二级减速器 课程设计 轴的设计

合集下载

二级减速器课程设计说明书

二级减速器课程设计说明书

1 设计任务书1.1设计数据及要求表1-1设计数据序号 F(N) D(mm) V(m/s) 年产量 工作环境 载荷特性最短工作年限传动 方案719202650.82大批车间平稳冲击十年二班如图1-11.2传动装置简图图1-1 传动方案简图1.3设计需完成的工作量(1) 减速器装配图1张(A1)(2) 零件工作图1张(减速器箱盖、减速器箱座-A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸)2 传动方案的分析一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。

要完全满足这些要求是困难的。

在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。

现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。

方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工作。

方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高。

方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。

方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。

上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。

若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。

对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。

故选c 方案,并将其电动机布置在减速器另一侧。

3 电动机的选择3.1电动机类型和结构型式工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机。

最常用的电动机是Y 系列笼型三相异步交流电动机。

其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。

此处根据用途选用Y 系列三相异步电动机3.2选择电动机容量3.2.1工作机所需功率w P 卷筒3轴所需功率:1000Fv P W ==100082.01920⨯=574.1 kw 卷筒轴转速:min /13.5914.326582.0100060100060r D v n w =⨯⨯⨯=⨯=π3.2.2电动机的输出功率d P考虑传动装置的功率耗损,电动机输出功率为ηwd P P =传动装置的总效率:4332221ηηηηη⋅⋅⋅= 滚筒效率滚动轴承效率齿轮传动效率联轴器效率--------4321ηηηη 取 96.099.097.099.04321====ηηηη所以86.096.099.097.099.0322=⨯⨯⨯=η 所以83.186.0574.1===ηwd P P kw 3.2.3确定电动机额定功率ed P根据计算出的功率d P 可选定电动机的额定功率ed P 。

二级减速器_课程设计_轴的设计

二级减速器_课程设计_轴的设计

轴的设计1 --------------3丿>X LLXX |丿L图1传动系统的总轮廓图一、轴的材料选择及最小直径估算根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB =170~2 17。

[p = 4>冷—按扭转强度法进行最小直径估算,即* ;二初算轴径,若最小 直径轴段开有键槽,还要考虑键槽对轴的强度影响。

勺值由表26— 3确定:4〕=112 1、高速轴最小直径的确定= 112x11^^= 1536 wn由’,因高速轴最小直径处安装联轴器,设有一个键槽。

贝y_上「宀工,由于减速器输入轴通过联轴器与电动机轴相联结, 则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取 “皿一0"・,心■■■■rillJ'_1_ 1—为电动机轴直径,由前以选电动机查表6-166 : d.T 临, 仁一怡勺KH J ™,综合考虑各因素,取仏-彳加!2、中间轴最小直径的确定 忍沁=4挖轴承,取为标准值"血。

3、低速轴最小直径的确定二、轴的结构设计1、高速轴的结构设计图2(1)、各轴段的直径的确定 "11:最小直径,安装联轴器尙:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采 用毡圈密封),f 一竹泗"口:滚动轴承处轴段,% _ 4伽酬,滚动轴承选取30208。

"14 :过渡轴段,取%严亦:滚动轴承处轴段%认—加朋 (2)、各轴段长度的确定h :由联轴器长度查表6-96得,/二60血,取JVBK,因中间轴最小直径处安装滚动—-112x 刃耳?二 47_5Lnm30,因低速轴最小直径处安装联轴器,设有一键槽,则九訓心1卩门%)⑴用円川5厠rf3«=4?lm ,参见联轴器的选择,查表6-96,就近取联轴器孔径的标准值.:由箱体结构、轴承端盖、装配关系确定y血味:由滚动轴承确定U 79仃:由装配关系及箱体结构等确定気—尊额■:由滚动轴承、挡油盘及装配关系确定y 山血心:由小齿轮宽度片_帧曲确定,取陰—40nm2、中间轴的结构设计图3(1)、各轴段的直径的确定:最小直径,滚动轴承处轴段,心厂虬厂娅廊,滚动轴承选30206 如:低速级小齿轮轴段"H一'2血% :轴环,根据齿轮的轴向定位要求“卫—弓曲% :高速级大齿轮轴段“甘一«加£ :滚动轴承处轴段氐一血一曲期(2)、各轴段长度的确定仃:由滚动轴承、装配关系确定:由低速级小齿轮的毂孔宽度人—7加确定» 一①临* :轴环宽度亦:由高速级大齿轮的毂孔宽度伽确定釘汕伽5 :由滚动轴承、挡油盘及装配关系等确定・-322湍3、低速轴的结构设计如:滚动轴承处轴段 %一舫™,滚动轴承选取30210"11 :低速级大齿轮轴段“卫一乜伽如:轴环,根据齿轮的轴向定位要求伽%:过渡轴段,考虑挡油盘的轴向定位%-57伽% :滚动轴承处轴段虫厂'% :密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)心厂烁酬血?:最小直径,安装联轴器的外伸轴段(2)、各轴段长度的确定仃:由滚动轴承、挡油盘及装配关系确定—购”伽d由低速级大齿轮的毂孔宽确定^一川阳期仏:轴环宽度J帕用併:由装配关系、箱体结构确定bflrnn从:由滚动轴承、挡油盘及装配关系确定仁-?】75帧从:由箱体结构、轴承端盖、装配关系确定用:由联轴器的毂孔宽人—®伽确定J —轴的校核一、校核高速轴1、轴上力的作用点位置和支点跨距的确定 齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的 30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为 a=16_9ranwl7mn ,支点跨距 I 二朋二(m 。

