第六章解线性方程组的迭代法

合集下载

第六章 解线性方程组的迭代法 习题六 1 A 零矩阵 故 2 方 …

第六章 解线性方程组的迭代法 习题六 1 A 零矩阵 故 2 方 …

第六章解线性方程组的迭代法习题六
1.证明对于任意的矩阵A,序列
2. 方程组
J法与GS法均收敛。

具有严格对角占优,故
(2)J法得迭代公式是

证明解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散
解:Jacobi迭代为
,而Gauss-Seide 迭代法为
其迭代矩阵
解:Jacobi法的迭代矩阵是

5. 设
得GS法收敛得充要条件是
7当
若取

对上题求出SOR迭代法的最优松弛因子及渐近收敛速,题第
度,并求J法与GS法的渐近收敛速度.若要使
,故
J法收敛速度
72`*+b数
各a K=15
对于GS法
,取K=5
8. 填空题
(1)
7则解此方程组的Jacobi迭代法是否收敛().它的渐近收敛速度R(B)=().
(3) 设方程组Ax=b,其中
(4) 用GS法解方程组
,a为实数.当a满足(),且0<ω<2时SOR迭代法收敛.
答:
(1)
(3)J法迭代矩阵是
(4)
(5)。

第六章习题

第六章习题


,

BG

=
3 ab 100
故高斯—赛德尔迭代法收敛的充要条件是 ab < 100。 3
5、对线性方程组13
2 2


x1 x2

=

3 -1
若用迭代法x(k+1)
=x(k)
+
Ax(k) -b ,
k=0,1L 求解。问在什么范围内取值可使迭代收敛,取什么值可
第6章 解线性方程组的迭代解法
5x1+2x2 +x3=-12 1、对方程组 -x1+4x2 +2x3=20,试判断雅克比迭代法,
2x1-3x2 +10x3=3
高斯 — 赛德尔迭代法解此方程组的敛散性。
5 2 1
解:因A=

-1
4
2 ,
2 -3 10
5>2+1=3 , 4>1+2=3,10>2+3=5,
使迭代收敛最快?
解:所给迭代公式的迭代矩阵为B=I+ A=
1+3


其特征方程为
I -B
=
-(1+3) -
-2 -(1+2)=0
2
1+2

即2 -(2+5)+4 2 +5 +1= 2 -(2+5)+ +14 +1 = - +1 -4 +1 =0
-a

0
0
-a 10
0


解:雅可比法的迭代矩阵BJ
=

第六章6.3迭代法的收敛性

第六章6.3迭代法的收敛性

一阶定常迭代法的收敛性
det 1 det( I B J) 2 2

2
2 3 1 0
所以
( B max(| |) 0 1 0 J)
即Jaobi迭代法收敛。
8
一阶定常迭代法的收敛性
(2) 求Gauss-Seidel法的迭代矩阵
j 1 j i 1 j i 1
14
i 1
n
n
如果 | | 1 ,则有
| | | a | | | | a | | a | ii ij ij
j 1 j i 1 i 1 n
则 [(DL )U] 为严格对角占优矩阵
从而 det[ ( D L ) U ] 0
16
补充例题
例:方程组
x1 x2 b1 x1 2x2 b2
(1)写出解该方程组的Jacobi迭代的迭代
阵,并讨论迭代收敛的条件;
(2)写出解该方程组的G-S迭代的迭代阵,
并讨论迭代收敛的条件。
17
补充例题
例:AX=b为二阶线性方程组, 证明:解该方程组的Jacobi迭代与G-S迭 代同时收敛或同时发散。
的充要条件为: (B ) 1
5
一阶定常迭代法的收敛性
例:判别下列方程组用Jacobi迭代法和G-S 法求解是否收敛。
1 2 2 x1 1 1 1 1 x2 1 2 2 1 x 1 3
6
一阶定常迭代法的收敛性
由于 B 的形式不易确定 , G
13
B 的特征值 满足 det( I B ) 0 G G

