曲线积分和路径的无关性
3-2积分与其路径的无关性
![3-2积分与其路径的无关性](https://img.taocdn.com/s3/m/01038238bed5b9f3f90f1c54.png)
10
柯西积分定理
设f (z) 是单连通区域D 上的解析函数,则对 D内的任一可求长的Jordan曲线 C , 有
c f (z)dz 0.
C D
说明:该定理的主要部分是 Cauchy于1825年建立;
它是复变函数理论的基础。
11
试着证明 Cauchy 积分定理:
C f (z)dz C udx vdy iC vdx udy
C
这和高等数学中的曲线积分与路径无关的关系 ?
5
观察上一节最后两例题后发现: 有的函数的积分只依赖于积分路径的起点与终
点,而与积分路径的形状无关,而有的函数,其积 分不仅与积分路径的起点与终点有关,而且与积分 路径的形状还有关. 前一类函数是解析函数.知道 f(z)=1也是解析函 数,其积分也只依赖于积分路径的起点与终点,而 与积分路径的形状无关. 由此,我们可提出猜想:
于是 Re z 1, dz idt,
y
i
1 i
Re zdz
1
tdt
1
1 idt
1
i.
C
0
0
2
y x2
1
1
o
x
1
C zdz 0 tdt 0 (1 it)idt
i.
4
注意1 从例 5 可以看出,曲线积分 zdz与积分路
C
径无关,但曲线积分 Re(z)dz与积分路径有关。
( z12
z02
).
例2 求 i z cos z2dz 的值. 0
解
i z cos z2dz 1 i cos z2dz2
0
20
1 sin z2 i 1 sin( 2 ) 1 sin 2 .
第二节 积分与路径的无关性
![第二节 积分与路径的无关性](https://img.taocdn.com/s3/m/2dc4e814964bcf84b9d57b90.png)
机动
目录
上页
下页
返回
结束
(3)
1 0
z cos z d z z d sin z
0
1
1 0
sin z d z
分部积分公式:
机动
目录
上页
下页
返回
结束
(4) 试沿区域 Im( z) 0 , Re( z) 0 内的圆弧 i ln( z 1) 计算积分 1 z 1 d z 的值. ln( z 1) 且 积函数在所设区域内解析, 被积函数 解: z 1 1 2 它的一个原函数为 ln ( z 1 ) , 所以 2 i ln( z 1) 1 1 2 [ ln 2 ( 1 i ) ln 2 2 ] 1 z 1 d z 2 ln ( z 1) 2 2 1 1 2 2 3 2 ln 2 [ ( ln 2 i ) ln 2 ] ln 2 i 2 2 4 32 8 8
内,
C2
C
2z dz 2 z 4
C1
2z 2z dz 2 dz 2 C2 z 4 z 4
C1
1 1 1 1 dz dz dz dz C1 z 2i C1 z 2i C2 z 2i C2 z 2i
2z 1 1 4 i 2 i 20 2ii z 2i z 4 0 z 2
机动 目录 上页 下页 返回 结束
三、闭路变形定理和复闭路定理
对闭路作不经过被积函数 变成 奇点的连续变形
C3
f ( z) d z
C3
C2
f ( z) d z
f ( z) d z
曲线积分及其与路径无关问题
![曲线积分及其与路径无关问题](https://img.taocdn.com/s3/m/452ca00e4b73f242336c5f72.png)
曲线积分与路径无关问题1. 第一型曲线积分(1)对弧长的曲线积分的模型:设给定一条平面曲线弧L :AB ,其线密度为),(y x ρ求弧AB 的质量m 。
⎰=Lds y x f m ),(,(2)若BA L AB L ==21,,则⎰1),(L ds y x f =⎰2),(L ds y x f ,即对弧长的曲线积分与积分弧段有关,但与积分弧段的方向无关。
(3)对弧长的曲线积分的计算设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,)(βα≤≤t ,其中)(t ϕ、)(t ψ在[]βα,上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,则曲线积分⎰Lds y x f ),(存在,且⎰Lds y x f ),(=[]dt t t t t f )()()(),(2'2'ψϕψϕβα+⋅⎰ )(βα<特别,当1),(=y x f 时,⎰Lds y x f ),(表示曲线弧L 的弧长。
当曲线弧L 的方程为)(x g y = )(b x a ≤≤,)(x g 在[]b a ,上有连续的导数,则⎰Lds y x f ),(=[]dx x g x g x f da)(1)(,2'+⋅⎰;把线弧L 的方程为)(x f y =化作参数方程⎩⎨⎧==)(x g y xx ,)(b x a ≤≤,⎰Lds y x f ),(=[]dy y h y y h f dc)(1),(2'+⋅⎰ )(d y c ≤≤2. 第二型曲线积分(1) 第二型曲线积分的模型: 设有一平面力场j y x Q i y x P y x F ),(),(),(+=,其中),(),,(y x Q y x P 为连续函数,一质点在此力场的力作用下,由点A 沿光滑曲线L 运动到点B ,求力场的力所作的功W 。
dy y x Q dx y x P W L),(),(+=⎰,(2)设L 为有向曲线弧,L -为与L 方向相反的有向曲线弧,则dy y x Q dx y x P L),(),(+⎰dy y x Q dx y x P L),(),(+-=⎰-即第二型曲线积分方向无关(3)设xoy 平面上的有向曲线L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,当参数t 单调地由α变到β时,曲线的点由起点A 运动到终点B ,)(t ϕ、)(t ψ在以α及β为端点的闭区间上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,函数),(y x P 、),(y x Q 在L 上连续,则曲线积分dy y x Q dx y x P L),(),(+⎰存在,且⎰+Ldy y x Q dx y x P ),(),(=[][]{}dt t t t Q t t t P ⎰+βαψψϕϕψϕ)()(),()()(),(''这里的α是曲线L 的起点A 所对应的参数值,β是曲线L 的终点B 所对应的参数值,并不要求βα<。
第二型曲线积分与路径无关性的应用
![第二型曲线积分与路径无关性的应用](https://img.taocdn.com/s3/m/ce42841d4a7302768e9939c0.png)
过“ 微积分 ” 微元后 再乘。 第二型曲线积 分就 是函数和 坐标 乘。 当已知 x , y两个方向的力 , 求功 , 或者 已知 x , y , Z 分 别方向上 的流速 , 求流
量时 , 使 用第二 型曲线积分 法。 本文从 以下几个个方 面举例论述 了曲线积分与路径无关性的应用 , 即求原 函数 、 计算曲线积分、 求微分
L E B P d x + Q d y + L F A P d x + Q d y = q 而 弧 脚和 弧 在 实 际 上
构 成了 一条 封闭 曲 线, 命名 为L 。 L E B P d x + Q d y J P d x + Q a y 0 ,
可进一步转化为 I , P d x + Q a y : 0 , 设曲 线L 同 成的区域为 D , D
< 2 >设 有 向 曲 线 弧 为 , 与一 为 一 对 反 方 向 的 有 向 曲 线
弧, 贝 0 有, J L P ( x , y ) d x + Q ( x , ) a y 一 J - L P ( x , y ) d x + Q ( x , y ) d y
『 』 ( 一 蛐= 』 尸 d x + Q a y , 由 于 J , 肋+ 劬: 0 , 从 而 得 ,
此得出 J I P d x + Q d y —I P d x + Q a y = 0 , 可转化为,
A E B J AF B
、
第 二 型 曲线 积 分 与路 径 无 关性 的应 用
( 一) 第二型 曲线积分与路径无关的模型介绍
例 l < 1 >设 有 某 一 平 面 力 场 F ( x , ) =P ( x , y ) i +Q ( x , Y ) J, 公 式
例 2设 弧 A E B 和弧A F B分 别 为 平 面上 的 单 连 通 区 域 ( G ) 内 的
4.路径无关
![4.路径无关](https://img.taocdn.com/s3/m/30b0031ac5da50e2524d7fef.png)
∂P ∂Q = ∂y ∂x
17 证明 (1) (2) 设 L , L2 为D 内任意两条由A 到B 的有向分段光滑曲 1
线, 则
∫L Pdx + Qdy − ∫L
