动能定理在变力做功情况下的应用
动能定理在变力做功情况下的应用
在匀加速运动过程中加速度为
a=
F m
mg
120
810
m/s2=5
m/s2,
m
8
末速度
vt
P m
1 200
m/s=10
m/s
F 120
m
上升的时间
t1=
v t
10
s=2
s,
a5
上升高度为
h1=
v t
2
102
m=10 m
2a 2 5
在功率恒定的过程中,最后匀速运动的速率为
vm=
P m
P m
1 200
类型四: 动 能定理在变 力做功情况 下的应用
例1.如图所示,AB为1/4圆弧轨道,半 径为R=0.8m,BC是水平轨道,长x=3m, BC处的摩擦系数为μ=1/15,今有质量 m=1kg的物体,自A点从静止起下滑到C 点刚好停止。求物体在轨道AB段所受的 阻力对物体做的功。
例 2.如图所示,质量为 m 的物体被细绳经过光滑小孔而牵引,
m/s=15
m/s
F mg 810
外力对物体做的总功 W=Pmt2-mgh2, h1+h2=90 m
动能变化量为 ΔEk= 1 mvm2- 1 mvt2
2
2
由动能定理得 Pmt2-mgh2= 1 mvm2- 1 mvt2
2
2
代入数据后解得 t2=5.75 s,所以 t=t1+t2=7.75 s
所需时间至少为 7.75 s.
A R
D R
在光滑的水平面上做匀速圆周运动,拉力为某个值 F 时转动
半径为 R,当外力逐渐增大到 6F 时,物体仍做匀速圆周运动,
半径为 R/2.则外力对物体所做的功为( )
2024届高考一轮复习物理教案(新教材粤教版):动能定理及其应用
第2讲动能定理及其应用目标要求 1.理解动能、动能定理,会用动能定理解决一些基本问题.2.能利用动能定理求变力做的功.3.掌握解决动能定理与图像结合的问题的方法.考点一动能定理的理解和基本应用1.动能(1)定义:物体由于运动而具有的能量叫作动能.(2)公式:E k=12m v2,单位:焦耳(J).1J=1N·m=1kg·m2/s2.(3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W=ΔE k=E k2-E k1=12m v22-12m v12.(3)物理意义:合力做的功是物体动能变化的量度.1.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√) 2.物体在合外力作用下做变速运动时,动能一定变化.(×)3.物体的动能不变,所受的合外力必定为零.(×)4.合力对物体做正功,物体的动能增加;合力对物体做负功,物体的动能减少.(√)1.应用动能定理解题应抓住“两状态,一过程”,“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定在这一过程中研究对象的受力情况和位置变化或位移信息.2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解,也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1如图所示,AB 为四分之一圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A 从静止开始下滑,恰好运动到C 处停止,不计空气阻力,重力加速度为g ,那么物体在AB 段克服摩擦力所做的功为()A .μmgR B.12mgR C .mgR D .(1-μ)mgR答案D解析BC 段物体所受摩擦力为f =μmg ,位移为R ,故BC 段摩擦力对物体做功W =-fR =-μmgR ,对全程由动能定理可知mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做功为W 克=mgR -μmgR =(1-μ)mgR ,选D.例2(2021·河北卷·6)一半径为R 的圆柱体水平固定,横截面如图所示,长度为πR 、不可伸长的轻细绳,一端固定在圆柱体最高点P 处,另一端系一个小球,小球位于P 点右侧同一水平高度的Q 点时,绳刚好拉直,将小球从Q 点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的速度大小为(重力加速度为g ,不计空气阻力)()A.(2+π)gRB.2πgRC.2(1+π)gR D .2gR答案A解析小球下落的高度为h =πR -π2R +R =π+22R ,小球下落过程中,根据动能定理有mgh =12m v 2,综上有v =(π+2)gR ,故选A.例3一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示,当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为()A .tan θ,H 2B.v 22gH-1θ,H 2C .tan θ,H4 D.v 22gH-1θ,H 4答案D解析物块以初速度v 上升的过程,由动能定理得-mgH -μmg cos θ·H sin θ=0-12m v 2,解得μv 22gH -1θ.当物块的初速度为v2时,由动能定理得-mgh -μmg cos θ·h sin θ=0-12m v2,解得h =H4,故选D.例4如图所示,粗糙水平地面AB 与半径R =0.4m 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量m =1kg 的小物块在9N 的水平恒力F 的作用下,从A 点由静止开始做匀加速直线运动.已知x AB =5m ,小物块与水平地面间的动摩擦因数为μ=0.1,当小物块运动到B点时撤去力F ,取重力加速度g =10m/s 2,求:(1)小物块到达B 点时速度的大小;(2)小物块运动到D 点时,轨道对小物块作用力的大小.答案(1)45m/s(2)150N解析(1)从A 到B 过程,据动能定理可得(F -μmg )x AB =12m v B 2解得小物块到达B 点时速度的大小为v B =45m/s(2)从B 到D 过程,据动能定理可得-mg ·2R =12m v D 2-12m v B 2在D 点由牛顿第二定律可得F N +mg =mv D 2R联立解得小物块运动到D 点时,轨道对小物块作用力的大小为F N =150N.应用动能定理的解题流程考点二应用动能定理求变力做功例5质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(重力加速度大小为g )()A.12m v 02-μmg (s +x ) B.12m v 02-μmgx C .μmgs D .μmg (s +x )答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由动能定理可得-W 弹-W f =0-12m v 02,则W 弹=12m v 02-μmg (s +x ),故选项A 正确.例6(2023·广东深圳市光明区名校联考)如图所示,一半圆弧形细杆ABC 竖直固定在水平地面上,AC 为其水平直径,圆弧半径BO =3.6m .质量为m =4.0kg 的小圆环(可视为质点,小环直径略大于杆的粗细)套在细杆上,在大小为50N 、沿圆的切线方向的拉力F 作用下,从A 点由静止开始运动,到达B 点时对细杆的压力恰好为0.已知π取3.14,重力加速度g 取10m/s 2,在这一过程中摩擦力做的功为()A .66.6JB .-66.6JC .210.6JD .-210.6J答案B解析小圆环到达B 点时对细杆的压力恰好为0,则mg =m v 2r,拉力F 沿圆的切线方向,根据动能定理F 2πr 4-mgr +W f =12m v 2,又r =3.6m ,摩擦力做的功为W f =-66.6J ,故选B.在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12m v 22-12m v 12,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12m v 22-12m v 12-W 恒,就可以求出变力做的功了.