二级减速器课程设计完整版

二级减速器课程设计完整版

二级减速器课程设计完整版1. 引言减速器是机械传动系统中常见的关键部件之一,用于降低传动装置的转速并提高扭矩输出。

二级减速器作为一种常见的减速器类型,具有广泛的应用范围。

本文旨在通过设计一个完整的二级减速器课程,介绍二级减速器的原理、设计和应用。

2. 二级减速器原理介绍2.1 主要结构组成二级减速器通常由输入轴、输出轴、两级齿轮传动系统和壳体组成。

其中,输入轴将动力源的旋转运动传递给第一级齿轮组,第一级齿轮组再将运动传递给第二级齿轮组,最终通过输出轴输出。

2.2 工作原理当输入轴旋转时,第一级齿轮组将动力传递给第二级齿轮组,通过齿轮的啮合关系实现速度的减速和输出转矩的增大。

第一级齿轮组的齿比用于实现初级减速,第二级齿轮组的齿比则用于实现次级减速。

3. 二级减速器设计步骤3.1 确定设计参数根据具体的应用需求和要求,确定二级减速器的输入转速、输出转矩、减速比等设计参数。

3.2 齿轮选择和设计根据确定的设计参数,选择适当的齿轮材料和规格,并进行齿轮的设计计算。

考虑到齿轮的强度和耐久性,要确保齿轮的模数和齿数满足设计要求,并进行齿形的优化设计。

3.3 轴的设计根据齿轮的参数和要求,设计输入轴和输出轴,并选择适当的材料和尺寸。

在轴的设计过程中,要考虑到扭矩传递和轴的刚度等因素,确保轴能够稳定运行并传递足够的扭矩。

3.4 壳体设计根据齿轮和轴的尺寸,设计适当的壳体结构和外形,并考虑到装配、润滑和散热等因素。

壳体的设计需要保证齿轮和轴可以正确安装和定位,同时提供良好的密封性和机械强度。

4. 二级减速器应用案例以工业搅拌机为例,介绍二级减速器在实际应用中的情况。

工业搅拌机通常需要较大的转矩和较低的转速,因此二级减速器是一种理想的传动选择。

通过连接电动机和搅拌机装置,二级减速器能够将高速低扭矩的电动机输出转换为低速高扭矩的搅拌机运动。

5. 总结通过对二级减速器的课程设计,我们全面了解了二级减速器的原理、设计和应用。

机械设计课程设计二级减速器

机械设计课程设计二级减速器

机械设计课程设计二级减速器一、教学目标本节课的教学目标是使学生掌握二级减速器的基本设计原理和方法,能够运用所学的知识进行简单的减速器设计。

具体目标如下:1.知识目标:(1)了解二级减速器的结构和工作原理;(2)掌握减速器的设计方法和步骤;(3)熟悉减速器设计中常用的标准和规范。

2.技能目标:(1)能够运用CAD软件进行减速器零件的绘制;(2)能够根据设计要求,计算并选择合适的齿轮模数、齿数等参数;(3)能够完成一级减速器的设计计算和图纸绘制。

3.情感态度价值观目标:(1)培养学生的团队合作意识和能力;(2)激发学生对机械设计的兴趣和热情;(3)培养学生的创新精神和实践能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.二级减速器的结构和工作原理;2.减速器的设计方法和步骤;3.减速器设计中常用的标准和规范;4.CAD软件在减速器设计中的应用;5.减速器设计实践操作。

三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解二级减速器的结构、工作原理、设计方法和步骤等基本知识,使学生掌握基本概念和理论。

2.案例分析法:通过分析具体的减速器设计案例,使学生了解减速器设计的过程和注意事项。

3.实验法:安排学生进行减速器设计实验,让学生动手实践,巩固所学知识。

4.讨论法:学生进行小组讨论,培养学生的团队合作意识和能力。

四、教学资源为了保证本节课的教学质量,将准备以下教学资源:1.教材:《机械设计基础》;2.参考书:相关减速器设计手册和论文;3.多媒体资料:减速器设计原理和步骤的PPT;4.实验设备:计算机、CAD软件、减速器设计实验器材。

以上教学资源将有助于实现本节课的教学目标,提高学生的学习效果。

五、教学评估本节课的评估方式将包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和积极性。

2.作业:布置相关的减速器设计作业,要求学生在规定时间内完成,通过评估作业的质量来评估学生的理解和掌握程度。

二级减速器课程设计

二级减速器课程设计

课程设计评语前言减速器是一种由封闭在刚性壳体内的齿轮传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置,在少数场合下也用作增速的传动装置,这时就称为增速器,减速器由于结构紧凑,效率较高,传递运动准确可靠,使用维护简单,并可成批生产,故在现代机械中应用很广。

汽轮机的减速器都采用斜齿轮,斜齿一般具有渐开形,新的减速器齿轮采用螺线形斜齿轮。

汽轮机减速器齿轮是将斜齿轮成组的组装在一起成为人字形齿轮组,用来平衡斜齿轮工作时的轴向推力,从而保证齿轮啮合良好。

在有些小型汽轮机的减速器上,靠发电机侧的大齿轮轴承,除有支承作用外,在轴承两侧还浇铸有乌金,并开有倾斜油槽,与装在大齿轮轴上的两个推力盘组成推力轴承,来承受轴向推力。

大齿轮工作时的轴向推力,可能来自发电机,也可能是斜齿轮工作时残余的轴向不平衡推力。

机械设计课程设计任务书题目设计用于带式运输机上两级斜齿轮减速器学生姓名______指导教师__张旦闻____1、电动机2、小皮带轮3、减速箱4、联轴器5、皮带轮6、大带轮7、高速齿轮8、低速齿轮9运输带设计参数:运输带工作拉力:F=1200N 运输带工作速度:V=1.5m/s卷筒直径:D=200mm 工作条件:连续单向运转,载荷有轻微振动,室外工作,有粉尘;运输带速度允许误差土5%;两班制工作,3年大修,使用期10年。

(卷筒支承及卷筒与运输带间的摩擦影响在运输带工作拉力F中已考虑) 。

加工条件:生产20台,中等规模机械厂,可加工7—8级齿轮。

设计工作量: 1.减速器装配图1张(A0或A1);2.零件图1—3张;3.设计说明书1份。

目录第一章工作机器特征的分析由设计任务书可知:该减速箱用于卷筒输送带,工作速度不高(V=1.5m/s),输送带工作拉力不大(F=1200N),因而传递的功率也不会太大。

由于工作运输机工作平稳,转向不变,使用寿命不长(10年),故减速箱应尽量设计成闭式,箱体内用油液润滑,轴承用脂润滑.要尽可能使减速箱外形及体内零部件尺寸小,结构简单紧凑,造价低廉,生产周期短,效率高。

二级同轴减速器课程设计

二级同轴减速器课程设计

二级同轴减速器课程设计
二级同轴减速器课程设计是机械设计专业中的重要教学环节之一,通过这个设计,学生可以综合运用所学的机械设计基础知识,提高分析和解决工程实际问题的能力。