1
Pdx + Qdy
2
L2
B
L1
+∫
=∫
L1+L− 2
L− 2
Pdx + dy
A
Pdx + Qdy
L2
(根据条件(1))
= ∫ Pdx + Qdy
说明: 说明 积分与路径无关时, 曲线积分可记为
∫AB Pdx + Qdy = ∫A Pdx + Qdy
B
证明 (2) (3) 在D内取定点 与路径无关, 有函数
16
和任一点B( x, y ), 因曲线积分
B(x, y )
A(x0, y0 )
( x+∆x, y)
C(x + ∆x, y )
则
∆xu = u(x + ∆x, y) − u (x, y)
L
y = 2 x − x 2 上由点(0,0)到点(1,1)的一段弧; 上由点(0,0)到点(1,1)的一段弧; (0,0)到点(1,1)的一段弧
4
2、求曲线积分 I 1 =
I2 =
∫
AMB
( x + y ) 2 dx − ( x − y ) 2 dy 和
∫
ANB
的差. ( x + y ) 2 dx − ( x − y ) 2 dy 的差.其中 AMB
解
P ( x , y ) = xy 2 ,
Q ( x , y ) = yϕ( x ),
高等数学 第二类曲线积分与路径无关问题1
![高等数学 第二类曲线积分与路径无关问题1](https://img.taocdn.com/s3/m/988ddefb770bf78a652954ac.png)
∫
C
(1 + y 3 ) dx + ( 2 x + y ) dy = ∫
C + c0
(1 + y 3 ) dx + ( 2 x + y ) dy − ∫ (1 + y 3 ) dx + ( 2 x + y ) dy
C0
=
∫∫ ( 2 − 3 y
D
2
)dxdy − ∫ (1 + 0 3 ) dx =
π
=
3a 2 2
∫
2π
0
3 sin 2 t cos 2 tdt = πa 2 . 8
例 3 在过点O(0,0)和A(π,0)的曲线族 y = a sin x 中,求一条曲线C,使沿 该曲 线从O到A的线积分 ∫ (1 + y 3 ) dx + ( 2 x + y ) dy 的值最小。
C
解 本题可用代入法直接求解,这里采用“补线法”用格林公是求解。 令 C 0 : y = 0, x : π → 0 ,即 AO 直线段。
xdy − ydx ,其中 L 为: L x2 + y2
(1)任一简单闭曲线,该闭曲线包围的区域不含有原点; (2)以原点为圆心的任一圆周. 解 这里 P ( x, y ) =
−y x , Q ( x, y ) = 2 , 2 x +y x + y2
2
∂Q y2 − x2 ∂P = 2 = ,且 P ( x, y ) 与 Q ( x, y ) 在不含原点的任意一个区域内具有一 2 2 ∂x ( x + y ) ∂x 阶连续偏导数. (1) 这个曲线积分与路径无关,所以
I =∫ xdy − ydx = 0. x2 + y2
数学分析21.3格林公式、曲线积分与路线的无关性(含习题及参考答案)
![数学分析21.3格林公式、曲线积分与路线的无关性(含习题及参考答案)](https://img.taocdn.com/s3/m/e503a135f01dc281e43af03a.png)
第二十一章 重积分3格林公式、曲线积分与路线的无关性一、格林公式概念:当区域D 的边界L 由一条或几条光滑曲线所组成时,规定边界曲线的正方向为:当人沿边界行走时,区域D 总在他的左边. 与正方向相反的方向称为负方向,记为-L.定理21.11:若函数P(x,y), Q(x,y)在闭区域D 上连续,且有连续的一阶偏导数,则有格林公式:⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . L 为区域D 的边界曲线,并取正方向.证:根据区域D 的不同形状,可分三种情形来证明: (1)若区域D 既是x 型区域,又是y 型区域(如图1),即 平行于坐标轴的直线和L 至多交于两点,该区域D 可表示为: φ1(x)≤y ≤φ2(x), a ≤x ≤b 或ψ1(x)≤x ≤ψ2(x), c ≤y ≤d.这里y=φ1(x)和y=φ2(x)分别为曲线⌒ACB 和⌒AEB 的方程, x=ψ1(x)和x=ψ2(x) 分别为曲线⌒CAE 和⌒CBE的方程, ∴⎰⎰∂∂Dd x Qσ=⎰⎰∂∂)()(21y y d c dx x Q dy ψψ=⎰d c dy y y Q )),((2ψ-⎰d c dyy y Q )),((1ψ=⎰⋂CBE dy y x Q ),(-⎰⋂CAE dy y x Q ),(=⎰⋂CBE dy y x Q ),(+⎰⋂EAC dy y x Q ),(=⎰L dy y x Q ),(.同理可证:-⎰⎰∂∂Dd y Pσ=⎰L dx y x P ),(. 即有⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . (2)若区域D 是一条按段光滑的闭曲线围成(如图2),则先用几段光滑曲线将D 分成有限个既是x 型又是y 型的子区域,然后逐块按(1)得到它们的格林公式,相加即可.图2中区域D 可分成三个既是x 型又是y 型的区域D 1,D 2,D 3,则有⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂D d y P x Q σ=⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂1D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂2D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂3D d y P x Q σ =⎰+1L Qdy Pdx +⎰+2L Qdy Pdx +⎰+3L Qdy Pdx =⎰+L Qdy Pdx.(3)若区域D 由几条闭曲线所围成(如图3), 可适当添加直线AB, CE,把区域转化为(2)的情况处理.图D 的边界线由AB,L 2,BA,⌒AFC ,CE,L 3,EC 及⌒CGA构成. 由(2)知 ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎪⎭⎫ ⎝⎛+++++++⎰⎰⎰⎰⎰⎰⎰⎰⋂⋂CGA EC l CE AFCBA l AB32(Pdx+Qdy)=()⎰⎰⎰++132L L L (Pdx+Qdy)=⎰+L Qdy Pdx .注:格林公式可写为:⎰⎰∂∂∂∂Dd QP y x σ=⎰+L Qdy Pdx .例1:计算⎰AB xdy ,其中曲线AB 为半径为r 的圆在第一象限部分. 解:如图,对半径为r 的四分之一圆域D 应用格林公式有⎰⎰-D d σ=⎰-L xdy =⎰OA xdy +⎰AB xdy +⎰BO xdy =⎰AB xdy . ∴⎰AB xdy =⎰⎰-Dd σ=-41πr 2.例2:计算I=⎰+-Ly x ydxxdy 22, 其中L 为任一不包含原点的闭区域的边界线.解:⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x =22222)(y x x y +-, ⎪⎪⎭⎫ ⎝⎛+-∂∂22y x y y =22222)(y x x y +- 在上述区域D 上连续且有界,∴⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂Dd yx yx y x x x σ2222=0. 由格林公式可得I=0.注:在格林公式中,令P=-y, Q=x ,则得到一个计算平面区域D 的面积S D 的公式:S D =⎰⎰Dd σ=⎰-L ydx xdy 21.例3:如图,计算抛物线(x+y)2=ax (a>0)与x 轴所围的面积.解:曲线⌒AMO由函数y=x ax -, x ∈[0,a], 直线OA 为直线y=0, ∴S D =⎰-ydx xdy 21=⎰-OA ydx xdy 21+⎰⋂-AMO ydx xdy 21=⎰⋂-AMO ydx xdy 21=dx x ax ax ax a ⎰⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-0)(1221=dx ax a ⎰-02121=dx x a a⎰4=62a .二、曲线积分与路线的无关性概念:若对于平面区域D 上任一封闭曲线,皆可不经过D 以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域,否则称为复连通区域。
格林公式·曲线积分与线路的无关性
![格林公式·曲线积分与线路的无关性](https://img.taocdn.com/s3/m/15331fffad51f01dc281f17e.png)
du( x, y) P( x, y)dx Q( x, y)dy.
