电路的基本元件及方程.
电工电子总复习
![电工电子总复习](https://img.taocdn.com/s3/m/06be466901f69e31433294d7.png)
(电容性无功取负值) Q UI
I
UC
U
U
P0
1、R-L-C串联交流电路
纯电容不消耗能量
三、简单单相正弦交流电路的计算
I Z U
Z R j X L X C
1、电阻的串联:
U1 分压: R1 U R1 R2
R2 U2 U R1 R2
特点: (1) 各个电阻流过同一电流; (2) 等效电阻等于各个电阻之和; (3) 串联电阻各个电阻的分压与其阻值成正比;
2、电阻的并联:
R2 I 分流:I1 R1 R2
R1 I2 I R1 R2
例1:有一个闭合回路如图所示,各支路的元件是任 意的。已知:UAB = 5V,UDA = -3V, UBC = - 4V。试求:(1)UCD;(2)UCA。
A UAB B
UDA
UBC
D
UCD
C
解:(1)由基本的KVL定律可得: UAB + UBC + UCD + UDA = 0
即:5+(-4)+ UCD +(-3.电感: u L dt
1 W Li 2 2
(储能元件)
四、电源元件
1、独立电源:
(1)电压源模型:
a R0 US I R
U US
U
0
b
uS R0
I
U U s R0 I
(2)电流源模型:
a I
U
IS R0 U R
IS R0
b
0
IS
I
I I s U
R0
2、受控电源:四种
4A
解: (1) 10V电压源单独作用, 4A电流源开路; 6 + 10V – + 4 u' – u'=4V
大学电路理论第1章
![大学电路理论第1章](https://img.taocdn.com/s3/m/d02bfe0dcc175527072208d9.png)
电路的基本概念和基本定律
本章学习中的基本问题
什么叫电路、电路元件? 电路模型的意义? 本章涉及到的基本定律是什么? 其内涵? 本章涉及到的基本元件有哪些?其基本性质?
1.1 实际电路与电路模型 1.2 电路的基本物理量
1.3 基尔霍夫定律
1.4 电路的基本元件及方程 1.5 应用
思考
? a.
+ 3 _ 设各元件为 基本单位。
1 1 1 a
i=? b
1 + 1 1 2 _
i=0
b. + 3 _
1 1 1 d
i3 i = ? 1
e + 1 1 2 _ f i4
i=0
3、基尔霍夫电压定律 (KVL)
在任一时刻,沿任一闭合路径( 按固定绕向 ), 各支路 电压的代数和为零。 即 u(t ) 0
推论: 电路中任意两点间的电压等于两点间任一条路径
经过的各元件电压的代数和。 元件电压方向与路径绕行方向一致时取正号,相反取负号。 A
A + US1 _ l2 1
2 U2
I2
l1
U3 U1
3
I3
B
UAB (沿l1)=UAB (沿l2) 电位/电压单值性
I1
_
I4 U4
US4+
4 B
U AB U 2 U 3
1.4.1 电阻元件 ( Resistive Element )
线性电阻
1. 符号
R
2. 方程--欧姆定律 (Ohm’s Law)
电压与电流的参考方向一致时 i R
uRi
+
u (Ohm,欧姆)
R 称为电阻, 基本单位: (欧)
了解电路中的电路定理与电路方程
![了解电路中的电路定理与电路方程](https://img.taocdn.com/s3/m/855c2935f56527d3240c844769eae009581ba2a0.png)
了解电路中的电路定理与电路方程电路定理和电路方程是电路理论中的基本概念和工具。
它们帮助我们分析和解决电路中的问题,以更好地理解电路运行原理和设计电路。
一、电路定理1. 基尔霍夫定律:基尔霍夫定律是电路理论中最重要的定理之一。
它有两个形式:基尔霍夫电压定律和基尔霍夫电流定律。
- 基尔霍夫电压定律说的是在一个闭合回路中,电压的代数和为零。
这意味着在一个回路中,电压源的电压和电阻元件的电压之和等于零。
