计算题.分析:根据对数的运算性质和指数的运算性质化简集合A和集合B,然后根据交集的定义可求出所求.解答:解:A={x|lg(x﹣2)<1}={x|lg(x﹣2)<lg10}={x|2<x<12},B={x|<2x<8}={x|2﹣1<2x<23}={x|﹣1<x<3},∴A∩B={x|2<x<3}故选D.点评:本题主要考查了集合的运算,注意指数函数性质的灵活运用,同时考查了计算能力,属于基础题.6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较.分析:利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.解答:解:∵∵,故选A点评:本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:令x<0,则﹣x>0,运用偶函数的定义和已知解析式,即可得到所求的解析式.解答:解:令x<0,则﹣x>0,由于f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则f(﹣x)=﹣x(1﹣)=f(x),即有f(x)=﹣x(1﹣)(x<0)故选C.点评:本题考查函数的奇偶性的运用:求解析式,考查运算能力,属于基础题.8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.1考点:对数的运算性质.专题:计算题.分析:利用基本不等式先求出xy的范围,再根据对数的运算性质进行化简即可求得最大值.解答:解:∵x,y是满足2x+y=20的正数,∴2x+y=20≥2,即xy≤50.当且仅当2x=y,即x=5,y=10时,取等号.∴lgx+lgy=lgxy≤lg50=1+lg5,即最大值为1+lg5.故选C.点评:本题主要考查了函数的最值及其几何意义,最值问题是函数常考的知识点,属于基础题.9.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=ln(1+)=ln,由此利用累加法能求出a n.解答:解:∵在数列{a n}中,a1=2,a n+1=a n+ln(1+),∴a n+1﹣a n=ln(1+)=ln,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+ln2+ln+…+ln=2+ln()=2+lnn.故选:A.点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.4考点:反函数.专题:函数的性质及应用.分析:由函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,说明g(x)是f (x)的反函数,进一步说明f(x)的图象过(2,4),代入求出a的值后再由函数f(x)的函数值为2求得x的值得答案.解答:解:∵函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,∴g(x)是f(x)的反函数,由g(4)=2,得f(2)=4,∴a2﹣1=4,即a=4.∴f(x)=4x﹣1,由4x﹣1=2,解得:x=.∴g(2)=.故选:B.点评:本题考查了函数的反函数,考查了互为反函数的两个函数图象间的关系,是基础题.11.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f(x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个考点:对数函数的图像与性质;函数的周期性.专题:压轴题;数形结合.分析:根据定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,我们易画出函数f(x)的图象,然后根据函数y=f(x)﹣log3|x|的零点个数,即为对应方程的根的个数,即为函数y=f(x)与函数y=log3|x|的图象交点的个数,利用图象法得到答案.解答:解:若函数f(x)满足f(x+2)=f(x),则函数是以2为周期的周期函数,又由函数是定义在R上的偶函数,结合当x∈[0,1]时,f(x)=x,我们可以在同一坐标系中画出函数y=f(x)与函数y=log3|x|的图象如下图所示:由图可知函数y=f(x)与函数y=log3|x|的图象共有4个交点,即函数y=f(x)﹣log3|x|的零点个数是4个,故选B点评:本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.解答:解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故应填﹣1.点评:本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求a而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是1+i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:变形并化简可得z=﹣1﹣i,由共轭复数的定义可得.解答:解:∵复数z0=3+2i,复数z满足z•z0=3z+z0,∴z=====1﹣i,∴复数z的共轭复数=1+i故答案为:1+i点评:本题考查复数的代数形式的乘除运算,涉及共轭复数的求解,属基础题.15.(5分)在复数范围内解方程x2+2x+5=0,解为﹣1±2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用求根公式即可得出.解答:解:=﹣1±2i,故答案为:﹣1±2i.点评:本题实系数一元二次的求根公式,属于基础题.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为﹣7x﹣9.考点:二项式系数的性质.专题:计算题;函数的性质及应用.分析:首先根据题意列出函数关系式f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,②×(x﹣1)﹣①×(x+1)化简即可确定余式.解答:解:根据题意得:∵f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,∴②×(x﹣1)﹣①×(x+1)得:[(x﹣1)﹣(x+1)]f(x)=[h(x)﹣g(x)](x2﹣1)+(x﹣1)﹣8(x+1)=[h(x)﹣g(x)](x2﹣1)﹣7x﹣9∴f(x)除以(x2﹣1)的余式为﹣7x﹣9.故答案为:﹣7x﹣9.点评:本题考查了函数的性质,解题的关键是正确的变形,难度不大.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(3,+∞).考点:对数函数的值域与最值;对数的运算性质.专题:计算题.分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b 化为关于a的一元函数,利用函数单调性求函数的值域即可解答:解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1∴y=a+2b=a+,a∈(0,1)∵y=a+在(0,1)上为减函数,∴y>1+=3∴a+2b的取值范围是(3,+∞)故答案为(3,+∞)点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.考点:基本不等式;二次函数的性质.专题:计算题;压轴题.分析:由于二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以a>0,且△=0,从而得到a,c的关系等式,再利用a,c的关系等式解出a,把转化为只含一个变量的代数式利用均值不等式进而求解.解答:解:因为二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以⇒ac=4⇒c=,所以===1+由于a+≥12(当且仅当a=6时取等号)所以1+≤1+=.故答案为:点评:本题主要考查了基本不等式的应用,以及二次函数的性质,同时考查了计算能力,属于中档题.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.考点:绝对值不等式.专题:计算题;压轴题;分类讨论.分析:(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.解答:解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)根据条件构造等差数列,利用等差数列的通项公式即可求数列{a n}的通项公式;(Ⅱ)利用错位相减法即可求数列{a n}的前n项和S n.解答:解:(Ⅰ)由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得=+1,所以[]﹣[]=1,故{}是以为首项,公差d=1的等差数列,故=n﹣1,则a n=(n﹣1)λn+2n.故数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,则T n==,则数列{a n}的前n项和S n=+2n+1﹣2,当λ=1时,T n=.则数列{a n}的前n项和S n=.+2n+1﹣2.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和,要求熟练掌握构造法以及错位相减法在求解数列中的应用.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a n,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a n+1=a n2+2a n,∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A
2015年深圳市高三年级第二次调研考试
数学(理科) 2015.4
本试卷共6页,21小题,满分150分.考试用时120分钟. 注意事项:
1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.
3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.
5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:如果柱体的底面积为S ,高为h ,则柱体的体积为Sh V =;
如果随机变量X 服从正态分布),(2σμN ,则,
()()d b
a
P a X b x x μσφ<≤=
⎰,
其中2()2
,()x x μσμσφ--=
,),(∞+-∞∈x ,μ为均值,σ为标准差.
一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,
有且只有一项是符合题目要求的. 1.设i 为虚数单位,则复数 2015i 等于
A .1
B .1-
C .i
D .i -
2.平面向量(1,2)=-a ,(2,)x =-b ,若a // b ,则x 等于
A .4
B .4-
C .1-
D .2
3.下列四个函数中,在闭区间]1,1[-上单调递增的函数是
A .2x y =
B .x y 2=
C .x y 2log =
D .x y 2sin =
4.如图1,已知某品牌墨水瓶的外形三视图和尺寸,
则该墨水瓶的容积为(瓶壁厚度忽略不计) A .π8+ B .π48+
C .π16+
D .π416+
5.若实数x ,y 满足约束条件13
11
x y x y ≤+≤⎧⎨
-≤-≤⎩,
则2x y +的取值范围是
A .[0,6]
B .[1,6]
C .[1,5]
D .[0,5]
6.如图2,在执行程序框图所示的算法时,若输入
3a ,2a ,1a ,0a 的值依次是1,3-,3,1-,
则输出v 的值为 A .2- B .2
C .8-
D .8
7.从1,2,2,3,3,3这六个数字中任取五个, 组成五位数,则不同的五位数共有
A .50个
B .60个
C .100个
D
.120个
8.设X 是直角坐标平面上的任意点集,定义}),(|)1,1{(*X y x x y X ∈--=.若X X =*