P( x, y ) Q( x, y ) . y x
(iv) 在D的每一点处, 有
由(iii)有
ux ( x, y) P( x, y), uy ( x, y) Q( x, y)
[ P( x, ( x)) P( x, ( x))]dx
b
a
AEB
P( x, y )dx
ACB
P( x, y )dx
Q( x, y)dy
ACBEA
P( x, y )dx
同理可证:
Q dxdy x D
L
(ii)
若D由一条按段光滑的闭曲线围成
u( x x , y ) u( x , y ) P ( x , y ), x 0 x lim
u( x x, y) u( x, y) ABC P ( x , y )dx Q( x , y )dy AB P ( x , y )dx Q( x , y )dy
L
P( x, y )dx Q( x, y )dy.
B
S
与线路无关, 只与L的起点终点有关; 设ARB与ASB为联结点A, B的任两条光滑曲线. 由(i)
L
P ( x , y )dx Q( x , y )dy 0
Pdx Qdy ) (
ASB
(
ARB
Pdx Qdy ) 0
P( x, y )dx Q( x, y )dy
BC
u( x , y y ) u( x , y ) lim Q( x , y ). y 0 y
曲线积分与路径无关的条件
![曲线积分与路径无关的条件](https://img.taocdn.com/s3/m/2a99284acf84b9d528ea7a86.png)
并求出这个函数.
证明 : 令P( x, y ) = xy 2 , Q( x, y ) = x 2 y, 则
∂P ∂Q ∂P ∂Q P , Q, 和 在整个xoy面上连续,且 = 2 xy = . ∂x ∂x ∂x ∂x
故表达式xy 2 dx + x 2 ydy是某个二元函数的全微分.
L
(2)对于D内任意一条分段光滑曲线L, 积分∫ Pdx + Qdy
L
与路径无关 ;
(3)存在某一函数u = u ( x, y )定义在D上, 使得 du = Pdx + Qdy
在D内恒成立;
∂P ∂Q (4)在D内才处处有 = . ∂y ∂x 证明路线图 : (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
(2) L是从点A(1,0)沿上半圆y = 1 − x 2 到点B (−1,0)的圆弧;
(3) L是从点A(1,0)到点M (0,−1)再到点B (−1,0)的折线.
y
解: 在(1),(2)和(3)的各自条件下
1
I = ∫ (3 x 2 + y )dx + ( x − 2 y )dy = −2
L
−1
说明: 说明
(1)比较此定理的条件与格林公式条件的差别;
(2)应用判别积分与路径无关的条件 : ∂P ∂Q = ; ∂y ∂x
(3)二元函数的"原函数"及其求法.
方法(i) 方法
u ( x, y ) = ∫ P ( x, y 0 ) dx
x0
x
y
• A( x0 , y0 )
• B ( x, y )
由点A(0, )移动到点B ( ,0), 求此力场所作的功.(其中r = x + y ) 2 2
格林公式曲线积分与路径的无关性
![格林公式曲线积分与路径的无关性](https://img.taocdn.com/s3/m/f51b88f5011ca300a6c390c2.png)
y
M
解 曲线 ¼ AMO 由函数 y ax x , x [0, a]
O
N A(a,0) x
图 21 17
表示, ONA 为直线 y 0 , 于是
SD
1 2
Ñ x dy
y dx
1
2
x dy y dx 1
ONA
2
¼ AMO x dy y dx
1
2
¼ AMO x dy y dx
»AB P dx Q dy
与路线的选择无关, 故当
B( x, y) 在 D 内变动时, 其
积分值是 B( x, y) 的函数, 即有
u( x, y) P dx Q dy . »AB
取 x 充分小, 使 C( x x , y) D , 则函数
u( x , y)
对于 x 的偏增量(图21-20)
值定理可得
xu
P dx Q dy
BC
xx
x P(t , y)dt P( x x , y)x ,
其中 0 1. 根据 P( x , y) 在 D 上连续, 于是有
u lim xu lim P( x x , y) P( x , y).
x x0 x x0
同理可证
u Q( x , y). 所以证得 y
(
x
x 1.5 0.5)2
1
dx
4arctan 0.5 2arctan 2.
注1 定理 21.12 中对“单连通区域”的要求是重要 的.如本例若取沿 y 轴由点 A 到点 D 的路径 , 虽 然算起来很简单,但却不可用.因为任何包含 的单连通区域必定含有奇点 E . 又如本节例 2,对任 何不包含原点的单连通区域, 已证得在这个区域内 的任何封闭曲线 L 上, 皆有
格林公式·曲线积分和路线的无关性
![格林公式·曲线积分和路线的无关性](https://img.taocdn.com/s3/m/c957a898915f804d2a16c143.png)
(ii) 对 D 中任一按段光滑曲线 L, 曲线积分
L Pdx Q dy
与路线无关, 只与 L 的起点及终点有关;
(iii) P dx Qdy 是 D 内某一函数 u( x , y) 的全微分, 即在 D 内有 du P dx Qdy;
u( x, y) P dx Q dy . AB
(iv)
在 D 内处处成立
P
Q .
y x
有关定理的说明:
(1) 开区域G 是一个单连通域.
(2) 函数 P( x, y), Q( x, y)在G 内具有一阶连
续偏导数.
两条件缺一不可
(i) 沿 D 内任一按段光滑封闭曲线 L, 有
L P dx Q dy 0;
(ii) 对 D 中任一按段光滑曲线 L, 曲线积分
( )dxdy
D x y
x D1 D2 D3 y
D1
(
Q x
P y
)dxdy
D2
(
Q x
P y
)dxdy
D3
(
Q x
P y
)dxdy
L1 Pdx Qdy L2 Pdx Qdy L3 Pdx Qdy
L Pdx Qdy
L3 D3
D1
(L1, L2 , L3对D来说为正方向) L1
D2 L2
M
曲线AMO 由函数
A(a,0) N
y ax x, x [0,a]表示,
A
1 2
L
xdy
ydx
1
2 ONA
xdy
ydx
1
2 AMO
xdy
ydx
1
2 AMO
xdy
一曲线积分与路径无关的定义二曲线积分与路径无关的条
![一曲线积分与路径无关的定义二曲线积分与路径无关的条](https://img.taocdn.com/s3/m/755c73797375a417866f8fba.png)
例 1验 证(eyx)dx (xye2y)d. y与 路 径 无 关 ,
L
并 求 之 。 其 中L为 过 三 点 o(0,0), A(0,1), B(1,2)
的 圆 周 , 由 o(0,0)到 B(1,2)的 曲 线 弧 .
解 设 P ( x ,y ) e y x ,Q ( x ,y ) x y 2 e y .
A
则 称 曲 线 积 分 L P d Q xdoy
x
在G内与路径无关,否则与路径有关.
L1PdxQdyL2PdxQdyLPdQ x d 0y.
LL 1(L 2)
二、曲线积分与路径无关的条件
定理 2 设 开 区 域 G 是 一 个 单 连 通 域 , 函 数 P ( x , y ),
因此,在 xoy 面内, xy2dxx2ydy是某个函数
u (x, y) 的全微分。 取 x 0 0 ,y 0 0 .
u (x ,y)0 xx0 2 d x 0 yx 2ydyx
2y 2
2
.
四、小结
与路径无关的四个等价命题
条 在 单 连 通 开 区 域 D 上 P (x ,y)Q ,(x ,y)具 有 连 件 续 的 一 阶 偏 导 数 , 则 以 下 四 个 命 题 成 立 .
C 所围的闭区域为 D。
G
G 是单连通的,因此, DG .
于是,在 D 内
P y
Q x
.
