形状记忆合金论文

合集下载

形状记忆合金文献综述

形状记忆合金文献综述

形状记忆合‎金性能及其‎应用综述引言:形状记忆合‎金形状记忆‎效应、超弹性效应‎、高阻尼特性‎、电阻突变效‎应以及弹性‎模量随温度‎变化等一般‎金属不具备‎的力学特性‎,使其在仪器‎仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等‎工程领域都‎能发挥重要‎的作用,对其本构性‎能和在工程‎应用中的性‎能的研究十‎分必要。

本文综合了‎自1971‎年以来国内‎外众多科学‎家对形状记‎忆合金做出‎的各方面的‎研究,并做出简要‎评价,提出自己的‎看法和本课‎题研究内容‎,为对形状记‎忆合金的应‎用研究提供‎一定参考。

国内外研究‎现状:1、SMA材料‎种类研究现‎状自上个世纪‎30年代人‎们发现Au‎-Cd合金具‎有记忆效应‎以来,进过几十年‎的研究,发现的形状‎记忆合金按‎相变特征类‎,可分成如下‎几个系列[1]:1、由热弹性马‎氏体相变呈‎现形状记忆‎效应的合金‎1) TiNi系‎列,发生体心立‎方——无公度相——菱方R相——单斜BI9‎相变。

包括TiN‎i、TiNiF‎e、TiNiC‎u、TiNiN‎b(宽滞后)、TiNiC‎o等。

2) β铜基合金‎系,包括:Cu-Al-Ni(Cu-Al-X=Ti或Mn‎),发生体心立‎方—近正交γ1‎’(2H)或单斜β1‎’(18R1), γ1’—单斜β1”(18R2),β1”--单斜α1,‎β1’--单斜α1相‎变(视应力大小‎而定);Cu-Zn-Al-X(Cu-Zn-Al-X,X=Mn或Ni‎等),发生体心立‎方(β2、DO3或L‎α1)--单斜9R或‎18R相变‎;其它,如Cu-Zu和Cu‎-Zn-X (X=Si、Sn、Au等)。

3)其它有色合‎金系,包括:Au-Cd、Ag-Cd、In-Ti、Ti-Nb、Co-Ni、Ni-Al等。

4) Fe3Pt‎(γ—α’,γ—fct)和Fe-30at%Pd(γ—fct)。

5) Fe-Ni-Co-Ti系,发生时效γ‎一薄片状α‎’(bcc和b‎c t)马氏体相变‎,如Fe-33Ni-l0Co-4Ti、Fe-31Ni一‎I0Co-3Ti及F‎e-33Ni-l0Co-(3~4)Ti-Al等。

磁性形状记忆合金Ni2MnGa第一性原理研究

磁性形状记忆合金Ni2MnGa第一性原理研究
3.929
0.322(Ni) 3.359(Mn) -0.074(Ga)
其他理论计算值 实验值
0.581(FLAPWGGA)
0.5822
0.5773(GGA)
0.5683(LSDA)
4.09(FLAPW-
4.17
GGA)
4.22(GGA)
3.92(LSDA)
0.37(Ni)
0.24(Ni)
3.36(Mn)(FLAPW 2.74(Mn)
(3) 态密度 图5 Ni2MnGa在奥氏体态下的总态密度和各原子相
应的态密度
结论:
(1)总态密度的低能部分(-10.36至-5.12ev)主要由 Ga的s和p态决定,而高能部分的态密度(-5.12至 4.83ev)主要由Ni和Mn的d态决定。
(2)总态密度的自旋向下部分以费米能级(这里为0ev) 为界有两个峰值。高能部分的峰值主要来源于Mn 的d态,低能部分的峰值主要来源于Ni的d态。
(2.2)
式中 M
i
是位置在
Ri
处的原子核的质 量,Z
i
,Z j
是原子
核所带电荷,m e 是电子的质量,ri ,rj 是电子所处的位置。
哈密顿量的第一项是原子核的动能项,第二项是电子
的动能项,后面三项分别是电子和原子核,电子和电
子,以及原子核与原子核之间的相互作用。
2.2多体问题的计算方法
2.2.1 非相对论近似 认为电子质量等于其静止质量,并认为光
谢谢大家!
即 H T V V ext
两类粒子组成的多粒子体系问题
多电子
体系问题
2.2.3 单电子近似
采用玻恩一奥本海默绝热近似后,相应的 薛定谔方程仍然是一个多体薛定谔方程, 所以需要进一步对它进行简化,以便得到 单电子的薛定谔方程。

形状记忆合金的机理及其应用

形状记忆合金的机理及其应用

形状记忆合金的机理及其应用【摘要】形状记忆合金是一种能够记忆其原始形状并在适当条件下恢复的智能材料。

本文首先介绍了形状记忆合金的基本原理,包括其特殊的晶体结构和相变特性。

接着探讨了形状记忆合金在医疗器械和航空航天领域的广泛应用,如支架和航天器构件。

也介绍了形状记忆合金在智能材料中的应用,如自修复材料和智能纺织品。

文章总结了形状记忆合金的前景及发展趋势,指出其在未来有望在更多领域发挥重要作用,并可能带来更多创新和应用。

形状记忆合金的机理及其应用具有广阔的发展前景,将为科技领域带来更多新的可能性和机遇。

【关键词】形状记忆合金,机理,应用领域,医疗器械,航空航天,智能材料,前景,发展趋势1. 引言1.1 形状记忆合金的机理及其应用形状记忆合金是一种具有特殊性能的金属材料,其最显著的特点就是可以记忆其固有的形状并在外界条件发生变化时恢复到原来的形状。