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。

道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。

迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。

2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。

迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。

Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。

数值分析(李庆扬)第六章资料

数值分析(李庆扬)第六章资料

(n1) B (n) g
若收敛
x x { (k)} * ,则
x* Bx* g
n 0,1,2,

(I B)x* g D1Ax* D1b
Ax* b
故如果序列收敛, 则收敛到解.B 称迭代矩阵.
例:用Jacobi迭代法求解 1x01x1 10xx2222xx337823 x1 x2 5x3 42
k
k
即x是方程组Ax b的解。
引入误差向量
(k 1) x(k 1) x
所以 lim x(k) x 等价于 lim (k) 0
k
k

x(k 1) Mx (k ) g
x Mx g
则可得
(k 1) M (k )
(k ) M (k 1) M k (0)
问题是在什么条件下
满足
x(k1) Bx(k) g (k 0,1, 2, )
此过程所给出的迭代法称为Jacobi迭代法,又称简单
迭代法。
Jacobid迭代的矩阵形式
0
B
b21
b12
0
b1n 1
b2n
0
0 1
0 1
0
b21
b 12 1
b1n b 2n
b b
n1
n2
0
0
0
1
, n).
0 b12 b13 若记 B b21 0 b23
bn1 bn2 bn3
b1n1 b1n
g1
b2n1
b2
n
g
g
2
bnn1 0
gn
则方程组可简记为 x Bx g
选初值向量x(0)代入 x(1) , x(1) Bx(0) g,代入x(1)

计算方法复习重点2

计算方法复习重点2
k k 2 n k v k Avk 1 1 a1x1 a2 x 2 an x n . 1 1
结论:
lim
k

vk
k 1
a1x1
(vk )i lim 1 k (v (第i个分量) k 1 ) i
1. 已知一个A矩阵,可以把它看成一下形式: a11 a A1 A 21 an1 c1 (a21 , a31 , , an1 )T . a12 a1n a22 a2 n a11 c1 an 2 ann
微分方程数值解关心的问题:
(1)局部的截断误差和阶数; (2)数值解Yn的误差估计和收敛性; (3)递推公式的稳定性;
内容主要为单步法 • 一:欧拉法
y f ( x, y ) y ( x0 ) y 0
积分曲线上每一点( x, y ) 的切线的斜率 y ( x) 等
于函数 f ( x, y ) 在这点的值。因此
但必须满足一定过的条件 1 2 n 0
第9章 常微分方程初值问题数值解法
实际问题一般可以归结为一阶常微分方程的初值问题:
y f ( x, y ) y ( x0 ) y 0
解存在条件:
在a ≤ x ≤ b,-∞ < y < ∞ 区域内连续; 满足李普希兹(Lipschitz)条件:
第六章 解线性方程组的迭代法
A R nn 非奇异, b R n 。线性方程组 Ax b 可
以转化为 x Gx d 。可以利用迭代法求 解线性方程组。 选定初始向量 x x , x , , x ( k 1) (k ) x Gx d (k 0,1,)