CD
应用格林公式,有
C P (x ,y )d x Q (x ,y )d y ( Q x P y)d0. D
即,在 G 内曲线积分 L P (x ,y)d x Q (x ,y)dy
等 (1) 在 D 内 LPdQ x 与 dy路径无关 价 (2 ) C P d Q x d 0 ,闭 y C 曲 D线
ch21.3 格林公.曲线积分与路径的无关性
![ch21.3 格林公.曲线积分与路径的无关性](https://img.taocdn.com/s3/m/960c764f767f5acfa1c7cd19.png)
8
例2. 设 L 是一条分段光滑的闭曲线 证明 是一条分段光滑的闭曲线,
∫L
2xy dx + x2 dy = 0
证: 令 P = 2xy, Q = x2 , 则
3) 可用积分法求 u = P d x + Q d y在域 D 内的原函数 可用积分法求d 在域 内的原函数: 取定点 ( x0, y0 ) ∈D及动点 ( x, y ) ∈D, 则原函数为
u ( x, y) = ∫
( x, y )
= ∫ P(x, y0 )dx +∫ Q(x, y)dy
或 u (x, y) =∫ Q(x0 , y)dy + ∫ P(x, y)dx
L
在D 内
与路径无关, 只与起止点有关(全微分式的积分 全微分式的积分). 与路径无关 只与起止点有关 全微分式的积分 (3) 的全微分, 的全微分 在 D 内是某一函数
d u(x, y) = P dx + Qdy ∂P ∂Q = . (4) 在 D 内每一点都有 ∂y ∂x
即
13
证明 (1)
(2)
15
证明 (3)
(4)
设存在函数 u ( x , y ) 使得
则
du = P dx + Qdy ∂u ∂u = P(x, y), = Q(x, y) ∂x ∂y
P, Q 在 D 内具有连续的偏导数 内具有连续的偏导数, 从而在D内每一点都有 从而在 内每一点都有 ∂P ∂Q = ∂y ∂x
16
证明 (4)
L
3
证明: 证明 1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且 ϕ1(x) ≤ y ≤ ϕ2 (x) y E D: d a ≤ x ≤b
曲线积分与路径无关问题
![曲线积分与路径无关问题](https://img.taocdn.com/s3/m/fe55e9ff988fcc22bcd126fff705cc1755275fdd.png)
曲线积分与路径无关问题1. 第一型曲线积分(1)对弧长的曲线积分的模型:设给定一条平面曲线弧L :AB ,其线密度为),(y x ρ求弧AB 的质量m 。
⎰=Lds y x f m ),(,(2)若BA L AB L ==21,,则⎰1),(L ds y x f =⎰2),(L ds y x f ,即对弧长的曲线积分与积分弧段有关,但与积分弧段的方向无关。
(3)对弧长的曲线积分的计算设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,)(βα≤≤t ,其中)(t ϕ、)(t ψ在[]βα,上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,则曲线积分⎰Lds y x f ),(存在,且⎰Lds y x f ),(=[]dt t t t t f )()()(),(2'2'ψϕψϕβα+⋅⎰ )(βα<特别,当1),(=y x f 时,⎰Lds y x f ),(表示曲线弧L 的弧长。
当曲线弧L 的方程为)(x g y = )(b x a ≤≤,)(x g 在[]b a ,上有连续的导数,则⎰Lds y x f ),(=[]dx x g x g x f da)(1)(,2'+⋅⎰;把线弧L 的方程为)(x f y =化作参数方程⎩⎨⎧==)(x g y xx ,)(b x a ≤≤,⎰Lds y x f ),(=[]dy y h y y h f dc)(1),(2'+⋅⎰ )(d y c ≤≤2. 第二型曲线积分(1) 第二型曲线积分的模型: 设有一平面力场j y x Q i y x P y x F ),(),(),(+=,其中),(),,(y x Q y x P 为连续函数,一质点在此力场的力作用下,由点A 沿光滑曲线L 运动到点B ,求力场的力所作的功W 。
dy y x Q dx y x P W L),(),(+=⎰,(2)设L 为有向曲线弧,L -为与L 方向相反的有向曲线弧,则dy y x Q dx y x P L),(),(+⎰dy y x Q dx y x P L),(),(+-=⎰-即第二型曲线积分方向无关(3)设xoy 平面上的有向曲线L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,当参数t 单调地由α变到β时,曲线的点由起点A 运动到终点B ,)(t ϕ、)(t ψ在以α及β为端点的闭区间上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,函数),(y x P 、),(y x Q 在L 上连续,则曲线积分dy y x Q dx y x P L),(),(+⎰存在,且⎰+Ldy y x Q dx y x P ),(),(=[][]{}dt t t t Q t t t P ⎰+βαψψϕϕψϕ)()(),()()(),(''这里的α是曲线L 的起点A 所对应的参数值,β是曲线L 的终点B 所对应的参数值,并不要求βα<。
积分与路径无关的四个等价条件
![积分与路径无关的四个等价条件](https://img.taocdn.com/s3/m/b8a2f40f5627a5e9856a561252d380eb6394234e.png)
积分与路径无关的四个等价条件1.积分与路径无关的定义积分与路径无关是一个非常重要的数学概念,其定义指的是,当一个向量场中的所有路径的积分是相同的,那么我们就可以称这个积分与路径无关。
在更具体的概念中,这个定义同样适用于曲面积分和体积积分。
2.四个等价条件是什么?虽然积分与路径无关的定义很清晰,但我们还可以从另一个角度来理解它,即四个等价条件。
这些等价条件包括以下内容:(1)向量场是连通的。
(2)积分在一个上限和一个下限之间的值是相同的。
(3)开始和结束点在向量场的同一点。
(4)每个区域内的积分都是相同的。
当这四个条件都满足时,就可以证明积分与路径无关了。
3.向量场是连通的连通性是积分与路径无关的一个重要条件。
如果向量场不是连通的,那么它可能会由多个彼此分离的组成部分构成。
如果我们在这些组件之间移动,那么积分的结果就可能不同。
因此,只有当向量场是连通的,我们才能证明积分与路径无关。
4、积分在一个上限和一个下限之间的值是相同的积分在一个上限和一个下限之间的值是一个非常基本的概念,它可以使我们更好地理解积分的含义。
因此,在积分与路径无关的情况下,当积分在同一区域内的上限和下限相同时,我们可以保证积分的结果是相同的。
5、开始和结束点在同一点在向量场中移动是一个非常重要的过程。
当我们移动时,如果我们的开始和结束点在同一点,我们就可以称这个路径是闭合的。
在闭合路径的前提下,假设我们沿着这个路径进行积分,我们从开始点到结束点的积分将具有相同的值。
6、每个区域内的积分都是相同的最后,在积分与路径无关的情况下,我们也可以证明每个区域中的积分都是相同的。