这种特殊性能的机理主要是由于形状记忆合金内部的晶体结构和相变特性所决定的。

当形状记忆合金处于低温状态时,其晶体结构呈现出一种特定的形状;而当受热或外力作用时,形状记忆合金会发生相变,晶体结构重新排列,从而使材料发生形状变化。

形状记忆合金的应用领域非常广泛,包括医疗器械、航空航天、智能材料等。

在医疗器械领域,形状记忆合金可以被用于制作支架、植入物等医疗器械,因其具有良好的生物相容性和机械性能,可以有效帮助医生进行手术或治疗。

在航空航天领域,形状记忆合金可以被用于制作航空器件、航天器件等,因其轻便、耐高温等特点,可以大大提高航空航天设备的性能。

在智能材料领域,形状记忆合金可以被用于制作智能材料,可以根据外界条件变化自动改变形状,具有广阔的应用前景。

形状记忆合金的发展趋势是不断完善其性能,拓展其应用领域,推动其在工业生产和科研领域的广泛应用。

形状记忆合金将会在未来发挥越来越重要的作用,为人类社会的发展做出更大的贡献。

2. 正文2.1 形状记忆合金的基本原理形状记忆合金是一种具有特殊结构和性能的智能材料,其基本原理是在外界作用下能够发生可逆形变,并且恢复到其原始形状。

形状记忆合金材料在航空领域的应用探索

形状记忆合金材料在航空领域的应用探索

形状记忆合金材料在航空领域的应用探索近年来,航空领域一直以来都是科学技术的前沿领域之一,而形状记忆合金材料的出现为航空工程师们带来了全新的材料选择。

形状记忆合金材料具有独特的形状记忆效应和超弹性特性,使其在航空领域的应用前景广阔。

本文将探讨形状记忆合金材料在航空领域中的应用潜力,并着重讨论其在飞行控制、结构设计和航空器制造中的应用。

首先,形状记忆合金材料在航空领域的一个重要应用是飞行控制系统。

传统的飞机控制系统主要基于液压或电动驱动,而这些系统不仅需要额外的能源供应,而且在复杂工作环境下容易受到机械故障的影响。

相比之下,形状记忆合金材料具有自主形变和恢复能力,可以将大部分的机械结构简化为形状记忆合金材料元件,从而减少系统的复杂性和故障率。

例如,在飞行控制翼面上使用形状记忆合金材料作为驱动元件,可以实现更加灵活和可靠的翼面操作,提高飞机的操纵性和稳定性。

其次,形状记忆合金材料在航空领域的另一个重要应用是结构设计。

航空器的结构设计需要兼顾轻量化和强度的要求,而形状记忆合金材料可以满足这一需求。

形状记忆合金材料具有良好的强度和耐热性能,可在高温和高应力环境下工作,同时也具有较低的密度。

这使得航空器的结构设计可以更加轻量化,并减少燃料消耗。

此外,形状记忆合金材料还可以通过控制其形状记忆效应,实现结构的主动控制和优化。

例如,在航空器的机翼和蒙皮结构中使用形状记忆合金材料,可以实现对结构变形的主动控制,以提高气动性能和减小结构风险。

最后,形状记忆合金材料在航空领域的制造中也扮演着重要的角色。

传统的金属制造工艺通常需要耗费大量的工时和资源,而形状记忆合金材料具有良好的可塑性和可加工性,使其成为制造复杂结构的理想材料选择。

与此同时,形状记忆合金材料还具有较高的耐腐蚀性,可以在恶劣的环境下使用。

例如,在航空器的发动机部件制造中,形状记忆合金材料可以用于制造高温部件,如涡轮叶片和喷口衬套,以提供更好的耐热性和机械性能。

形态记忆合金材料论文

形态记忆合金材料论文

题目:关于形态记忆合金的研究进展摘要:形态记忆合金是新兴的材料,本文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。

记忆合金作为一种使用价值比较广泛额材料,我们有理由相信形状记忆合金的发展前途是相当广泛的,也必将造福于人类。

此外,通过这些介绍使人们能够真正的理解和认识这种新的材料——形态记忆合金。

关键字::形状记忆合金、探索、各领域应用、形状记忆合金效应正文:一,形态记忆合金简介。

形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。

形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。

研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。

到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。

形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛关注。

二、形态记忆合金分类及原理形态记忆合金种类繁多,在现在情况来看,记忆合金主要分为以下几种:(1)单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

(2)双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。

(3)全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

至今为止发现的记忆合金体系Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。

形状记忆合金的制备与应用研究

形状记忆合金的制备与应用研究

形状记忆合金的制备与应用研究嘿,咱们今天来聊聊形状记忆合金这个神奇的东西,特别是它的制备方法和广泛应用。

我先给您讲讲我曾经的一次经历,那可真是让我对形状记忆合金印象深刻。

有一次,我去参加一个科技展览,在那里看到了一个形状记忆合金制成的小玩意儿。

那是一个用形状记忆合金做成的花朵形状的饰品,一开始它是闭合的,就像一朵害羞的小花苞。

但当工作人员用特殊的加热装置给它加热之后,哇塞,那朵小花瞬间绽放,花瓣一片片舒展开来,简直太美了!当时我就被这神奇的变化给迷住了,从那时候起,我就对形状记忆合金产生了浓厚的兴趣。