考点三动能定理与图像问题的结合图像与横轴所围“面积”或图像斜率的含义例7(2021·湖北卷·4)如图(a)所示,一物块以一定初速度沿倾角为30°的固定斜面上滑,运动过程中摩擦力大小f 恒定,物块动能E k 与运动路程s 的关系如图(b)所示.重力加速度大小取10m/s 2,物块质量m 和所受摩擦力大小f 分别为()A.m=0.7kg,f=0.5NB.m=0.7kg,f=1.0NC.m=0.8kg,f=0.5ND.m=0.8kg,f=1.0N答案A解析0~10m内物块上滑,由动能定理得-mg sin30°·s-fs=E k-E k0,整理得E k=E k0-(mg sin30°+f)s,结合0~10m内的图像得,斜率的绝对值|k|=mg sin30°+f=4N,10~20m内物块下滑,由动能定理得(mg sin30°-f)(s-s1)=E k,整理得E k=(mg sin30°-f)s-(mg sin30°-f)s1,结合10~20m内的图像得,斜率k′=mg sin30°-f=3N,联立解得f=0.5N,m=0.7kg,故选A.例8A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图像如图所示.已知两物体所受的滑动摩擦力大小相等,则下列说法正确的是()A.F1、F2大小之比为1∶2B.F1对A、F2对B做功之比为1∶2C.A、B质量之比为2∶1D.全过程中A、B克服摩擦力做功之比为2∶1答案C解析由v-t图像可知,两个匀减速运动的加速度大小之比为1∶2,由题可知A、B所受摩擦力大小相等,所以A、B的质量关系是2∶1,故C正确.由v-t图像可知,A、B两物体运动的位移相等,且匀加速运动位移之比为1∶2,匀减速运动的位移之比为2∶1,由动能定理可得F1与摩擦力的关系:F1·s-f1·3s=0-0,F2与摩擦力的关系:F2·2s-f2·3s=0-0,因此可得:F1=3f1,F2=32f2,f1=f2,所以F1=2F2.全过程中A、B克服摩擦力做的功相等,F1对A、F2对B做的功大小相等,故A、B、D错误.例9(2020·江苏卷·4)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()答案A解决图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线之间的交点、图线与横轴围成的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.课时精练1.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g ,则在这个过程中,下列说法正确的是()A .对物体,动能定理的表达式为W =12m v 22-12m v 12,其中W 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W -mgH =12m v 22-12m v 12,其中W 为支持力做的功D .对电梯,其所受的合力做功为12M v 22-12M v 12答案CD解析电梯上升的过程中,对物体做功的有重力mg 、支持力F N ,这两个力的总功(即合力做的功)才等于物体动能的增量,即W 合=W -mgH =12m v 22-12m v 12,其中W 为支持力做的功,A 、B 错误,C 正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,即12M v 22-12M v 12,D 正确.2.如图所示,光滑的固定斜面顶端固定一弹簧,质量为m 的小球以速度v 自最低点A 冲上斜面.压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,重力加速度为g ,则小球从A 到C 的过程中弹簧弹力做功是()A .mgh -12m v 2B.12m v 2-mgh C .-mgh D .-(mgh +12m v 2)答案A解析小球从A 到C 过程中,由动能定理可得W G +W F =0-12m v 2,W G =-mgh ,解得W F =mgh -12m v 2,故选A.3.(多选)(2023·云南昆明市第一中学、宁夏银川一中模拟)如图,若小滑块以某一初速度v 0从斜面底端沿光滑斜面上滑,恰能运动到斜面顶端.现仅将光滑斜面改为粗糙斜面,仍让滑块以初速度v 0从斜面底端上滑时,滑块恰能运动到距离斜面底端长度的34处.则()A .滑块滑上斜面后能再次滑回斜面底端B .滑块滑上斜面后不能再次滑回斜面底端C .滑块在斜面上运动的整个过程产生的热量为18m v 02D .滑块在斜面上运动的整个过程产生的热量为14m v 02答案AD解析设斜面长度为L ,斜面倾角为θ,由题意可知12m v 02=mgL sin θ,12m v 02=mgs sin θ+μmgs cos θ,其中的s =34L ,解得μ=13tan θ,因mg sin θ>μmg cos θ,则当滑块滑上斜面到达最高点后能再次滑回斜面底端,选项A 正确,B 错误;整个过程产生的热量为Q =2μmgs cos θ=12mgL sin θ=14m v 02,选项C 错误,D 正确.4.(2023·广东揭阳市普宁二中月考)如图,质量为m 的滑雪运动员(含滑雪板)从斜面上距离水平面高为h 的位置静止滑下,停在水平面上的b 处;若从同一位置以初速度v 滑下,则停在同一水平面上的c 处,且ab 与bc 相等.已知重力加速度为g ,不计空气阻力与通过a 处的机械能损失,则该运动员(含滑雪板)在斜面上克服阻力做的功为()A .mgh B.12m v 2C .mgh -12m v 2D .mgh +12m v 2答案C解析设运动员从静止开始滑下,停在水平面上b 处时,在斜面上克服阻力做的功为W 1,在水平面上克服摩擦力做的功为W 2,由动能定理得mgh -W 1-W 2=0,当运动员以速度v 从同一高度下滑时,停在同一水平面上的c 处,且ab 与bc 相等,由动能定理可得mgh -W 1-2W 2=0-12m v 2,联立两式求得W 1=mgh -12m v 2,故选C.5.(2023·湖南怀化市模拟)如图所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零,不计B 、C 处能量损失)()A .等于v 0B .大于v 0C .小于v 0D .取决于斜面答案A解析物体从D 点滑动到顶点A 过程中,由动能定理可得-mg ·s AO -μmg ·s DB -μmg cos α·s AB=0-12v 02,α为斜面倾角,由几何关系有s AB cos α=s OB ,因而上式可以简化为-mg ·s AO -μmg ·s OD =0-12m v 02,从上式可以看出,物体的初速度与路径无关.故选A.6.电梯是一种以电动机为动力的垂直升降机,用于多层建筑载人或载运货物.某次电梯从地面由静止启动,加速度a 与离地高度h 的关系图像如图所示,则()A .2h 0~3h 0范围内电梯向上做匀减速直线运动B .电梯在0~h 0和2h 0~3h 0范围内的速度变化量相等C .电梯在3h 0处的速度大小为2a 0h 0D .电梯上升的最大高度可能为3h 0答案C解析由题图可知从0到2h 0,电梯先做加速度增大的加速运动再做匀加速运动,从2h 0到3h 0做加速度减小的加速运动,当加速度为零时,电梯向上的速度不为零,仍会向上运动,则电梯上升的最大高度一定大于3h 0,故A 、D 错误;根据动能定理可得12m v 2=Fh =mah =mS 面积,则v =2S 面积,则电梯在h 0处的速度大小为a 0h 0,在2h 0处的速度大小为3a 0h 0,在3h 0处的速度大小为2a 0h 0,所以电梯在0~h 0和2h 0~3h 0范围内的速度变化量不相等,故B 错误,C 正确.7.