则称点集X “关于运算*对称”.
给定点集}1|),{(22=+=y x y x A ,}1|
),{(-==x y y x B ,}1|||1||),{(=+-=y x y x C ,
其中“关于运算 * 对称”的点集个数为
A .0
B .1
C .2
D .3
1正视图
侧视图
俯视图
图2
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为
必做题和选做题两部分.
(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.不等式5|2||1|≤-+-x x 的解集为 .
10.已知随机变量X 服从正态分布),1(2σN ,若(01)0.3P X <≤=,
则=≥)2(X P .
11.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与抛物线24y x =的准线围成
的三角形面积为1,则此双曲线的离心率等于 .
12.设等差数列}{n a 的前n 项和为n S ,已知153=S ,1539=S ,则=6S .
13.已知△ABC 的内角A 、B 、C 所对的边为a 、b 、c ,则“2
ab c >”是“π3
C <
” 的 条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分
又不必要”中的一种). (二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题
的得分.
14.(坐标系与参数方程选做题)在直角坐标系中,已知直线l :12x s
y s =+⎧⎨
=-⎩
(s 为参数)
与曲线C :2
3x t y t
=+⎧⎨
=⎩(t 为参数)相交于A 、B 两点,则AB =_________.
15.(几何证明选讲选做题)如图3,AB 、AC 是⊙O 的两条切线,切点分别为B 、C .若
60BAC ∠=︒,6BC =,则⊙O 的半径为 .
图3
A
三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)
设函数)2cos()(ϕ+=x x f (其中π0<<ϕ,R ∈x ).已知2
1
)0(-=f . (1)求函数)(x f 的解析式;
(2)若角θ满足)()3
πsin(θθf =+,且π0<≤θ,求角θ的值.
17.(本小题满分12分)
深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数; (2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
18.(本小题满分14分)
如图4,已知三棱锥O ABC -的三条侧棱OA ,OB ,OC 两两垂直,△ABC 为等边三角形, M 为△ABC 内部一点,点P 在OM 的延长线上,且PB PA =.
(1)证明:OB OA =;
(2)证明:平面⊥PAB 平面POC ;
(3
)若PA
,OP =,求二面角B OA P --的余弦值.
19.(本小题满分14分)
设数列}{n a 的前n 项和为n S ,满足4231-⋅-=++n n n n a S ,*N ∈n ,且42,,321+a S a 成等比数列.
(1)求1a ,2a ,3a 的值; (2)求数列2n n a ⎧⎫

⎬⎩⎭
的通项公式; (3)证明:对一切正整数n ,有++2143a a (12)
<++n
a n .
O
图4
B
C
P
M

20.(本小题满分14分)
已知平面上的动点P 与点(0,1)N 连线的斜率为1k ,线段PN 的中点与原点连线的斜率为2k ,122
1
k k m =-
(1m >),动点P 的轨迹为C . (1)求曲线C 的方程;
(2)是否存在同时满足以下条件的圆:①以曲线C 的弦AB 为直径;
②过点N ;③直径AB =.若存在,指出共有几个;若不存在,请说明理由.
21.(本小题满分14分)
已知函数x b ax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1
()(=+x
f x f , 其中b a ,为常数.
(1)若)(x f 的图像在1=x 处切线过点)5,0(-,求a 的值;
(2)已知10<<a ,求证:0)2
(2
>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围.。

相关文档
最新文档