那到底什么是形状记忆合金呢?简单来说,就是一种在一定条件下能够恢复到原来形状的特殊合金。

它具有独特的性能,这使得它在很多领域都大显身手。

咱们先来说说形状记忆合金是怎么制备的。

制备形状记忆合金可不是一件简单的事儿,需要一系列复杂而精细的工艺。

一般来说,常用的制备方法有熔炼法、粉末冶金法等等。

熔炼法呢,就像是在打造一把宝剑,需要把各种金属原料按照一定的比例放进高温熔炉里,让它们充分融合。

这过程就像一场激烈的化学反应,各种元素相互碰撞、融合,最终形成我们想要的合金。

这个过程中,温度、时间、搅拌速度等因素都得控制得恰到好处,稍有不慎,可能就会前功尽弃。

粉末冶金法也很有意思。

先把金属粉末准备好,然后通过压制、烧结等步骤,让这些粉末变成一块坚固的合金。

这就像是在做一个拼图游戏,只不过这个拼图的每一块都特别小,而且要拼得严丝合缝,才能得到完美的作品。

说完了制备,咱们再看看形状记忆合金都有哪些令人惊叹的应用。

在医疗领域,它可是立下了汗马功劳。

比如说,有一种用形状记忆合金制成的心脏支架。

在植入人体之前,它被压缩成很小的尺寸,方便医生通过导管将其送到病变部位。

一旦到达指定位置,通过体温或者外部的刺激,它就能自动展开,支撑起血管,恢复血管的通畅。

这就像是一个小小的“超级英雄”,默默地守护着我们的健康。

在航空航天领域,形状记忆合金也发挥着重要作用。

智能材料论文

智能材料论文

智能材料论文智能材料是一种具有自主感知、自适应、自修复和自组装等功能的新型材料,它能够对外界环境做出响应并产生相应的变化。

智能材料的研究和应用已经成为当前材料科学领域的热点之一,其在航空航天、医疗保健、智能机器人等领域具有广阔的应用前景。

智能材料的种类繁多,其中形状记忆合金是一种应用较为广泛的智能材料之一。

形状记忆合金具有记忆形状的特性,可以在外界作用下发生相变,恢复到其记忆形状,因此在医疗器械、航空航天等领域有着重要的应用价值。

除了形状记忆合金,智能聚合物也是一种备受关注的智能材料。

智能聚合物具有响应外界刺激而改变其形态、性能的特点,可以被广泛应用于智能传感器、智能涂料等领域。

另外,碳纳米管也是一种研究热点的智能材料。

碳纳米管具有优异的导电性和力学性能,可以被应用于柔性电子器件、纳米传感器等领域。

在智能材料的研究中,仿生材料也是一个备受关注的方向。

仿生材料以生物体的结构和功能为蓝本,具有优异的生物相容性和生物相似性,可以被应用于人工器官、组织修复等领域。

总的来说,智能材料的研究和应用已经取得了一系列的重要进展,但与传统材料相比,智能材料的研究仍面临着诸多挑战。

例如,智能材料的制备工艺需要更高的精密度和稳定性;智能材料的性能测试和评价方法亟需标准化和规范化;智能材料的环境适应性和耐久性需要进一步提高等。

因此,未来在智能材料领域的研究中,需要加强跨学科交叉合作,推动智能材料的基础理论研究和应用技术创新,为智能材料的发展开辟新的道路。

综上所述,智能材料作为一种新型材料,在材料科学领域具有重要的研究和应用价值。

随着科技的不断进步和创新,相信智能材料必将在未来取得更大的突破和发展,为人类社会的进步和发展做出更大的贡献。

记忆合金的原理及应用小论文

记忆合金的原理及应用小论文

记忆合金的原理及应用小论文1. 引言记忆合金是一种具有形状记忆效应和超弹性特性的材料,可以在外界刺激下实现自我形变和恢复原状,因此被广泛应用于各个领域。

本文将介绍记忆合金的原理和各种应用。

2. 记忆合金的原理记忆合金的原理基于固体相变和晶格结构的变化。

当记忆合金处于高温相(奥氏体相)时,晶格结构规则,材料呈现典型的金属弹性行为。

当降低温度至亚相变温度时,记忆合金会发生固相相变,晶格结构由规则的高温相转变为不规则的低温相(马氏体相)。

在这个过程中,记忆合金会发生形状记忆效应,即变形储存,在外界刺激下能够快速地恢复到其原始形状。

3. 记忆合金的组成和制备方法记忆合金主要由镍、钛、铜、铝等金属元素组成。

这些金属元素在合金中具有不同的比例和含量,可以调节合金的性能和特性。

记忆合金的制备方法主要有冶金法、物理镀膜法和化学还原法。

通过不同的制备方法可以得到具有不同组织结构和性能的记忆合金材料。

4. 记忆合金的应用领域4.1 医疗领域记忆合金在医疗领域有广泛的应用,例如制造血管支架、牙线、矫形器和植入器件。

血管支架使用记忆合金的特性可以在介入治疗中帮助恢复和维护血管的通畅。

牙线和矫形器使用记忆合金的形状记忆效应可以调整和修复牙齿的位置。

植入器件则利用记忆合金的生物相容性和形状记忆效应,在植入后能够适应人体变化并起到治疗作用。

4.2 汽车工业记忆合金在汽车工业中的应用主要体现在发动机、座椅和遥控器等方面。

发动机使用记忆合金可以提高汽车的运行效率和降低燃油消耗,同时还可以减少发动机噪音和震动。

座椅和遥控器使用记忆合金的超弹性特性,可以提供更舒适的座椅和操作手感。

4.3 建筑工程记忆合金在建筑工程领域的应用主要体现在地震防护和结构控制方面。

通过使用记忆合金材料制造阻尼器,可以有效地减小结构的震动,提高建筑的抗震性能。

此外,记忆合金还可以用于结构控制系统,通过控制记忆合金的应变,可以改变结构的刚度和稳定性,使其适应不同的工况。

形状记忆合金论文[优质文档]

形状记忆合金论文[优质文档]