以下是一个二级同轴减速器课程设计的基本步骤:
1. 确定设计任务:根据给定的工作条件和要求,确定减速器的类型、传动比、输入功率和转速等参数。

2. 传动装置的总体设计:根据设计任务,确定传动方案,选择电动机型号、减速器类型和传动比分配等。

3. 各级传动零件的设计计算:包括齿轮、轴、轴承、键等的设计计算,确保其满足强度、刚度和寿命要求。

4. 减速器结构设计:根据各级传动零件的设计计算结果,绘制减速器装配图和零件图,进行减速器的结构设计。

5. 绘制装配图和零件图:使用CAD 软件绘制减速器的装配图和零件图,标注尺寸、公差和技术要求等。

6. 编写设计说明书:撰写详细的设计说明书,包括设计任务、传动方案、设计计算过程、减速器结构设计和绘图等内容。

7. 设计总结和答辩:对设计过程进行总结,准备答辩,回答教师和同学的提问。

通过完成二级同轴减速器课程设计,学生可以加深对机械设计原理的理解,提高设计能力和创新意识,为今后从事机械设计工作打下坚实的基础。

二级同轴圆柱齿轮减速器课程设计

二级同轴圆柱齿轮减速器课程设计

二级同轴圆柱齿轮减速器课程设计二级同轴圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于工业领域中需要减速运动的设备中。

在机械设计与制造专业的课程中,学生需要通过课程设计来深入了解和掌握这种减速器的原理、结构和设计方法。

课程设计的目标是让学生通过自主学习和实践,掌握二级同轴圆柱齿轮减速器的工作原理和设计流程。

正文将介绍课程设计的内容和步骤,并拓展一些相关的知识点。

首先,课程设计的内容包括以下几个方面:1. 工作原理分析:学生需要分析二级同轴圆柱齿轮减速器的工作原理,了解其传动方式和传动比的计算方法。

2. 结构设计:学生需要根据给定的传动比和输入功率,设计减速器的整体结构和重要零部件的尺寸。

这个过程中需要考虑到齿轮的强度和耐久性。

3. 传动比的计算:学生需要根据输入轴和输出轴的转速,计算减速器的传动比。

这个计算过程需要考虑到齿轮的模数、齿数和齿轮的组合方式。

4. 传动效率的估算:学生需要根据减速器的结构和材料参数,估算减速器的传动效率。

这个过程中需要考虑到齿轮的摩擦损失和轴承的摩擦损失。

其次,拓展一些相关的知识点:1. 齿轮的设计原则:齿轮的设计需要考虑到齿轮的强度、齿面接触疲劳强度和齿轮的几何形状等因素。

学生可以学习齿轮的设计原则,了解齿轮的传动特性和设计要点。

2. 同轴齿轮的优缺点:同轴齿轮传动具有结构简单、传动平稳等优点,但也存在传动效率低、齿轮噪声大等缺点。

学生可以深入了解同轴齿轮传动的特点和适用范围。

3. 减速器的应用领域:减速器广泛应用于各种机械设备中,如机床、起重设备、输送设备等。

学生可以了解减速器在不同领域的应用特点和设计要求。

总之,二级同轴圆柱齿轮减速器课程设计旨在培养学生的机械设计和传动技术能力。

通过课程设计的学习和实践,学生能够掌握减速器的原理和设计方法,为将来的工程实践打下坚实的基础。

二级圆柱齿轮减速器课程设计

二级圆柱齿轮减速器课程设计
由于齿轮相对于轴承的位置不对称,因此要求轴有较大刚度,并 将齿轮安装在输入轴的远端,使轴在弯矩作用下产生的弯矩变形 和在转矩作用下产生的扭矩变形部分抵消,以减少载荷齿宽分
布不均的现象,且工作转速一般、结构简单紧凑、加工方便、成 本低、传动效率高以及使用和维护方便所以此展开式二级直齿圆 柱齿轮减速系统能满足工作要求。
丫心/屛1=4.25/248=0.017
YFS2/kF2=3.95/200=0.02
因为YfsJ1<YfS2 Atf1
于 是aF2=(2K T1/b d1m)
Yfs2Y£=(2X1.2>5X104/48 >48X2) >3.95 >0.7=72MPa<^f2
故满足齿根弯曲疲劳强度要求。
6)几何尺寸计算:
确定各参数值
载荷系数,查表6-6,取K=1.2
小齿轮名义转矩
6 6/
「=9.55X10XP/n1=9.55X10>2.5/480=5X04N.mm
材料弹性影响系数
查表6-8,ZE=189.8『MPa
Z2=84
卩=i =3.5
=1
「=5"04N.mm
ZE=189.8
设计计算及说明
4区域系数:Zh=2.5
i1
二级减速器中:
高速级齿轮传动比i2=J1.5*i$=J1.5*8=3.5
低速级齿轮传动比i3-壬-—2.3
i23.5
三、计算传动装置的运动和动力参数
1•各轴转速
减速器传动装置各轴从高速轴至低速轴依次编号为:I轴、U轴、
2•各轴输入功率
按电动机所需功率Fd计算各轴输入功率,即
电动机的输入功率,R=Fd =2.6kW
根据公式:PC=KAP

机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。

减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。

二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。

输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。

2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。

选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。

同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。

(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。

采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。

同时,要进行轴的疲劳强度校核。

(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。

根据减速器的尺寸和安装要求,设计出合适的箱体结构。

同时,要考虑到箱体的散热性能和重量等因素。

3.装配图设计根据零件设计结果,绘制出减速器的装配图。

装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。

同时,要考虑到维护和修理的方便性。

4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。

整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。

通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。

二级圆柱齿轮减速器课程设计

二级圆柱齿轮减速器课程设计

二级圆柱齿轮减速器课程设计二级圆柱齿轮减速器课程设计一、项目内容本课程设计主要完成二级圆柱齿轮减速器的设计、制作、安装和调试,包括:1. 对减速器的总体设计工作;2. 部件的材料选择、主要尺寸计算、图纸绘制;3. 各部件的加工;4. 各部件的安装;5. 性能测试和调整;6. 设备的试验;7. 论文写作。

二、材料准备减速器的零件材料有:铁芯、齿轮、销轴、衬套等,主要采用45#和20CrMnTi钢,齿面、里面渗碳处理,齿轮面精加工,表面抛光处理。

三、工艺工具准备1. 切削工具:定心器、拉刀、锯片、钢钢、铣刀、直刀、右切磨刀等。

2. 测量工具:卡尺、测微器、游标卡尺,表面粗糙度计,角度仪等。

四、实施步骤1. 设计阶段(1)完成减速器的总体设计,确定减速器的主要参数;(2)根据减速器主要参数,计算减速器各部件的尺寸和主要参数;(3)根据计算的尺寸和参数,绘制减速器零部件的图纸。