(2023·广东省清中、河中、北中、惠中联考)如图所示,竖直圆轨道固定在水平面上,其中A为最低点,B 为最高点,C 为与圆心等高的点,质量为1kg 且可视为质点的小球在轨道内做完整的圆周运动.已知小球动能E k 的变化范围为10~20J ,忽略一切摩擦,重力加速度g =10m/s 2,则下列说法正确的是()A .轨道半径为1mB .小球对轨道的最大压力与最小压力的大小之比为3∶1C .小球在C 点时对轨道的压力大小为45ND .以地面为势能零点参考平面,小球在C 点的重力势能等于动能答案B 解析在A 点F N1-mg =m v max 2R ,在B 点F N2+mg =m v min 2R ,A 到B 过程,根据动能定理有-mg ×2R =12m v min 2-12m v max 2,又有12m v max 2=20J ,12m v min 2=10J ,解得R =0.5m ,小球对轨道的最大压力与最小压力之比F N1′F N2′=F N1F N2=31,A 错误,B 正确;在C 点F N3=m v C 2R,A 到C 过程,根据动能定理有-mgR =12m v C 2-12m v max 2,解得小球在C 点时对轨道的压力大小F N3′=F N3=60N ,C 错误;以地面为势能零点参考平面,小球在C 点的重力势能E p =mgR =5J ,小球在C 点的动能E k =12m v C 2=15J ,D 错误.8.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10m/s 2.该物体的质量为()A .2kgB .1.5kgC .1kgD .0.5kg 答案C 解析法一:特殊值法画出运动示意图.设该外力的大小为F ,据动能定理知A →B (上升过程):-(mg +F )h =E k B -E k AB →A (下落过程):(mg -F )h =E k A ′-E k B ′整理以上两式并代入数据得物体的质量m =1kg ,选项C 正确.法二:写表达式根据斜率求解上升过程:-(mg +F )h =E k -E k0,则E k =-(mg +F )h +E k0下落过程:(mg -F )h =E k ′-E k0′,则E k ′=(mg -F )h +E k0′,结合题图可知mg +F =72-363-0N =12N ,mg -F =48-243-0N =8N 联立可得m =1kg ,选项C 正确.9.(多选)如图所示为一滑草场.某条滑道由上下两段高均为h 、与水平面夹角分别为45°和37°的滑道组成,载人滑草车与草地各处间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则()A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g 答案AB 解析对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;滑草车在滑道上段加速,在滑道下段减速,故滑草车通过上段滑道末端时速度最大,根据动能定理有mgh -μmg cos 45°·h sin 45°=12m v m 2,解得:v m =2gh 7,选项B 正确;全过程有W G -W 克f =0,则载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a =mg sin 37°-μmg cos 37°m=-335g ,故加速度大小为335g ,选项D 错误.10.如图所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则()A .W =12mgR ,小球恰好可以到达Q 点B .W >12mgR ,小球不能到达Q 点C .W =12mgR ,小球到达Q 点后,继续上升一段距离D .W <12mgR ,小球到达Q 点后,继续上升一段距离答案C 解析在N 点,根据牛顿第二定律有F N -mg =m v N 2R ,由牛顿第三定律知F N =F N ′=4mg ,解得v N =3gR ,对小球从开始下落至到达N 点的过程,由动能定理得mg ·2R -W =12m v N 2-0,解得W =12mgR .由于小球在PN 段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=12m v Q 2-12m v N 2,因为W ′<12mgR ,故v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.11.(2023·云南昆明市第一中学模拟)如图甲所示,两个不同材料制成的滑块A 、B 静置于水平桌面上,滑块A 的右端与滑块B 的左端接触.某时刻开始,给滑块A 一个水平向右的力F ,使滑块A 、B 开始滑动,当滑块A 、B 滑动1.0m 时撤去力F .整个运动过程中,滑块A 、B 的动能E k 随位移s 的变化规律如图乙所示.不计空气阻力,求:(1)滑块A 对B 做的功;(2)力F 的大小.答案(1)12J (2)39N 解析(1)B 在撤去F 后继续滑行s B =1.0m ,撤去F 时B 的动能E k B =6J ,由动能定理有-f B s B =0-E k B在撤去F 前,对B 由动能定律得W AB -f B s =E k B联立并代入数据解得W AB =12J(2)撤去力F 后,滑块A 继续滑行的距离为s A =0.5m ,撤去F 时A 的动能E k A =9J ,由动能定理有-f A s A =0-E k A力F 作用的过程中,分析滑块A 、B 整体,由动能定理有(F -f A -f B )s =E k A +E k B代入数据解得F =39N.12.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达B 点时对圆弧轨道的压力大小.答案(1)34mg 5gR 2(2)152mg 解析(1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则F 0mg =tan α,F =mg cos α,由牛顿第二定律得F =m v C 2R,联立并代入数据解得F 0=34mg ,v C =5gR 2(2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =12m v C 2-12m v B 2,代入数据解得v B =52gR 小球在B 点时有F N -F =m v B 2R,解得F N =152mg 由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=152mg .。
动能定理的应用归类分析
教 研 争 鸣113 都市家教动能定理的应用归类分析迪庆州民族中学 云南 迪庆 黄艳萍【摘 要】动能定理是学生在高中阶段第一次接触到用能量的知识解决问题。
在作用力非常复杂的情况下,牛顿第二定律难以应用时,动能定理却仍可以应用,可见动能定理具有对牛顿第二定律的包容性。
文章主要对从求变力的功、求解多运动问题、求解摩擦因数、求解机车的脱钩等四个方面,论证了动能定理的应用。
【关键词】动能定理;求变力;多运动;摩擦因数;机车脱钩动能定理虽然可根据牛顿第二定律和运动学方程推出,但动能定理本身的意义及应用却具有广泛性和普遍性。
它既适用于恒力作用过程,也适用于变力作用过程;既适用于物体做直线运动,也适用于物体做曲线运动;动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统;研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程。
本文从以下几个方面对动能定理的应用加以论证和分析。
1应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
例1、一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图(1)所示,绳的P 端拴在车后的挂钩上,Q 端拴在物体上。