迭代解法全章

迭代解法全章

向量-矩阵范数旳相容性,得到
|λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x||
从而,对A旳任何特征值λ均成立 |λ|≤|| A ||
(6.1)
设n阶矩阵A旳n个特征值为λ1,λ2,…λn。称
(
A)
max
1i n
i
为矩阵A旳谱半径,从(6.1)式得知,对矩阵A旳任何一
称(3)为求解(1)旳近似解旳迭代解法,称{x(k)}为(1)近
似解序列,称B为迭代矩阵。
假如 lim x (k ) x* 则有 k x*= Bx*+F
(4)
我们称迭代法(3)收敛,不然为发散。下面分析迭代格 式(3)收敛旳条件.
12/29/2023
19
x(k+1)= Bx(k)+F , k=0 ,1 , … , x*= Bx*+F
及向量
x*
( x1* ,
x2* ,,
x
* n
)T
假如
lim x(k) x* 0
k
则称向量序列 x(k) 收敛于向量 x* 。记作
lim x(k ) x* 或 x(k ) x*
k
向量序列 {x(k)} 收敛于向量 x*,当且仅当它旳每一 种分量序列收敛于x*旳相应分量,即
x(k)
x*
x(k) i
1
求解线性方程组旳数值解除了使用直接解法,迭代解 法也是经常采用旳一种措施,这种措施更有利于编程计 算,本章将简介这种措施。
§1 向量和矩阵旳范数
为了对线性方程组数值解旳精确程度,以及方程组 本身旳性态进行分析,需要对向量和矩阵旳“大小”引 进某种度量,范数就是一种度量尺度,向量和矩阵旳范 数在线性方程组数值措施旳研究中起着主要旳作用。

_第六章_线性方程组的数值解法迭代法

_第六章_线性方程组的数值解法迭代法

b 1
a 11
b2
f
a 22 bn
a nn
x(k1) B0x(k)f
--------(5)
第四节 解线性方程组的迭代法
令:
0 0 0
L
a 21
0
0 A的下三角部分矩阵
a n1 a n 2 0
0
U
0
a12 0
a1n a2n
A的上三角部分矩阵
第三节 向量范数和矩阵范数
(2)范数的另一个简单例子是二维欧氏空间的长度
0M x2 y2
欧氏范数也满足三个条件:
(勾股定理)
设x = (x1, x2) ① x 0 x >0 ② ax = a x a为常数 ③ x+ y ≤ x + y 前两个条件显然,第三个条件在几何上解释为三角形一边的长度不大于其它 两边长度之和。因此,称之三角不等式。
满足:
① A0,且A0,当且A 仅 0当
,若 A
正定
② A A,为任意实数
奇次
③ ABAB,A和 B为任意 n阶两 方个 三阵 角不等
则称 A 为矩阵A的范数。
第三节 向量范数和矩阵范数
2、矩阵范数与向量范数的相容性 对于任意的n维向量x,都有:
Ax A x
这一性质称为矩阵范数与向量范数的相容性。
n
A
max
1in
j1
aij
A的每行绝对值之和的最大值, 又称A的行范数
第三节 向量范数和矩阵范数
(3)矩阵的2范数
2范数 ||A|2 | : (AT A )
(AAT) ?
矩阵的谱半径:
矩阵B的诸特征值为: i(i1,2, ,n)

解线性方程组的迭代法

解线性方程组的迭代法

0.9906
0.0355
5 1.01159 0.9953
1.01159 0.01159
6 1.000251 1.005795 1.000251 0.005795
7 0.9982364 1.0001255 0.9982364 0.0017636
可见,迭代序列逐次收敛于方程组的解, 而且迭代7次得到精确到小数点后两位的近似解.
a11x1 a12x2 a13x3 b1 a21x1 a22x2 a23x3 b2 a31x1 a32x2 a33x3 b3
从而得迭代公式
x1
a12 a11
x2
a13 a11
x3
b1 a11
x2
a21 a22
x1
a23 a22
x3
b2 a22
x3
a31 a33
M 00.8 00..75
但(M)=0.8<1,所以迭代法 x(k+1)=Mx(k)+g 是收敛的.
由(3.5)式可见,‖M‖越小收敛越快,且当‖x (k) -x(k-1) ‖很小时,‖x(k) –x*‖就很小,实际中用‖x (k) x(k-1) ‖<作为
迭代终止的条件。 例如,对例1中的Jacobi迭代计算结果
+‖x(k+1) –x*‖‖M‖‖x(k) –x(k-1)‖+‖M‖‖x(k) –x*‖ 从而得‖x(k) –x*‖‖M‖‖x (k) -x(k-1) ‖/(1- ‖M‖)
(3.5) (3.6)
估计式(3.5)得证。利用(3.5)式和
‖x(k+1) 得到
-x(k)
‖‖M‖‖x
(k)
-x(k-1)

