CATIA_V5_运动仿真分析1

合集下载

CATIA V5 R20运动仿真

CATIA V5 R20运动仿真

运动仿真学习情况1——旋转副;可以单独驱动,驱动的是旋转角度;只能实现绕自身的轴旋转;√2——棱形副;可以单独驱动,驱动是滑动长度;只能实现沿着公共线滑动;√3——圆柱副;可以单独驱动,可以同时驱动是滑动长度和旋转角度,这两个驱动添加后就可以运动了;只能实现绕轴旋转并沿轴线滑动;√4——螺钉副;可以单独驱动,实现实体每转动1圈,就前进多少mm。

不一定非要是螺杆和螺母,其他的旋转前进仿真也可以使用该命令。

6——平面副;不可以单独驱动,约束一公共平面,具有除沿平面法向移动及绕平面坐标轴转动外的3个运动自由度√7——点曲线副;不可以单独驱动,只能由其他运动副带动起来;点必须在曲线的上面,不在就是不行,实现点在曲线,也就是点在轨迹线上走动。

√8——滑动曲线;不可以单独驱动,只能由其他运动副带动起来;约束两轨迹线相切,实现线在线上滑动;√9——滚动曲线;不可以单独驱动,只能由其他运动副带动起来;约束两轨迹线相切,实现线在线上滑动;√10——点曲面;√不知道他与点曲线有何区别?11——U形结合;√3条轴线相交且位于同一平面内,且输入、输出端轴线与中间轴轴线夹角相同时,可以使用该命令13——齿轮接合;注意齿轮接合的对象不一定是齿轮,只要是一个旋转体带动另一个旋转体的话,就可以使用齿轮接合。

14——齿轮齿条:对旋转副和棱形副进行约束,有个比率15——电缆;√16——刚性结合;√17——使用命令进行模拟√18——使用法则曲线进行模拟√19——机械装置修饰20——装配约束转换√22——分析机械装置23——模拟24——编辑模拟25——重放26——模拟播放器27——编辑序列28——扫略包络体29——轨迹30——重置位置:√仿真的注意点如下:1——驱动对象的选择是有原则的;不可以随便选择,必须符合实际的运动情况;当定义驱动对象时,驱动对象也是有原则的,比如我们在定义旋转副的驱动对象时,如果要求我们的驱动对象进行360度全周旋转的话,那么的我们的对象在实际情况中必须能够或者说可以旋转360度,在整个运动机构当中并不是所有的旋转副都可以旋转360度,有的只能旋转几度,,因此一定要搞清楚哪个对象可以旋转360度,搞清楚这个事情后在去将他定义为驱动对象,如果对象本身不可能旋转360度,而你要把他定义为驱动,还要他旋转360度的话,这样的运动仿真是不成功的。

catia运动仿真解析

catia运动仿真解析
Catia运动仿真
CATIA 运动仿 真模块(DMU Kinematics)
运动分析仿真-概述
运动分析仿真-步骤
运动分析仿真-建议1
运动分析仿真-建议2
运动分析仿真-建议3
运动分析仿真-建议4
3D几何模型与机构模型


3D模型简化 微小特征的抑制 微小零部件的处理 载荷的等效处理 机构模型 装配模型-〉机构模型 简化模型-〉机构模型
Catia仿真简介

运动机构(Mechanism)
可运动条件:DOF=0 机构组成: 支架/大地(fixed prts) 运动连杆 (links) 运动关节 (joints) 运动驱动 (drivers)
Catia运动仿真练习

凸轮机构 物体/连杆 运动副/铰链 驱动
Catia运动仿真练习凸轮机构Catia运动仿真练习2

凸轮练习-直接创建机构

最新CATIA运动仿真DMU空间分析汇总

最新CATIA运动仿真DMU空间分析汇总

C A T I A运动仿真D M U空间分析CATIA运动仿真DMU空间分析CATIA的DMU空间分析模块可以进行设计的有效性评价。

它提供丰富的空间分析手段,包括产品干涉检查、剖面分析和3D几何尺寸比较等。

它可以进行碰撞、间隙及接触等计算,并得到更为复杂和详尽的分析结果。

它能够处理电子样机审核及产品总成过程中经常遇到的问题,能够对产品的整个生命周期(从设计到维护)进行考察。

DMU空间分析能够处理任何规模的电子样车,它适用于从日用工具到重型机械行业的各种企业。

X.1 相关的图标菜单CATIA V5的空间分析模块由一个图标菜单组成:空间分析(DMU Space Analysis)Clash: 干涉检查Sectioning: 剖面观察器Distance and Band Analysis: 距离与自定义区域分析Compare Products: 产品比较Measure Between: 测量距离和角度Measure Item: 单项测量Arc through Three Points: 测量过三点的圆弧Measure Inertia: 测量惯量3D Annotation: 三维注释Create an Annotated View: 建立注释视图Managing Annotated Views: 管理注释视图Groups: 定义产品组x.2 空间分析模块的环境参数设定在开始使用CATIA V5的空间分析模块前,我们可以根据自身的习惯特点,合理地设定其环境参数。

在菜单栏中使用下拉菜单Tools→Option→Digital Mockup打开DMU Space Analysis的环境参数设定界面,在此窗口中有六个标签,分别对应不同的参数设定。

x.2.1 干涉检查设置(DMU Clash)该设置针对Clash命令,允许设置以下内容:Retrieve Information:得到干涉的结果From previous computation:从前一个计算得到分析结果From PDM(UNIX only with ENOVIAVPM):从PDM中得到分析结果(在UNIX系统下是ENOVIA VPM)None:(缺省)无比较Results Window /Automatically open:当进行干涉检查时自动打开结果显示窗口Display in Results box:设置缺省的显示条目list by conflict:冲突列表list by product:产品列表First line automatically selected:(缺省)自动选择冲突列表或产品列表的第一行Type of Computation:设置冲突的缺省类型和缺省的安全距离During Initial Computation:计算并显示所有冲突的深度和最小距离x.2.2 干涉检查细节设置(DMU Clash – Detailed Computation)该设置针对Clash命令,允许设置以下内容:Level of Detail:设置细节的级别Element:(缺省)让用户全面地工作于产品级别,直到查明有关的元素。

CATIA-V5-运动仿真分析

CATIA-V5-运动仿真分析

第16章 CATIA 运动分析16.1 曲轴连杆运动分析四缸发动机曲轴、连杆和活塞的运动分析是较复杂的机械运动。

曲轴做旋转运动,连杆左做平动,活塞是直线往复运动。

在用CATIA作曲轴、连杆和活塞的运动分析的步骤如下所示。

(1)设置曲轴、连杆、活塞及活塞销的运动连接。

(2)创建简易缸套机座。

(3)设置曲轴与机座、活塞与活塞缸套之间的运动连接。

(4)模拟仿真。

(5)运动分析。

16.1.1 定义曲轴、连杆、活塞及活塞销的运动连接1.新建组文件(1)点击“开始”选取“机械设计”中的“装配件设计”模块,如图16-1所示。

图16-1 进入“装配件设计”模块(2)进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/huo-sai-xiao.CATPart、huo-sai.CATPart 、lianganzujian.CATproduct、quzhou.CATpart”,将这些零件体载入到Product1中。

(3)此时,零件体载入后重合到一起,点击分解图标,出现分解对话框如图16-2所示。

然后点击模型树上的Product1,点击确定,此时弹出警告对话框,如图16-3所示,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。