设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计。
开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H。
提升时,车加速向左运动,沿水平方向从A 经过B 驶向C,设A 到B 的距离也为H,车过B 点时的速度为v B 。
求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功。
解析:设绳的P 端到达B 处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h,速度为v,所求的功为W,则据图(1)212W mgh mv−=因绳总长不变,所以: H Hh −=θsin 根据绳联物体的速度关系得:v=v B cosθ 由几何关系得:4πθ=由以上四式求得:211)4B W mv mg H=+小结:此题中绳对重物的拉力是变力,所以是变力做功问题,关键是利用速度的分解由汽车的速度求出物体的速度,然后利用动能定理求拉力做的功。
高三力学复习十五讲--动能定理的应用
力学复习十二一、动能定理的应用[知识点析]1、用动能定理求变力做的功由于某些力F 的大小或方向变化,所以不能直接由公式W=FScos α计算它们做的功,此时可由其做功的结果——动能的变化来求变力F 做的功。
2、在不同过程中运用动能定理由于物体运动过程中可能包括几个不同的物理过程,解题时,可以分段考虑,也可视为一整体过程,往往对全过程运用动能定理比较简便。
[例题析思][例题1]一列质量为M=5.0×105kg 的火车,在一段平直的轨道上始终以额定功率P 行驶,在300S 内的位移为 2.85×103m ,而速度由8m/s 增加到火车在此轨道上行驶的最大速度17m/s 。
设火车所受阻力f 大小恒定,求1、火车运动中所受阻力f 的大小;2、火车头的额定功率P 的大小。
[解析]火车的初速度和末速度分别用V 0和V t 表示,时间用t 表示,位移用S 表示,根据动能定理有: Pt-fs=2022121mV mV t -火车速度达到最大时,牵引力等于阻力f ,根据瞬时功率的计算公式有:P=fV e 。
N S V V V M f t t 4225202105.2)285030017(2)817(100.5)(2)(⨯=-⨯⨯-⨯⨯=--=N fV P t 541025.417105.2⨯=⨯⨯==[思考1]总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭发动机滑行,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?[提示]法一:脱节的列车整个运动过程有两个阶段,先做匀加速运动,后关闭发动机滑行做匀减速运动,运用动能定理,从全过程考虑有: FL-K(M-m)gS 1=0-20)(21V m M -对末节车厢根据动能定理有-kmgS 2=0-2021mV ,由于原来列车匀速,故有F=kmg ,则m M ML S S S -=-=∆/21法二:由于脱节后列车比末节车厢多行驶的那段距离内,克服阻力所做的功等于牵引力在L 这段距离内所做的功,所以有:)/()(m M ML S Sg m M K KMgL -=∆∆-=[例题2]如图6-25所示,ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以不计。
动能定理的3个典型应用
动能定理的3个典型应用李晓禄【期刊名称】《高中数理化》【年(卷),期】2013(000)019【总页数】1页(P30)【作者】李晓禄【作者单位】山东省平度第一中学【正文语种】中文从近五年高考考点分布可以看出动能定理是高考的必考内容,涉及这部分的考题一般灵活性较强,试题涉及的主要内容包括:动能定理的理解与应用、动能定理中总功的分析与计算、功能关系的理解等.动能定理适用于恒力做功,也适用于变力做功,适用于直线运动也适用于曲线运动,因此该定理求解方便,应用广泛,本文将结合典型例题分析动能定理的3个典型应用.1 用动能定理求解物体所受的力例1 如图1,某人踏着滑板从距地面1.8 m的平台上A点滑下,经过水平位移s =3 m后,落到水平地面上的B点,在B点着地后,由于存在能量损失,速度变为v=4 m·s-1,并以速度v为初速度,滑行s2=8 m后停止,已知人与滑板的总质量m=60 kg,求人与滑板在水平地面上滑行时受到的平均阻力大小.图1将人与滑板看作一个整体,对其进行受力分析,人与滑板从B点到C点的过程中受到平均阻力Ff,地面的支持力FN以及重力mg,因为地面支持力、重力的方向都与其位移方向垂直,所以地面支持力、重力都不对人与滑板组成的整体做功,而平均阻力做负功,由动能定理可得将数据代入可得平均阻力Ff=60 N.如果在多个力的共同作用下运动,其中含有一个未知力,并且物体的动能变化量和位移已知时,就可以用动能定理求解此未知力.2 用动能定理求解物体的速度图2例2 如图2,物体A从高为h的斜面上静止滑下,在阻力的作用下,静止于B点,若给物体一个初速度v,使其从B 点开始运动,再恰好上升到斜面上的A点,求此初速度v的大小.物体在运动过程中会受到重力、斜面或者水平面的支持力以及摩擦阻力.从A点到B点应用动能定理mgh+Wf=0-0.物体从B 点到A点的过程中,重力做负功,摩擦力仍然做负功Wf,由动能定理得求得初速度v在已知施加到物体上所有力做功大小或者可以根据题意推知所有力做功大小的情况下,可以用动能定理求解物体的速度.3 用动能定理求解物体的位移例3 如图3,在一内壁光滑的盆式容器中,圆弧AB与圆弧CD分别与盆底BC的连接处相切,并且BC是水平的,BC 之间距离d=0.5 m,摩擦因数μ=0.1,两端圆弧的高度都为h=0.3 m.让一质量为m 的小物体从A点静止滑下,小物体在盆内来回滑动一段时间后,最后会停下来,求解停止的地面与B点之间的距离.图3由于盆内壁光滑,小物体在盆内AB、CD 部分运动时,只受到重力和盆壁支持力作用,并且支持力的方向与物体运行方向垂直,所以盆内壁支持力不对物体做功,小物体在BC段运动时将会受到重力、支持力以及摩擦力的作用,重力、支持力垂直于小物体运动方向,不对物体做功,并且物体滑上CD圆弧时重力做负功,物体滑下CD 圆弧时重力做正功,分析物体由A点下滑,最终静止到BC段的某一点的过程,设小物体在BC间运动的路程为s,按照动能定理mgh-μmgs=0,所以s =3 m,根据题意BC间的距离d=0.5 m,所以小物体在来回运动的次数为3次,最后停在B点.在已知物体动能变化量以及作用力(或者物体与地面的摩擦因数已知)的大小时,可以通过动能定理求解物体发生的位移.。
2.24 动能定理的应用
动能定理的应用五 其它问题
❖ ◆运用动能定理求圆周运动问题
例:如图所示,长为L的细绳拴一个小球在竖直平 面内做圆周运动,请问:
❖ (1)小球在最低点A初速为多大时,恰好能完 成一次圆周的运动。
❖ (2)最高点和最低点绳子拉力之差为多大?
B
6m
O
解题关键:同时列g出动能定理
4、动能定理的研究对象一般是一个物体,也可以是几 个物体组成的系统;
5、动能定理的计算式是标量式,遵循代数运算,v为 相对地面的速度;
6、对状态与过程关系的理解: a.功是过程量,动能是状态量。 b.动能定理表示了过程量等于状态量的改变量的关系。
(涉及一个过程两个状态) c.动能定理反应做功的过程是能量转化的过程。等式的左
皮球,测得橡皮球落地前瞬间速度 变力做功
抛球时由动能定理:
v=12 m/s
为12
m/s,求该同学抛球时所做的
W=mv02 =0.5´ 82 J=16 J
2
2
解得Wf=-5 J
功和橡皮球在空中运动时克服空气
抛出后由动能定理:
mgh+Wf=
1 2
mv2-
1 2
mv02
即橡皮球克服空 气阻力做功为5 J
阻力做的功.(g取10 m/s2)
例1.用拉力F使一个质量为m的木箱由静止开始 在水平冰道上移动了s,拉力F跟木箱前进的方 向的夹角为α,木箱与冰道间的摩擦因数为μ, 求木箱获得的速度?