这意味着,无论我们选择路径的起始点,我们都会得到相同的积分结果。
这个概念同样适用于曲面积分和体积积分。
7、结论积分与路径无关的四个等价条件可以使我们更好的理解和掌握这一基础的数学应用。
当向量场连通、积分在同一区域内的上限和下限相同时、路径是闭合的、每个区域中的积分结果相同时,我们就可以得到积分与路径无关的结论。
§4 格林(Green)公式和曲线积分与路径无关性
![§4 格林(Green)公式和曲线积分与路径无关性](https://img.taocdn.com/s3/m/ef2f91fde87101f69f319561.png)
。
再利用例 2 的注即可求出结果。】
例 4 在格林公式中,若 P y , Q x ,则公式变为
ydx xdy 2 D d 2D ,即
D
1 2
ydx
xdy (平面图形的面积公式)。
2
2
试用上述公式再计算星形线
x a
3
y b
3
1(a
0,b
0 )围成的平面图形
D
的体积
D 。
【
例 1 求 x2 ydx xy2dy ,其中 : x2 y2 R2 , 为顺时针。
【记 P x2 y ,Q xy2 ,显然它们在以 为边界的闭圆: x2 y2 R2 上连续可微。注意
到 为顺时针,所以,由格林公式得,
x2 ydx xy2dy x2 ydx xy2dy
我们总可以选择适当垂直于 x 的直线将 D 分解成有限个 x 型区域的并集。 不失一般性,仅就 D 为图(1)的情形证明。
-3-
数学分析/第 20 章 重积分
如图示, D D1 D2 , D1 和 D2 都是 x 型区域, D1 的边界正向为
D1 A, B B, E E , F F, A ,
数学分析/第 20 章 重积分
§4 格林(Green)公式和曲线积分与路径无关性
作为二重积分计算的应用,本节我们将建立利用二重积分来计算沿平面封闭曲线的第二 型曲线积分的一种有效方法——格林公式。
本节,具体学习两个内容: 1、建立格林公式(特点:反映了沿平面曲线的第二型曲线积分与二重积分的关系。) 2、格林公式的应用。包括两个方面: 一是计算某些曲线积分和证明某些涉及曲线积分的积分等式; 二是建立曲线积分与路径无关的条件。
y)
,
曲线积分与路径无关的问题之证明
![曲线积分与路径无关的问题之证明](https://img.taocdn.com/s3/m/e690dc2ac4da50e2524de518964bcf84b9d52daa.png)
曲线积分与路径无关的问题之证明第一篇:曲线积分与路径无关的问题之证明设平面上的单连通区域G内分别以A和B两点为起点和终点的弧ρρρ有连续向量函数F(x,y)=P(x,y)i+Q(x,y)j,要使该函数的曲线积分与路径无关,就有⋯AFB,AEB和弧⋯⎰⋯AEBPdx+Qd=y⎰⋯AFBP+dx,于Qdy是有即⎰⎰⋯AEBPdx+Qdy-⎰⋯Pdx+Qdy=0,AFB⋯AEB⋯Pdx+Qdy+⎰⋯Pdx +Qdy=0,实际上弧⋯AEB和弧BFABFA构成了一封闭曲线L,上式等价为内可以取⋯⎰Pdx+Qdy=0L任意大小。
,记L围起的区域为D,D 在G用格林公式∂Q∂P(-)dxdy=⋯Pdx+Qdy⎰⎰⎰L∂x∂yD,因为⋯⎰∂Q∂PPdx+Qdy=0,得到⎰⎰(-)dxdy=0,又因为L∂x∂yD∂Q∂P∂Q∂P=-=0D可以取任意小,于是有,或者∂x∂y。
这就得到了函数∂x∂y曲面积分与路径无关的条件。
第二篇:曲线积分与格林公式总结一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x, y)处的线密度为μ(x, y).求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆sn(∆si也表示弧长);任取(ξi ,ηi)∈∆si,得第i小段质量的近似值μ(ξi ,ηi)∆si;整个物质曲线的质量近似为M≈∑μ(ξi,ηi)∆si;i=1n令λ=max{∆s1,∆s2,⋅⋅⋅,∆sn}→0,则整个物质曲线的质量为M=lim∑μ(ξi,ηi)∆si.λ→0i=1n这种和的极限在研究其它问题时也会遇到.定义设L为xOy面内的一条光滑曲线弧,函数f(x,y)在L上有界.在L 上任意插入一点列M1, M2,⋅⋅⋅, Mn-1把L分在n个小段.设第i个小段的长度为∆si,又(ξi,ηi)为第i个小段上任意取定的一点,作乘积f(ξi,ηi)∆si,(i=1, 2,⋅⋅⋅, n),并作和∑f(ξi,ηi)∆si,如果当各小弧i=1n段的长度的最大值λ→0,这和的极限总存在,则称此极限为函数f(x, y)在曲线弧L上对弧长n的曲线积分或第一类曲线积分,记作lim∑f(ξi,ηi)∆si.⎰Lf(x,y)ds,即⎰Lf(x,y)ds=λ→0i=1其中f(x, y)叫做被积函数, L 叫做积分弧段.设函数f(x, y)定义在可求长度的曲线L上,并且有界.将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆sn,并用∆si表示第i段的弧长;在每一弧段∆si上任取一点(ξi,ηi),作和∑f(ξi,ηi)∆si;i=1n令λ=max{∆s1,∆s2,⋅⋅⋅,∆sn},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作n⎰Lf(x,y)ds,即lim∑f(ξi,ηi)∆si.⎰Lf(x,y)ds=λ→0i=1其中f(x, y)叫做被积函数, L 叫做积分弧段.曲线积分的存在性:当f(x, y)在光滑曲线弧L上连续时,对弧长的曲线积分是存在的.以后我们总假定f(x, y)在L上是连续的.⎰Lf(x,y)ds根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分⎰Lμ(x,y)ds的值,其中μ(x, y)为线密度.对弧长的曲线积分的推广:lim∑f(ξi,ηi,ζi)∆si.⎰Γf(x,y,z)ds=λ→0i=1n如果L(或Γ)是分段光滑的,则规定函数在L(或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和.例如设L可分成两段光滑曲线弧L1及L2,则规定⎰L+L12f(x,y)ds=⎰f(x,y)ds+⎰f(x,y)ds.L1L2闭曲线积分:如果L是闭曲线,那么函数f(x, y)在闭曲线L上对弧长的曲线积分记作⎰Lf(x,y)ds.对弧长的曲线积分的性质:性质1 设c1、c2为常数,则⎰L[c1f(x,y)+c2g(x,y)]ds=c1⎰Lf(x,y)ds+c2⎰Lg(x,y)ds;性质2 若积分弧段L可分成两段光滑曲线弧L1和L2,则⎰Lf(x,y)ds=⎰Lf(x,y)ds+⎰L1f(x,y)ds;2性质3设在L上f(x, y)≤g(x, y),则⎰Lf(x,y)ds≤⎰Lg(x,y)ds.⎰Lf(x,y)ds|≤⎰L|f(x,y)|ds 特别地,有|二、对弧长的曲线积分的计算法根据对弧长的曲线积分的定义,如果曲线形构件L的线密度为f(x, y),则曲线形构件L的质量为⎰Lf(x,y)ds.x=ϕ(t), y=ψ(t)(α≤t≤β),另一方面,若曲线L的参数方程为则质量元素为f(x,y)ds=f[ϕ(t), ψ(t)]曲线的质量为即ϕ'2(t)+ψ'2(t)dt,⎰αβf[ϕ(t), ψ(t)]ϕ'2(t)+ψ'2(t)dt.f(x,y)ds=⎰f[ϕ(t), ψ(t)]ϕ'2(t)+ψ'2(t)dt.