图16-2 分解对话框图16-3 警告对话框(3)由于连杆体零件是装配体,各部分之间存在约束,点击“全部更新”按钮,我们会发现连杆体组件恢复装配后的样子。

(4)点击“约束”工具栏中的“相合约束”图标,分别选择活塞销中心线及活塞孔中心线,如图16-4所示。

然后点击“约束”工具栏中的“偏移约束”图标,选择活塞销的一个端面及活塞孔一侧的凹下去细环端面,如图16-5所示,此时出现“约束属性”对话框,如图16-6所示。

将对话框中的“偏移”一栏改为“3.75mm”,点击“确定”按钮,完成活塞销端面和活塞内凹孔细环端面之间的偏移约束关系。

catiav5使用教程(2024)

catiav5使用教程(2024)
数控编程的基本步骤
包括分析零件图纸、确定加工工艺、编写加工程序、调试程序和 首件试切等。
2024/1/29
24
catiav5数控编程功能介绍
2024/1/29
catiav5数控编程模块概述
catiav5提供了全面的数控编程模块,支持从简单的2轴加工 到复杂的5轴联动加工。
加工策略与刀具路径生成
catiav5提供了多种加工策略,可根据不同的加工需求生成 优化的刀具路径,提高加工效率和质量。
30
THANKS FOR WATCHING
感谢您的观看
2024/1/29
31
菜单栏
包含文件、编辑、视图、插入、格式、工具、 窗口和帮助等菜单项,用于执行各种操作。
工具栏
提供常用命令的快捷方式,如保存、撤销、重做 等。
2024/1/29
绘图区
用于显示和编辑图形的主要区域。
状态栏
显示当前光标位置、图层、颜色等信息。
命令窗口
显示和输入命令的地方,可以执行各种操作。
9
自定义界面风格与快捷键设置
2024/1/29
创建基础特征
在钣金设计模块中,可以使用“草图”工具创建基础特征 ,如矩形、圆形等。通过定义草图的尺寸和位置,可以生 成钣金件的基础形状。
完成钣金件创建
在完成基础特征和折弯特征的创建后,可以使用“完成” 命令来结束钣金件的创建过程。此时,可以对钣金件进行 进一步的编辑和优化。
16
折弯、展开等钣金操作演示
2024/1/29
3
软件背景及发展历程
CATIA(Computer Aided Three-dimensional Interactive Application)是法国达索公司开发的一款高端CAD/CAE/CAM一体化软 件。

CATIA_机械运动分析与模拟实例

CATIA_机械运动分析与模拟实例

前言CATIA软件是法国达索飞机制造公司首先开发的。

它具有强大的设计、分析、模拟加工制造、设备管理等功能。

其设计工作台多达60多个,就足以说明软件功能的强大。

本书是作者在出版系列CATIA软件功能介绍后,专门针对某一项功能写的实例教程。

在讲解示例的过程中,作者也注意了将某些快捷功能插入进来,进行讲解。

比如在装配设计工作台对零件进行重新设计,比如在装配图中直接导入或者插入新的零件。

在同类的图书中,很难涉及到这些快捷功能。

本书是基于CATIA V5 R16写成的,在完成本书时,已经有R17版本了,读者在更高的版本上也可以使用此书。

读者在阅读本书,使用软件时,需要反复练习,才能熟练运用本书所讲解的一些功能。

可以根据本书的步骤,做一些自己学习和工作中遇到的模型,也可以拿机械设计的标准件来做练习实例。

本书适合做机械设计的专业人员和机械相关专业的学生使用。

本书也同样适合想学习CATIA软件的其他读者。

本书前面20章都是讲解某一项铰的设计方法,最后一章是综合前面各章内容做的一个实例。

本书编写过程中考虑到了初学者可能对CATIA机械零件设计的功能还不是很熟悉,因此,对于各章所涉及到的零件,模型建立方法都做了详细的介绍。

对于已经熟悉CATIA基本设计功能的读者,可以略读这部分内容,直接阅读各章最后一节的内容。

对于只想了解CATIA 机械零件设计的读者,可以仔细阅读每章前面各节的内容,把本书作为机械设计的详细教程,未尝不可。

感谢我的家人,他们给了我很大的支持,使我能抽出时间完成此书。

感谢我的单位领导对工作的支持,特别是反应堆结构室的领导和各位同仁,他们的鼓励和帮助,使我坚持下来完成此书,并使我受益匪浅。

本书由盛选禹和盛选军主编。

冯志江老师参加了本书第1、第2、第3章的编写工作。

王存福同志参加了第6、第7、第8章的编写工作参加本书编写工作的还有张宏志,王玉洁,孙新城,盛选贵,曹京文、陈树青、王恩标、于伟谦、盛帅、候险峰、盛硕、陈永澎、盛博、曹睿馨、张继革、刘向芳、富晶、孟庆元、宗纪鸿、唐守琴。

CATIA运动分析方法

CATIA运动分析方法

运动分析的一般步骤运动分析在Catia V5 R12中的DMU Kinematics模块下的一般步骤1.创建机构运动分析不是针对单个实体的分析,而是针对一个或多个机构的分析,所以应该先确定一个机构。

通常先确定一个固定件,否则机构是不能运动的。

点击Fixed Part命令,出现如下对话框:在几何模型区,或者树形图上选择想要固定的部件,这时定义好的机构自动出现在树形图上。

2.定义约束依据下表选择合适正确的运动副。

RollSlidePointPointJointJoint一个机构要想运动,通常会有一个或多个驱动,具体要根据机构形式而定。

可以在第二步定义约束的同时进行驱动命令的定义。

例如对于圆柱副,既可以定义角度驱动,又可以定义长度驱动,或者同时定义角度驱动和长度驱动。

完全约束的条件:每个运动副约束的自由度不同,而每个驱动命令只能约束一个自由度,当机构的自由度为零时,为完全约束(小于零为过约束,大于零为欠约束);这时系统会提示你,机构已经可以模拟了:4.设置传感器设置传感器来监测动态仿真过程,比如间隙值、碰撞、速度和加速度等。

在动态仿真过程中,可以根据传感器测量的数据来分析检查样机的设计情况。

常用以下几个命令Clash (碰撞分析);Distance & Band Analysis (距离和区域分析);Speed and Acceleration (速度和加速度测量)等。

(1)距离和区域分析:用于测量一个组内或者两个组内物体之间的最小距离。

在装配或运动分析中还可以进行动态测量。

点击命令: Name :自定义名称或者选择默认名称;Type :测量类型,一共有5种;Mimimum ,Along X ,Along Y ,Along Z ,Band Analysis定义驱动命令计算类型,有三种;Between two selection 在两个选择物体之间;Inside one selection 在一个选择物体之内;Selection Against All 选择物体与所有未选择的物体之间。

基于CATIA+V5的工业机器人运动学仿真研究

基于CATIA+V5的工业机器人运动学仿真研究

・58・机器人技术扰芴2011年第01期总第38卷和运动学逆问题。

运动学正问题(DirectKinematicProblems,DKP):给定机器人手臂、腕部等构件的几何参数及连接各构件运动的关节变量,求机器人末端执行器对于参考坐标系的位置和姿态。

参考坐标系为固定在大地上的笛卡尔坐标系,作为机器人的总体坐标系,也称为世界坐标系(WorldCoordinate);目前运动学正问题的研究主要是利用齐次坐标变换矩阵方法将位置和姿态统一描述,该法思路清晰,但运算速度较慢。

随着机器人机构自由度的增加对运动学逆问题的讨论带来很多不便。

运动学逆问题(InverseKinematicProblems,IKP):已知机器人各构件的几何参数和机器人末端执行器相对于参考坐标系的位置和姿态,求解关节变量的大小。

机器人运动学逆问题是编制机器人运动控制系统软件的基础。

运动学逆问题比正问题复杂的多,主要表现在逆解的存在性和非唯一性,存在性决定机器人的操作空间,逆解一般来说非唯一。

目前对具有特殊形状的机器人机构如球形手腕机器人机构,其逆解是闭式的,但是不唯一。

对一般的机器人机构逆解必须使用数值计算方法,因而数值解的计算速度和精度受到人们的关注,同时机器人机构中常见的奇异状态(不可解状态)在数值解中如何避开也是讨论问题之一。

1机器人本体结构简介及数学模型的建立1.1机器人本体结构简介本文以M一6iB机器人为研究对象的六自由度工业机器人,其建立的实体模型如图l所示。

具体关节结构由回主体具体关节结构由回转主体(腰关节)、大臂(肩关节)、小臂(肘关节)、腕部(腕关节)等几个部分组成。

机器人回转主体实现机器人主体的回转,由固定底座和腰关节组成,驱动电机l安装在腰关节的轴中心,驱动腰关节的回转。

电机2安装在大臂与小臂的关节连接处,驱动小臂作上下俯仰。

机器人的腕部位于小臂臂体前端,安装在小臂臂体上的电机3驱动整个腕部做上下俯仰。

腕部的三个自由度由安装在腕部后端的3个电机,通过传动杆驱动腕部齿轮系实现,安装在腕部后端的3个电机保证机器人末端重量尽可能的轻,满足机器人的配重法则。

(整理)CATIA运动仿真DMU空间分析.