解线性方程组 的迭代法

第六章 解线性方程组的迭代法.ppt

第六章 解线性方程组的迭代法.ppt

称 J 为解 Ax b的雅可比迭代法的迭代阵.
(2.5)
15
研究雅可比迭代法(2.5)的分量计算公式.
记 x(k ) ( x1(k ) ,, xi(k ) ,, xn(k ) )T ,
由雅可比迭代公式(2.5), 有
Dx(k1) (L U )x(k ) b,

i1
n
aii
9
定义1 (1) 对于给定的方程组 x Bx f,用公式(1.6) 逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代 法,这里 B与 k无关).
(2) 如果 lim x(k) 存在(记为 x * ),称此迭代法收敛, k
显然 x *就是方程组的解,否则称此迭代法发散. 研究 {x(k )}的收敛性. 引进误差向量
22
例2 用高斯-塞德尔迭代法解线性方程组(1.2).

8x1 3x2 2x3 4x1 11x2 x3

20, 33,
6x1 3x2 12x3 36.
(1.2)
取 x(0) (0, 0, 0)T, 按高斯-塞德尔迭代公式

x ( k 1) 1

记为 Ax b , 其中
(1.2)
8 A4
6
3 2 11 1, 3 12
x1 x x2 ,
x3
20 b 33 .
36
方程组的精确解是 x* (3, 2, 1)T . 现将(1.2)改写为
4

12
于是,求解 Ax b转化为求解 Mx Nx b,即求解
Ax b 求解x M 1Nx M 1b.
可构造一阶定常迭代法

数值分析引论习题与答案(易大义版)

数值分析引论习题与答案(易大义版)

数值分析引论课后习题与答案易大义版第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析实验报告--实验6--解线性方程组的迭代法

数值分析实验报告--实验6--解线性方程组的迭代法

1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。

实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。

1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。

Matlab 脚本文件为Experiment6_1.m 。

迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。

线性方程组求解的迭代算法

线性方程组求解的迭代算法

线性方程组求解的迭代算法线性方程组是数学中常见的问题之一,求解线性方程组是很多科学和工程领域中必需的基本任务。

而迭代算法是一种常见的求解线性方程组的方法之一,通过不断逼近线性方程组的解来达到求解的目的。

本文将介绍一些常见的线性方程组迭代算法及其原理。

一、雅可比迭代法雅可比迭代法是最早被提出的线性方程组迭代算法之一。

其思想是通过不断迭代,在每一步都利用先前求得的近似解来逼近方程组的解。

具体算法如下:假设给定的线性方程组为Ax=b,其中A为系数矩阵,b为常数向量,x为未知向量。

1. 首先,将方程组转化为x=D^-1(b-Rx),其中D为一个对角矩阵,R为矩阵A的剩余部分。

2. 设定一个初始解向量x0。

3. 迭代计算:重复执行以下步骤,直到满足终止条件。

a. 计算下一次迭代的解向量:x_k+1 = D^-1(b-Rx_k),其中k为当前迭代的次数。

b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。

雅可比迭代法的收敛性与系数矩阵A的特征值有关。

当A是严格对角占优矩阵时,迭代法收敛。

二、高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的一种改进方法。

在每一次迭代中,新的解向量x_k+1的计算会利用到之前已经计算得到的近似解向量的信息,从而加快迭代的速度。

具体算法如下:1. 设定一个初始解向量x0。

2. 迭代计算:重复执行以下步骤,直到满足终止条件。

a. 对于每个方程i,计算下一次迭代的解向量的每个分量:x_k+1[i] = (1/A[i][i]) * (b[i]-Σ(A[i][j]*x_k[j],其中j为1到i-1之间的所有整数。