2. 加工阶段(1)根据图纸,采用型铣、削齿、磨齿等工艺,加工减速器的各个部件;(2)安装减速器各部件,将各部件安装在减速器的机械总成上;(3)对减速器各部件进行检验,保证减速器的尺寸和位置正确;(4)完成减速器的装配及性能测试。

3. 试验阶段(1)进行减速器试验,检验减速器各项性能指标;(2)分析减速器的试验结果,对减速器的性能进行分析;(3)根据试验结果对减速器的设计进行优化。

4. 总结报告阶段(1)根据实际情况,总结减速器的设计、制造、安装、调试和试验等过程;(2)根据试验结果,总结减速器的性能特点,并提出优化建议;(3)完成课程设计报告;(4)在课程答辩中做出充分的阐述与解释。

二级减速器课程设计完整版

二级减速器课程设计完整版

二级减速器课程设计完整版一、课程背景随着工业的不断发展,减速器在机械传动领域起着至关重要的作用。

二级减速器作为一种常见的传动装置,广泛应用于各个行业的机械设备中。

二级减速器的设计和制造需要具备一定的理论知识和实践经验。

因此,为了培养相关专业人才,学校开设了二级减速器课程,旨在帮助学生掌握二级减速器的设计原理和制造技术。

二、课程目标1. 培养学生对二级减速器设计原理的理解和掌握能力。

2. 培养学生运用相关软件进行二级减速器设计和仿真的能力。

3. 培养学生熟悉常用材料和工艺的选择,掌握二级减速器的制造技术。

4. 培养学生团队合作和解决实际问题的能力。

三、课程内容1. 二级减速器的基本原理1.1 减速器的分类及应用领域1.2 二级减速器的工作原理和传动方式1.3 二级减速器的结构组成和主要零件2. 减速器设计与分析软件的使用2.1 减速器设计软件的介绍及安装2.2 根据给定参数进行减速器设计和仿真2.3 分析并优化减速器的性能指标3. 二级减速器的设计流程3.1 选定减速器的传动比和功率需求3.2 计算减速器齿轮的模数、齿数和齿轮轴的尺寸 3.3 进行齿轮的强度和刚度校核3.4 使用软件进行减速器的装配和运动分析4. 减速器的材料和工艺选择4.1 常用材料的特点和适用范围4.2 减速器的制造工艺及加工方法4.3 选材和工艺对减速器性能的影响分析5. 实际案例分析和设计项目实践5.1 分析减速器在不同行业的应用案例5.2 分组进行二级减速器的设计项目实践5.3 提交设计报告和进行项目答辩四、教学方法1. 理论授课:通过课堂讲授,向学生介绍二级减速器的基本概念、原理和设计方法。

2. 实验实践:学生在实验室内进行减速器设计和仿真,掌握软件的使用和实际操作。

3. 案例分析:通过分析实际案例,引导学生了解减速器的应用领域和具体设计要求。

4. 项目实践:学生分组进行二级减速器的设计项目实践,培养他们的团队合作和解决问题的能力。

二级减速器课程设计

二级减速器课程设计
4)由[2]图10-20c查得小齿轮的弯曲疲劳强度极 =330MP,大齿轮的弯曲疲劳强度极限 =310MP
5)由[2]图10-18取弯曲疲劳寿命系数K =0.90,K =0.95
6)计算弯曲疲劳许用应力
取弯曲疲劳安全系数S=1.4,则有:
[ ] =212Mp
[ ] =210MP
7)计算大、小齿轮的 ,并加以比较
P P
=6.44KW
P =7.28KW
P =6.99kW
P =6.71kW
P 6.44kW
3、各轴的输出功率
P '= ×0.99=7.20kW
P '= ×0.99=6.92kW
P '= ×0.99=6.64kW
P '= ×0.98=6.31kW
P '=7.20kW
P '=6.92kW
P '=6.64kW
=(1081.28~10812.8)
符合这一范围的同步转速有1000r/min,1500r/min和3000r/min三种。查询机械设计手册(软件版)【常有电动机】-【三相异步电动机】-【三相异步电动机的选型】-【Y系列(IP44)三相异步电动机技术条件】-【电动机的机座号与转速对应关系】确定电机的型号为Y132M-4.其满载转速为1440r/min,额定功率为7.5KW。
设计用于带式运输机的展开式二级直齿圆柱齿轮减速器
二、原始数据(E6)
运输机工作轴转矩T= 850 Nm
运输带工作速度v= 1.45 m/s
卷筒直径D= 410 mm
三、工作条件
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作,运输带速度允许误差为5%。
四、应完成的任务
1、减速器装配图一张(A0图或CAD图)

机械课程设计二级减速器

机械课程设计二级减速器

机械课程设计二级减速器一、课程目标知识目标:1. 让学生掌握二级减速器的结构原理,理解其工作过程及在各领域中的应用。

2. 使学生了解并掌握减速器设计中涉及的计算方法,如齿轮传动、轴承寿命等。

3. 帮助学生掌握机械设计的基本流程,包括设计要求分析、方案设计、计算校核等。

技能目标:1. 培养学生运用CAD软件进行二级减速器零部件的绘制和装配能力。

2. 培养学生运用相关计算公式和软件进行二级减速器参数计算和校核的能力。

3. 提高学生实际操作能力,能够根据设计要求完成二级减速器的组装和调试。

情感态度价值观目标:1. 激发学生对机械设计的兴趣,培养其创新意识和实践能力。

2. 培养学生严谨的科学态度和团队协作精神,使其在设计和制作过程中体验到合作与分享的快乐。

3. 增强学生的环保意识,使其在设计过程中注重节能和可持续发展。

课程性质:本课程为机械设计实践课程,结合理论知识,注重培养学生的实际操作能力和创新能力。

学生特点:学生已具备一定的机械基础知识,具有较强的求知欲和动手能力,但缺乏实际设计经验。

教学要求:教师应结合学生特点,采用任务驱动、分组合作等教学方法,引导学生主动参与,注重理论与实践相结合,提高学生的综合能力。

通过本课程的学习,使学生能够将理论知识应用于实际工程设计中,达到学以致用的目的。

二、教学内容1. 理论知识:- 二级减速器的基本结构、原理及其应用领域。

- 齿轮传动原理,齿轮参数的计算与选择。

- 轴承类型及选用,轴承寿命计算。

- 减速器设计中涉及的力学知识,如强度计算、刚度计算等。

2. 实践操作:- 利用CAD软件进行二级减速器零部件的绘制、装配。

- 根据设计要求,进行二级减速器的参数计算和校核。

- 二级减速器的组装、调试及性能测试。

3. 教学大纲:- 第一周:二级减速器基本结构、原理学习,了解其应用领域。

- 第二周:齿轮传动原理学习,进行齿轮参数计算与选择。

- 第三周:轴承类型及选用,轴承寿命计算方法学习。

二级减速器课程设计

二级减速器课程设计
)
[ 1]= = =200MPa
[ 2]= = = MPa
2)校核计算
= MPa
MPa
因 , 故弯曲强度足够。
低速机齿轮传动计算
已知条件:输入功率 =,小齿轮转速