(整理)CATIA运动仿真DMU空间分析.

(整理)CATIA运动仿真DMU空间分析.CATIA运动仿真DMU空间分析CATIA的DMU空间分析模块可以进⾏设计的有效性评价。

它提供丰富的空间分析⼿段,包括产品⼲涉检查、剖⾯分析和3D⼏何尺⼨⽐较等。

它可以进⾏碰撞、间隙及接触等计算,并得到更为复杂和详尽的分析结果。

它能够处理电⼦样机审核及产品总成过程中经常遇到的问题,能够对产品的整个⽣命周期(从设计到维护)进⾏考察。

DMU空间分析能够处理任何规模的电⼦样车,它适⽤于从⽇⽤⼯具到重型机械⾏业的各种企业。

X.1 相关的图标菜单CATIA V5的空间分析模块由⼀个图标菜单组成:空间分析(DMU Space Analysis)Clash: ⼲涉检查Sectioning: 剖⾯观察器Distance and Band Analysis: 距离与⾃定义区域分析Compare Products: 产品⽐较Measure Between: 测量距离和⾓度Measure Item: 单项测量Arc through Three Points: 测量过三点的圆弧Measure Inertia: 测量惯量3D Annotation: 三维注释Create an Annotated View: 建⽴注释视图Managing Annotated Views: 管理注释视图Groups: 定义产品组x.2 空间分析模块的环境参数设定在开始使⽤CATIA V5的空间分析模块前,我们可以根据⾃⾝的习惯特点,合理地设定其环境参数。

在菜单栏中使⽤下拉菜单Tools→Option→Digital Mockup打开DMU Space Analysis的环境参数设定界⾯,在此窗⼝中有六个标签,分别对应不同的参数设定。

x.2.1 ⼲涉检查设置(DMU Clash)该设置针对Clash命令,允许设置以下内容:Retrieve Information:得到⼲涉的结果From previous computation:从前⼀个计算得到分析结果From PDM(UNIX only with ENOVIA VPM):从PDM中得到分析结果(在UNIX系统下是ENOVIA VPM)None:(缺省)⽆⽐较Results Window /Automatically open:当进⾏⼲涉检查时⾃动打开结果显⽰窗⼝Display in Results box:设置缺省的显⽰条⽬list by conflict:冲突列表list by product:产品列表First line automatically selected:(缺省)⾃动选择冲突列表或产品列表的第⼀⾏Type of Computation:设置冲突的缺省类型和缺省的安全距离During Initial Computation:计算并显⽰所有冲突的深度和最⼩距离x.2.2 ⼲涉检查细节设置(DMU Clash – Detailed Computation)该设置针对Clash命令,允许设置以下内容:Level of Detail:设置细节的级别Element:(缺省)让⽤户全⾯地⼯作于产品级别,直到查明有关的元素。

CATIA_V5教程

CATIA_V5教程

第1章 Catia V5 R18使用概述本章主要介绍Catia主要特点、基本功能、操作界面等基础信息。

让读者掌握标题栏、菜单栏、工具栏、结构树、各设计模块在软件中的位置和作用,有利于后续课程的学习。

1.1 Catia V5 R18概述Catia是英文Computer Aided Tri-Dimensional Interface Application的缩写,是法国Dassault公司于1975 年起开始发展的一套完整的3D CAD/CAM/CAE一体化软件。

它的内容涵盖了产品从概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成到生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。

Catia不但能够保证企业内部设计部门之间的协同设计功能,而且还可以提供企业整个集成的设计流程和端对端的解决方案。

Catia 大量用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等各方面。

1.2 Catia V5 R18基本功能Catia具有所有CAD/CAM软件的基本功能,如绘制二维、三维图形及工程图。

作为新一代的CAD/CAM/CAE软件,已被广泛应用于航空航天、机械、建筑等领域。

随着经济的发展,被越来越多的用户所接受。

下面简要介绍Catia 的基本功能。

1.2.1 绘制二维图形Catia可以直接使用其草图模块绘制二维图形。

在草图绘制平台中,Catia提供了丰富的绘图工具,用户使用这些工具可以绘制直线、中心线、圆、椭圆、圆弧等基本图形。

此外,Catia还提供了各种编辑工具,可以对图形进行复制、镜像、移动、剪切和尺寸标注等操作。

如图1.1所示草图为Catia中绘制的二维图形。

绘制二维图形功能不是Catia的核心功能,其最主要的功能是设计三维实体模型。

Catia的设计理念是先设计三维实体模型,通过投影创建工程图,如图1.2所示,并且三维实体模型与工程图是相关联的,只要三维更改,工程图就相应更改。

CATIA V5 机械设计案例教程 第1章 CATIA V5概述

CATIA V5 机械设计案例教程 第1章  CATIA V5概述

CATIA V5是在Windows NT平台和UNIX平台上开发完成。在 Windows平台的应用可以使设计师更加简便地同办公应用系统共 享数据;而UNIX平台上的NT风格的用户界面,可使用户在UNIX平 台上高效地处理复杂的工作。CATIA V5版本包括概念布局设计、 工业设计、机械设计、模塑产品设计、钣金设计、线束布局设计、 管路设计、逆向工程、有限元及结构分析、人机工程、电子样机 工程、三轴加工设计等多个模块。
表1-1 各种按键的使用方法
按键
单击左键
双击左键
按下左键并拖动鼠标 单击鼠标右键 单击滚轮 按下击鼠标右键 并前后移动鼠标
功能 可选择命令、选择对象,在CATIA V5工作界面中选中的对象以橘黄色显示。按下Ctrl键时单击 左键,可进行连续选择。选择对象时,在几何图形区与在设计特征树上选择是相同的,并且是 关联的 双击命令图标,可连续执行同一命令;在其他对象上双击左键可弹出相应对话框或其他有关信 息 可框选对象、移动对象,如移动草图中的未约束图形元素 在要选择的对象上单击鼠标右键,弹出可供多项选择的快捷菜单 在物体上单击滚轮,可将选中的点移到作图区中心 可移动草图或物体
启动CATIA软件后,只显示如图1-7所示的3排工具栏,其他 工具栏都隐藏在界面右下角的位置。当鼠标左键按住如图1-10所 示箭头所指位置的灰色双箭头或灰杠时,就会拖出若干工具栏。 当此处没有灰色双箭头或灰杠时,表示工具栏全部拖出。不需要 的工具栏单击其上的关闭按钮 即可,需要的工具栏用左键按住 灰杠拖至合适位置。要调出关闭的工具栏,可在任一工具栏上单 击鼠标右键,在弹出如图1-11所示的快捷菜单上选择需要的工具 栏。
CATIA V5 机械设计案例教程
CATIA软件的全称是Computer Aided Tri-Dimensional Interface Application(计算机辅助三维交互应用),它是由 法国著名飞机设计师和航空工业企业家达索(原名马塞尔·布洛 赫)为首创建的世界著名的航空航天企业—法国达索飞机制造公 司旗下的达索系统公司开发的CAD/CAE/CAM/PLM于一体的工程设 计软件。CATIA诞生于20世纪70年代,最早用于幻影系列和阵风 战斗机的设计制造中。