b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。

高斯-赛德尔迭代法相比于雅可比迭代法,在每一次迭代中都会利用到之前计算得到的近似解向量的信息,因此收敛速度更快。

三、超松弛迭代法超松弛迭代法是对雅可比迭代法和高斯-赛德尔迭代法的进一步改进。

通过引入松弛因子ω,可以加速迭代的收敛速度。

数值分析课第三作业课后答案answer

数值分析课第三作业课后答案answer

第七章 方程求根 1. 用二分法求方程 x2 − x − 1 的正根,要求误差 < 0.05。 答案:1.609375。
2. 为求方程 x3 − x2 − 1 在 x0 = 1.5 附近的一个根,设将方程改写为下 列等价形式,并建立相应的迭代公式。
(1)x = 1 + 1/x2,迭代公式 xk+1 =√1 + 1/x2k;
4x1 − x2 = 1;
−x1
+ 4x2 − x3 −x2 + 4x3
= 4; = −3.
精确解
x∗
=
(
1 2
,
1,

1 2
)。要求当
∥x∗

x(k)∥∞
<
5
×
10−6
时迭代终止。并
且对每一个 ω 值确定迭代次数。
答案:ω = 1.03 时迭代 5 次达到精度要求,
1
x(5) = (0.5000043, 1.000001, −0.4999999)T ; ω = 1 时迭代 6 次达到精度要求, x(6) = (0.5000038, 1.000002, −0.4999995)T ; ω = 1.1 时迭代 6 次达到精度要求, x(6) = (0.5000035, 0.9999989, −0.5000003)T 。
4. 用下列方法求 f (x) = x3 − 3x − 1 = 0 在 x0 = 2 附近的根,根的准 确值 x∗ = 1.87938524 · · · ,要求计算结果准确到四位有效数字。
(1)用牛顿法;
(2)用弦截法,取 x0 = 2,x1 = 1.9;
(3)用抛物线法,取 x0 = 1,x1 = 3,x2 = 2;

数值分析第六章线性方程组迭代解法

数值分析第六章线性方程组迭代解法

数值分析第六章线性方程组迭代解法线性方程组是数值分析中的重要内容之一,其求解方法有很多种。

其中一种常用的方法是迭代解法,即通过不断迭代逼近方程组的解。

本文将介绍线性方程组迭代解法的基本思想和常用方法。

线性方程组可以用矩阵形式表示为Ax=b,其中A是系数矩阵,b是常数向量,x是未知向量。

线性方程组的解可以是唯一解,也可以是无穷多个解。

迭代解法的基本思想是通过不断迭代,并利用迭代序列的极限,逼近线性方程组的解。

迭代解法适用于大型的线性方程组,而直接求解法则适用于小型的线性方程组。

常用的迭代解法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法。

雅可比迭代法是最简单的线性方程组迭代解法之一、它的基本思想是将线性方程组的每个方程都单独表示为未知数x的显式函数,然后通过不断迭代求解。

雅可比迭代法的迭代公式为:x(k+1)=D^(-1)(b-(L+U)x(k))其中,D是A的对角元素构成的对角矩阵,L是A的下三角矩阵,U 是A的上三角矩阵,x(k)是第k次迭代的解。

高斯-赛德尔迭代法是雅可比迭代法的改进版。

它的基本思想是将每个方程的解带入到下一个方程中,而不是等到所有方程都迭代完毕后再计算下一组解。

高斯-赛德尔迭代法的迭代公式为:x(k+1)=(D-L)^(-1)(b-Ux(k))其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),x(k)是第k次迭代的解。

逐次超松弛迭代法是对高斯-赛德尔迭代法的改进。

它引入了松弛因子w,通过调节松弛因子可以加快收敛速度。

逐次超松弛迭代法的迭代公式为:x(k+1)=(D-wL)^(-1)[(1-w)D+wU]x(k)+w(D-wL)^(-1)b其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),w是松弛因子,x(k)是第k次迭代的解。