- 基尔霍夫电流定律说的是在一个节点中,进入节点的电流和等于离开节点的电流和。
基尔霍夫定律给出了电路中电压和电流之间的关系,可以帮助我们分析电路中的电压和电流分布情况。
2. 电阻定律:电阻定律也称为欧姆定律,它规定了电路中电压、电流和电阻之间的关系。
根据电阻定律,电阻的电压等于电流与电阻的乘积。
电阻定律是电路理论中最基本的定律之一,它可以帮助我们计算电路中电流和电阻的关系。
二、电路方程1. 电路方程是基于电路中的元件特性和基尔霍夫定律建立的方程。
在电路中,我们常常会遇到需要求解电路中电压和电流的问题,通过建立电路方程,可以将这些问题转化为求解方程的问题。
2. 电路方程的建立需要根据电路中的元件特性和基尔霍夫定律进行推导。
以电阻为例,根据欧姆定律可以得到电阻的电压与电流之间的关系。
对于其他元件如电容和电感,我们需要用到它们的电压和电流特性方程。
电路方程是解决电路问题的重要工具,通过建立和求解电路方程,我们可以得到电路中各个元件的电压和电流数值。
三、电路定理与电路方程的应用1. 电路定理和电路方程应用广泛,可以用于各种电路的分析和设计。
它们是电路理论和电工技术的基础。
2. 在实际电路中,我们常常需要用到电路定理和电路方程来解决问题。
例如,当我们需要计算电路中某个元件的电压或电流时,可以利用电路定理和方程来计算。
另外,当我们需要设计一个符合特定要求的电路时,也可以通过电路定理和方程进行分析和优化。
电路定理和电路方程是电路理论中的基本概念和工具,通过学习和应用它们,我们可以更好地理解和设计电路。
电路的基本原理(第一章)
![电路的基本原理(第一章)](https://img.taocdn.com/s3/m/3cc26fedab00b52acfc789eb172ded630b1c9869.png)
参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
电路原理 第1章 电路的基本概念与基本定律
![电路原理 第1章 电路的基本概念与基本定律](https://img.taocdn.com/s3/m/7af42fea0975f46527d3e16d.png)
1.2.3 电功率
1. 电功率的定义 电功率的定义 图1.11(a)所示方框为电路中的一部分a、b段,图中采用了关 联参考方向,设在dt时间内,由a点转移到b点的正电荷量为dq, ab间的电压为u,根据对式(13)的讨论可知,在转移过程中dq失去 的能量为
dω (t ) = u (t )dq (t )
I1 a b I3 I2 c
d
图1.4例1.1图
1.2.2 电压及其参考方向 电压及其参考方向 1. 电压的定义及单位
u=
dω dq
(1—3)
在电路中,电压的单位为伏特,简称伏(V),实用中还有千 伏(kV),毫伏(mV)和微伏(µV)等。 2. 用电位表示电压及正负电压的讨论 (1—4) (1)如果正电荷由a点移到b点,获得能量,由a点到b点为电 位升(电压升),即 u ab = u a − ub < 0 (2)如果电荷由a点移到b点, 失去能量, 则a点为高电位端 (正极), b点为低电位端(负极)由a点到点b为电位降(电压降), 即 u ab = u a − ub > 0 3.直流电压的测量 直流电压的测量 在直流电路中, 测量电压时, 应根据电压的实际极性将直流 电压表跨接在待测支路两端 。
电路模型与电路图 所谓电路模型,就是把实际电路的本质抽象出来所 构成的理想化了的电路。将电路模型用规定的理想元件 符号画在平面上形成的图形称作电路图。 图1.1就是一个 最简单的电路图。
+ US - RS RL
图1.1电路模型图
1.2 电路变量
电学中几个重要的物理量,如:电流 电压 电功率 电流、电压 电功率和 电流 电压、电功率 电能量等是研究电路过程中必然要涉及的电路变量。 电能量 1.2.1 电流及其参考方向 1. 电流的表达式及单位 dq i= (1—1) dt q (1—2) I= t 国际单位制(SI)中,电荷的单位是库仑(C),时间的单 位是秒(s),电流的单位是安培, 简称安(A), 实用中还有 毫安(mA)和微安(µA)等。