2024版catiav5全套教程0基础入门

2024版catiav5全套教程0基础入门

CATIA V5软件特点与优势
强大的建模能力
丰富的功能模块
CATIA V5具有强大的建模能力,支持各种复 杂形状和曲面的创建与编辑。
该软件包含了丰富的功能模块,如零件设计、 装配设计、工程图、钣金设计等,满足用户 不同的设计需求。
高度集成化
良好的开放性
CATIA V5实现了CAD/CAE/CAM的高度集成 化,用户可以在同一环境下完成产品设计、 分析、制造等全流程工作。
按照前面介绍的打印输出设置,将该零件的工程图打印输出。
THANKS
感谢观看
曲面建模
实体建模
基于实体造型技术,通过拉伸、旋转、 扫描等操作创建三维实体模型,适用 于精确表达零件的几何形状和内部结 构。
通过创建和编辑曲面来构建零件的三 维模型,适用于复杂形状零件的设计。
特征建模步骤与技巧
特征识别与分类
识别零件的主要特征,如孔、槽、凸台等, 并进行分类。
特征参数化设计
实现特征参数化,以便快速修改和优化设计。
计。
汽车设计
该软件在汽车设计领域也有广泛 应用,可用于车身、内饰、发动 机等各个部件的设计。
造船与海洋工程设计
CATIA V5还可应用于造船与海 洋工程设计领域,支持船舶、海 洋平台等复杂结构的设计与分析。
机械制造与自动化
在机械制造与自动化领域, CATIA V5可用于各种复杂机械 零件的设计、装配及运动仿真等。
创建运动仿真模型
在装配体中添加运动副和驱动,定义零部件 之间的运动关系。
设置仿真参数
定义仿真时间、步长等参数,以及重力、摩 擦等环境因素。
运行仿真分析
对装配体进行运动仿真,观察并记录零部件 的运动轨迹、速度、加速度等信息。

CATIA_DMU机构运动分析新手教程

CATIA_DMU机构运动分析新手教程

第五章DMU 机构运动分析1 第五章CATIA V5 DMU 机构运动分析目录1产品介绍 (4)2图标功能介绍(基本概念、基本界面介绍) (4)2.1DMU运动仿真(DMU Simulation)工具条 (4)2.2DMU运动副创建工具条(Kinematics Joints) (4)2.3DMU Generic Animation (5)2.4机构刷新(DMU Kinematics Update) (6)2.5干涉检查模式工具条(Clash Mode) (6)2.6DMU 空间分析(DMU Space Analysis) (6)3功能详细介绍 (7)3.1DMU运动仿真(DMU Simulation)工具条 (7)3.1.1用命令驱动仿真(Simulating with Commands) (7)3.1.2用规则驱动仿真(Simulating With Laws) (9)3.1.3仿真感应器(Sensors) (10)3.1.4机构修饰(Mechanism Dressup) (12)3.1.5创建固定副(Fixed Part) (12)3.1.6装配约束转换(Assembly Constraints Conver) (13)3.1.7测量速度和加速度(Speeds and Accelerations) (15)3.1.8机构分析(Mechanism Analysis) (17)3.2DMU运动副创建工具条(Kinematics Joints) (19)3.2.1创建转动副(Creating Revolute Joints)点击 (19)3.2.2创建滑动副(Creating Prismatic Joints) (20)3.2.3同轴副(Creating Cylindrical Joints) (21)3.2.4创建球铰连接(Creating Spherical Joints) (22)3.2.5创建平动副(Creating Planar Joints) (23)3.2.6创建刚性副(Rigid Joints) (24)3.2.7点-线副(Point Curve Joints) (24)3.2.8曲线滑动副(Slide Curve Joints) (25)3.2.9点-面副(Point Surface Joints) (26)3.2.10万向节(Universal Joints) (26)3.2.11C V连接(CV Joints) (27)3.2.12创建齿轮副(Gear Joints) (28)2 第五章CATIA V5 DMU 机构运动分析3.2.13滑动-转动复合运动副(Rack Joints) (30)3.2.14滑动-滑动复合运动副(Cable Joints) (32)3.2.15用坐标系法建立运动副(Creating Joints Using Axis Systems) (32)3.3DMU Generic Animation工具条 (34)3.3.1创建运动仿真记录(Simulation) (34)3.3.2生成重放文件(Generate Replay) (36)3.3.3重放(Replay) (37)3.3.4仿真播放器(Simulation Player) (37)3.3.5编辑序列(Edit Sequence) (37)3.3.6包络体(Swept Volume) (37)3.3.7生成轨迹线(Trace) (37)3.4机构刷新(DMU Kinematics Update) (38)3.4.1机构位置刷新(Update) (38)3.4.2输入子机构(Import Sub-Mechanisms) (38)3.4.3重设位置(Reset Positions ) (39)3.5干涉检查模式工具条(Clash Mode) (40)3.5.1关闭干涉检查(Clash Detection(Off) (40)3.5.2打开干涉检查(Clash Detection(On) (40)3.5.3遇到干涉停止(Clash Detection(Stop) (40)3.6DMU 空间分析(DMU Space Analysis) (40)3.6.1干涉检查(Clash) (40)3.6.2距离和距离带分析(Distance and band analysis) (40)3.7示例 (41)3 第五章CATIA V5 DMU 机构运动分析1 产品介绍DMU机构运动分析(Kin )是专门做DMU装配运动仿真的模块。

catia运动仿真模块讲析.

catia运动仿真模块讲析.

产品研发一部底盘室:马学超题目:CATIA的DMU运动机构模块功能介绍CATIA—DMU运动机构CATIA DMU 运动机构•对于产品的数字模型而言,进行准确的机构运动及状态分析,是十分基本并且重要的功能。