线性方程组迭代解法需要设置迭代停止准则,通常可以设置迭代次数上限或者设置一个精度要求。

第6章 解线性方程组的迭代法

第6章 解线性方程组的迭代法
k k
有 lim || Ak x || 0.所以就有定理的右边成 立。
k
反之,若定理的右边成 立,取x为第j个坐标向量e j, 则 lim Ak e j 0, 表示Ak的第j列元素极限均为零,当
k
j 1,2, , n时就证明了lim Ak 0,证毕。
k
给出的迭代法
( ( x1( k 1) (3x2k ) 2 x3k ) 20) / 8 ( k 1) (k ) (k ) x2 (4 x1 x3 33) / 11 的收敛性。 ( ( x3k 1) (6 x1( k ) 3x2k ) 36) / 12
第6章
解线性代数方程组的迭代法
§1 引言
考虑线性方程组
a11x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1x1 an2 x2 ann xn bn
(1.4)

x(k+1)=B0x(k)+f, (k=0,1,2,„)
x (10 ) (3.0000321.999838 0.9998813T , , , ) ε
(10 )
0.000187其中ε ,
(k )
(10 )
x
(10 )
x *.
从此例可以看出,由迭 代法产生的向量 序列x 逐步逼近此方程的精确 解。
3 8
0
3 12
2 8 1 11 0
20 x1 8 x 33 . 2 11 x3 36 12
任取初值,如x(0)=(0,0,0)T,代入(1.3)得到x(1)= (2.5,3,3)T. 反复迭代

(数值分析)第六章 解线性方程组的迭代法

(数值分析)第六章 解线性方程组的迭代法
* r * * *
华长生制作
1
定义1 设 中的向量序列,若有向 k n x 量 x R ,使 lim x x 0 ,则称 k lim x x 收敛于 x ,记为 k
x
k
是R
n
(k)

k
nn A R 定义2 设 是 中的矩阵序列,若有矩 n n lim A A 0 A A R 阵 ,使 ,则称 lim A A 收敛于A,记为
k 1 k x B x f
华长生制作
17
定理5.
设 方 程 x = B x + f 有 惟 一 解 x , 若 B 1 , 则 由
简 单 迭 代 法 产 生 的 向 量 序 列 x 满 足
x x
(k )
x x


B 1 B B
k

k
x( k ) x( k 1) x1 x 0
( 0 ) 取初始向量 x ,代入 ( 2 ), 可得
( 1 ) ( 0 ) x Bx f
依此类推
华长生制作 11
(2 ) ( 1 ) x Bx f

(k) x(k1) Bx f
--------(3)
( k 0 , 1 , 2 , )
这种方式就称为迭代法 ,以上过程称为迭代过程
k
k n l i m Ax 0 , x R 0 的 充要条件是
lim Ak 0.
k
R 定理 4 设矩阵 B ,则 k 的充分 m a x B B . 必要条件是 B 的谱半径 (B) 1 ,其中 i 1 i n
( n n )