αβ⎰L定理设f(x, y)在曲线弧L上有定义且连续, L的参数方程为x=ϕ(t), y=ψ(t)(α≤t≤β),其中ϕ(t)、ψ(t)在[α,β]上具有一阶连续导数,且ϕ'2(t)+ψ'2(t)≠0,则曲线积分且⎰Lf(x,y)ds存在,⎰Lf(x,y)ds=⎰f[ϕ(t),ψ(t)]ϕ'2(t)+ψ'2(t)dt(ααβ证明(略)应注意的问题:定积分的下限α一定要小于上限β.讨论:(1)若曲线L的方程为y=ψ(x)(a≤x≤b),则提示:L的参数方程为x=x, y=ψ(x)(a≤x≤b),⎰Lf(x,y)ds=? ⎰Lf(x,y)ds=⎰f[x,ψ(x)]1+ψ'2(x)dx.ab(2)若曲线L的方程为x=ϕ(y)(c≤y≤d),则提示:L的参数方程为x=ϕ(y), y=y(c≤y≤d),⎰Lf(x,y)ds=? ⎰Lf(x,y)ds=⎰cdf[ϕ(y),y]ϕ'2(y)+1dy.(3)若曲Γ的方程为x=ϕ(t), y=ψ(t), z=ω(t)(α≤t≤β),则⎰Γf(x,y,z)ds=?提示:⎰Γf(x,y,z)ds=⎰f[ϕ(t),ψ(t),ω(t)]ϕ'2(t)+ψ'2(t)+ω'2(t)dt.αβ例1 计算⎰Lyds,其中L是抛物线y=x2上点O(0, 0)与点B(1, 1)之间的一段弧.解曲线的方程为y=x2(0≤x≤1),因此⎰L11yds=⎰x21+(x2)'2dx=⎰x1+4x2dx=1(55-1).0012例2 计算半径为R、中心角为2α的圆弧L对于它的对称轴的转动惯量I(设线密度为μ=1).解取坐标系如图所示,则I=曲线L的参数方程为x=Rcosθ, y=Rsinθ(-α≤θ于是I=α⎰Ly2ds.⎰Ly2ds=⎰R2sin2θ(-Rsinθ)2+(Rcosθ)2dθ-α=R3⎰-αsin2θdθ=R(α-sinα cosα).3α例3 计算曲线积分⎰Γ(x2+y2+z2)ds,其中Γ为螺旋线x=acost、y=asint、z=kt上相应于t从0到达2π的一段弧.解在曲线Γ上有x2+y2+z2=(a cos t)2+(a sin t)2+(k t)2=a2+k 2t 2,并且ds=(-asint)2+(acost)2+k2dt=a2+k2dt,于是⎰Γ(x2+y2+z2)ds=⎰(a2+k2t2)a2+k2dt02π=2πa2+k2(3a2+4π2k2).3小结:用曲线积分解决问题的步骤:(1)建立曲线积分;(2)写出曲线的参数方程(或直角坐标方程),确定参数的变化范围;(3)将曲线积分化为定积分;(4)计算定积分.§10.对坐标的曲线积分一、对坐标的曲线积分的概念与性质变力沿曲线所作的功:设一个质点在xOy面内在变力F(x,y)=P(x,y)i+Q(x,y)j的作用下从点A沿光滑曲线弧L移动到点B,试求变力F(x, y)所作的功.用曲线L上的点A=A0, A1, A2,⋅⋅⋅, An-1, An=B把L分成n个小弧段,设Ak=(xk , yk),有向线段AkAk+1的长度为∆sk,它与x轴的夹角为τk ,则AkAk+1={cosτk,sinτk}∆sk(k=0, 1, 2,⋅⋅⋅, n-1).→→)显然,变力F(x,y)沿有向小弧段Ak Ak+1所作的功可以近似为F(xk,yk)⋅AkAk+1=[P(xk,yk)cosτk+Q(xk,yk)sinτk]∆sk;于是,变力F(x, y)所作的功W=∑从而W=⎰[P(x,y)cosτ+Q(x,y)sinτ]ds.L这里τ=τ(x, y), {cosτ, sinτ}是曲线L在点(x, y)处的与曲线方向一致的单位切向量.n-1→F(xk,yk)⋅AkAk+1k=1n-1→≈∑[P(xk,yk)cosτk+Q(xk,yk)sinτk]∆sk,k=1把L分成n个小弧段: L1,L2,⋅⋅⋅,Ln;变力在Li上所作的功近似为:F(ξi,ηi)⋅∆si=P(ξi,ηi)∆xi+Q(ξi,ηi)∆yi ;变力在L上所作的功近似为:∑[P(ξi,ηi)∆xi+Q(ξi,ηi)∆yi];i=1nn变力在L上所作的功的精确值:W=limλ→0∑[P(ξi,ηi)∆xi+Q(ξi,ηi)∆yi],i=1其中λ是各小弧段长度的最大值.提示:用∆si={∆xi,∆yi}表示从Li的起点到其终点的的向量.用∆si表示∆si 的模.对坐标的曲线积分的定义:定义设函数f(x, y)在有向光滑曲线L上有界.把L分成n个有向小弧段L1,L2,⋅⋅⋅,Ln;小弧段Li的起点为(xi-1,yi-1),终点为(xi,yi),∆xi=xi-xi-1,∆yi=yi-yi-1;(ξi,η)为Li上任意一点,λ为各小弧段长度的最大值.如果极限limλ→0∑f(ξi,ηi)∆xi总存在,则称此极限为函数i=1n f(x, y)在有向曲线L上对坐标x的曲线积分,记作⎰Lf(x,y)dx,即lim∑f(ξi,ηi)∆xi,⎰Lf(x,y)dx=λ→0i=1如果极限limnλ→0∑f(ξi,ηi)∆yi总存在,则称此极限为函数i=1n f(x, y)在有向曲线L上对坐标x的曲线积分,记作⎰Lf(x,y)dy,即lim∑f(ξi,ηi)∆yi.⎰Lf(x,y)dy=λ→0i=1设L为xOy面上一条光滑有向曲线, {cosτ, sinτ}是与曲线方向一致的单位切向量,函数P(x, y)、Q(x, y)在L上有定义.如果下列二式右端的积分存在,我们就定义n⎰LP(x,y)dx=⎰LP(x,y)cosτds,⎰LQ(x,y)dy=⎰LQ(x,y)sinτds,前者称为函数P(x,y)在有向曲线L上对坐标x的曲线积分,后者称为函数Q(x, y)在有向曲线L上对坐标y的曲线积分,对坐标的曲线积分也叫第二类曲线积分.定义的推广:设Γ为空间内一条光滑有向曲线, {cosα, cosβ, cosγ}是曲线在点(x, y,z)处的与曲线方向一致的单位切向量,函数P(x,y,z)、Q(x,y,z)、R(x, y, z)在Γ上有定义.我们定义(假如各式右端的积分存在) ⎰ΓP(x,y,z)dx=⎰ΓP(x,y,z)cosαds,⎰ΓQ(x,y,z)dy=⎰ΓQ(x,y,z)cosβds,⎰ΓR(x,y,z)dz=⎰ΓR(x,y,z)cosγds.nlim∑f(ξi,ηi,ζi)∆xi,⎰Lf(x,y,z)dx=λ→0i=1lim∑f(ξi,ηi,ζi)∆yi,⎰Lf(x,y,z)dy=λ→0i=1lim∑f(ξi,ηi,ζi)∆zi.⎰Lf(x,y,z)dz=λ→0i=1对坐标的曲线积分的简写形式:nn⎰LP(x,y)dx+⎰LQ(x,y)dy=⎰LP(x,y)dx+Q(x,y)dy;⎰ΓP(x,y,z)dx+⎰ΓQ(x,y,z)dy+⎰ΓR(x,y,z)dz⎰ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz.=对坐标的曲线积分的性质:(1)如果把L分成L1和L2,则⎰LPdx+Qdy=⎰LPdx+Qdy+⎰LPdx+Qdy.2(2)设L是有向曲线弧,-L是与L方向相反的有向曲线弧,则⎰-LP(x,y)dx+Q(x,y)d=-⎰LP(x,y)dx+Q(x,y)dy.