在DMU运动机构系统中,我们可以依照运十分基本并且重要的功能在运动机构系统中我们可以依照运动学的原理,通过约束自由度的方式建立机构,并且分析机构的运动状态与移动轨迹;态与轨•本文主要提供几种基本的结合,使我们建立机构运动,并且可以本文主要提供几种基本的结合使我们建立机构运动并且可以进行动态仿真,记录运动情形,制作成影片播放;CATIA DMU运动机构CATIA—DMU 运动机构•模块简介:CATIA—DMU运动机构CATIA DMU 运动机构•功能键一览:功能键览CATIA DMU 运动机构CATIA—DMU运动机构•过程:—————将装配件导入DMU模块建立机械装置分析运动结合类型—建立运动结合——约束固定件——设置驱动形式——(两种做法运动仿真):运动仿真)1、使用命令进行模拟(可编辑传感器,导出数据,并绘制图形);2、模拟(可生成自动播放动画,也可编辑传感器)——可通过编译模拟,生成重放,——生成包络体;CATIA DMU 运动机构CATIA—DMU运动机构•运动结合点:运动结合点从左至右结合类型依次为::旋转结合;:棱形结合;:圆柱结合;:螺钉结合;:球面结合:平面结合;:刚性结合;:点线结合;:滑动曲线结合;:滚动曲线结合;:点面结合;:通用结合;:CV结合;:齿轮结合;:架子结合;:电缆结合;:基于轴的结合;CATIA—DMU 运动机构CATIA DMU 运动机构•:旋转结合1、点击按钮,弹出右图1窗口;图12、点击右上角“新机械装置”,弹出图2窗口;图23、单击“确定”按钮,弹出图1窗口图3CATIA DMU 运动机构CATIA—DMU运动机构4、图中“直线1”、“直线2”、“平面1”、“平面2”依次选取螺栓轴线、螺母轴线、螺栓垂直轴线平面、螺母垂直轴线平面,螺栓一垂直轴线平面、螺母一垂直轴线平面,并点击“偏移”与“驱动角度”按钮,如右图4显示,并单击“确定”图4CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU运动机构CATIA DMU 运动机构6、在左侧树中双击图中高亮显示的旋转结合,在左侧树中双击图中高亮显示的“旋转”结合,便会弹出如右图5所示窗口,在窗口‐360deg和+360deg处可修改角度范围,修改完点击确定;(注意此时机械装置自由度=0,若不为0是不能仿真的,此项尤为重要,下述每个结合均是如此,不再反复强调)图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意旋转;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行转动;图6箭头标示使构件自行转动CATIA—DMU运动机构CATIA DMU 运动机构•:棱形结合棱形结合1、单击(棱形结合)按钮,弹出如右图1所示窗口单击(棱形结合)按钮弹出如右图图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU运动机构CATIA DMU 运动机构4、窗口中“直线1”、“直线2”、“平面1”、“平面2”、分别选择螺栓轴线、螺母轴线、螺栓中的zx平面、螺母中的zx平面(所选平面必须与所选直线平行),并点选“驱动长度”按钮,如右图4所示,并单击确定;图4CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU 运动机构CATIA DMU 运动机构6、在左侧树中双击图中高亮显示的“棱形”结合,所示窗在窗便会弹出如右图5所示窗口,在窗口‐100mm 和100mm 处可修改长度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动;图6箭头标示使构件自行移动CATIA—DMU 运动机构CATIA DMU 运动机构•圆柱结合单击(圆柱结合)按钮弹出如右图图11、单击(圆柱结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构CATIADMU 运动机构线、螺母轴线,并点选“驱动角度”、“驱动长度”按钮如右图所示并单击确定圆长度”按钮,如右图4所示,并单击确定;(圆图4柱)结合从动件既可沿轴向转动,也可同时沿轴向移动);CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA DMU 运动机构CATIA—DMU运动机构6、在左侧树中双击图中高亮显示的“圆柱面”结合,便会弹出如右图5所示窗口,在窗口‐100mm和所示窗在窗100mm处可修改长度范围,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;图6据就可点击下方的箭头标示使构件自行移动和转动CATIA—DMU 运动机构CATIA DMU 运动机构•螺钉结合单击(螺钉结合)按钮弹出如右图图11、单击(螺钉结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU运动机构CATIA DMU 运动机构4、窗口中“直线1”、“直线2”分别选择螺栓轴线、螺母轴线,并点选“驱动角度”、或“驱动长度”按钮,如右图4所示,并单击确定;(螺钉结合可通过驱动角度和螺距的设置控制运动,也可通过驱动长度的设置控制运动);动也可通过驱动长度的设置控制运动)图4CATIA—DMU运动机构CATIA DMU 运动机构5、单击中的按钮,单击弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装提示点击确定;装置”提示,点击确定;CATIA DMU 运动机构CATIA—DMU运动机构6、在左侧树中双击图中高亮显示的“螺钉”结合,便会弹出如右图5所示窗口,在窗口“螺距”处所示窗在窗“螺距”处可修改螺栓螺母的螺距,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;图6据就可点击下方的箭头标示使构件自行移动和转动CATIA—DMU 运动机构CATIA DMU 运动机构•球面结合(球头连接)单击(螺钉结合)按钮弹出如右图图11、单击(螺钉结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构CATIA DMU 运动机构4、在窗口中,点1点选球头面,自动识别球心;在窗口中,点点2点选球套面,自动识别球心位置,如右图所示可先在p中建球点4所示,也可先在part 中建立球心点,前后然后点选时只需直接选取点就行,选选取完之后点击确定,点击确定之后,两球心会相合在一起;4图CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,此时系统并未自动弹出“可以模拟机械装置”窗口,在树中打开“机械装置”,发现此时的自由度=3,并不等于0,所以只有球面结合和固定件的情况下,是“球面结合”和“固定件”的情况下是不能进行仿真的,“球面结合”必须和其他带有驱动性质的结合一起使用;CATIA DMU 运动机构CATIA—DMU运动机构•平面结合平面结合和球面结合的步骤基本一样,并且只是约束平面结合和固定件的话机械装置的自由度也不为0,需要和别需要和别的带有驱动性质的结合在一起使用;的带有驱动性质的结合在起使用CATIA—DMU运动机构CATIA DMU 运动机构•刚性结合刚性结指将零件具有动式零件刚性结合是指将零件与已经具有运动形式的零件固定在一起,与其做相同的运动,或是与固定件绑定在一起不做运动;窗口中的“零件1”选择已经具有运动形式零件,“零件2”选择要与之刚性结合的零件;CATIA—DMU运动机构CATIA DMU 运动机构•点曲线结合点曲线结合是指一个part以本身的一个点与另外一各part点曲线结合是指个t以本身的个点与另外各t 中的一条曲线连接点沿着曲线方向移动中的一条曲线连接,点沿着曲线方向移动;CATIA—DMU运动机构CATIA DMU 运动机构将曲线固定后,这时系统并不会提示“可以模拟机械装置”,如右图所示,机械装置的自由度=3,并不为0,因为点所在的part并没限制本身的旋转自由度,所以点曲面结合也需要与其他具有驱动特性的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•滑动曲线结合滑动曲线结合,顾名思义就是一条曲线沿着另一条曲线滑动,但仅仅曲线沿着另一条曲线滑动但仅仅约束滑动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•滚动曲线结合滚动曲线结合,顾名思义就是一条曲线沿着另一条曲线滚动,但仅仅曲线沿着另一条曲线滚动但仅仅约束滚动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•点曲面结合点曲面结合,顾名思义就是一个点在一个曲面上运动,但这是远远不够的,无论是方向还是转动的自由度都没有约束完全,方向还是转动的自由度都没有约束完全所以是不能够模拟仿真,也需要与其他形式的结合一起使用;CATIA DMU 运动机构CATIA—DMU运动机构•通用结合通用结合是两个旋转结合的复合,将第一个旋转结合进行驱动的设置,第二个旋转不用设置驱动,通过通用结合,就是将第二个旋转结合的旋转零件的轴线与第个旋转结合的旋转零件的轴线连接起来,成为第个旋转件的轴线与第一个旋转结合的旋转零件的轴线连接起来成为第一个旋转零件的从动件;具体操作如下:CATIA DMU 运动机构CATIA—DMU运动机构1、在蓝色零件和灰色零件之间建立旋转结合,命名为“旋转1”,并设置“驱动角度”;CATIA DMU 运动机构CATIA—DMU运动机构2、分别在绿色零件与灰色零件、浅蓝色零件和灰色零件之间建立旋转分别在绿色零件与灰色零件浅蓝色零件和灰色零件之间建立旋转结合,分别命名为“旋转2”、“旋转3”,这两个旋转都不设置“驱动角度”,并将灰色零件设置为固定件;旋转2旋转3CATIA DMU 运动机构CATIA—DMU运动机构3、点击(通用结合)按钮,出现如下图所示窗口,“旋转1”处选择蓝色零件轴线,“旋转2”处选择绿色零件轴线,“十字销轴线方向”选择“垂直于旋转2”,点击确定;CATIA DMU 运动机构CATIA—DMU运动机构4、重复使用通用结合,如下图所示:“旋转1”选择绿色零件轴线,“旋”选择浅蓝色零件“十字销轴线”选择“垂直于旋转”点击确转2选择浅蓝色零件,十字销轴线选择垂直于旋转1,点击确定之后,系统便会提示“可以模拟机械装置”;CATIA—DMU运动机构CATIA DMU 运动机构操作完成后,具体树的情况见右图,图中两个U形接合右图,图中两个“形接合”便是通用结合;CATIA DMU 运动机构CATIA—DMU运动机构•CV结合CV结合与通用结合一样,CV结合只是可以同时识别连接三个旋转结合,并且也是只需第一个旋转结合设置驱动角度就行,后两个旋转结合都是随动件;CATIA DMU 运动机构CATIA—DMU运动机构展开左边的树可以发现展开左边的树,可以发现,cv结合就是两个通用结合的复合,而通用结合就是两个旋转结合的复合;CATIA DMU 运动机构CATIA—DMU运动机构•齿轮结合齿轮结合也是复合结合,也要识别两个旋转结合,所以首先要在两个齿轮和支座之间建立旋转结合;CATIA—DMU运动机构CATIA DMU 运动机构点击齿轮结合,窗口中的旋转结合1、口中的“旋转结合”“旋转结合2”分别要在树中选取;比率填写小齿轮与大齿轮的分度圆直径比;旋转方向,紧挨着的两个齿轮方向相反,若两齿轮间默认有中间齿轮话,则方向相同;驱动角度依据具体情况选取主从动关系;CATIA—DMU运动机构CATIA DMU 运动机构•架子结合架子结指就轮架子结合指的就是齿轮齿条的运动结合,也是复合结合,首先要在齿条和支座之间建立棱形结合,在齿轮和支座之间建立旋转结合,建立完成之后,如右图树中所示;CATIA DMU 运动机构CATIA—DMU运动机构点击架子结合,弹出右上图,“棱形结合”处在树中选择“棱形.1”,“旋转结合”选择“旋转.2”;比率处选择定义,弹出右中图所示窗口,“半径”处选取齿轮分度圆直径,窗口会自动生成比率,点击确定,会转至右图下所示窗口;驱动方式的地方,根据具体情况选取“棱形的驱动长度”或是“旋转示窗口驱动方式的地方根据具体情况选取“棱形的驱动长度”或是“旋转的驱动角度”,点击确定完成,即可模拟仿真;CATIA—DMU运动机构CATIA DMU 运动机构•电缆结合电缆结合是指将两个滑块用虚拟滑轮通过虚拟滑轮连接起来,所以要先在绿色滑块与支撑座、蓝色滑块与支撑座之间建立棱形结合,并在“棱形1”结合中设置驱动长度,将支撑座设置为固定件;CATIA DMU 运动机构CATIA—DMU运动机构点击按钮,弹出如右上图所示窗口,图中“棱形结合1”在左边树中选取“棱形.1”,“棱形结合2”在树中选取“棱形.2”,比率根据实际数据进行填写,驱动方式选取“棱形1的”驱动长度,设置完之后点击确定,会提示“可驱动长度设置完之后点击确定会提示“可以模拟机械装置”;。

(整理)CATIA运动仿真DMU空间分析.