Fcos αs-fs= 1 mv2 -0
2 f= μ(mg-Fsin α )
[F cos (mg F sin )]s 1 mv2 0
2
高中物理必修二 专题四 动能定理 功能关系
动能定理与功能关系一、动能定理1.变力做功过程中的能量分析;2.多过程运动中动能定理的应用;3.复合场中带电粒子的运动的能量分析。
二、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。
不能说功就是能,也不能说“功变成了能”。
1.物体动能的增量等于合外力做的总功:W 合=ΔE k ,这就是动能定理。
2.物体重力势能的增量等于重力做的功:W G = -ΔE P3.弹力做的功等于弹性势能的变化量:W=ΔE P4.物体机械能的增量等于除重力以外的其他力做的功:W 非重=ΔE 机,(W 非重表示除重力以外的其它力做的功)5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的 机械能,也就是系统增加的内能。
f ΔS=Q (ΔS 为这两个物体间相对移动的路程)。
专项练习1.一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法不正确的是( )A 、手对物体做功10JB 、合外力对物体做功12JC 、合外力对物体做功2JD 、物体克服重力做功2J2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
当每个物体受到大小相同的制动力时,它们的制动距离之比是( )A .1∶2∶3B .12∶22∶32C .1∶1∶1D .3∶2∶13.质量为m的物体在距地面高h处以g/3的加速度由静止竖直下落到地面,下列说法不正确的( )A.物体重力势能减少mgh/3 B.物体的机械能减少2mgh/3 C.物体的动能增加mgh/3 D .重力做功mgh4.如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置,用水平拉力F 缓慢将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功是( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 5. 如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A 。
动能定理物体的动能与力的做功
动能定理物体的动能与力的做功动能定理:物体的动能与力的做功动能定理是物理学中的基本定理之一,它描述了物体的动能与力的做功之间的关系。
在本文中,我们将探讨动能定理的定义、原理以及应用。
一、动能定理的定义动能定理是指在外力作用下,物体的动能的变化量等于力的做功。
简而言之,物体的动能增加或减少的大小,正好等于作用于物体的力所作的功。
二、动能定理的原理物体的动能可以通过它的质量和速度来定义,即动能 = 1/2 ×质量 ×速度的平方。
力的功可以用力的大小、物体的位移和力与位移之间的夹角来定义,即做功 = 力 ×位移× cosθ。
根据动能定理,在外力作用下,物体的动能的变化量等于力的做功。
表示为:物体的动能的增量 = 力的做功。
三、动能定理的应用1. 物体的动能和速度关系:根据动能定理,物体的动能正比于其速度的平方。
当速度增加时,动能增加;当速度减小时,动能减小。
2. 动能与重力势能的转换:在重力场中,当物体从较高位置下降到较低位置时,重力对物体做功,并将其势能转化为动能。
反之,当物体由较低位置上升到较高位置时,动能将转化为重力势能。
3. 动能与弹性势能的转换:在弹性体系中,物体由于受到压缩或伸展而具有弹性势能。
当物体释放出弹性势能时,它将转化为动能。
4. 动能定理的应用于机械工作:在机械运动中,动能定理可应用于机器的工作原理和能量转换的分析。
比如,在运输系统中,我们可以通过应用动能定理来计算物体在传送过程中所需的能量和功率。
总结:动能定理是物体的动能与力的做功之间的关系。
它可以帮助我们理解物体运动时的能量转化过程,并应用于各种实际情况的分析和计算。
通过深入研究动能定理,我们可以更好地理解物体运动的本质和力学规律。
变力做功的六种常见计算方法
变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0.25F时,0.25F=mv22/2R。
此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0.5mv12—0.5mv22=0.25RF。
方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
3.3 动能定理的应用
(3)设汽车在以60km/h的速率行驶时制动,在表格中 填上制动距离的近似值。试说明你分析的依据和过程。
汽车速率v/(km·h-1) 10 20 40 60 制动距离s/m 1 4 16 ?
的平方成正比,对比速率为10km/h时的情况得:
ห้องสมุดไป่ตู้
1 2 由计算公式 mgs mv 可知,制动距离s与速度 2
般的情况下,如果分析的问题不涉及过程细节就用动能 定理求解,涉及细节或运动时间的问题时就用牛顿运动 定律求解。
三、由动能定理计算变力做功 1)W=Fs只适用于恒力做功,不能直接用于变力做功; 2)解决变力做功问题常用微元法,微元法解题太麻烦; 3)对于初末动能已知或容易求出的问题,可以用动能 定理来求做功。 案例3 用质量为4.0kg的铁锤,以5.0m/s的速度 打击放在铁砧上烧红的铁块, 设击中铁块后铁 锤即静止。求铁块对铁锤所做的功。 解:以铁锤为研究对象,在打击过程中铁锤的位移很小, 所以重力做的功完全可以忽略,则铁块对铁锤做的功 (合外力的功)等于铁锤动能的变化量。
mgSCB
2
而
l cos SDC
SDC SCB S
1 mv 2 2
解得:
h s
(法二:过程整体法)物体从A由静止滑到B的过程 中,根据动能定理得:
mgh mgl cos mgSCB 0
而:l cos SCB S 联解①和②式得:
一、研究汽车的制动距离 案例1 汽车的制动性能是衡量汽车性能的重要指标。 在一次汽车制动性能的测试中,司机踩下刹车闸,使汽 车在阻力作用下逐渐停止运动。下表中记录的是汽车以 不同速率行驶时,制动后所经过的距离。 汽车速率v/(km·h-1) 制动距离s/m 10 1 20 4 40 16 60 ? (1)为什么汽车的速率越大,制动的距离也越长? (2)让汽车载上3名乘客,再做同样的测试,制动距 离会有变化吗?试分析原因。
“动能定理”含义的理解及其生活的应用
“动能定理”含义的理解及其生活的应用“动能定理”是物理学中的一个重要定理,是描述物体运动的能量变化的规律。
简单来说,动能定理是指一个物体的动能的变化等于物体所受外力做功的大小。
根据动能定理,一个物体的动能变化等于物体所受外力做功的大小,即动能的增加等于所受到的外力所做的正功,而动能的减少等于所受到的外力所做的负功。
动能定理的数学表达式为:K2 - K1 = W,其中K2为物体的末动能,K1为物体的初动能,W为物体所受外力所做的功。
在日常生活中,动能定理有着许多应用。
以下是一些常见的例子:1. 抛掷运动:当我们抛掷一个物体时,抛出的物体会具有初速度。
根据动能定理,物体的动能变化等于所受到的外力所做的功,即动能的增加等于所受到的外力所做的正功。
在抛掷运动中,外力所做的功通常为重力对物体的负功,因此物体的动能会减小。
这也解释了为什么抛出的物体在空中逐渐失去高度和速度,最终落地停止运动。
2. 车辆制动:当我们开车行驶时,车辆具有一定的动能。
当需要制动减速或停车时,刹车产生的摩擦力会对车辆进行负功,减少车辆的动能。