形状记忆合金论文[优质文档]形状记忆合金形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。

除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。

形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。

一、形状记忆合金的发展史最早关于形状记忆效应的报道是由在1952年作出的。

观察到Au-Cd合金中相变的可逆性。

后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。

直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。

到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。

几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。

在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。

二、形状记忆效应机理将变形马氏体加热到As点以上,马氏体发生逆转变,因为马氏体晶体的对称性低,转变为母相时只形成几个位向,甚至只有一个位向—母相原来的位向。

尤其当母相为长程有序时,更是如此。

当自适应马氏体片群中不同变体存在强的力学偶时,形成单一位向的母相倾向更大。

逆转变完成后,便完全回复了原来母相的晶体,宏观变形也完全恢复。

注意:以上原理只适合热弹性,而半热弹性记忆合金主要是由Shockley不全位错的可逆移动引起。

变性的三种形式三、形状记忆效应的分类经过广泛研究,到目前为止,具有SME 的合金可归纳为以下几类: a) Ni2Ti 系,包括等原子Ni-Ti , Ti-Ni-X(X = Fe ,Al ,Co) ; b) 铜系, 包括Cu-Zn 系, 如Cu-Zn , Cu-Zn-X(X = Si ,Al , Sn) ; Cu-Al 系, 如Cu-Al2 , Ni ; Cu2Al2c) 其他有色金属系, 如Co-Ni , Ti-Nb ,Au-Cu-Zn ,Au-Cd ,Ag-Cd , In-Ti 等;d) 铁基合金,如Fe-Pt ,Fe-Ni-Co ,Fe-Mn-Si ,Fe-Ni-Co-Ti ,Fe-Mn-C 及不锈钢等。

记忆能力超强的形状记忆合金_3

记忆能力超强的形状记忆合金_3

记忆能力超强的形状记忆合金论文导读:形状记忆合金是在一个偶然的机会中。

记忆能力,记忆能力超强的形状记忆合金。

关键词:记忆能力,形状记忆合金形状记忆合金是在一个偶然的机会中,无意间被发现的。

那是1961年春末夏初的事情,一天,美国海军的一个研究所军械研究室的冶金专家彼勒,因在其试验的工程中需要一批特殊的合金丝——镍(Ni)钛(Ti)合金丝(又称NT合金)。

免费论文,记忆能力。

由于从仓库领来的这些细丝弯弯曲曲盘在一起,于是彼勒让工作人员把它们一根一根的拉直备用,然而在这一过程中,工作人员惊异的发现,这些被拉直的镍钛合金丝在接近火源时,奇迹出现了,它们马上又恢复到与领来时完全一样的弯曲形状,堆积在一起。

冶金专家彼勒对此是既感到惊异又非常有兴趣。

为了证实这种现象的存在,他又进行了多次重复实验进行验证,把弯曲的镍钛合金丝拉直后再加热,当弯曲的镍钛合金丝升高到一定的温度时,这些合金丝果然又恢复到了原先的弯曲状态。

彼勒的实验结果表明:镍钛合金具有“单向”形状记忆功能,它能“记住”自己在较高温度状态下的形状,无论平时把它变成何种形状,只要把它加热到某一特定的温度,它就能立即恢复到原来的形状。

免费论文,记忆能力。

将NT合金加工成一定的形状,在300℃~1000℃温度下热处理30分钟,这种合金就能“记住”自己的形状。

在彼勒研究的基础上,科学家们通过进一步的研究与实验还发现:自然界确实存在着能恢复原状的物质。

科学家们把镍钛合金所具有的这种特性称为合金的“形状记忆效应”;称这种能恢复原状的合金为形状记忆合金。

科学家们在深入研究的过程中还发现,许多合金,如金镉合金、铜铝镍合金、铜锌合金等,也有如同镍钛合金一样的形状记忆功能。

免费论文,记忆能力。

为什么这些合金会具有形状记忆功能呢?科学家们经过进一步的研究发现:原来金属的晶体状态,在被加热和冷却时是不同的,这类合金都有一个共同的特点,那就是他们的晶体结构都有随温度的变化由不稳定状态向稳定状态转变的性质。

功能材料论文形状记忆合金

功能材料论文形状记忆合金

Ti-Ni形状记忆合金的制备、性能及应用摘要:Ti-Ni形状记忆合金是现代一种性能优良的新型功能材料,本文主要介绍了其简介、制备方法、主要性能和主要的应用及发展前景。

形状记忆合金的发展背景:在研究Ti-Ni合金时发现:原来弯曲的合金丝被拉直后,当温度升高到一定值时,它有恢复到原来弯曲的形状。

人们把这种现象称为形状记忆效应(Shape Memory Effect)简称SME,具有形状记忆效应的金属称为形状记忆合金(SMA)。

形状记忆现象的发现可以追溯到1932年,美国在研究Al-Cd合金时观察到马氏体随温度变化而消长;1938年美国哈佛大学和麻省理工学院发现Cu-Sn,Cu-Zn,合金在马氏体相变中的形状记忆效应;同年前苏联对Cu-Al-Ni,Cu-Sn合金的形状记忆机理进行了研究;1951-1953年,美国分别在Au-Cd,In-Ti,合金中观察到形状记忆效应。

知道60年代初,形状记忆效应制备看作是一种现象,Ti-Ni合金形状记忆效应发现后,美国研制了最初实用的形状记忆合金“Nitinol”。

形状记忆合金SMA(Shape Memory Alloy)是指具有一定的初始形状,经形变并固定成另一种形状后,通过热、光、电等物理刺激或者化学刺激处理又可以恢复其初始形状的一种新型金属功能材料。

由于这种合金具有独特的形状记忆效应和超弹性效应,可以制作小巧玲珑、高自动化、性能可靠的元器件,目前已被广泛应用于电子仪器、汽车工业、医疗器械空间技术、能源开发等领域。

形状记忆效应:形状记忆效应有三种形式。

第一种称为单向状,再重新加热到As以上,马氏体发生逆转变,温度升高至Af 点,马氏体完全消失,材料完全恢复母相形状。

一般形状记忆效应,即将母相冷却或加应力,使之发生马氏体相变,然后是马氏体发生塑性变形,改变其形没有特殊说明,形状记忆效应都是指这种单向形状记忆效应。

有些形状记忆合金在加热发生马氏体逆转变时,对母相有记忆效应;当从母相再次冷却为马氏体时,还回复马氏体形状,这种现象称为双向形状记忆效应。

形状记忆合金材料的应用5则范文

形状记忆合金材料的应用5则范文

形状记忆合金材料的应用5则范文第一篇:形状记忆合金材料的应用形状记忆合金材料的性质与应用综述【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。