电路的基本元件和电路定律
![电路的基本元件和电路定律](https://img.taocdn.com/s3/m/c3fc5a6fcaaedd3383c4d38d.png)
第1章 电路的基本元件和电路定律主要内容:介绍电路模型的概念,电压、电流参考方向的概念,功率的计算及概念,电阻、电容、电感、独立电源和受控源等电路元件,最后介绍基尔霍夫定律。
学时安排:本章分4讲,共8学时。
第一讲 电路模型、电压和电流参考方向以及元件功率一、主要内容1、课程的性质和作用 《电路理论》是一门技术基础课程。
通过本课程的学习,能运用所学知识解决一些基本的有关电学方面的问题,同时为后续《电子技术》等课程打下基础。
2、教学安排 第1章 10学时、第2章 4学时、第3章 6学时、第4章 6学时、直流电路习题课 2学时、第5章4学时、第6章 8学时、第七章 4学时、第8章6学时、交流与习题课 2学时、第9章 8学时、第10章 4学时、第11章 8学时、第12章 6学时、一阶与非正弦电路习题课 2学时、第13章 6学时、第14章 8学时、第15章 2学时、总复习 2学时3、电路的作用、组成与任务 电路的作用:完成能量的转换;完成信号的处理。
电路的组成:实际电路是由电气器件相互联接而构成的电流通路。
实际电气器件在一定条件下都可用理想元件来代替。
由理想元件代替实际电气器件组成的电路叫电路模型。
电路是根据电路模型来进行分析的。
电路分析的目的:根据电路结构和已知参数,求电路的电压、电流和功率。
电路是各种各样电器装置的联接体。
本书研究的电路是实际电路的电路模型。
某些实际器件可用一个理想电路元件代替,某些实际器件需用几个理想电路元件的组合来代替。
电路模型就是用理想电路元件代替实际器件组成的电路。
4、电流的参考方向 1)电流的实际方向电流(又叫电流强度)—单位时间内通过的电流,即dt dqi =。
电流的实际方向是单位正电荷定向移动的方向。
2)电流的参考方向 A 用箭头表示,如图1-1(a )所示;B 用双下标表示,如图1-1(b )所示。
如电流A 3=AB i ,则电流实际方向与参考方向一致;如电流A 3-=AB i ,则电流实际方向与参考方向相反。
1-2 元件的特性方程
![1-2 元件的特性方程](https://img.taocdn.com/s3/m/7051460c0740be1e650e9a5b.png)
关联参考方向;
〈b〉、特性方程: uab eS RO i
5、电流源的特性方程:
〈1〉、理想电流源:
iS
a、定义与电路模型、表示符号:
定义:输出电流与外界(电u压ab )无关;
b、特征方程:i iS
c、特征曲线:
2020/3/1
O
iS
RO -
es +
iS
伏
i安 特 性
a i
uab b
ia uab
b
〈2〉、电流源的电路模型:
a、 实际电流源的 输出电流
is
i 与负载有关;
b、实际电流源的电路模型:理想电 流源与电阻(电压源的内阻)并联;
ia
iR
Uab RO
b
〈3〉、电流源的特性方程: a、 参考方向规定(发电机惯例):
u、i采用非关联参考方向, i 与 iS的参考方向趋势相同;
〈b〉、积分关系式:
u
L
e
iL (t)
1 L
t
uL ( )d
1 L
t0
uL
(
)d
1 L
t
t0 uL ( )d
iL
(0)
1 L
t
t0 uL ( )d
(0 t )
电路模型
其中
2020/3/1
iL (0)
1 L
t0
uL
(
)d
称为电感电流的初始值;
2020/3/1
5、例: 已知C=0.5 F,电容上的电压波形如图1-2 -16(a) 所示, 试求电压电流采用关联参考方向时的电流iC(t),并画出波形 图。
第二章 电路的基本概念和基本定律