传动比 =,工作寿命为8年(年工作日250天),两班制。
(1)选定齿轮类型、材料和齿数
1)选用斜齿圆柱齿轮传动
2)材料选择。由表[1]选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

电动机中心高H =160mm,外伸轴段D×E=42×110mm。
}
第四
分配减速器的各级传动比
按展开二级圆柱齿轮减速器推荐高速级传动比 ,取 ,得
所以 =
计算各轴的动力和动力参数
(1)计算各轴转速
Ⅰ轴 = = =
[
Ⅱ轴 = = =
Ⅲ轴 = = =
卷通轴 = =
(2)计算各轴输入功率、输出功率
Ⅰ轴 = =×=9kw
15
11
"
380
970
87
2
2
Y180M-2
@
30
22
380
2940
89
2
{
7
确定电动机转速
卷筒转速为
=90
按推荐的传动比合理范围,取V带传动的传动比
二级圆柱齿减速器的传动比为
~
则从电动机到卷筒轴的总传动比合理范围为 。
故电动机转速的可选范围为
可见,电动机同步转速可选 、和 两种。根据相同容量的两种转速,从上表中查出两个电动机型号,再将总传动比合理分配给V带和减速器,就得到两种传动比方案,如下表所示。

课程设计同轴式二级减速器

课程设计同轴式二级减速器

课程设计同轴式二级减速器一、课程目标知识目标:1. 学生能理解同轴式二级减速器的基本结构及其工作原理;2. 学生能掌握同轴式二级减速器的设计步骤和计算方法;3. 学生能了解同轴式二级减速器在工程实践中的应用。

技能目标:1. 学生能够运用所学知识,独立完成同轴式二级减速器的设计计算;2. 学生能够运用CAD软件绘制同轴式二级减速器的零件图和装配图;3. 学生能够通过实验分析同轴式二级减速器的性能,并提出改进措施。

情感态度价值观目标:1. 培养学生对机械设计学科的兴趣,激发其探究精神;2. 培养学生严谨的科学态度,使其认识到工程实践中的细节重要性;3. 培养学生的团队协作精神,使其在项目实施过程中学会沟通与协作。

课程性质分析:本课程为机械设计学科,旨在让学生掌握同轴式二级减速器的设计原理和方法,提高学生的实际操作能力。

学生特点分析:学生为高中二年级学生,已具备一定的物理和数学基础,具有较强的学习能力和动手能力。

教学要求:1. 理论与实践相结合,注重培养学生的实际操作能力;2. 采用项目式教学,引导学生主动探究,培养学生的自主学习能力;3. 注重团队协作,培养学生的沟通与协作能力。

二、教学内容1. 理论部分:(1)同轴式二级减速器的结构特点及工作原理;(2)同轴式二级减速器的设计计算方法,包括传动比、模数、齿数等参数的计算;(3)同轴式二级减速器零件的选用原则及材料性能;(4)同轴式二级减速器的装配与调整。

2. 实践部分:(1)运用CAD软件绘制同轴式二级减速器的零件图和装配图;(2)进行同轴式二级减速器的组装和调试;(3)分析同轴式二级减速器的性能,提出优化方案。

3. 教学大纲:第一周:介绍同轴式二级减速器的结构及工作原理;第二周:学习同轴式二级减速器设计计算方法;第三周:探讨零件选用原则及材料性能;第四周:实践操作,绘制零件图和装配图;第五周:组装和调试同轴式二级减速器,分析性能。

4. 教材章节:(1)第四章:齿轮传动设计;(2)第五章:轴和轴承的设计;(3)第六章:联轴器和减速器的设计。

机械课程设计二级减速器设计

机械课程设计二级减速器设计

二、电动机的选择:(1)电动机型号的选择:根据电动机转速P 电=5.5kw ,传动不逆转,则同步转速n=1500rpm;选择电动机型号Y132S-4,P 额=7.5KW ,满载电流I=11.6A ,效率η=85.5%,功率因数cos φ=0.84;堵转电流/额定电流=7.0A;堵转转矩/额定转矩=2.2;最大转矩/额定转矩=2.2(2)电动机主要外形和安装尺寸如下: 三、确定传动装置的总传动比和分配传动比1. 确定总传动比:4286.2735960===总电总n n i 电n 为电动机满载转速;总n 为盘磨机主轴转速;总i 为传动装置总传动比2.分配传动比:锥总i i i i ⋅⋅=21;21i i 分别为两对斜齿轮的传动比;3~2=锥i ,取5.2=锥i ,则有97.105.24286.2721===⋅锥总i i i i21)3.1~2.1(i i = 63.31=∴i 02.32=i四、计算传动装置的运动和动力参数为进行传动件的设计计算,要推算出各轴的转速和转矩(或功率),如将传动装置各轴由高速至低速依次定为1轴、2轴……同时每对轴承的传动效率η1=0.99 圆柱齿轮的传动效率η2=0.96 联轴器的传动效率η3=0.99 圆锥齿轮的传动效率η4=0.95则可按电动机到工作机运动传递路线推算,得到各轴的运动和动力参数。