(整理)CATIA运动仿真DMU空间分析.

CATIA运动仿真DMU空间分析CATIA的DMU空间分析模块可以进行设计的有效性评价。

它提供丰富的空间分析手段,包括产品干涉检查、剖面分析和3D几何尺寸比较等。

它可以进行碰撞、间隙及接触等计算,并得到更为复杂和详尽的分析结果。

它能够处理电子样机审核及产品总成过程中经常遇到的问题,能够对产品的整个生命周期(从设计到维护)进行考察。

DMU空间分析能够处理任何规模的电子样车,它适用于从日用工具到重型机械行业的各种企业。

X.1 相关的图标菜单CATIA V5的空间分析模块由一个图标菜单组成:空间分析(DMU Space Analysis)Clash: 干涉检查Sectioning: 剖面观察器Distance and Band Analysis: 距离与自定义区域分析Compare Products: 产品比较Measure Between: 测量距离和角度Measure Item: 单项测量Arc through Three Points: 测量过三点的圆弧Measure Inertia: 测量惯量3D Annotation: 三维注释Create an Annotated View: 建立注释视图Managing Annotated Views: 管理注释视图Groups: 定义产品组x.2 空间分析模块的环境参数设定在开始使用CATIA V5的空间分析模块前,我们可以根据自身的习惯特点,合理地设定其环境参数。

在菜单栏中使用下拉菜单Tools→Option→Digital Mockup打开DMU Space Analysis的环境参数设定界面,在此窗口中有六个标签,分别对应不同的参数设定。

x.2.1 干涉检查设置(DMU Clash)该设置针对Clash命令,允许设置以下内容:Retrieve Information:得到干涉的结果From previous computation:从前一个计算得到分析结果From PDM(UNIX only with ENOVIA VPM):从PDM中得到分析结果(在UNIX系统下是ENOVIA VPM)None:(缺省)无比较Results Window /Automatically open:当进行干涉检查时自动打开结果显示窗口Display in Results box:设置缺省的显示条目list by conflict:冲突列表list by product:产品列表First line automatically selected:(缺省)自动选择冲突列表或产品列表的第一行Type of Computation:设置冲突的缺省类型和缺省的安全距离During Initial Computation:计算并显示所有冲突的深度和最小距离x.2.2 干涉检查细节设置(DMU Clash – Detailed Computation)该设置针对Clash命令,允许设置以下内容:Level of Detail:设置细节的级别Element:(缺省)让用户全面地工作于产品级别,直到查明有关的元素。

CATIA V5分析模块介绍

CATIA V5分析模块介绍

GAS拓展了GPS的功能,能够实现装配的有限元分
析。同时支持包括曲面、实体、线框模型的混合装 配,及带有分析信息的装配(比如由带有分析定义 的零件组成的装配)。该产品可针对零件装配体进 行应力分析和振动分析,以便在短时间完成高质量 的产品设计。装配体中多个零件间可建立连接,从 简单的接触,到焊接,以及用户自定义的连接。用 户也可以直接调用通过ASD产品模块定义的装配连 接来进行分析。GAS可以自动地完成以下过程:每个 零件直接进行网格划分,然后将不能匹配的网格通 过独特的组合机制进行自动连接。
CATIA-Elfini结构分析2(EST)
扩展了CATIA创成式零件结构分析2(GPS)对包含 静态、频率、挠度多种分析案例的解算能力。该产 品主要根据专家的需求进行了配置,但同时又能够 保持专家和设计工程师之间一直的界面。同时,它 进一步给出了更多的分析类型和补充选项,以便进 行更为高级的前、后处理和解算。
公差、零件的几何钣金件的属性,如厚度、材料类 型。 在制造过程中,TAA用来帮助用户确定纠正装配的 方法。比如,可以改变焊接顺序、移动、增加或者 去掉定位装置,来解决制造过程中遇到的装配问 movie 题。
DASSAULT SYSTEMES – Analyst Day, June 2006
Page 5
Your Questions
DASSAULT SYSTEMES – Analyst Day, June 2006
Page 6
DASSAULT SYSTEMES – Analyst Day, June 2006
Page 2
Analysis
CATIA-曲面有限元分析2(FMS)
FMS允许分析师将CATIA创成式曲面设计(GSD)设计 的曲面进行快速有效地生成有限元模型。FMS采用 CATIA创成式零件结构分析(GPS)产品的环境,为分

CATIAV5电子书教程pdf

CATIAV5电子书教程pdf
尺寸标注
在工程图界面中,选择“插入”->“尺寸”->“线性尺寸”或“角 度尺寸”,对产品的关键尺寸进行标注。
技术要求
在工程图中添加技术要求,如表面粗糙度、公差配合等,以便明确 产品的制造和验收标准。
注释和符号
根据需要添加注释和符号,如基准符号、形位公差符号等,以便更准 确地表达设计意图。
05
CHAPTER
基本功能与使用
草图设计
零件设计
讲解如何在CATIAV5中创建和编辑草图,包 括绘制直线、圆、弧等基本图形,以及使用 约束和尺寸标注等功能。
介绍如何创建三维零件模型,包括拉伸、旋 转、扫描等建模方法,以及布尔运算、倒角、 圆角等编辑功能。
装配设计
工程图设计
讲解如何将多个零件组装成一个完整的装配 体,包括添加约束、调整零件位置和方向等 操作。
CATIAV5电子书教程pdf
目录
CONTENTS
• CATIAV5基础知识 • 零件设计与建模 • 装配设计与分析 • 工程图制作与输出 • 钣金设计与展开 • 运动仿真与动画制作
01
CHAPTER
CATIAV5基础知识
软件简介与安装
1 2
CATIAV5概述
介绍CATIAV5的发展历程、应用领域及特点。
准确性。
03
参数设置
在创建钣金件和绘制草图时,需要设置一些参数,如长度、角度、半径
等。这些参数可以通过手动输入或选择预定义的值进行设置。
折弯展开计算
折弯定义
在钣金件上定义折弯,需要指定折弯线、折弯半径、折弯角度等参数。折弯定义完成后,可以通过预览功能查看折弯效果。
展开计算
对折弯定义完成的钣金件进行展开计算,可以得到展开后的平面图形。展开计算时需要考虑材料的弹性和塑性变形等因素, 以确保计算结果的准确性。