![第二章 电路的基本概念和基本定律](https://img.taocdn.com/s3/m/c6680157ad02de80d4d8402f.png)
a、b两点间的电压
u ab d w ab dq d w ao dq d w bo dq v a vb
电场中任意两点间的电压等于这两点的电位之差。
电压又称电位差
4.电压的实际方向和参考方向
正电荷,a→b,电场力作正功 正电荷,a→b,电场力作负功
v a u ao
单位与电压相同
dw a 0 dq
参考点的电位为零。 参考点的选择,原则上是任意的。 电位的大小决定于电场的性质、给定点的位置及参考点的选择。 参考点选择不同,电场中各点的电位将有不同的数值。 电位是一个相对量
3.电压与电位的关系
正电荷,a→o→ b 电场力所作功为
第二章 电路的基本概念和定律
模块一 电路及电路模型 模块二 电路的物理量 模块三 电阻元件 模块四 电压源和电流源 模块五 基尔霍夫定律 第二章小结
模块一
电路及电路模型
一、电路的组成和作用 电路:由若干电气设备或器件按照一定方式连 接起来而构成的电流通路。 电路的分类(按功能分):
①传输和转换电能的电路
标量 单位:伏特(V)
2.电动势的实际方向和参考方向
e
dq
电动势方向的习惯规定: 在电源内部自电源的负极 → 正极 (低电位端→高电位端)
电动势参考方向的表示方法: (1)用参考极性表示:“+”极表示假定的高电位端 “-”极表示假定的低电位端 (2)用箭头表示:箭头指向是从参考极性的“-”极指向“+ ”极 (3)用双下标表示:eab表示参考方向是从a指向b。
②传递和处理信号的电路
传输和转换电能的电路组成
电源:提供电能的设备。
电路知识归纳
![电路知识归纳](https://img.taocdn.com/s3/m/9a42ed0b6c85ec3a87c2c57f.png)
②激励为电流源,响应为电压源;
③激励为电流源,响应为电流;当激励与响应位置互易后,激励改成与电流源等数值的电压源,相应改成与电流等数值的电压。
注;(1)互易前后应保持网络的拓扑结构不变,仅理想电源搬移;
(2)互易前后端口处的激励和响应的极性保持一致(要么都关联,要么都非关联);
4.星型链接与三角形连接的等效变换:
①Δ→Y:
;类推…
②Y→Δ:
;类推…
5.支路数=树枝数+连支数=节点数-1+基本回路数;b=n+l-1
电路分析的一般方法:
1支路电流法
一般步骤:
(1)标定各支路电流(电压)的参考方向;
(2)选定(n–1)个节点,列写其KCL方程;
(3)选定b–(n–1)个独立回路,列写其KVL方程(元件特性代入);
②实际电压源也不允许短路。因其内阻小,若短路,电流很大,可能烧毁电源;
③理想电流源允许短路;当电流不为零时,理想电流源不能开路,若开路则相当于外接电阻R=∞的情况,此时理想电流源的端电压将为无穷大,也没有意义;
④实际电流源也不允许开路。因其内阻大,若开路,电压很高,可能烧毁电源;
⑤独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源只是反映输出端与输入端的受控关系,在电路中不能作为“激励”。
(4)求解上述方程,得到b个支路电流;
(5)进一步计算支路电压和进行其它分析。
特点及适用性:支路法列写的是KCL和KVL方程,所以方程列写方便、直观,但方程数较多,宜于在支路数不多的情况下使用。
注:①当所选回路含有理想电流源时,可将其看作电压源U,列增补方程 ;或者可根据所求,避开含电流源的支路取回路;
电路及基本元器件
![电路及基本元器件](https://img.taocdn.com/s3/m/72687849227916888586d704.png)
图1-3
图1-2
三、电功率和电能
1、电功率
电流通过电路时传输或转换电能的速率称为电功率,
简称为功率,用符号p表示。
当电压与电流为关联参考方向时,功率的
q CuC
常用电容元件的外型与图形符号