1.计算各轴转速:m in /9601r n n m == m in /9602r n n m ==min /46.26463.3960123r i n n ===min /57.8702.346.264234r i n n ===min /57.8745r n n == min /03.355.257.8756r i n n ===锥 m n 为电动机满载转速;654321n n n n n n 分别为轴1至轴6的转速;2.各轴输入功率:kw P P d 5.51==kw P P d 39.599.099.05.5122=⨯⨯=⋅=η 3112ηηη⨯= kw P P 12.596.099.039.52323=⨯⨯=⋅=η 2123ηηη⨯= kw P P 87.496.099.012.53434=⨯⨯=⋅=η 2134ηηη⨯= kw P P 77.499.099.087.44545=⨯⨯=⋅=η 3145ηηη⨯= kw P P 49.495.099.077.45656=⨯⨯=⋅=η 4156ηηη⨯=5645342312ηηηηη分别为相邻两轴间的传动效率 3.各轴输出功率:kw P P d 5.5'1==kw P P 34.599.039.512'2=⨯=⋅=η kw P P 76.299.079.213'3=⨯=⋅=ηkw P P 82.499.087.414'4=⨯=⋅=η kw P P 72.499.077.415'5=⨯=⋅=η kw P P 45.499.049.416'6=⨯=⋅=η4.各轴输入转矩:m N n P T d ⋅=⨯=⨯=71.549605.595509550电电m N T T d ⋅==71.541m N T T ⋅=⨯⨯=⋅=62.5399.099.071.541212ηm N i T T ⋅=⨯⨯⨯=⋅⋅=99.18496.099.063.362.5323123η m N i T T ⋅=⨯⨯⨯=⋅⋅=96.53096.099.002.399.18434234η m N T T ⋅=⨯⨯=⋅=39.52099.099.096.5304545η m N i T T ⋅=⨯⨯⨯=⋅⋅=57.122395.099.05.239.5205656η锥5.各轴输出转矩:m N T T d ⋅==71.54'1m N T T ⋅=⨯=⋅=08.5399.062.5312'2η m N T T ⋅=⨯=⋅=14.18399.099.18413'3ηm N T T ⋅=⨯=⋅=65.52599.096.53014'4η m N T T ⋅=⨯=⋅=19.51599.039.52015'5η m N T T ⋅=⨯=⋅=33.121199.057.122316'6η根据上述运算过程,运动和动力参数计算结果整理于下表:五、传动零件的设计计算1.高速齿轮的计算注:参考资料未标表示机械设计第八版,机原为机械原理表1 高速级圆柱斜齿轮1传动参数表2.低速齿轮的计算表2 低速级圆柱斜齿轮传动参数表3.锥齿轮的计算注:课设-机械设计课程设计指导书表3锥齿轮传动参数表六、轴的计算计算及说明结果1.轴的初选:材料45钢 []55~35=t τ 97~1120=Amm n P A d n 7.7719605.391003302==≥ 66.1805.117.77=⨯ mm n P A d 26.8564.4625.12100333303==≥ 19.2805.126.85=⨯ mm n P A d 38.1787.574.87100334404==≥ 4005.138.17=⨯ mm n P A d 37.9187.574.77100335505==≥ mm n P A d 50.4235.034.49100336606==≥ 对于直径100mm d ≤的轴,轴径增大5%至7%2.轴的校核P362表15-1P370表15-3 P371 P371材力第3章切向力N d T F t 87.394674.931099.18422333=⨯⨯==P231七、键联接的选择和计算1.键的选择键2 10 8 0.4-0.6 42 0.063 5.0 3.3 0.25-0.4键3 10 8 0.4-0.6 62 0.063 5.0 3.3 键41490.4-0.6700.1555.03.32.键的校核:计算及说明结果低速轴上键4的校核:[]MPa p 120~100=σ[]p p dkl T σσ<=⨯⨯⨯==6.856245096.5302000200082==hk机械手册P581表7-3机械手册P580八、滚动轴承的选择和计算1.轴承的选择序号轴承代号基本尺寸基本额定负荷KN 极限转速 安装尺寸 质量 dDBCC脂润滑 r dDrkg1 7305AC 25 62 17 21.5 15.8 9500 19.1 32 55 1 0.23 2 7306AC 30 72 19 25.2 18.5 8500 31.1 37 65 1 0.35 3 7310AC 50 110 27 55.5 44.556003360 100 2 1.32计算及说明结果2.轴承的校核 查表可知,68.0=e派生轴向力N F V d 34.120944.177868.068.0F 11=⨯==N F V d 126.19595.28668.068.0F 22=⨯==34.1209116.1297126.19599.110112=>=+=+d d a F F F左边为放松边,右边为压紧边N F F F d a a 116.1297126.19599.110121=+=+=P322表13-7N F F d a 126.19522==e F F V a >==73.044.1778116.129711,则41.01=X ,87.01=Y e F F V a ===68.095.286126.19522,则12=X ,02=Y 轴承受轻微冲击,则载荷系数2.1=p fNF F f P a V p 18.2229)116.129787.044.177841.0(2.1)(11111=⨯+⨯⨯=Y +X =N F F f P a V p 34.344)95.2861(2.1)(22222=⨯⨯=Y +X =左轴承h P C n L h 636161094.218.22295550057.8760106010⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⨯=ε左h h L L >左 ,符合要求。