两类曲线积分之间的关系:设{cosτi, sinτi}为与∆si同向的单位向量,我们注意到{∆xi,∆yi}=∆si,所以∆xi=cosτi⋅∆si,∆yi=sinτi⋅∆si,lim∑f(ξi,ηi)∆xi ⎰Lf(x,y)dx=λ→0i=1n=limf(ξi,ηi)cosτi∆si=⎰f(x,y)cosτds,∑Lλ→0i=1nnlim∑f(ξi,ηi)∆yi⎰Lf(x,y)dy=λ→0i==limλ→0∑f(ξi,ηi)sinτi∆si=⎰Lf(x,y)sinτds.i=1n即⎰LPdx+Qdy=⎰L[Pcosτ+Qsinτ]ds,⎰LA⋅dr=⎰LA⋅tds.或其中A={P, Q}, t={cosτ, sinτ}为有向曲线弧L上点(x, y)处单位切向量, dr=tds={dx, dy}.类似地有或⎰ΓPdx+Qdy+Rdz=⎰Γ[Pcosα+Qcosβ+Rcosγ]ds,⎰ΓA⋅dr=⎰ΓA⋅tds=⎰ΓAtds.其中A={P, Q, R}, T={cosα, cosβ, cosγ}为有向曲线弧Γ上点(x, y, z)处单们切向量, dr=T ds ={dx, dy, dz }, A t为向量A在向量t上的投影.二、对坐标的曲线积分的计算:定理:设P(x, y)、Q(x, y)是定义在光滑有向曲线 L: x=ϕ(t), y=ψ(t),上的连续函数,当参数t单调地由α变到β时,点M(x, y)从L的起点A沿L运动到终点B,则讨论:提示:β⎰LP(x,y)dx=⎰αP[ϕ(t),ψ(t)]ϕ'(t)dt,⎰LQ(x,y)dy=⎰Q[ϕ(t),ψ(t)]ψ'(t)dt.αβ⎰LP(x,y)dx+Q(x,y)dy=?⎰LP(x,y)dx+Q(x,y)dy=⎰{P[ϕ(t),ψ(t)]ϕ'(t)+Q[ϕ(t),ψ(t)]ψ'(t)}dt.αβ定理:若P(x, y)是定义在光滑有向曲线L:x=ϕ(t), y=ψ(t)(α≤t≤β)上的连续函数, L的方向与t的增加方向一致,则β⎰LP(x,y)dx=⎰αP[ϕ(t),ψ(t)]ϕ'(t)dt.简要证明:不妨设α≤β.对应于t点与曲线L的方向一致的切向量为{ϕ'(t),ψ'(t)},所以cosτ=ϕ'(t),22ϕ'(t)+ψ'(t)从而⎰LP(x,y)dx=⎰LP(x,y)cosτds=β⎰αβP[ϕ(t),ψ(t)]ϕ'(t)ϕ'2(t)+ψ'2(t)dtϕ'2(t)+ψ'2(t)=⎰αP[ϕ(t),ψ(t)]ϕ'(t)dt.应注意的问题:下限a对应于L的起点,上限β对应于L的终点,α不一定小于β.例1.计算⎰Lxydx,其中L为抛物线y=x上从点A(1,-1)到点B(1, 1)的一段弧.2解法一:以x为参数. L分为AO和OB两部分:AO的方程为y=-x, x从1变到0; OB 的方程为y=x, x从0变到1.因此⎰Lxydx=⎰AOxydx+⎰OBxydx=⎰1x(-10x)dx+⎰xxdx=2⎰0113x2dx=4. 05第二种方法:以y为积分变量. L的方程为x=y2, y从-1变到1.因此.22'4xydx=yy(y)dy=2ydy=⎰L⎰-1⎰-151例2.计算⎰Ly2dx.(1)L为按逆时针方向绕行的上半圆周x2+y2=a2 ;(2)从点A(a, 0)沿x轴到点B(-a,0)的直线段.解(1)L 的参数方程为 x=a cosθ, y=a sinθ,θ从0变到π.因此4a3.22232ydx=asinθ(-asinθ)dθ=a(1-cosθ)dcosθ=-⎰L⎰0⎰032-aππ(2) L的方程为y=0, x从a变到-a.因此⎰Lydx=⎰a0dx=0.2例3计算⎰L2xydx+x2dy.(1)抛物线y=x上从O(0,0)到B(1,1)的一段弧;(2)抛物线x=y2上从O(0, 0)到B(1, 1)的一段弧;(3)从O(0, 0)到A(1, 0),再到R(1, 1)的有向折线OAB .解(1)L: y=x2, x从0变到1.所以⎰L2xydx+x2dy=⎰(2x⋅x2+x2⋅2x)dx=4⎰x3dx=1.0021211(2)L: x=y2, y从0变到1.所以⎰L2xydx+xdy=⎰0(2y⋅y⋅2y+y)dy=5⎰y4dy=1 .041(3)OA: y=0, x从0变到1; AB: x=1, y从0变到1.⎰L2xydx+x2dy=⎰OA2xydx+x2dy+⎰AB2xydx+x2dy=(2x⋅0+x2⋅0)dx+(2y⋅0+1)dy=0+1=1.⎰01⎰01例4.计算⎰Γx3dx+3zy2dy-x2ydz,其中Γ是从点A(3, 2, 1)到点B(0,0, 0)的直线段AB.解:直线AB的参数方程为x=3t, y=2t, x=t,t从1变到0.所以所以I=87.3223[(3t)⋅3+3t(2t)⋅2-(3t)⋅2t]dt=87tdt=-⎰1⎰1400例5.设一个质点在M(x, y)处受到力F的作用, F的大小与M到原点O的距离成正比, Fx2+y2=1的方向恒指向原点.此质点由点A(a,0)沿椭圆2按逆时针方向移动到点B(0,b),2ab 求力F所作的功W.x2+y2=1例5.一个质点在力F的作用下从点A(a, 0)沿椭圆2按逆时针方向移动到点ab2B(0, b), F的大小与质点到原点的距离成正比,方向恒指向原点.求力F所作的功W.解:椭圆的参数方程为x=acost, y=bsint , t从0变到→π.r=OM=xi+yj, F=k⋅|r|⋅(-其中k>0是比例常数.r)=-k(xi+yj),|r|)xdx+ydy.于是W=⎰)-kxdx-kydy=-k⎰A ABB=-k⎰02(-a2costsint+b2sintcost)dt⎰ππ=k(a2-b2)02sintcostdt=k(a2-b2).三、两类曲线积分之间的联系由定义,得⎰LPdx+Qdy=⎰L(Pcosτ+Qsinτ)ds ⎰L⎰L={P,Q}⋅{cosτ,sinτ}ds=F⋅dr,其中F={P, Q}, T={cosτ, sinτ}为有向曲线弧L上点(x, y)处单位切向量, dr=Tds={dx, dy}.类似地有⎰ΓPdx+Qdy+Rdz=⎰Γ(Pcosα+Qcosβ+Rcosγ)ds ⎰Γ⎰Γ={P,Q,R}⋅{cosα,cosβ,cosγ}ds=F⋅dr.其中F={P, Q, R}, T={cosα, cosβ, cosγ}为有向曲线弧Γ上点(x, y, z)处单们切向量, dr=T ds ={dx, dy, dz }.一、格林公式单连通与复连通区域:设D为平面区域,如果D内任一闭曲线所围的部分都属于D,则称D为平面单连通区域,否则称为复连通区域.对平面区域D的边界曲线L,我们规定L的正向如下:当观察者沿L 的这个方向行走时, D内在他近处的那一部分总在他的左边.区域D的边界曲线L的方向:定理1设闭区域D由分段光滑的曲线L围成,函数P(x,y)及Q(x, y)在D上具有一阶连续偏导数,则有⎰⎰(D∂Q∂P-)dxdy=⎰Pdx+Qdy,L∂x∂y其中L是D的取正向的边界曲线.简要证明:仅就D即是X-型的又是Y-型的区域情形进行证明.设D={(x, y)|ϕ1(x)≤y≤ϕ2(x), a≤x≤b}.因为∂P连续,所以由二重积分的计算法有∂y∂Pdxdy=b{ϕ2(x)∂P(x,y)dy}dx=b{P[x,ϕ(x)]-P[x,ϕ(x)]}dx.21⎰⎰∂y⎰a⎰ϕ1(x)∂y⎰aD另一方面,由对坐标的曲线积分的性质及计算法有⎰LPdx=⎰LPdx+⎰LPdx=⎰aP[x,ϕ1(x)]dx+⎰bP[x,ϕ2(x)]dx12ba={P[x,ϕ1(x)]-P[x,ϕ2(x)]}dx.因此-⎰ab∂Pdxdy=Pdx.⎰⎰∂y⎰LD设D={(x, y)|ψ1(y)≤x≤ψ2(y), c≤y≤d}.