本文简要介绍了形状记忆合金的特性、应用以及发展前景。

【关键词】形状记忆合金应用发展现状【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。

最早关于形状记忆效应的报道是由Chang 及Read等人在1952年做出的。

他们观察到Au-Cd合金中相变的可逆性。

[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。

直到1962年,Buehler及其合作者在等原子比的Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。

这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。

一、形状记忆合金的分类1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。

3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

二、形状记忆合金的特性1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。

2、超弹性:在高于Af点、低于Md点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。

3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。

记忆合金的原理及应用论文

记忆合金的原理及应用论文

记忆合金的原理及应用论文引言记忆合金是一种具有记忆性能的新材料,其具有独特的形状记忆效应和超弹性特性,引起了广泛的研究兴趣。

本文将介绍记忆合金的基本原理以及其在各个领域的应用。

记忆合金的原理记忆合金的原理基于其晶体结构中的固溶元素或间隙元素的位错运动。

主要有以下几个方面的原理:1.基底状态:记忆合金有两个基本状态,即高温相和低温相。

在高温相中,合金处于高温状态,原子结构呈均匀排列;而在低温相中,合金处于低温状态,原子结构产生畸变。

这种基底状态的改变是记忆合金实现形状记忆效应的核心。

2.形状记忆效应:当记忆合金从高温相变为低温相时,其晶体结构发生变化,产生外形的记忆效应。

这种形状记忆效应使得记忆合金能够在外力或温度作用下变形,并恢复到其原始形状,具有自修复的功能。

3.超弹性特性:记忆合金具有超弹性特性,即当外力作用于记忆合金时,合金会发生可逆变形,随着外力的撤离,合金能够恢复其原始形状。

这种超弹性使得记忆合金在弹性材料领域具有广泛的应用前景。

记忆合金的应用记忆合金在各个领域都有不同的应用,下面将介绍几个具有代表性的应用领域。

医疗器械记忆合金可用于医疗器械中的夹持器、骨钉等器械部件。

通过形状记忆效应和超弹性特性,可以实现器械在体内的准确定位,并有助于手术的顺利进行。

航空航天记忆合金在航空航天领域有广泛的应用。

它可以用于制造飞机和航天器的结构部件,例如可自修复的稳定器、可变形的发动机喷嘴等。

记忆合金的低密度和高强度使得它成为航空航天领域的理想材料。

汽车制造记忆合金在汽车制造领域的应用也越来越广泛。

它可以用于汽车的减震器、车身结构等部件,通过超弹性特性可以提高汽车的乘坐舒适性和安全性。

其他领域此外,记忆合金还有许多其他的应用,例如智能材料、电子器件、机器人技术等。

它们在这些领域的应用主要基于其形状记忆效应和超弹性特性,为相关技术提供了新的可能性。

结论记忆合金是一种具有独特性能的材料,其原理基于晶体结构中的固溶元素或间隙元素的位错运动。

增材制造形状记忆合金

增材制造形状记忆合金

增材制造形状记忆合金我有一次去参观一个科技展览,在一个角落里,发现了关于增材制造形状记忆合金的展示,那可真是让我大开眼界,仿佛走进了一个金属魔法的奇幻世界。

展示台上摆放着一些形状奇特的金属制品,它们看起来普普通通,但当工作人员给它们施加一点“魔法”——改变温度时,这些金属就像被唤醒了一样,开始神奇地变形。

有一个像弹簧一样的形状记忆合金物件,在常温下它蜷缩在一起,就像一个害羞的小刺猬。

工作人员把它放在一个加热台上,不一会儿,它就像伸懒腰似的慢慢舒展开来,变成了一根笔直的小棍。

我惊讶得下巴都快掉了,这简直比魔术还神奇!旁边的展板上介绍了增材制造形状记忆合金的原理。

我才知道,原来这种合金在制造的时候就像是被赋予了一种特殊的“记忆”。

就像我们人类会记住自己的家在哪里一样,这种合金会记住它在高温时的形状。

当温度变化时,它的晶体结构也会跟着改变,从而导致形状的变化。

我看着那些复杂的原理介绍,虽然似懂非懂,但也能感觉到这背后的科技含量超高。

我不禁想起我小时候玩的变形金刚玩具,那些塑料玩具可以在我的摆弄下变换各种形状。

而眼前的这些形状记忆合金就像是高级版的变形金刚,它们不需要外力的强行扭转,只靠温度的变化就能自动变形,而且变形的精准度和复杂度远远超过了玩具。

在展览的互动环节,我还亲手体验了一下这种神奇的合金。

我拿到了一个小小的形状记忆合金制成的花朵形状的物件。

在常温下,它的花瓣是闭合的,我把它放在热水里轻轻一泡,那些花瓣就像听到了起床号一样,缓缓地张开了,露出了中间精致的花蕊。

我小心翼翼地把它从水里拿出来,看着它在空气中慢慢冷却,花瓣又慢慢地闭合起来。

这个过程就像我在和一个有生命的小生物互动,它的每一个变化都让我兴奋不已。

从这次科技展览的经历之后,我对增材制造形状记忆合金就有了一种特殊的喜爱和敬畏。

它就像金属世界里的超级明星,凭借着独特的“变形”能力,在航空航天、生物医学等众多领域都有着无限的潜力。

它可以在太空中根据温度变化自动调整形状,适应复杂的环境;也可以在人体内部,像一个智能的小助手,根据身体的温度变化来完成各种任务。

铁磁形状记忆合金的制备及性能研究

铁磁形状记忆合金的制备及性能研究

铁磁形状记忆合金的制备及性能研究随着科学技术的不断发展,新材料的研究和应用受到了越来越广泛的关注。