第六章 解线性方程组的迭代法-2

第六章 解线性方程组的迭代法-2
()p←∆xi =ω∗(bi −∑ ij xj −∑ ij xj )/aii 1 a a
j= 1 j=i i− 1 n
21
(2) 如 p > p0 则 0 ← p 果 p
(3) xi ←xi + p
6. 输 p0 出 7. 如 p0 <eps 则 出k,ω,x, 停 果 输 机
8. 如 k< N0 则 3 果 转
A 11 A 21 A= M A q1 A 12 A 22 M A2 q L Aq A 1 11 L Aq 2 , D= M L A qq A 22 , O A qq
24
0 −A 21 L= M −A q1
0 M −A 2 q
0 − A 12 0 , U = O L 0
L −Aq 1 L −A q 2 . O M 0
q
n , , 且 A (i =1 2,L q) 为 ni ×ni非奇异矩阵, ∑ i =n. ii
i= 1
对 x及 b同样分块
aii ≥ ∑ aij
1 j= j ≠i n
(i =1 2,L n). , ,
弱对角占优阵. 弱对角占优阵 且上式至少有一个不等式严格成立,称 A为弱对角占优阵
1
定义4 (可约与不可约矩阵) 设 A = (aij )n×n (n ≥ 2) , 定义4 如果存在置换阵 P使
A P AP = 11 0
之根. 记
λa 11 λa21 C ≡λ(D−L)−U = M λa n1
λa22
M λan2
a 12
an 1 L a2n , M L λann L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成迭代式
对于任意初值 , ( )
这就是雅可比迭代法。
注:
1形成雅可比迭代式的条件是A的主对角线元素均非零。
2雅可比迭代收敛的条件是 。
【例题2】对于线性方程组
利用雅可比迭代法求其近似解(允许的最大迭代次数N,近似解的精度eps,由用户设定)。
(二)高斯-塞德尔迭代法。
从雅可比迭代的分量形式可以发现,在进行第k次迭代时,利用 , ,…, ,生成向量 ,其分量产生的次序是 , ,…, 。我们对雅可比方法进行以下改变设计:
【例题3】对于线性方程组
1高斯-塞德尔迭代法求其近似解(允许的最大迭代次数N,近似解的精度eps,由用户设定)。
第五章解线性方程组的迭代法
本章主要内容:
迭代法收敛定义,矩阵序列收敛定义,迭代法基本定理,雅可比迭代法,高斯-塞德尔迭代法,系数矩阵为严格对角占优阵的采用雅可比迭代、高斯-塞德尔迭代的收敛性。
教学目的及要求:
使学生了解迭代法收敛定义,迭代法基本定理,掌握雅可比迭代法、高斯-塞德尔迭代法。
教学重点:
雅可比迭代法,高斯-塞德尔迭代法。
步1应用信息 , ,…, ,据雅可比迭代分量式,生成分量 ;
步2应用信息 , ,…, ,据雅可比迭代分量式,生成分量 ;
步3应用信息 , ,…, ,据雅可比迭代分量式,生成分量 ;
……
步n应用信息 , ,…, , ,据雅可比迭代分量式,生成分量 。
如此生成 的设计方案,是想更好地利用已有的最新有用信息。有理由相信,如此所获得的迭代式,其计算效果应该会更好一些。
教学时间:
本章的教学的讲授时间为6学时,实验学时4学时。
教学内容:
一迭代法定义
对于给定的线性方程组 ,设它有唯一解 ,则
(6.1)
又设 为任取的初始向量,按下述公式构造向量序列
(6.2)
这种逐步代入求近似解的方法称为迭代法(这里B与f与k无关)。如果 存在(记为 ),称此迭代法收敛,显然 就是方程组的解,否则称此迭代法发散。
教学难点:
迭代法基本定理的证明以及作用。
教学方法及手段:
应用严格的高等代数、数学分析知识,完整地证明迭代法基本定理,讲清雅可比迭代法与高斯-塞德尔迭代法的关系,介绍雅可比迭代法与高斯-塞德尔迭代法在编程中的具体实现方法。
在实验教学中,通过一个具体实例,让学生掌握雅可比迭代法与高斯-塞德尔迭代法的具体实现,并能通过数值计算实验,揭示高斯-塞德尔迭代法是对雅可比迭代法的一种改进这一事实。
(1) 如 时, ;
(2)m=1时, 的第2条对角线元素为1,其余为零;m=2时, 的第3条对角线元素为1,其余为零;m=3时, 的第4条对角线元素为1,其余为零。
简言之, 的第m+1条对角线元素为1,其余为零(当没有第m+1条对角线时, 应理解为零矩阵)。
2 计算约当块的幂次。
当 时,
3 一个极限性质
下面,我们具体给出这种迭代法的表达形式。
……