第1章 CATIA V5 使用概述

第1章 CATIA V5 使用概述
1-19
CATIA V5使用概述
1.4.3 保存文件
• 保存图形文件可以分为两种方式:以当前的 名称和路径保存,或以其它名称和路径保存 。当打开多个文档或在装配模式下,可以使 用保存管理来选择保存一个或多个文件。 • 1.以当前名称和路径保存 • 2.以其它名称和路径保存 • 3.多文档保存
1-20
1.2.1 绘制二维图形
• 绘制二维图形功能不是CATIA的核心功能,其 最主要的功能是设计三维实体模型。CATIA的 设计理念是先设计三维实体模型,通过投影 创建工程图,并且三维实体模型与工程图是 相关联的,只要三维更改,工程图就相应更 改。
1-5
CATIA V5使用概述
1.2.2 绘制三维图形
1.3.5 命令提示栏介绍
• CATIA的命令指示栏位于用户界面下方,当光标指向 某个命令时,该区域中即会显示描述文字,说明命令 或按钮代表的含义。 • 右下方为命令行,可以输入命令来执行相应的操作, 所有的命令前加上c:才能执行,当光标指向工具栏 上的快捷功能按钮,命令行显示该按钮对应的命令。 • 用户可以选择下拉菜单【视图】|【命令列表】命令调 出【命令列表对话框】,在【命令列表】对话框中单 击相应的命令也可以执行该项操作。
1-2
CATIA V5使用概述
1.2 CATIA V5 基本功能
• CATIA具有所有CAD/CAM软件的基本功能, 如绘制二维、三维图形及工程图。作为新一 代的CAD/CAM/CAE软件,已被广泛应用于航 空航天、机械、建筑等领域。下面简要介绍 CATIA的基本功能。
1-3
CATIA V5使用概述
1.2.3 打印图形
• 图形绘制完成后,可以使用多种方式输出。 CATIA能将图纸打印到图纸上,也可以创建打 印文件。下面介绍打印成图纸。 • 选择【文件】|【打 印】菜单命令,系统 弹出打印对话框。在 对话框中,如图所示, 可以选择打印机类型 以及相关打印设置。

CATIA运动学仿真总结(08.01.14)

CATIA运动学仿真总结(08.01.14)

CATIA DMU模块在悬架和转向系统中的应用1.前悬架和转向系统的装配模块本文前悬架为麦弗逊悬架,转向机为齿轮齿条转向机,悬架和转向系统的运动仿真DMU共分为18个part,包括副车架、左右下摆臂、左右转向节、左右滑柱、转向机、左右转向拉杆、左右传动轴、左右举升台、左右横向稳定杆拉杆、左右横向稳定杆。

为满足运动仿真要求,其中横向稳定杆被分为左、右两个part,以实现横向稳定杆不同方向的扭转;增加了左右举升台,模拟不平路面时车轮的上下跳动。

打开CATIA,进入Assembly Design模块,并将上述各部件调入到同一个product里。

2.前悬架和转向系统的运动仿真2.1 运动约束进入CATIA 的DUM Kinematics 模块,添加运动约束,具体步骤如下: ➢ 首先将固定副车架固定Fixed ,并在副车架上做出滑柱上点,下摆臂转动轴线,转向机中心线。

➢ 左下摆臂与副车架连接为revolute ,限制5个自由度,系统还有1个独立自由度运动约束工具条(点击revolute 下拉菜单弹出)Fixed revolute sphericalu jointprismaticCylindrical point surfacepoint curveRevolute joint➢左下摆臂与左转向节连接为spherical,限制3个自由度,系统还有4个独立自由度Spherical joint➢左转向节与左转向拉杆连接为spherical,限制3个自由度,系统还有7个独立自由度➢左转向拉杆与转向机连接为u joint,限制4个自由度,系统还有9个独立自由度物体1(副车架)上的旋转轴线物体2(下摆臂)上的旋转轴线物体1上的参考平面物体1上的参考平面两参考平面间距离关系物体1上的球心物体2上的球心Universal joint➢转向机与副车架连接为prismatic ,限制5个自由度,系统还有4个独立自由度Prismatic joint➢左滑柱与左转向节连接为Cylindrical,限制4个自由度,系统还有6个独立自由度物体1上的绕转轴物体2的绕转轴物体1上的滑行方向(直线)物体2上的滑行方向(直线,与1的直线重合)物体1上的平面物体2上的平面(与1的平面贴合)Cylindrical joint➢左滑柱与副车架连接为u joint,限制4个自由度,系统还有2个独立自由度➢左举升台与左转向节连接为point surface,限制1个自由度,系统还有7个独立自由度Point surface➢左举升台与副车架连接为Prismatic,限制5个自由度,系统还有2个独立自由度➢横向稳定杆(左)与副车架连接为revolute,限制5个自由度,系统还有3个独立自由度➢左横向稳定杆拉杆与横向稳定杆(左)连接为u joint,限制4个自由度,系统还有5个独立自由度➢左转向节与左横向稳定杆拉杆连接为Spherical,限制3个自由度,系统还有2个独立自由度➢右下摆臂与副车架连接为revolute,限制5个自由度,系统还有3个独立自由度物体1上的旋转轴线物体2上的旋转轴线➢右下摆臂与右转向节连接为spherical,限制3个自由度,系统还有6个独立自由度➢右转向节与右转向拉杆连接为spherical,限制3个自由度,系统还有9个独立自由度➢右转向拉杆与转向机连接为u joint,限制4个自由度,系统还有5个独立自由度➢右滑柱与右转向节连接为Cylindrical,限制4个自由度,系统还有7个独立自由度➢右滑柱与副车架连接为u joint,限制4个自由度,系统还有3个独立自由度➢右举升台与右转向节连接为point surface,限制1个自由度,系统还有8个独立自由度➢右举升台与副车架连接为Prismatic,限制5个自由度,系统还有3个独立自由度➢横向稳定杆(右)与副车架连接为revolute,限制5个自由度,系统还有4个独立自由度➢右横向稳定杆拉杆与横向稳定杆(右)连接为u joint,限制4个自由度,系统还有6个独立自由度➢右转向节与右横向稳定杆拉杆连接为Spherical,限制3个自由度,系统还有3个独立自由度➢左传动轴与左转向节连接为u joint,限制4个自由度,系统还有5个独立自由度➢左传动轴与副车架连接为point curve,限制2个自由度,系统还有3个独立自由度Point curve➢右传动轴与右转向节连接为u joint,限制4个自由度,系统还有5个独立自由度➢右传动轴与副车架连接为point curve,限制2个自由度,系统还有3个独立自由度注:系统此时的自由度数=各个约束限制的自由度数的和+当时系统的独立自由度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章 CATIA 运动分析16.1 曲轴连杆运动分析四缸发动机曲轴、连杆和活塞的运动分析是较复杂的机械运动。

曲轴做旋转运动,连杆左做平动,活塞是直线往复运动。

在用CATIA作曲轴、连杆和活塞的运动分析的步骤如下所示。

(1)设置曲轴、连杆、活塞及活塞销的运动连接。

(2)创建简易缸套机座。

(3)设置曲轴与机座、活塞与活塞缸套之间的运动连接。

(4)模拟仿真。

(5)运动分析。

16.1.1 定义曲轴、连杆、活塞及活塞销的运动连接1.新建组文件(1)点击“开始”选取“机械设计”中的“装配件设计”模块,如图16-1所示。

图16-1 进入“装配件设计”模块(2)进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/huo-sai-xiao.CATPart、huo-sai.CATPart 、lianganzujian.CATproduct、quzhou.CATpart”,将这些零件体载入到Product1中。

(3)此时,零件体载入后重合到一起,点击分解图标,出现分解对话框如图16-2所示。

然后点击模型树上的Product1,点击确定,此时弹出警告对话框,如图16-3所示,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。

图16-2 分解对话框图16-3 警告对话框(3)由于连杆体零件是装配体,各部分之间存在约束,点击“全部更新”按钮,我们会发现连杆体组件恢复装配后的样子。

(4)点击“约束”工具栏中的“相合约束”图标,分别选择活塞销中心线及活塞孔中心线,如图16-4所示。

然后点击“约束”工具栏中的“偏移约束”图标,选择活塞销的一个端面及活塞孔一侧的凹下去细环端面,如图16-5所示,此时出现“约束属性”对话框,如图16-6所示。

将对话框中的“偏移”一栏改为“3.75mm”,点击“确定”按钮,完成活塞销端面和活塞内凹孔细环端面之间的偏移约束关系。

点击“全部更新”按钮,完成活塞与活塞销之间的约束,如图16-7所示。

自此完成添加零部件工作。

图16-4 选择活塞销中心线及活塞孔中心线图16-5活塞销及活塞内凹孔的端面约束图16-6将对话框中的偏移一栏改为3.75mm 图16-7 完成活塞及活塞销的约束2. 设置连杆体与活塞销的运动连接(1)点击“开始”选取“数字模型”中的“DMU Kinematics(数字模型运动)”模块,进入模型运动工作台,如图16-8所示。

