随时间变化的钢筋混凝土阻力分析外文翻译
土木工程毕业设计外文翻译原文+翻译
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
外文翻译(英文)试验研究钢筋混凝土柱改造方法
EXPERIMENTAL RESEARCH OF REINFORCED CONCRETE COLUMNRETROFIT METHODSIntroductionAs the infrastructure of our country continues to age, the need for effective retrofittreatments has increased. Many building and bridge structural components no longerprovide capacity sufficient to meet the required code standards. Seismic upgrading andreinforcement protection are two of the major issues requiring retrofits. Additionally,many aging structural members no longer provide the load capacity of the original designbecause of concrete cracking, steel corrosion, or other damage. In this research, severalretrofit methods for increasing the axial load capacity of reinforced concrete columnswere tested and analyzed。
Several currently applied methods for retrofitting columns include concrete jacketing,steel jacketing, and fiber reinforced polymer (FRP) jacketing. All three methods havebeen shown to effectively in increase the axial load capacity of columns。
土木工程专业钢筋混凝土结构设计毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土结构设计文献、资料英文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)外文参考资料及译文译文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES原文:DESIGN OF REINFORCED CONCRETESTRUCTURES1. BASIC CONCERPTS AND CHARACERACTERISTICS OF REINFORCED CONCRETEPlain concrete is formed from hardened mixture of cement, water , fine aggregate , coarse aggregate (crushed stone or gravel ) , air and often other admixtures . The plastic mix is placed and consolidated in the formwork, then cured to accelerate of the chemical hydration of hen cement mix and results in a hardened concrete. It is generally known that concrete has high compressive strength and low resistance to tension. Its tensile strength is approximatelyone-tenth of its compressive strength. Consequently, tensile reinforcement in the tension zone has to be provided to supplement the tensile strength of the reinforced concrete section.For example, a plain concrete beam under a uniformly distributed load q is shown in Fig .1.1(a), when the distributed load increases and reaches a value q=1.37KN/m , the tensile region at the mid-span will be cracked and the beam will fail suddenly . A reinforced concrete beam if the same size but has to steel reinforcing bars (2φ16) embedded at the bottom under a uniformly distributed load q is shown in Fig.1.1(b). The reinforcing bars take up the tension there after the concrete is cracked. When the load q is increased, the width of the cracks, the deflection and thestress of steel bars will increase . When the steel approaches the yielding stress ƒy , thedeflection and the cracked width are so large offering some warning that the compression zone . The failure load q=9.31KN/m, is approximately 6.8 times that for the plain concrete beam.Concrete and reinforcement can work together because there is a sufficiently strong bond between the two materials, there are no relative movements of the bars and the surrounding concrete cracking. The thermal expansion coefficients of the two materials are 1.2×10-5K-1 for steel and 1.0×10-5~1.5×10-5K-1 for concrete .Generally speaking, reinforced structure possess following features :Durability .With the reinforcing steel protected by the concrete , reinforced concreteFig.1.1Plain concrete beam and reinforced concrete beamIs perhaps one of the most durable materials for construction .It does not rot rust , and is not vulnerable to efflorescence .(2)Fire resistance .Both concrete an steel are not inflammable materials .They would not be affected by fire below the temperature of 200℃when there is a moderate amount of concrete cover giving sufficient thermal insulation to the embedded reinforcement bars.(3)High stiffness .Most reinforced concrete structures have comparatively large cross sections .As concrete has high modulus of elasticity, reinforced concrete structures are usuallystiffer than structures of other materials, thus they are less prone to large deformations, This property also makes the reinforced concrete less adaptable to situations requiring certainflexibility, such as high-rise buildings under seismic load, and particular provisions have to be made if reinforced concrete is used.(b)Reinfoced concrete beam(4)Locally available resources. It is always possible to make use of the local resources of labour and materials such as fine and coarse aggregates. Only cement and reinforcement need to be brought in from outside provinces.(5)Cost effective. Comparing with steel structures, reinforced concrete structures are cheaper.