铁磁形状记忆合金作为近年来新兴的材料之一,具有很好的形状记忆效应和铁磁性能,正逐渐成为研究的热点。

本文将从铁磁形状记忆合金的制备和性能两个方面进行探讨。

一、铁磁形状记忆合金的制备铁磁形状记忆合金是由铁、镍、钴等元素组成的晶体,具有良好的形状记忆效应和铁磁性能。

其制备包括熔态法和固态法两种方式。

熔态法主要是将合金元素熔融,然后在特定条件下进行凝固和调质。

这种方法制备的铁磁形状记忆合金通常具有优良的形状记忆效应和铁磁性能,并具有较高的制备成本。

固态法主要是利用溶液处理、粉末冶金和微波热处理等技术制备铁磁形状记忆合金。

这种方法制备的合金成本相对较低,而且适用性广泛,操作方法简单。

二、铁磁形状记忆合金的性能研究铁磁形状记忆合金具有良好的形状记忆效应和铁磁性能,并且在高温条件下也有较好的性能表现。

因此,在应用领域中,如机械、自动控制、物理电子学等方面具有很大的潜力。

1.形状记忆效应铁磁形状记忆合金具有良好的形状记忆效应,该效应主要是由于合金结构中存在的相变引起的。

形状记忆效应的实现需要与记忆控制条件相匹配,例如外部(磁场或应力)和内部(组织结构、温度等)控制条件。

因此,在应用中,如机械、自动控制等方面,可以通过形状记忆材料的特性来实现控制和调节。

2.铁磁性能铁磁形状记忆合金具有强烈的铁磁性能,这种性能主要是由合金中的铁、镍、钴等元素的磁性质所决定的。

铁磁性能可以通过改变合金成分、处理条件等手段进行控制和调节。

在应用领域中,如物理电子学、自动控制等方面,铁磁性能的特性可以实现不同下磁性库仑场的控制,进而实现对磁性材料性能实现更深度的发掘和应用。

总之,铁磁形状记忆合金是一种具有广泛应用前景的新材料,其制备和性能研究对于材料科学研究领域产生了重要意义。

随着科技的进步和人们对高性能材料的需求不断提高,铁磁形状记忆合金必将在现代工业制造和科研领域发挥越来越重要的作用。

形状记忆材料论文

形状记忆材料论文

形状记忆材料论文最近几年,怎样有效的提升土木工程构造的安全性、持久性是现在人们普遍关注的问题之一。

通过各国学者的不断努力和研究,针对该情况也提出了相关的解决措施,来进一步的加强结构中的安全性和稳固性。

其中,因为智能材料所融合而成的智能材料结构系统在土木工程的使用过程中,不但具有强大的吸引力,还具有鲜明的革命性。

现在,土木工程范围中使用最为普遍的就是只能材料有形状记忆合金、压电材料、光栅光纤和磁流变体等。

在丰富多样的智能材料中,形状记忆合金,简称SMA,该材料对形状具有一定的记忆性,该材料自身具有感知性、判断性和自我适应性等特征。

SMA 因为其恢复变形大、因为受限回复时可能产生大量的驱动力、电阻对应比较敏感、高阻尼性能、抗疲劳性能好,而且还可以完成多样化的变形模式,容易和混凝土、钢等材料融合起来,并且受到了人们的广泛关注,国内外很多学者对SMA在土木工程中的使用进行了相关的理论探索和实验研究。

1SMA的主要价值1.1形状记忆效用(SMA)。

相撞记忆效用主要表现在一些具有热弹性或是引发马氏体相变的材料存在于马氏体状态中,并且通过一定程度的变形,经过加热并超越了马氏体相,等到温度消失之后,材料的形状可以恢复到之前的模样和体积。

因为材料记忆效用各不相同,主要划分为单程、双程和全方位SMA,单程SMA是指材料只能进行一次动作,也就是加热之后保持高温时的状态,并且一直维持;双程SMA主要是指材料反复加热和遇冷之后,能够反复在高、低温之间进行变化;全方位SMA主要是指材料在保持双程记忆的时候,如果冷却到特别低的温度,就会呈现出和高温完全不一样的形状。

1.2超弹性(PE)。

超弹性就是指当SMA温度超越奥式体变相完成温度Af之后,加载应力达到了弹性极限,也就出现了非弹性应变,持续加载将会出现马氏体相变,但是马氏体也会因为应力的丧失而消失,虽然不加热也会出现马氏体逆相变,并且恢复到原来的材料状体,也就是奥式体相,应力效用中的整体变形也会因为逆相变的出现而完全消失。

NiTi形状记忆合金的性能及应用

NiTi形状记忆合金的性能及应用

NiTi形状记忆合金的性能及应用(**************************************)摘要:本文主要介绍了NiTi形状记忆合金的性能,如形状记忆效应、超弹性效应、生物相容性、耐磨性、阻尼性等。

再举例简要介绍它在工程领域、医学领域方面的应用,并对以后的发展方向做了展望。

关键字:形状记忆性能;应用Properties and Application of NiTiShape Memory AlloysAbstract:The essay is mainly introduce the shape memory effects,such as super-elasticity effect,temperature memory effect,biological compatibility , resistance to wear and damping of NiTi shape memory alloys (SMA),et al . And then talk about the applications of NiTi shape memory alloy in engineering field ,medical field . The development direction of the study field was forecasted.Key words : shape memory effect ; application引言形状记忆合金(Shape Memory Alloy,简称SMA) 是一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种能力被称为形状记忆效应(Shape Memory Effect,简称SME) 。

实际上,很多材料都具有SME,但能够产生较大回复应变和形状回复力的,只有少数的几种材料,如:Ni-Ti合金和铜基合金(CuZnAl和CuAlNi),铁基合金应用最广泛。