四、半导体二极管
1、半导体的基础知识 (1)半导体及其特性 • 导电能力介于导体和绝缘体之间的物质称为半导体,常
用的半导体材料有硅和锗等。 • 根据掺杂半导体中导电粒子的不同,半导体可分为N型半
导体和P型半导体。 • N型半导体的导电粒子主要是自由电子, P型半导体的导
成电路(VLSI)。
1.3 电压源和电流源
一、电压源
1、理想电压源
图1-11 理想电压源
图1-12 理想电压源的伏安特性曲线
2、实际电压源
U=US-IR0
图1-13 实际电压源
图1-14 实际电压源的伏安特性
二、电流源
1、理想电流源
图1-15理想电流源
图1-16 理想电流源的伏安特性曲线
2、实际电流源
例:列写图1-22中求解支路电流的方程组。
图1-22
I1R1+I3R3-US3-US1=0 I5R5+I4R4+US3-I3R3=0 -I2R2+US2-I4R4=0
1.6 电路中电位的计算
• 电路中某点的电位是指该点与参考点之间的电压。参 考点又称零电位点。
• 电路中各点的电位与参考点的选择有关。 • 由电位的定义可知:电路中a点到b点的电压就是a点电
电学常识必备知识点总结
![电学常识必备知识点总结](https://img.taocdn.com/s3/m/7dcad27a11661ed9ad51f01dc281e53a59025161.png)
电学常识必备知识点总结一、电流、电压和电阻1. 电流:电流是单位时间内电荷通过导体横截面的数量,用符号I表示,单位是安培(A)。
电流的方向是正电荷移动的方向。
电流的大小与导体中电荷的数量和速度有关。
2. 电压:电压是电荷在电场中具有的能量,是电流的推动力,用符号U表示,单位是伏特(V)。
电压是电压源提供给电路的能量,使得电荷在导体中形成电流。
3. 电阻:电阻是导体对电流的阻碍程度,即电流通过时所产生的电压降,用符号R表示,单位是欧姆(Ω)。
电阻是导体材料、长度和横截面积的函数,还与温度有关。
二、电路基本定律1. 欧姆定律:欧姆定律是描述电流、电压和电阻之间关系的基本定律。
它表示电流与电压成正比,与电阻成反比,即I=U/R。
欧姆定律是电路分析和设计的基础。
2. 基尔霍夫定律:基尔霍夫定律是描述闭合电路中电流和电压的关系的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律表示电流在节点处相互之和等于零,基尔霍夫电压定律表示闭合电路中沿不同路径的电压之和等于零。
3. 麦克斯韦方程组:麦克斯韦方程组是描述电磁场的基本定律,包括法拉第电磁感应定律、安培环路定律和高斯定律。
麦克斯韦方程组统一了电磁学和光学的理论,是现代电学的基础。
三、电路基本元件1. 电阻:电阻是电路中最基本的元件,用来限制电流的流动,消耗电能,控制电路的工作状态。
常见的电阻有固定电阻、可变电阻和特殊电阻。
2. 电容:电容是可以存储电荷和能量的元件,用来储存电压和释放电能。
电容具有充放电的特性,能够实现信号的滤波和延时。
3. 电感:电感是能够产生磁场并储存能量的元件,用来储存电流和释放电能。
电感具有阻碍变化电流的特性,能够实现信号的滤波和稳压。
4. 电源:电源是提供电压和电流输出的元件,用来为电路提供能量。
常见的电源有直流电源、交流电源和脉冲电源。
四、电路分析方法1. 串、并联电路:串联电路是指电路中元件依次连接的方式,电流经过每个元件都相同;并联电路是指电路中元件并联连接的方式,电压相同、电流不同。
电路的基本原件
![电路的基本原件](https://img.taocdn.com/s3/m/a3c543b4690203d8ce2f0066f5335a8102d26631.png)
电路的基本元件包括**电阻、电容、电感、独立源、受控源、二极管、理想变压器等等**,具体介绍如下:
1. 电阻。
电阻是反映能量损耗的电路参数,用以模拟电阻器和其他实际部件的电阻特性。