……
左边可改写为
右边可改写为
亦即
注意到: ,于是有
迭代矩阵为
迭代向量为
故高斯-塞德尔迭代式为
( )
故高斯-塞德尔迭代式的分量计算公式为
,( )
实现高斯-塞德尔迭代法的分量计算公式的算法
步1 ,输入允许的最大迭代次数N,用户精度eps,k=0。
步2对于i=1,2,…,n,
故 的充要条件是 。
【定理4】(迭代法基本定理)设有方程组
以及迭代法
对任意选取初始向量 ,迭代法收敛的充要条件是矩阵 的谱半径 。
证明充分性设
则矩阵 的特征值均大于零,故 非奇异。
有唯一解 ,且 ,即 。
误差向量
由设 ,应用定理3,有 。
于是,对任意 ,有 ,即 。
必要性设对任意 有
其中 ,显然,极限 是方程组 的解,且对任意 有
证明 (1)由基本定理4,结论(1)是显然的。
(2)由关系式 ,有
(3)

显然 亦成立。
(4) 。
注:
该定理中的第3款可作为误差的事后估计式。
三几种常见的迭代法及收敛性
下面,我们讨论线性方程组
如何用迭代法求近似解的问题。
这里, 为非奇异矩阵, 。
(一)雅可比迭代法。
设 ,将A分解成以下三部分
记 ,
那么
设 ,对于 ,有
由 可知, 。
类似地,可证明 。
这里, 是 中的基本单位向量组。
,则
即 ,
亦即 。
充分性 据 ,有 ,
由 的任意性,如果取 ,则

亦即
类似地,可分别让 ,可得

从而 。
【定理3】设 ,则 的充要条件是 。
证明 由高等代数知识,存在非奇奇异矩阵P使
其中约当块
且 ,显然有
其中
于是
据例题1的结论, 的充要条件是
步3对于i=1,2,…,n
步4 k=k+1
步5若 ,输出近似解 ,停止计算。否则,执行步6。
步6若k=N,输出达到迭代次数信息,程序中止。否则,执行步7。
步7对于i=1,2,…,n, ,返回步2。
注:
1形成高斯-塞德尔迭代式的条件是 存在,而 ,故只要A的主对角线元素均非零,该逆阵存在。
2高斯-塞德尔迭代收敛的条件是 。
则称 收敛于 ,记为 。
注:
矩阵序列的收敛性是根据矩阵的每个分量序列的收敛性来定义的。
【例题1】讨论约当块矩阵的幂次所构成的矩阵序列的收敛性。
形如
的矩阵称之为n阶的约当块。它可以分解成为
下面,我们分几步来研究矩阵序列
的收敛性。
1 矩阵 的幂阵的性质
我们不妨以4阶阵来看看这种性质。
, ,

的性质可归纳为以下两点:
迭代法求方程近似解的关键是是讨论由(6.1)式所构造出来的向量序列 是否收敛。为此,我们引入误差向量,得
要考察 的收敛性,就要研究 在什么条件下有
也就是要研究 在什么条件下有

二迭代法收敛性定理
矩阵的收敛性定义
设有矩阵序列 及 ,如果 个数列极限均存在且有
因为 ,得到
这里,注意事实
4 约当块幂阵的收敛性结论
当 时, 收敛于零矩阵;当 , 发散。
矩阵序列极限的概念可以用矩阵范数来描述。
【定理1】 ,其中 为矩阵的任意一种范数。
证明 显然有
再利用矩阵范数的等价性,可证明定理对其他矩阵范数也成立。
【定理2】 的充要条件是 ,有 。
证明 必要性 记 ,据 ,可知 。
由定理2知 。
再由定理3,即得 。
判断迭代收敛时,需要计算 ,一般情况下,这不太方便。由于 ,在实际应用中,常常利用矩阵B的范数来判别迭代法的收敛性。
【定理5】(迭代法收敛的充分条件)设有方程组
以及迭代法
( )
如果有B的某种范数 ,则
(1)迭代法收敛,即对任取 有
且 。
(2) 。
(3) 。
(4) 。
相关文档
最新文档