机械设计二级减速器课程设计

机械设计二级减速器课程设计

机械设计二级减速器课程设计设计背景机械减速器是常见的机械传动装置,其作用是将高速驱动电机的转速通过减速装置降低到所需的工作速度。

机械减速器被广泛应用于工业生产中,例如传输设备、机床、风机等。

本课程设计旨在通过实际案例,让学生了解机械减速器的原理、设计和制造过程。

通过实践操作,提高学生解决实际工程问题的能力和动手能力。

设计目标本次课程设计的目标是设计一个二级减速器,要求满足以下几个条件:1.输入轴转速为2000 RPM,输出轴转速为1000 RPM。

2.输出轴扭矩为100 Nm。

3.整个减速器的传动效率需达到90%以上。

4.减速器结构紧凑、强度足够。

设计步骤1. 确定减速比根据输入轴和输出轴的转速要求,计算减速比。

在本次课程设计中,减速比为2。

2. 选择传动方式根据设计要求,选择合适的传动方式。

常见的传动方式包括齿轮传动、链传动和带传动等。

根据减速器的传动效率和结构紧凑的要求,选择齿轮传动作为传动方式。

3. 确定齿轮模数根据输入轴和输出轴的转速比,计算出齿轮模数。

同时考虑到齿轮的强度和制造成本等因素,选择合适的齿轮模数。

模数的计算可参考材料力学和机械设计相关课程。

4. 设计齿轮参数根据选择的模数,计算出各个齿轮的参数,包括齿轮的齿数、齿轮的模数和齿轮的压力角等。

同时需要考虑到齿轮的载荷分配和齿轮的强度计算。

5. 确定减速器结构根据齿轮的参数,设计减速器的结构。

要考虑到齿轮间的布局、支撑结构、允许误差和装配工艺等因素。

6. 验证减速器设计设计完成后,进行减速器的强度验证和传动效率的计算。

如果不满足设计要求,需要进行调整和优化。

7. 制造和组装减速器根据设计图纸,进行减速器的制造和组装。

要注意工艺的选择和装配过程中的质量控制。

8. 减速器的测试和调整制造完成后,进行减速器的测试和调整,确保减速器的性能和传动效果符合设计要求。

设计流程图以下为机械减速器设计的流程图:graph LRA[确定减速比] --> B[选择传动方式]B --> C[确定齿轮模数]C --> D[设计齿轮参数]D --> E[确定减速器结构]E --> F[验证减速器设计]F --> G[制造和组装减速器]G --> H[减速器的测试和调整]设计成果学生需要提交以下设计成果:1.设计报告:包括设计背景、设计目标、设计步骤、设计流程图、齿轮参数计算和减速器结构图等。

二级减速器课程设计完整版

二级减速器课程设计完整版

二级减速器课程设计完整版一、课程设计的目的二级减速器课程设计是机械设计课程中的重要实践环节,其目的在于通过对二级减速器的设计,让我们更深入地理解机械传动系统的工作原理和设计方法,培养我们综合运用所学机械知识进行工程设计的能力,包括结构设计、强度计算、绘图表达等方面。

同时,也有助于提高我们的创新思维和解决实际问题的能力。

二、设计任务与要求本次设计的任务是设计一个用于特定工作条件下的二级减速器。

给定的工作条件包括输入功率、输入转速、工作机的转速要求以及工作环境等。

具体要求如下:1、选择合适的传动方案,确定各级传动比。

2、对齿轮、轴、轴承等主要零部件进行设计计算和强度校核。

3、绘制减速器的装配图和主要零件图。

4、编写设计说明书,清晰阐述设计思路和计算过程。

三、传动方案的选择在选择传动方案时,需要考虑多种因素,如传动效率、结构紧凑性、成本等。

常见的二级减速器传动方案有圆柱齿轮减速器、圆锥齿轮减速器、蜗杆减速器等。

经过比较分析,我们选择了圆柱齿轮减速器,因为它具有传动效率高、结构简单、成本较低等优点。

四、主要参数的计算1、确定总传动比根据输入转速和工作机转速要求,计算出总传动比。

2、分配各级传动比考虑到齿轮的齿数和模数等因素,合理分配两级齿轮的传动比。

3、计算各轴的转速、功率和转矩五、齿轮的设计计算1、选择齿轮材料根据工作条件和使用要求,选择合适的齿轮材料。

2、按齿面接触疲劳强度计算确定齿轮的主要参数,如齿数、模数、分度圆直径等。

3、按齿根弯曲疲劳强度校核六、轴的设计计算1、初步估算轴的直径根据传递的转矩和转速,初步估算轴的最小直径。

2、轴的结构设计根据安装零件的要求,确定轴的各段直径和长度,以及轴上的键槽等结构。

3、轴的强度校核对轴进行弯扭合成强度校核和疲劳强度校核。

七、轴承的选择与校核根据轴的受力情况,选择合适的轴承类型,并进行寿命计算和校核。

八、键的选择与校核选择合适的键连接,并对其强度进行校核。

九、减速器的润滑与密封确定减速器的润滑方式和润滑油的种类,以及选择合适的密封方式和密封件。

二级减速器课程设计二级同轴式斜齿圆柱齿轮减速器的设计

二级减速器课程设计二级同轴式斜齿圆柱齿轮减速器的设计

二级同轴式斜齿圆柱齿轮减速器的设计每日三班制工作,工作期限为7年。

已知条件:输送带带轮直径d=320mm,输送带运行速度v=0.628m/s,转矩m=600.T⋅N一、传动装置的总体设计1.1传动方案的确定1.2电动机的选择计算项目计算及说明计算结果1、选择电动机的类型根据用途选用Y系列三相异步电动机2、选择电动机的功率输送带所需拉力为NdTF375032.060022=⨯==输送带所需功率为kWFvPw355.21000628.037501000=⨯==查表2-1,取v带传动效率带η=0.96,一对轴承传动效率轴承η=0.99,斜齿圆柱齿轮传动效率齿轮η=0.97,联轴器传动效率联η=0.99,则电动机到工作间的总效率为联齿轮轴承带总ηηηηη24==859.099.097.099.096.024=⨯⨯⨯电机所需工作效率为kWPP w742.2859.0355.2===总η根据表8-2选取电动机的额定功率kwed3=PNF3750=kww355.2=P0.859=总ηkw742.2=Pkwed3=P3、确定电动机的转速输送带带轮的工作转速为min/5.37320628.0100060100060rDvnw=⨯⨯⨯=⨯=ππ由表2-2知v带传动比4~2=带i,二级圆柱齿轮减器传动比40~8=齿i,则传动比的范围为160~1640~84~2=⨯=⋅=)()(齿带总iii电机的转速范围为min/6000600160~165.37rinnw~)(总=⨯=⋅=由表8-2可知,符合这一要求的同步电动机由转速有1000r/min、1500r/min和3000r/min,考虑3000r/min的电动机转速太高,而1000r/min的电动机体积大且贵,故选用转速为1500r/min的电动机进行试算,其满载转速为1420r/min,型号为Y100L2-4min5.37rwn=min1420rmn=1.3传动比的计算与分配 计算项目计算及说明计算结果1、总传动比87.375.371420===w m n n i 总 37.87=总i2、分配传动比根据传动比范围,取带传动比5.2=带i ,减速传动比为15.155.237.87===带总i i i 高级传动比为21892.315.15i i i ====2.5=带i892.321==i i1.4传动装置运动、动力参数的计算 计算项目计算及说明计算结果1、各轴转速电动机轴为0轴,减速器高速轴为Ⅰ轴,中速轴为Ⅱ轴,低速轴为Ⅲ轴,各轴转速为min/498.37min /498.37892.3940.145min /940.145892.3568min /5685.21420min /14203223112010r n n r i n n r i n n r i n n r n n w m =============带min/498.37min /498.37min /940.145min /568min /14203210r n r n r n r n r n w =====2、各轴输入功率按电动机额定功率ed P 计算各轴输入功率,即kWP P P kW P P P kW P P P kW P P P 379.299.099.0427.2427.297.099.0528.2528.297.099.0632.2632.296.0742.23w -33w 23-2231211201001=⨯⨯====⨯⨯====⨯⨯====⨯===--联轴承齿轴承齿轴承带ηηηηηηηηηηηkWP kWP kWP kW P 727.2782.2897.2017.3w321====计算项目计算及说明计算结果3、各轴转矩mN n P T mN n P T mN n P T m N n P T m N n P T w w w⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯==884.605498.37379.295509550109.618498.37427.295509550427.165940.145528.295509550253.44568632.295509550441.181420742.295509550333222111000 mN T m N T mN T mN T m N T w ⋅=⋅=⋅=⋅=⋅=884.605109.618427.165253.44441.183210 二、传动件的设计计算 2.1带传动的设计 计算项目计算及说明计算结果1、确定计算功率由于是带式输送机,每天工作三班,查《机械设计》(V 带设计部分未作说明皆查此书)表8-6得, 工作情况系数1.1=A KkW P K P A d 016.3742.21.10=⨯== 1.1=A KkW P d 772.3=2、选择V 带的带型由d P 、0n 由图8-2选用A 型V 带A 型V 带3、确定带轮的基准直径d d 并验算带速带v①初选小带轮的基准直径1d d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴的设计
图1传动系统的总轮廓图
一、轴的材料选择及最小直径估算
根据工作条件,小齿轮的直径较小(),采用齿轮轴结构,选用45钢,正火,硬度HB=。