在电路理论中,电阻元件(简称电阻)用以模拟电阻器和其他实际部件的电阻特性,端电压u和端电流i之间关系满足f(u,i) = 0方程的就是电阻元件,跟电压电流关系为直线性、不随时间变化阻值的电阻被称为线性时不变电阻元件。
2. 电容。
电容是反映电场储能性质的电路参数,用以模拟电容器和其他实际部件的电容特性。
电容元件所储电荷量与电压关系成直线关系且电容值不随时间变化的电容元件被称为线性时不变电容元件,电容元件电压的跳变必然伴有无限大的电流。
3. 电感。
电感是反映磁场储能性质的电路参数,用以模拟电感器和其他实际部件的电感特性。
4. 独立源。
独立源分为独立电压源(提供恒定电压,U-I曲线为平行于I轴的直线)和独立电流源(提供恒定电流,U-I曲线为平行于U轴的直线)。
5. 受控源。
受控源根据控制量和受控量的不同分为压控电压源、压控电流源、流控电压源、流控电流源。
6. 二极管。
二极管只能通过正向电流而不能通过反向电流。
7. 理想变压器。
理想变压器一种耦合系数为1,L1、L2、M都无穷大的变压器。
以上就是电路的基本元件,希望能够对您有帮助。
第1章 电路的基本概念与基本定理
![第1章 电路的基本概念与基本定理](https://img.taocdn.com/s3/m/ff9e5139a2161479171128ce.png)
第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。
电路原理知识总结
![电路原理知识总结](https://img.taocdn.com/s3/m/7ef4970a0066f5335a812154.png)
电路原理总结第一章 基本元件和定律1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2. 功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3. 全电路欧姆定律:U=E-RI4. 负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5. 电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二. 基尔霍夫定律1. 几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2. 基尔霍夫电流定律:(1) 定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2) 表达式:i进总和=0或: i进=i出(3) 可以推广到一个闭合面。
3. 基尔霍夫电压定律(1) 定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2) 表达式:1或: 2或: 3(3) 基尔霍夫电压定律可以推广到一个非闭合回路三. 电位的概念(1) 定义:某点的电位等于该点到电路参考点的电压。
(2) 规定参考点的电位为零。
称为接地。
(3) 电压用符号U表示,电位用符号V表示(4) 两点间的电压等于两点的电位的差 。
(5) 注意电源的简化画法。
四. 理想电压源与理想电流源1. 理想电压源(1) 不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2) 理想电压源不允许短路。
2. 理想电流源(1) 不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
第1章(1.1-1.2)__电路的基本概念及基尔霍夫定律
![第1章(1.1-1.2)__电路的基本概念及基尔霍夫定律](https://img.taocdn.com/s3/m/f2086deb81c758f5f61f67db.png)
掌握要点
1.基本概念:电路模型 、元件及其参数、 参考方向、 参考点
2.基本电量计算:电流 、电压、 电位、 电功率、 电能 (定义 、单位)