记忆合金论文

记忆合金论文

浅谈形状记忆合金形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度时,可以恢复到加工前的形状。

形状记忆合金至今已有十几种,包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。

1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应。

1963年,美国海军军械研究所的比勒在研究工作中发现,在高于室温较多的某温度范围内,把一种镍-钛合金丝烧成弹簧,然后在冷水中把它拉直或铸成正方形、三角形等形状,再放在40 ℃以上的热水中,该合金丝就恢复成原来的弹簧形状。

1969年,镍--钛合金的“形状记忆效应”首次在工业上应用。

人们采用了一种与众不同的管道接头装置。

为了将两根需要对接的金属管连接,选用转变温度低于使用温度的某种形状记忆合金,在高于其转变温度的条件下,做成内径比待对接管子外径略微小一点的短管(作接头用),然后在低于其转变温度下将其内径稍加扩到该接头的转变温度时,接头就自动收缩而扣紧被接管道,形成牢固紧密的连接。

1969年7月20日,美国宇航员乘坐“阿波罗”11号登月舱在月球上首次留下了人类的脚印,并通过一个直径数米的半球形天线传输月球和地球之间的信息。

这个庞然大物般的天线就是用一种形状记忆合金材料,先在其转变温度以上按预定要求做好,然后降低温度把它压成一团,装进登月舱带上天去。

放置于月球后,在阳光照射下,达到该合金的转变温度,天线“记”起了自己的本来面貌,变成一个巨大的半球。

形状记忆合金的特点是:弯曲量大,塑性高,在记忆温度以上恢复以前形状。

形状记忆合金分为以下几类:1、单程记忆效应合金:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形状记忆合金摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。

关键词:形状记忆合金、形状记忆合金效应、应用引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。

通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。

研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。

到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。

形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢氏体相变。

一、形状记忆合金的发展史最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。

他们观察到Au-Cd合金中相变的可逆性。

后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。

直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。

到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。

几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。

在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。

二、形状记忆效应机理a) 单程SME b) 双程SME btpsfa 为SME cdcjc 为伪弹性图1 形状记忆效应示意图图2 形状记忆合金应力—应变—温度关系示意图图1 直观地示意出合金的形状记忆效应。

在T1 温度下,将原来SMA直棒弯曲变形后,加热至T2 ,弯曲棒便逐渐自动变直回冷至T1 ,棒仍保持直的形状。

合金的这种在某种条件下经任意方式的塑性变形,然后加热至该种合金固有的某一温度以上,又完全恢复其原来形状的现象, 称为形状记忆效应( SME) 。

图1a 中所示为单程SME;如果由T2 冷至T1 时,SMA 棒复又自动弯曲,从而随T 2≒T1 热循环,棒的形状亦发生直≒弯循环现,象,这种现象称为双程SME ,如图2b 所示。

可见,合金的SME 是在应力(σ) ———应变(ε) ———温度( T)三维空间中的一种特殊机械行为。

这种空间行为见图2 。

由于SME 的微观机制与母相P 及马氏体M之间发生的P ≒M 正逆相变密切相关,所以,图2 中的相变温度及应变量等均为重要的SMA 设计参数。

其中Ms、Mf 为P →M 正相变开始与终了温度;As、Af 为M →P 逆相变开始与终了温度。

Md 温度为在外力作用下,能够诱发P →M 相变的最高温度,高于此温度变形, SMA 的变形行为与普通合金相同,因而,SME 的变形温度Td ≤Md。

对于Ni —Ti 、Cu 基等多数SMA ,当满足Af <Td < Md 时,其应力———应变行为如图2 中cdijc 所示,即在σ作用下,尽管合金呈现宏观屈服现象,并发生较大的范性变形(cdi 段) ,但是,一旦卸载后,如同普通合金的弹性变形一样,其范性变形减小至0 ,即合金形状随加载变化,随卸载恢复。

因为σ—ε呈非线性,SMA 的这种机械行为称为伪弹性。

SMA 的伪弹性与SME 取决于变形温度Td。

如果Af < Td < Md ,呈现伪弹性;As < Td < Af 为伪弹性与SME 共有区; Td < As 呈现SME。

然而,近年来研制的一些SMA 不论任何温度变形,都不呈现伪弹性。

应予指出,与钢在马氏体状态相反,SMA 在马氏体状态很软,故变形非常容易。

三、形状记忆效应的分类最先在合金相变过程中观察到形状记忆效应的是Chang 和Read ,他们通过对AuCd的相变可逆性研究发现相变过程中发生了电阻率的变化。

1958 年,在铜(CuZn) 中也发现了类似的现象。

直到1962 年, 当Buehlerh和其同事们在等原子的Ni2Ti 合金中发现了SME 后,对SMA 冶金学和应用的研究才蔚然兴起。

随后的十年中,市场上出现了大量的利用SMA 制造的产品。

经过广泛研究,到目前为止,具有SME 的合金可归纳为以下几类:a) Ni2Ti 系,包括等原子Ni-Ti , Ti-Ni-X(X = Fe ,Al ,Co) ;b) 铜系, 包括Cu-Zn 系, 如Cu-Zn , Cu-Zn-X(X = Si ,Al , Sn) ; Cu-Al 系, 如Cu-Al2 , Cu2Al2Ni ;c) 其他有色金属系, 如Co-Ni , Ti-Nb ,Au-Cu-Zn ,Au-Cd ,Ag-Cd , In-Ti 等;d) 铁基合金,如Fe-Pt ,Fe-Ni-Co ,Fe-Mn-Si ,Fe-Ni-Co-Ti ,Fe-Mn-C 及不锈钢等。