根据动能定理,车辆的动能减少等于制动摩擦力所做的功,因此制动力越大,车辆的运动速度减少得越快。
3. 体育运动:在体育运动中,运动员的动能变化也可以通过动能定理来解释。
在进行跳远时,运动员在腾空过程中动能会减少,而在着地时动能会增加。
通过控制跳远的速度和姿势,运动员可以利用动能定理来最大程度地发挥自己的跳远能力。
动能定理是物理学中一个重要的规律,能够描述物体运动的能量变化。
在生活中,我们可以通过应用动能定理来解释和理解许多日常现象和运动过程,提高我们对物体运动的认识和理解。
动能定理的其应用一:变力做功问题
动能定理的其应用一:变力做功问题学习目标:1. 进一步理解动能定理,知道动能定理的适用条件。
2. 会用动能定理解决有关变力做功的问题,体会用动能定理处理问题的优点。
学习重点:理解动能定理解决问题的思路和步骤。
学习难点:学生能力培养导学过程:应用动能定理求解变力的平均值(平均作用力)及变力的功是非常方便的,但是必须知道始末两个状态的物体的速度,以及在中间过程中分别有那些力对物体做功,各做了多少功。
一、知识回顾1、动能定理内容: 。
2、动能定理表达式:21222121mv mv W -= 二、例题分析1、应用动能定理求解变力的功例1、如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物块重力的k 倍,它与转轴oo’相距R ,物体随转台由静止开始转动,当转速增加到一定值时,物块开始在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为多少?2、应用动能定理求解变力的平均值(平均作用力)例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)三、针对训练1.质量为m 的小球用长为l 的轻绳悬挂于O 点,小球在水平力作用下,从平衡位置P 缓慢地移动,当悬线偏离竖直方向θ角时,水平力大小为F ,如图,则水平力所做的功为 ( )A .mgl cos θB .Fl sin θC .mgl (1-cos θ)D .Fl cos θ2.如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因素都是μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR 3.如图所示,质量为m 的物体,由高为h 处无初速滑下,至平面上A 点静止,不考虑B 点处能量转化,若施加平行于路径的外力使物体由A 点沿原路径返回C 点,则外力至少做功为( )A .mgh ;B .2mgh ;C .3mgh ;D .条件不足,无法计算。
2023届高考物理一轮复习讲义:专题四 功和能
专题四 功和能重点1. 机械能守恒的条件及其表达方式。
2.以正确的步骤运用机械能守恒定律。
3.动能定理及其导出过程。
4.动能定理的应用。
难点1.如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。
2.建立物理模型、状态分析和寻找物理量之间的关系。
3.多过程和变力做功情况下动能定理的应用。
易错点1. 如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。
2.多过程和变力做功情况下动能定理的应用。
高频考点 1.动能定理的应用。
2. 运用机械能守恒定律解决实际问题。
考情分析:能量问题是历年来高考的重点和热点,考查比较全面而且有较强的综合性。
其中动能定理和功能关系更是重中之重,明确功是能量转化的途径和量度;而机械能守恒定律是另一个重点,要求学生能用守恒观点去解决问题,压轴题也会与此部分知识有关。
本专题内容常与牛顿定律、圆周运动、电磁学知识综合,高考对本部分知识的考查核心会在分析综合能力上。
考点预测:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考题常与生产生活实际联系紧密,题目的综合性较强.预计在高考中,仍将对该部分知识进行考查,复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用。
【解读】功和功率是物理学中两个重要的基本概念,是学习动能定理、机械能守恒定律、功能原理的基础,也往往是用能量观点分析问题的切入点。
复习时重点把握好功德概念、正功和负功;变力的功;功率的概念;平均功率和瞬时功率,发动机的额定功率和实际功率问题;与生产生活相关的功率问题。
解决此问题必须准确理解功和功率的意义,建立相关的物理模型,对能力要求较高。
动能定理是一条适用范围很广的物理规律,一般在处理不含时间的动力学问题时应优先考虑动能定理,特别涉及到求变力做功的问题,动能定理几乎是唯一的选择。
动能定理的推导与应用
动能定理的推导与应用动能定理是描述物体运动的一个基本定律,它有着广泛的应用。
本文将对动能定理的推导过程进行解析,并探讨一些实际应用。
一、动能定理的推导动能定理是基于牛顿第二定律和功的概念推导而来的。
首先,牛顿第二定律描述了物体所受合外力与其加速度之间的关系,可以表示为:F = ma其中,F为合外力,m为物体的质量,a为物体的加速度。
其次,功可以定义为力对物体做功的过程中能量的转移,数学表达式为:W = ∫F·ds其中,W为功,F为力,ds为力的方向上的位移。
然后,根据牛顿第二定律和功的概念,我们可以将上述两个式子相结合:W = ∫F·ds = ∫ma·ds由牛顿第二定律可以将ma替换为F,得到:W = ∫F·ds = ∫F·ds = ∫d(mv)其中,v为物体的速度。
根据牛顿第一定律,力F可以表示为F = dp/dt,其中p为物体的动量,t为时间。
将F代入上式得到:W = ∫F·ds = ∫(dp/dt)·ds根据微积分中的链式法则,将上式进行变换:W = ∫(dp/dt)·ds = ∫dp/dt·ds = ∫dp根据积分的定义,将上式进行积分得到:W = Δp其中,Δp为物体动量的变化量。
而动量的变化量可以表示为:Δp = mv2 - mv1最终,我们可以将动量的变化量代入动能定理的表达式中:W = Δp = mv2 - mv1 = ΔK其中,K为物体的动能。
由此可见,动能定理表示了合外力对物体所做的功等于物体动能的变化量。
二、动能定理的应用动能定理在物理学中有着广泛的应用,下面将介绍其中几个重要的应用领域。
1. 机械能守恒定律:根据动能定理可以得出机械能守恒定律,即在没有外力做功的情况下,系统的机械能保持不变。
这个定律在机械系统的分析中经常被使用,可以帮助我们理解物体在运动过程中的能量转化与守恒。
2. 碰撞问题:动能定理可以用于求解碰撞问题。
动能定理与功的关系
动能定理与功的关系动能定理是物理学中的一个重要定理,用于描述物体的运动状态和能量转化。
它与功是息息相关的,两者之间存在着紧密的关系。
本文将探讨动能定理与功的关系,以及它们在物理学中的应用。
一、动能定理的基本概念动能定理是描述物体运动状态的一个基本原理。
它表明,物体的动能变化等于所受到的净工作。
动能可以简单地定义为物体由于运动而具有的能量。
动能定理可以用数学表达为:ΔK = W其中,ΔK代表物体动能的变化量,W代表物体所受到的净工作。
这个公式说明了物体的动能变化与所受到的净工作之间的关系。
二、功的概念功是物理学中描述力对物体产生效果的量。
在力学中,功可以定义为力在物体上施加的作用力与物体位移的乘积。
功可以使物体加速或减速,改变物体的动能状态。
功可以用数学表达为:W = F·d·cosθ其中,W代表功,F代表力的大小,d代表物体的位移,θ代表力施加的角度。
三、动能定理与功的关系从定义和公式上看,可以发现动能定理与功之间存在着密切的联系。