3.基本定律
KCL (Kirchhoff’s Current Law) KVL (Kirchhoff’s Voltage Law)
u = R i R为电阻参数 Ψ = L i L为电感参数 q = C u C为电容参数
元件参数表征了元件的物理特性。
为叙述方便,“电阻”可表示“电阻器”
、“电阻元件” 及“电阻参数”件的分类
(1) 集总参数 & 分布参数元件 元件参数与其几何尺寸无关者为集中 (集总) 参数元件,否则为分布参数元件。 集中化(集总化)判据(条件): d << λ d---实际电路的最大尺寸; λ---电磁信号(i, u)波长。 ∵电磁信号的波速接近于光速c,用c除上式之两边得 集总化条件: τ<< T 即电磁信号从实际电路的一端传播到另一端所需时间τ 远远小于电磁信号的周期T 。 说明电磁信号大小来不及变化时,电磁信号瞬间就传 至电路各处或各个元件。 ( λ:行波在一周期时间T内所走的距离)
cost[i1(t )] cost[i2 (t )] f [i1(t )] f [i2 (t )] f [ i ( t )] cos t [ i ( t )] 证齐次性: [cos t i (t )] f [i (t )]
eg3: 验证特性方程为u(t)=(5+cost)i(t) 的时变电阻元件为线性时变电阻元件。
d ―远小于”λ的标准是十分之一。
集中参数元件视为不具备实际的尺寸。
可视其为集总在空间的一点,从二端元件的 一端流入的电流在任何时刻都等于从另一端 流出的电流;而且两端的电压具有确定的量 值。 其能量的消耗和存贮都集总在一定的小范围 内。 例如导线长度d <<λ时,可将沿导线分布的 电阻、电感用一个集总的等效电阻和一个集 总的等效电感代之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1-14 实际电容器
1.4.3电感元件 indபைடு நூலகம்ctance element
线性电感-电路研究的模型
1 、线性定常电感元件符号与参数
iL
变量: 电流 i , 磁链
+
u
–
L 称为自感系数
def
L i
L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
L tg
i
0
i
3 、 电压、电流关系:
或
dt dt
+
u –
+ C
–
u(t)
1 C
t
idξ
1 C
t0idξ
1 C
t
t0
idξ
u(t
)0
1 C
tt0idξ
记忆
q(t)q(t )0 tt0idξ
特性
6、电容元件的功率和能量
在电压、电流关联参考方向下,电容元件吸收的功率为
p ui uC du Cu du
dt
dt
从 t- -到 t 时间内,电容元件吸收的电能为
+ C
C
def
q
u
C 称为电容器的电容
–
– 电容 C 的单位:F (法) (Farad,法拉)
F= C/V = A•s/V = s/
常用F,nF,pF等表示。
4、库伏特性:线性电容的q~u 特性是过原点的直线
q
Ou
C q tg u
5、电压、电流关系: u, i 取关联参考方向
动态 特性
i
i dq C du
4、电容效应——与万有引力相似,任意两个物体之间均有电容特性, 常见如晶体管中三极管管脚之间的电容。
5、实际电容——电容器:集额定功率、尺寸要求、耐压值、耐流值等多 种指标的设备。
++ ++ ++ ++ +q
电容器结构
两个极板 –--– –--– –q
+介质
实际电容器制作的材料和结 构不尽相同,通常有云母电容 器、陶瓷电容器、钽质电容器、 聚碳酸酯电容器等等。
能量:可用功表示。从 t0 到t电阻消耗的能量:
WR
t
pd
t0
t
uid
t0
t Ri 2d
t0
这表明正电阻总是吸收(消耗)功率的,称为无源元件。
PK“有源元件”
是指元件可向外部电路提供大于零、且无限长时间的平 均功率的一类元件。
5.电路模型中电阻 线性时不变
本书研究的对象哦!