图16-8 进入“DMU Kinematics”模块(2)单击“DMU Kinematics(数字模型运动)”工具栏中的“Revolnte Joint(旋转铰)”按钮右下方的箭头,出现“Kinematics Joint(运动饺)”工具栏,包括所有铰定义按钮,如图16-9所示。

图16-9 “Kinematics Joint(运动饺)”工具栏(3)单击“Kinematics Joint(运动饺)”工具栏中的“Revolnte Joint(旋转铰)”按钮,弹出“Joint Creation: Revolute(生成旋转铰)”对话框,如图16-10所示。

图16-10 “Joint Creation: Revolute(生成旋转铰)”对话框(4)单击对话框中的“New Mechanism(新运动机构)“按钮弹出“Mechanism Creation(生成运动机构)”对话框,如图16-11所示。

单击对话框中的“确定”按钮,按照对话框中的默认机构名称“Mechanism.1”生成新的运动机构。

同时“Mechanism Creation(生成运动机构)”对话框被关闭,回到“Joint Creation:Revolute(生成旋转铰)”对话框。

(5)在连杆体零件中选择小孔中心线(注意这里选择的应是连杆体小孔中衬套的中心线,因为与活塞销进行运动接触的是衬套),在选择活塞销的中心线,如图16-12所示。

在连杆体零件中选择小孔衬套的一个端面,在活塞组件中选择活塞销的一个端面,如图16-13所示,在“Joint Creation:Revolute(生成旋转铰)”对话框中点选“Centered(居中)”单选扭,然后选择小孔衬套和活塞销的另外一侧端面,如图16-14所示。

此时“Joint Creation:Revolute(生成旋转铰)”对话框的各项内容如图16-15所示。

单击对话框中的“确定”按钮,生成旋转铰。

零件按铰配合在一起,同时在模型树中出现和铰的名称,如图16-16所示。

图16-11 “Mechanism Creation”对话框图16-12 选择衬套和活塞销中心线图16-13 选择衬套和活塞销的一个端面图16-14 选择衬套和活塞销的另一个端面图16-15 “Joint Creation:Revolute(生成旋转铰)”对话框的各项内容图16-16 模型树上出现机构和铰的名称3.设置活塞销与活塞之间的运动连接(1)实际中,活塞与活塞销之间为过盈配合,所以这里我们把活塞与活塞销之间定为刚性连接。

单击“DMU Kinematics(数字模型运动)”工具栏中的“Revolnte Joint(旋转铰)”按钮右下方的箭头,出现“Kinematics Joint(运动饺)”工具栏。

(2)单击“Rigid Joint(刚性连接)”按钮,弹出“Joint Creation:Rigid(生成刚性连接)”对话框,如图16-17所示。

图16-17 “Joint Creation:Rigid(生成刚性连接)”对话框(3)在图形区上分别选择活塞销和活塞,“Joint Creation:Rigid(生成刚性连接)”对话框内容被更新,显示出所选择的零件名称,如图16-18所示。

图16-18 对话框显示出所选择的零件名称(4)单击对话框中的“确定“按钮,生成刚性连接。

零件刚性连接配合在一起。

同时在模型树上出现刚性铰的名称。

如图16-19所示。

图16-19 模型树上出现刚性铰的名称4.设置连杆体与曲轴的运动连接(1)单击“Kinematics Joint(运动饺)”工具栏中的“Revolnte Joint(旋转铰)”按钮,弹出“Joint Creation: Revolute(生成旋转铰)”对话框,在连杆体零件中选择大孔中心线(注意这里选择的应是连杆体大孔中轴瓦的中心线,因为与曲轴进行运动接触的是轴瓦),在选择曲轴的第一段的中心线,如图16-20所示。

在连杆体零件中选择大孔轴瓦的一个端面,在曲轴中选择曲轴第一段的一个端面,如图16-21所示,在“Joint Creation:Revolute(生成旋转铰)”对话框中点选“Centered(居中)”单选扭,然后选择大孔轴瓦和曲轴第一段的另外一侧端面,如图16-22所示。

此时“Joint Creation:Revolute(生成旋转铰)”对话框的各项内容如图16-23所示。

单击对话框中的“确定”按钮,生成旋转铰。

零件按铰配合在一起,同时在模型树中出现旋转铰的名称,如图16-24所示。

图16-20 选择连杆体大孔中轴瓦的中心线与曲轴的第一段的中心线图16-21 选择大孔中轴瓦的一个端面与曲轴第一段的一个端面图16-22 选择大孔轴瓦和曲轴第一段的另外一侧端面图16-23 “Joint Creation:Revolute(生成旋转铰)”对话框的各项内容图16-24 在模型树中出现旋转铰的名称(6)此时完成了曲轴与一个连杆体的运动连接,连接后的整体约束图如图16-25所示。

图16-25 整体部件的连接图5.完成其余三组活塞、活塞销、连杆体及曲轴的运动连接(1) 点击“开始”再次选取“机械设计”中的“装配件设计”,进入“装配件设计”模块。

点击“快速多实例化”按钮,然后在模型树上点击活塞零件,如图16-26所示。

此时在零部件上有一个新的活塞零件生成,如图16-27所示。

图16-26 在模型树上点击活塞零件体图16-27 新的活塞零件生成(2)按照(1)中的快速生成实体的方法分别生成新的活塞销与连杆体零件,生成后的零件如图16-28,同时在模型树上出现新的零件体,如图16-29所示。

图16-28 生成新的活塞销与连杆体零件图16-29 模型树上出现新的零件体(3)由于零件体重合在一起,点击“分解”按钮,出现“分解”对话框,在模型树上点击Product.1,然后点击“确定”按钮。

这时会出现警告对话框,继续点击“确定”按钮,完成重合零部件体的分解。

(4)由于先前已完成对第一组活塞、活塞销、连杆体及曲轴的运动关系的连接,第一组零部件间存在约束,点击“全部更新”按钮后,它们又恢复到先前的位置关系,但第二组零件被分离开来,如图16-30所示。

图16-30 分离更新后的效果图(5))点击“约束”工具栏中的“相合约束”图标,分别选择新生成的活塞销中心线及活塞孔中心线,如图16-31所示。

然后点击“约束”工具栏中的“偏移约束”图标,选择活塞销的一个端面及活塞孔一侧的凹下去细环端面,如图16-32所示,此时出现“约束属性”对话框,如图16-33所示。

将对话框中的“偏移”一栏改为“3.75mm”,点击“确定”按钮完成活塞销端面和活塞内凹孔细环端面之间的偏移约束关系。

点击“全部更新”按钮,完成活塞与活塞销之间的约束,如图16-34所示。

自此完成添加新零部件的工作,如图16-35所示。

图16-31选择活塞销中心线及活塞孔中心线图16-32活塞销及活塞内凹孔的端面约束图16-33将对话框中的偏移一栏改为3.75mm 图16-34完成活塞及活塞销的约束图16-35 完成添加新零部件的工作(6)点击“开始”选取“数字模型”中的“DMU Kinematics(数字模型运动)”模块,再次进入模型运动工作台。

按照前面介绍过的同样的方法将第二组活塞、活塞销、连杆体及曲轴组件进行运动连接。

连接后的整体效果图如图16-36所示。

模型树上出现新的运动连接铰的名称如图16-37所示。

图16-36 连接第二组组件后的效果图图16-37 模型树上的新增运动连接名称(7)点击“开始”再次选取“机械设计”中的“装配件设计”,进入“装配件设计”模块。

点击“快速多实例化”按钮,按照增加第二组活塞、活塞销、连杆体组件的方法完成第三、四组组件的增加,并利用“分解”功能,将位置重合的零部件分解开来,然后对分别对第三、四活塞与活塞销进行约束,最后用“全部更新”功能,完成第三、四组活塞与活塞销之间的约束更新,如图16-38所示。

此时模型树上出现新的零部件名称,如图16-39所示。

图16-38 完成第三、四组组件的增加并对新增活塞及活塞销进行约束图16-39 模型树上出现新的零部件名称(8)点击“开始”选取“数字模型”中的“DMU Kinematics(数字模型运动)”模块,再次进入模型运动工作台。

相关文档
最新文档