类似地可证∂Q⎰⎰∂xdxdy=⎰LQdx.D由于D即是X-型的又是Y-型的,所以以上两式同时成立,两式合并即得⎛∂Q∂P⎫-⎪dxdy=⎰Pdx+Qdy.⎰⎰L∂x∂y⎭D⎝应注意的问题:对复连通区域D,格林公式右端应包括沿区域D的全部边界的曲线积分,且边界的方向对区域D来说都是正向.设区域D的边界曲线为L,取P=-y, Q=x,则由格林公式得2⎰⎰dxdy=⎰Lxdy-ydx,或A=⎰⎰dxdy=2⎰Lxdy-ydx.D1D例1.椭圆x=a cosθ, y=b sinθ所围成图形的面积A.分析:只要∂Q∂P∂Q-=1,就有⎰⎰(-∂P)dxdy=⎰⎰dxdy=A.∂x∂y∂x∂yDD解:设D是由椭圆x=acosθ, y=bsinθ所围成的区域.令P=-1y, Q=1x,则∂Q-∂P=1+1=1.∂x∂y2222于是由格林公式,A=1ydx+1xdy=1-ydx+xdy dxdy=-⎰⎰⎰L222⎰LD=2π112π(absin22θ+abcosθ)dθ=ab⎰dθ=πab.⎰0220例2 设L是任意一条分段光滑的闭曲线,证明⎰L2xydx+x2dy=0.∂Q∂P-=2x-2x=0.∂x∂y证:令P=2xy,Q=x2,则因此,由格林公式有⎰L2xydx+x2dy=±⎰⎰0dxdy=0.(为什么二重积分前有“±”号?) D2例3.计算⎰⎰e-ydxdy,其中D是以O(0, 0), A(1, 1), B(0, 1)为顶点的三角形闭区域.D分析:要使∂Q∂P-y22-=e,只需P=0, Q=xe-y.∂x∂y2解:令P=0, Q=xe-y,则∂Q∂P-y2-=e.因此,由格林公式有∂x∂y-y2⎰⎰eD-y2dxdy=OA+AB+BO⎰xedy=⎰xeOA-y2dy=⎰xe-xdx=1(1-e-1).0212例4 计算xdy-ydx⎰Lx2+y2,其中L为一条无重点、分段光滑且不经过原点的连续闭曲线, L的方向为逆时针方向.-y∂Qy2-x2∂Px22解:令P=2, Q=2.则当x+y≠0时,有.==∂x(x2+y2)2∂yx+y2x+y2记L 所围成的闭区域为D.当(0,0)∉D 时,由格林公式得xdy-ydx⎰Lx2+y2=0;当(0, 0)∈D时,在D内取一圆周l: x2+y2=r 2(r>0).由L及l围成了一个复连通区域D 1,应用格林公式得xdy-ydxxdy-ydx⎰Lx2+y2-⎰lx2+y2=0,其中l的方向取逆时针方向.2πr2cos2θ+r2sin2θxdy-ydxxdy-ydxdθ=2π.=⎰22 =⎰于是⎰0Lx2+y2lx+yr2解记L 所围成的闭区域为D.当(0, 0)∉D时,由格林公式得xdy-ydx∂Q∂P=(⎰Lx2+y2⎰⎰∂x-∂y)dxdy=0.D当(0, 0)∈D时,在D内取一圆周l: x2+y2=r2(r>0).由L及l围成了一个复连通区域D1,应用格林公式得xdy-ydx∂Q∂P=(⎰L+lx2+y2⎰⎰∂x-∂y)dxdy=0,D1即xdy-ydxxdy-ydx⎰Lx2+y2+⎰lx2+y2=0,其中l的方向取顺时针方向.于是xdy-ydxxdy-ydx2πr2cos2θ+r2sin2θdθ=2π.=⎰Lx2+y2⎰l-x2+y2=⎰0r2-y∂Qy2-x2∂Px22分析:这里P=2,Q=2,当x+y≠0时,有.==∂x(x2+y2)2∂yx+y2x+y2第三篇:曲线积分与曲面积分重点总结+例题高等数学教案曲线积分与曲面积分第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的圈数。例如当
n时
C
M
n2
cPdx Qdy
Pdx Qdx
Pdx Qdx
EA' A''E
EB'B''E
如果它按逆时针 方2向绕
的圈数为 ,按顺时
M
n1
针方向绕 M 的圈数为 n2 ,那么 n n1 n2 。
如果 D 内有 n 个奇点 M1, , Mn, ,在 Mi i 1,2, ,n
Ux, y 使 dU Pdx Qdy ,同时 Pdx Qdy 的曲
线积分与路径无关。在区域 D 内固定一点 M x0, y0 ,
对 点
D M
内任何点M x,
的积分,得
y
,沿两条直线
U x, y x Px, x0
y
l1 和
dx
y
y0
l2
Q
从点
x0 , ydx
M0 C
到
其中 C U x0, y0 ,同样不难验证 Ux, y 也是 Pdx Qdy
即环绕某一奇点的任两条闭路沿同一方向的积分相等。因
此,对区域 D 中任何闭路 C ,它或者不绕过奇点 M , 或者绕过 n 周,这时积分值就是
t Pdx Qdy
的 n倍。只环绕奇点 M 一周的闭路上的积分值叫做区域
D 的循环常数,记为 ,于是,对 D 内任一闭路 ,
C
这里 为沿闭路 cP按dx逆 Q时d针y 方n向绕
(iii)微分式 Pdx Qdy 在 D 内是某一个函数
Ux, y 的全微分,即 dU Pdx Qdy ;
(iv) P Q 在 D 内处处成立。
y x
证明
当曲线积分和路径无关时,即满足上面的诸条件,如
令点 Ax0, y0 固定而点 Bx, y 为区域 D 内任意一点,
那么由积分所定义的函数
例 计算
I
xdy ydx l x2 y2
U
B
U
A
U
M
B A
这里 U B U xB , yB ,U A U xA, yA , xA, yA 和
xB , yB
分别为
A
,B
点的坐标。
U M B
A
是一个
记号,它等于 UBUA 。
剩下来还要说明如何求 Pdx Qdy 的原函数。设 P 和
Q 满足定理的条件
P Q y x
。因此必存在原函数
的一个原函数。以下考虑非单连通区域的情形,并引进一
个重要概念:循环常数,在曲线积分与路径无关的定理中,
它的理论是建立在两个假定之上(i)所考虑区域 是D单 连通的,即没有“洞”;(ii)函数 P, Q及其偏导数
在 D 内连续。如果这两个条件被破坏了,一般来说,上 面的那些断言将不会成立。
现在讨论区域内有一个奇点 M 的情形。这时,如果
U x, y
x,y
Pdx Qdx
x0 , y0
在 D 内连续并且单值。这个函数 Ux, y 为 Pdx Qdy
的一个原函数,它和定积分中所述原函数相仿并有以下性 质:
1’ dUx, y Pdx Qdy .这由刚才的证明即得。
2’利用原函数 Ux, y 来计算曲线积分
Pdx AB
Qdx
定理 若函数 Px, y,Qx, y 在区域 D 上有连续的
偏导数, D 是单连通区域,那么以下四条相互等价:
(i)对任一全部含在 D 内闭路 C ,
cPx, ydx Qx, ydy 0
(ii)对任一全部含在 D 内的曲线 l ,曲线积分
l Px, ydx Qx, ydy
与路径无关(只依赖曲线的端点);
闭路中包含一奇点,格林公式就不能应用。我们考虑两条 闭路 l , L 都逆时针绕奇点 M 一圈,可用线段 AB 将l
和 L 联结起来,在 L 及 l 上沿逆时针方向积分,即得
LPdx Qdy l Pdx Qdx
Pdx Qdx 0
BB'B''B BA
AA'' A' A
AB
所以
LPdx Qx, ydy t Pdx Qdy
周围作一环路使它不包含其他奇点,则沿闭路的积分 i 就是一个循环常数。区域 D 共有 n 个循环常数1, ,n,
,若 C 为任意的含在 D 内的闭路,它环绕点 Mi 的周
数为 ki ki 0,1,2, ,这里 ki 的算法和上述的 n
相同,则
n
c Pdx Qx, ydy kii i1
所有沿 D 内任意闭路的积分都有这样的形式。