二端子(纽) 欧姆定律约束
电路元件-element 1.4 电路的基本元件及方程
电路的基本元素是元件,电路元件是实际器件的理 想化物理模型,应有严格的定义。
电路分析中研究的全部为集总元件。
电路元件的端子数目可分为二端、三端、四端元件等。
本章先研究最基本的几个元件: 电阻(元件) 电容(元件) 电感(元件) 电源(元件)
1.4.1 电阻元件 resistance element
动态 记忆
u,i为非关联方向时,i= –Cdu/dt 。
(5)C 既表示元件,也表示参数
例1-2 图 (a)所示电容元件,已知电流的波形如图(b)所示,设 C=5μF ,电容电压的初始值u(0) = 0,试求电容两端的电压u。
C i
+u -
(a)
i/mA
1
t/s
0
2
(b)
u/V 400
t/s
0
2
(c)
R 既表示元件,也表示参数
其他电阻--全面认识电阻元件
1、电磁特性实质:是一种将电能不可逆地转化为其它形式能量(如 热能、机械能、光能等)的元件。 2、分类1:线性时变、线性时不变;非线性时变、非线性时不变。 3、分类2:二端子、三端子、多端子。 4、电阻效应——与万有引力相似,任意两个物体之间均有电阻特性, 常见的如电子管的热效应、人体的电阻等。 5、实际电阻——电阻器:集额定功率、尺寸要求、耐压值、耐流值等多 种指标的设备。
21103 d 400 V
0
2st
电容电压的波形如图(c)所示。
其他电容-全面认识电容元件
1、电磁特性实质:电容是储存电场能量或储存电荷能力的度量。 电容元件是用来模拟一类能够储存电场能量的理想元件模型。
2、分类1:线性时变、线性时不变;非线性时变、非线性时不变。
3、分类2:二端子、三端子、多端子。
i +– ue –+
i +
动态
记忆
i , 右螺旋 由电磁感应定律与楞次定律
WC
t Cu du dξ 1 Cu2 (ξ) t 1 Cu2 (t) 1 Cu2 ()
dξ
2
2
2
若u ()0
1
Cu2
(t)
1
q2 (t) 0
2
2C
则电容在任何时刻 t 所储存的电场能量WC 将等于 其所吸收的能量。
从t0到 t 电容储能的变化量:
WC
1 2
Cu2
(t)
1 2
Cu2
(t0
实际电阻器
1.4.2.电容元件 capacitor element
线性电容-电路研究的模型
1、电容 线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电流 u 成正比。
2、电路符号
C i
+ uC -
或+
i
uC
C
-
3. 元件特性
与电容有关两个变量: C, q
i
对于线性电容,有: q =Cu
+ u
伏安特性曲线:
u
R tg
电阻元件的伏安特性为 一条过原点的直线
O
i
3. 开路与短路
+
对于一电阻R
i
当R=0,视其为短路。
u R
–
4.电阻的功率和能量
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
由电功率的定义及欧姆定律可知,电阻吸收的功率和能量
p ui Ri 2 Gu2
)
1 2C
q2(t)
1 2C
q2 (t0 )
由此可以看出,电容是无源元件,它本身不消耗能量。
7 、小结:
(1) i的大小与 u 的变化率成正比,与 u 的大小无关; (2) 电容在直流电路中相当于开路,有隔直作用;
(3) 电容元件是一种记忆元件;
(4) 当 u,i为关联方向时,i= Cdu/dt;
解 由 图 ( b) 可 知 电 流 分段表示为
1 mA 0 t 2 s i 0 t 其它
又因为,u(0) 0
根据记忆特性公式可得 电容两端的电压为
u 0 t 0,
u u(0) 1
t
i d
C0
106 t1103 d 200 t V 0 t 2 s,
50
u
1 5 10 6
线性电阻-电路研究的模型
R 1. 符号
2. 欧姆定律 (Ohm’s Law)
(1) 电压与电流的参考方向设定为一致的方向
i
R
+u
u R i R 称为电阻, 电阻的单位: (欧) (Ohm,欧姆)
令 G 1/R G称为电导 电导的单位: S (西) (Siemens,西门子)
则 欧姆定律表示为 i G u . 线性电阻R是一个与电压和电流无关的常数。