动能定理可以理解为物体的动能变化等于所受到的净工作,而功则是描述力对物体产生效果的量。
物体的动能变化与所受到的净工作之间的关系就是动能定理与功的关系。
根据功的定义和公式,可以得出动能定理的推导过程:ΔK = WΔK = F·d·cosθΔK = m·a·d·cosθ (根据牛顿第二定律 F = m·a,其中m为物体的质量,a为物体的加速度)ΔK = m·(v^2 - u^2)/2 (根据速度v和初速度u的关系 v^2 = u^2 + 2ad)由上述推导可以看出,动能定理中的动能变化ΔK与功W之间存在着直接的数学关系。
这表明了动能定理与功的紧密联系。
四、动能定理与功的应用动能定理与功在物理学中有着广泛的应用。
它们可以用于解释和分析各种物理现象,如机械能守恒、碰撞等。
在机械能守恒的情况下,物体的总机械能保持不变。
动能定理变力做功推导洋葱数学
动能定理变力做功推导洋葱数学
动能定理是描述物体运动中动能与力的关系的定理,其中一个重要的推论是动能增加量等于力所做的功。
我们可以通过变力做功来推导动能定理。
假设一物体在经过一段距离S时,力F随距离S变化,我们可以将S分成n个小段来近似描述力的变化。
在第i个小段内,力的大小为Fi,物体沿该小段所做的位移为ΔSi。
根据牛顿第二定律,该物体受到总力F的作用,其加速度为a=F/m,其中m是物体的质量。
因此,在该小段内,物体所获得的动能增量为ΔKi=1/2m(vi+Δvi)²-
1/2mvi²,其中vi和vi+Δvi分别为该小段开始时和结束时物体的速度。
根据牛顿第二定律,力F在该小段内所做的功为W=F·ΔSi,即力与物体位移的乘积。
因此,该小段内物体所获得的动能增量与力所做功之间的关系为ΔKi=W/n。
将上述式子代入到整个运动轨迹的情况下,动能增加量
ΔK=∑i=1nΔKi=∑i=1nW/n,即ΔK=W·S/n。
当S变得十分小,即n 趋近于无穷大时,ΔK趋近于动能增加量dK/dt的微元值dKi,此时
ΔK=∫dK=∫FdS。
根据牛顿第二定律,该式可以进一步转化为
ΔK=∫ma·dS,即ΔK=∫mv·dv,其中v是物体的速度。
综上所述,我们通过变力做功的推导,得出了动能定理:物体所获得的动能增量等于力所做的功。
这个定理在物理学的研究和应用中有着广泛的应用。
动能定理的应用
动能定理的应用动能定理是物理学中的一个重要定理,它描述了物体动能的变化与力的做功之间的关系。
本文将探讨动能定理在不同领域的应用,并阐述其在解决实际问题中的重要性。
一、机械领域中的应用在机械领域中,动能定理常常用于分析物体的运动状态和能量转化过程。
例如,当一个物体在恒定力的作用下沿直线运动时,可以利用动能定理计算物体在某一时刻的速度。
假设一个物体的质量为m,初速度为v1,末速度为v2,力的大小为F,物体在这一过程中所做的功W可以表示为:W = (1/2) * m * (v2^2 - v1^2)由动能定理得知,功与动能的变化有着直接的关系。
因此,我们可以利用此公式计算物体在不同速度下的能量转化情况,从而预测物体的运动状态以及所需的施力大小。
二、热力学领域中的应用在热力学领域中,动能定理的应用更为广泛。
在理想气体的绝热过程中,动能定理可以用来推导绝热指数与气体性质之间的关系。
绝热指数可以反映气体分子的热运动情况,它与气体的压强、温度和体积有关。
通过应用动能定理,我们可以得到绝热指数γ与气体内能U之间的关系式:γ = (Cp/Cv)其中,Cp表示气体在定压条件下的摩尔热容,Cv表示气体在定容条件下的摩尔热容。
该关系式对于研究理想气体的热力学性质具有重要意义,有助于我们深入理解气体的热力学行为。
三、光学领域中的应用在光学领域中,动能定理可以用于分析光的衍射和干涉现象。
例如,当光通过一个狭缝进行衍射时,可以利用动能定理计算光的衍射角度和干涉条纹的位置。
假设入射光的波长为λ,狭缝的宽度为d,衍射角度为θ,我们可以利用动能定理推导得到以下关系:sin(θ) = λ / d这个关系式被广泛应用于光的干涉与衍射实验中,帮助我们理解和解释光的行为。
综上所述,动能定理在机械、热力学和光学等领域中都有重要的应用。
它不仅可以帮助我们分析物体的运动状态和能量转化情况,还可以解释和预测物质及能量的行为。
因此,深入理解和应用动能定理对于探索自然界的规律和解决实际问题具有重要的意义。
动能定理——变力做功
动能定理——变力做功问题例1如图所示,一质量为m =2 kg 的物体从半径为R =5 m 的圆弧的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内).拉力F 大小不变始终为15 N ,方向始终与物体在该点的切线成37°角.圆弧所对应的圆心角为60°,BO 边为竖直方向。
(g 取10 m/s 2)求这一过程中:(1)拉力F 做的功。
(2)重力G 做的功。
(3)圆弧面对物体的支持力F N 做的功。
(4)圆弧面对物体的摩擦力F f 做的功。
例2质量为m 的机车,以恒定功率从静止开始起动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值v ,求机车的功率和机车所受阻力在这段时间内所做的功。
例3如图所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 例4在光滑的桌面上,有一条粗细均匀的链条,全长为L ,垂下桌边的那部分的长度为a ,链条在上述的位置由静止释放,如图所示,则链条的上端离开桌边时,链条的速度为多少?a例5一个质量为m 的小球拴在细绳的一端,另一端用大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动,如图所示。
今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径为R 2。
小球运动的半径由R 1变成R 2的过程中拉力对小球做的功多大?1.跳水运动员从高H 的跳台以速度V 1水平跳出,落水时速率为V 2,运动员质量为m ,若起跳时,运动员所做的功为W 1,在空气中克服阻力所做的功为W 2,则:( )A .W 1=2121mv ,B .W 1=mgH +2121mv C . W 2=2121mv +mgH -2221mv D .W 2=2121mv -2221mv 2.质量为m 的汽车在平直的公路上从速度v 0开始加速行驶,经过一段时间t 后,前进了距离s ,此时恰好达到其最大速度,设此过程中汽车发动机始终以额定功率P 工作,汽车所受的阻力为恒力F f ,则这段时间里,发动机所做的功为( ) A. B. C. D.3.改成斜面选B 如图2所示,质量为m 的物体,由高为h 处无初速滑下,至平面上A 点静止,不考虑B 点处能量转化,若施加平行于路径的外力使物体由A 点沿原路径返回C 点,则外力至少做功为( )A .mgh ;B .2mgh ;C .3mgh ;D .条件不足,无法计算。
动能定理的变力做功
动能定理的变力做功哎呀,说到动能定理和变力做功,这事儿可真不是一两句能说清楚的。
不过,我得说,这玩意儿在现实生活中,那可是无处不在啊。
就拿我上次去游乐园的经历来说吧,那可真是让我对这玩意儿有了深刻的体会。
那天,阳光明媚,我和朋友约好了去游乐园。
你知道的,游乐园嘛,总是有那些让人尖叫的过山车。
我这个人,平时胆子不大,但那天也不知道哪根筋搭错了,居然决定挑战一下自我,坐上了那个号称“尖叫制造机”的过山车。
排队的时候,我就在想,这过山车是怎么工作的呢?它是怎么让我在轨道上飞驰,一会儿上一会儿下的呢?这动能定理和变力做功,不就是解释这个的吗?我一边排队,一边在心里默默复习了一下物理课上学的东西。
终于轮到我了,我坐在过山车上,心里那个紧张啊,手心都是汗。
过山车缓缓启动,开始爬升。