按扭转强度法进行最小直径估算,即初算轴径,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。

值由表26—3确定:=112
1、高速轴最小直径的确定
由,因高速轴最小直径处安装联
轴器,设有一个键槽。

则,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机
轴径不得相差太大,否则难以选择合适的联轴器,取,为
电动机轴直径,由前以选电动机查表6-166:,
,综合考虑各因素,取。

2、中间轴最小直径的确定
,因中间轴最小直径处安装滚动
轴承,取为标准值。

3、低速轴最小直径的确定
,因低速轴最小直径处安装联轴器,设有一键槽,则,参见联轴器的选择,查表6-96,就近取联轴器孔径的标准值。

二、轴的结构设计
1、高速轴的结构设计
图2
(1)、各轴段的直径的确定
:最小直径,安装联轴器
:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封),
:滚动轴承处轴段,,滚动轴承选取30208。

:过渡轴段,取
:滚动轴承处轴段
(2)、各轴段长度的确定
:由联轴器长度查表6-96得,,取
:由箱体结构、轴承端盖、装配关系确定
:由滚动轴承确定
:由装配关系及箱体结构等确定
:由滚动轴承、挡油盘及装配关系确定
:由小齿轮宽度确定,取
2、中间轴的结构设计
图3
(1)、各轴段的直径的确定
:最小直径,滚动轴承处轴段,,滚动轴承选30206 :低速级小齿轮轴段
:轴环,根据齿轮的轴向定位要求
:高速级大齿轮轴段
:滚动轴承处轴段
(2)、各轴段长度的确定
:由滚动轴承、装配关系确定
:由低速级小齿轮的毂孔宽度确定
:轴环宽度
:由高速级大齿轮的毂孔宽度确定
:由滚动轴承、挡油盘及装配关系等确定
3、低速轴的结构设计
图4
(1)、各轴段的直径的确定
:滚动轴承处轴段,滚动轴承选取30210
:低速级大齿轮轴段
:轴环,根据齿轮的轴向定位要求
:过渡轴段,考虑挡油盘的轴向定位
:滚动轴承处轴段
:密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)
:最小直径,安装联轴器的外伸轴段
(2)、各轴段长度的确定
:由滚动轴承、挡油盘及装配关系确定
:由低速级大齿轮的毂孔宽确定
:轴环宽度
:由装配关系、箱体结构确定
:由滚动轴承、挡油盘及装配关系确定
:由箱体结构、轴承端盖、装配关系确定
:由联轴器的毂孔宽确定
轴的校核
一、校核高速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为
,支点跨距,高速级小齿轮作用点到右支点B的距离为
,距A为
图5
2、计算轴上的作用力
如图4—1,求:

3、计算支反力并绘制转矩、弯矩图
(1)、垂直面
图6

图7
(2)、水平面
图8



图9
(3)、求支反力,作轴的合成弯矩图、转矩图
图10 1轴的弯矩图
图11 1轴的转矩图
(4)、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面C)的强度,因为是单向回转轴,所以扭转应力视为脉动循环
应力,折算系数。

已选定轴的材料为45钢正火处理,由表26-4查得,因此,严重富裕。

二、校核中间轴
1、轴上力的作用点位置和支点跨距的确定
轴上安装30206轴承,它的负荷作用中心到轴承外端面距离为
,跨距,高速级
大齿轮的力作用点C到左支点A的距离
,低速级小齿轮的力作用点D到右支点B的距离。

两齿轮力作
用点之间的距离。

轴的受力简图为:
图12
2、计算轴上作用力
齿轮2:;
齿轮3:;
3、计算支反力
(1)、垂直面支反力
图13
由,得
由,得
由轴上合力校核:
,计算无误(2)、水平面支反力
图14
由,得
由,得
由轴上合力校核:
,计算无误
(3)、总支反力为
(4)、绘制转矩、弯矩图
a、垂直面内弯矩图
C处弯矩
D处弯矩
图15
b、水平面内弯矩图
C处弯矩
D处弯矩
图16 c、合成弯矩图
图17 d、转矩图
图18
(5)、弯扭合成校核
进行校核时,通常只校核轴上承受最大弯矩和转矩的截面(即截面D)的强度。

去折算系数为
已选定轴的材料为45钢正火处理,由表26-4查得,因此。

三、校核低速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30210轴承,从表12—6可知它的负荷作用中心到轴承外端面的距离为
,支点跨距,低速级大齿轮作用点到右支点B的距离为,距A为
图19
2、计算轴上的作用力
如图4—15,求:

3、计算支反力并绘制转矩、弯矩图
(1)、垂直面
图20

图21 (2)、水平面
图22



图23
(3)、求支反力,作轴的合成弯矩图、转矩图
图24
图25
(4)、按弯扭合成应力校核轴的强度
校核危险截面C的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。

已选定轴的材料为45钢正火处理,由表26-4查得,因此,强度足够。

则传动系统轮廓图为
图26。

相关文档
最新文档