虽然目前已经发现的形状记忆合金有30 余种。

但正式作为商品生产的只有Ni 系和Cu 基两大类。

一般来说,Ni2Ti 合金反复使用的稳定性、耐蚀性、对生物体的适应性(界面相互作用) 、以及超弹性和制备加工性等都比Cu 基合金优越,但成本较高。

Cu 基合金尽管在这些方面略微逊色,但价格便宜,在反复使用频率不太高、条件不太苛刻情况下,应用前景非常广泛。

四、形状记忆效应的应用迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类:(1)自由回复。

SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。

自由回复的典型例子是人造卫星的天线和血栓过滤器。

美国航空航天局(NASA) 将Ti2Ni 合金板或棒卷成竹笋状或旋涡状发条,收缩后安装在卫星内。

发射卫星并进入轨道后,利用加热器或太阳能加热天线,使之向宇宙空间撑开。

血栓过滤器把Ni2Ti 合金记忆成网状,低温下拉直,通过导管插入静脉腔,经体温加热后,形状变为网状,可以阻止凝血块流动。

有人设想,利用形状记忆合金制作宇宙空间站的可展机构,即以小体积发射,于空间展开成所需的形状,这是很有吸引力的机构。

(2)强制回复。

强制回复最成功的例子是SMA 管接头。

事先把内径加工成比被接管外径小4 % ,当进行连接操作时,首先把管接头浸泡在液态空气中,在低温保温状态下扩径后,把被接管从两端插入,升高温度,内径回复到扩径前的状态,把被接管牢牢箍紧。

利用SMA 制作的脑动脉瘤夹可夹住动脉瘤根部,防止血液流入,使动脉瘤缺血坏死。

本田等人用厚度为015mm 的Ti2Ni 板制作的Ag2TiNi 复合夹满足小而轻、装卸简便等要求,效果良好。

此外,类似的用途还有电源连接器、自紧固螺钉、自紧固夹板、固定销、密封垫圈、接骨板和脊柱侧弯娇形哈伦顿棒等。

(3) 动力装置。

有些应用领域,要求形状记忆元件在多次循环往复运动中对外产生力的作用。

温度继电器和温度保持器、自动干燥箱、电子灶、热机、卫星仪器舱窗门自动启闭、自动火警警报器、热敏阀门、液氨泄漏探测器、煤气安全阀、通风管道紧急启动闸门、自动收进烟头的烟灰盒及人工心脏等都属于这种应用类型。

1997 年美国航空航天局(NASA) 的科学家利用长3cm ,直径0115mm(01006″) 的Ni-Ti SMA 驱动火星探测器上的太阳能电池挡板,加热SMA ,使其收缩,通过传动装置,打开太阳能电池上的玻璃挡板,电池充电。

充电结束后,偏置弹簧重新使挡板复位。

挡板的有效开合可起到防尘的目的。

(4) 精密控制。

因为SMA 的相变发生在一定温度范围而不是某一固定温度点,我们往往只利用一部分形状回复,使机械装置定位于指定的位姿。

微型机器人、昆虫型生物机械、机器人手抓及微型调节器、笔尖记录器及医用内窥镜都属于这一类。

形状记忆合金用作机器智能人的执行器,集传感、控制、换能、制动于一身,具有仿真性好、控制灵活、动作柔顺、无振动噪声、易于结构微型集成化等优点。

日本的日立公司已研制出具有13个自由度的能拣取鸡蛋的机器人。

俄罗斯St1Petersburg 机器人及控制技术学院在Cu-Al-Ni 基合金材料的研究基础上,研制出了拟人机械手(115m 长) ,其手爪能移动200kg的物体。

该研究小组还给出了手爪的精确控制系统。

医学上用到的具有多自由度能弯曲转入肠道内诊断疾病,进行手术的机器人也属于这一类型(图3) 。

现有的大肠镜的直径为10~20mm ,这种内窥镜的直径为13mm ,因此它特别适用于作大肠镜。

诊断过程中,医生一边看纤维镜中的图象,一边移动操纵杆给出前端的第1 ,2 节弯曲角指令和内窥镜前进、后退指令,通过计算机进行柔性控制, 使内窥镜能够平滑地沿着通路前进或后退,大大减小了患者的痛苦,也增加了诊断的准确性。

随着目前超大规模集成电路技术的飞速发展,可进一步制成微米级甚至更小的超微仿生物。

(5)超弹性应用。

SMA 的伪弹性在医学上和日常生活中得到了广泛的应用,市场上的很多产品都应用了SMA 的伪弹性(超弹性) 性质。

主要有牙齿娇形丝、人工关节用自固定杆、接骨用超弹性Ni2Ti 丝、玩具及塑料眼镜镜框等。

Ni2Ti 丝用于娇形上,即使应变量高达10 %也不会产生塑性变形,而且应力诱发马氏体相变的过程中,应变增大较多时矫正力却增加很少。

故能保持适宜的矫正力,既可保证疗效,也可减轻患者的不适感。

五、前景展望在形状记忆合金的实用化进程中,急需积累并分析关于材料特性、功能可靠性、生物相容性和细胞毒性等方面的基础数据资料。

可以预言,随着对SMA 研究的进一步深化,传统的机电一体化系统完全有可能发展成为材料电子一体化系统。

参考文献:1、崔海宁. 形状记忆合金在建筑领域中的应用[J]. 山西建筑, 20062、高志刚. 形状记忆合金的应用[J]. 现代制造技术与装备, 20073、吴根华. 形状记忆合金及其应用[J]. 安庆师范学院学报(自然科学版), 20044、周海锋. 形状记忆合金及其应用[J]. 机电设备, 20025、王永前,赵连城. 高温形状记忆合金研究进展[J]. 功能材料, 19956、杨凯,辜承林. 形状记忆合金的研究与应用[J]. 金属功能材料, 20007、李建忱,吕晓霞,蒋青,周明. 形状记忆合金研究的回顾与前瞻[J]. 吉林工业大学学报, 19958、张红,王小杰,涂水华. 形状记忆合金及其应用[J]. 河南科技, 19969、曹运红. 形状记忆合金的发展及其在导弹与航天领域的应用[J]. 飞航导弹, 200010、肖恩忠. 形状记忆合金的应用现状与发展趋势[J]. 工具技术, 2005。

相关文档
最新文档