这时候,我感觉到一股力量在把我往上推,这就是重力势能转化为动能的过程吧。
我心里想,这动能定理,不就是说,力乘以位移等于动能的变化嘛。
这过山车爬升的时候,重力势能增加,动能减少,等到了最高点,势能最大,动能为零。
然后,过山车开始下坠,那速度,嗖的一下就起来了。
我感觉自己像是被一股无形的力量紧紧抓住,然后猛地一推。
这就是动能定理的另一面吧,动能增加,势能减少。
我感觉自己就像是被压缩的弹簧,突然释放,那速度,那力量,简直了!过山车在轨道上飞驰,一会儿上坡,一会儿下坡,一会儿转弯。
每次转弯,我都感觉自己要被甩出去,但又被安全带紧紧拉回来。
这变力做功,不就是说,力的方向和位移方向的夹角会影响做功的大小嘛。
这过山车转弯的时候,力的方向和位移方向不完全一致,所以做功就小了,速度也就慢下来了。
最后,过山车缓缓停在了终点。
我下来的时候,腿都软了,但心里却是满满的成就感。
我不仅挑战了自己的勇气,还亲身体验了一把动能定理和变力做功的奇妙。
你看,这动能定理和变力做功,虽然听起来挺高大上的,但其实就在我们身边,无处不在。
就像这次过山车之旅,不仅让我体验了刺激,还让我对物理有了更深的理解。
动能定理的适用范围
动能定理的适用范围
动能定理是从牛顿第二定律F=ma和匀变速直线运动公式v22-v12=2al推导而得的,虽然它是在受恒力作用、物体做直线运动的特殊条件下得到的,但是,当物体受变力作用或做曲线运动时,我们可把过程分解成许多小段,认为物体在每小段受恒力作用、做直线运动。
因此,无论作用在物体上的合力的大小和方向是否改变,物体是沿直线运动还是沿曲线运动,结论仍然成立。
也就是说,动能定理适用于直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功。
力可以是各种性质的力,既可以同时作用,也可以分段作用。
只要求出和确定各力做功的多少和正负即可。
值得注意的是,在推导动能定理的过程中应用了只能在惯性参考系中成立的牛顿第二定律,因而动能定理也只适用于惯性参考系。
而对于不同的惯性参考系,虽然力对物体做的功、物体的动能、动能的变化都不相同,但动能定理作为一个力学规律在不同的参考系中仍然成立。
动能定理适用于在惯性参考系中运动的任何物体。
动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。
由于只需从力在各段位移内的功和这段位移始末两状态动能变化去研究,无需注意其中运动状态变化的细节,又由于功和动能都是标量,无方向性,无论是对直线运动或曲线运动,计算都会特别方便。
当题给条件涉及力的位移效应,而不涉及加速度和时间时,用动能定理求解一般比用牛顿第二定律和运动学公式求解简便。
用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力作用过程、曲线运动等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P m
1 200
m/s=15
m/s
F mg 810
外力对物体做的总功 W=Pmt2-mgh2, h1+h2=90 m
动能变化量为 ΔEk= 1 mvm2- 1 mvt2
2
2
由动能定理得 Pmt2-mgh2= 1 mvm2- 1 mvt2
2
2
代入数据后解得 t2=5.75 s,所以 t=t1+t2=7.75 s
解析:绳对重物的拉力为变力,应用动能定理列方程.
以重物为研究对象:WT-mgh=
1 2
mvm2
①
由图所示,重物的末速度 vm 与汽车在 B 点的速度 v
沿绳方向的分速度相同,则 vm=vsin θ
②
h= H -H
③
cos
联立①②③解得:WT=mgH(1
cos
cos
)+
1 2
mv2sin2
在光滑的水平面上做匀速圆周运动,拉力为某个值 F 时转动
半径为 R,当外力逐渐增大到 6F 时,物体仍做匀速圆周运动,
半径为 R/2.则外力对物体所做的功为( )
A.0 B.FR
C.3FR
D.5 FR
2
例3.质量为5103 kg的汽车在t=0时刻速度v0=10m/s,随 后以P=6104 W的额定功率沿平直公路继续前进,经72s 达到最大速度,设汽车受恒定阻力,其大小为2.5103N。 求:
(1)汽车的最大速度vm; (2)汽车在72s内经过的路程x。
例4.人在A点拉着绳通过一定滑轮吊起质量m=50Kg的物 体,如图所示,开始绳与水平方向夹角为,当人匀速提 起重物由A点沿水平方向运动而到达B点,此时绳与水平
方向成角,求人对绳的拉力做了多少功?
G 60
30
A
B
例 5.用汽车从井下提重物,重物质量为 m,定滑轮高为 H, 如图所示,已知汽车由 A 点静止开始运动至 B 点时的速度为 v, 此时轻绳与竖直方向夹角为 θ.这一过程中轻绳的拉力做功多 大?
A R
D R
B
C
图8-5
所需时间至少为 7.75 s.
答案:7.75 s
作业:
• 1.三维P48 例2 演练2 演练3; • 2.课时作业P89 6 8; • 3.每日一题。(做完,周一交)
《互动课堂》P83 课后巩固2
O
θl lcos θ
Q F
h
S
α
mg
P mg
例5.一小球于地面正上方h处由静止释放,若小球每次与 地面相碰均无动能损失,由于空气阻力的作用,最终小 球静止在地面上,已知空气阻力是小球重力的0.1倍,且 大小保持不变,求小球运动的总路程。
在匀加速运动过程中加速度为
a=
F m
mg
120Biblioteka 810m/s2=5
m/s2,
m
8
末速度
vt
P m
1 200
m/s=10
m/s
F 120
m
上升的时间
t1=
v t
10
s=2
s,
a5
上升高度为
h1=
v t
2
102
m=10 m
2a 2 5
在功率恒定的过程中,最后匀速运动的速率为
vm=
P m
类型四: 动能定理在变力做功情况下的应用
例1.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是 水平轨道,长x=3m,BC处的摩擦系数为μ=1/15,今有质 量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求 物体在轨道AB段所受的阻力对物体做的功。
例 2.如图所示,质量为 m 的物体被细绳经过光滑小孔而牵引,
例5.如图所示,AB与CD为两个对称斜面,其上部都足够
长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆 心角为1200,半径R=2.0m,一个物体在离弧底E高度为 h=3.0m处,以初速度v0=4m/s沿斜面向下运动,若物体与 两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不 包括圆弧部分)一共能走多少路程?(g=10m/s2).
A
DD
O
h
R
B
C
E
• 1.如图8-5所示,A B和C D为半径为R=l m的
1/4圆弧形光滑轨道,B C为一段长2m的水平轨 道.质量为2 kg的物体从轨道A端由静止释放, 若物体与水平轨道B C间的动摩擦因数为0.1,求: (l)物体第1次沿C D弧形轨道可上升的最大高 度.(2)物体最终停下来的位置与B点的距 离.
θ.
答案:mgH(1 cos )+1 mv2sin2 θ cos 2
方法技巧:此题是变力做功问题,关键是利用速度的 分解由汽车的速度求出物体的速度,然后利用动能定理求 拉力做的功.
【例题】电动机通过一绳子吊起质量为 8 kg 的物体, 绳的拉力不能超过 120 N,电动机的功率不能超过 1 200 W,要将此物体由静止起用最快的方式吊高 90 m(已知 此物体在被吊高接近 90 m 时,已开始以最大速度匀速上 升)所需时间为多少?