(6)Large dead mass, The density of reinforced concrete may reach2400~2500kg/pare with structures of other materials, reinforced concrete structures generally have a heavy dead mass. However, this may be not always disadvantageous, particularly for those structures which rely on heavy dead weight to maintain stability, such as gravity dam and other retaining structure. The development and use of light weight aggregate have to a certain extent make concrete structure lighter.(7)Long curing period.. It normally takes a curing period of 28 day under specified conditions for concrete to acquire its full nominal strength. This makes the progress of reinforced concrete structure construction subject to seasonal climate. The development of factory prefabricated members and investment in metal formwork also reduce the consumption of timber formwork materials.(8)Easily cracked. Concrete is weak in tension and is easily cracked in the tension zone. Reinforcing bars are provided not to prevent the concrete from cracking but to take up the tensile force. So most of the reinforced concrete structure in service is behaving in a cracked state. This is an inherent is subjected to a compressive force before working load is applied. Thus the compressed concrete can take up some tension from the load.2. HISTOEICAL DEVELPPMENT OF CONCRETE STRUCTUREAlthough concrete and its cementitious(volcanic) constituents, such as pozzolanic ash, have been used since the days of Greek, the Romans, and possibly earlier ancient civilization, the use of reinforced concrete for construction purpose is a relatively recent event, In 1801, F. Concrete published his statement of principles of construction, recognizing the weakness if concrete in tension, The beginning of reinforced concrete is generally attributed to Frenchman J. L. Lambot, who in 1850 constructed, for the first time, a small boat with concrete for exhibition in the 1855 World’s Fair in Paris. In England, W. B. Wilkinson registered a patent for reinforced concrete l=floor slab in 1854.J.Monier, a French gardener used metal frames as reinforcement to make garden plant containers in 1867. Before 1870, Monier had taken a series of patents to make reinforcedconcrete pipes, slabs, and arches. But Monier had no knowledge of the working principle of this new material, he placed the reinforcement at the mid-depth of his wares. Then little construction was done in reinforced concrete. It is until 1887, when the German engineers Wayss and Bauschinger proposed to place the reinforcement in the tension zone, the use of reinforced concrete as a material of construction began to spread rapidly. In1906, C. A. P. Turner developed the first flat slab without beams.Before the early twenties of 20th century, reinforced concrete went through the initial stage of its development, Considerable progress occurred in the field such that by 1910 the German Committee for Reinforced Concrete, the Austrian Concrete Committee, the American Concrete Institute, and the British Concrete Institute were established. Various structural elements, such as beams, slabs, columns, frames, arches, footings, etc. were developed using this material. However, the strength of concrete and that of reinforcing bars were still very low. The common strength of concrete at the beginning of 20th century was about 15MPa in compression, and the tensile strength of steel bars was about 200MPa. The elements were designed along the allowable stresses which was an extension of the principles in strength of materials.By the late twenties, reinforced concrete entered a new stage of development. Many buildings, bridges, liquid containers, thin shells and prefabricated members of reinforced concrete were concrete were constructed by 1920. The era of linear and circular prestressing began.. Reinforced concrete, because of its low cost and easy availability, has become the staple material of construction all over the world. Up to now, the quality of concrete has been greatly improved and the range of its utility has been expanded. The design approach has also been innovative to giving the new role for reinforced concrete is to play in the world of construction.The concrete commonly used today has a compressive strength of 20~40MPa. For concrete used in pre-stressed concrete the compressive strength may be as high as 60~80MPa. The reinforcing bars commonly used today has a tensile strength of 400MPa, and the ultimate tensile strength of prestressing wire may reach 1570~1860Pa. The development of high strength concrete makes it possible for reinforced concrete to be used in high-rise buildings, off-shore structures, pressure vessels, etc. In order to reduce the dead weight of concrete structures, various kinds of light concrete have been developed with a density of 1400~1800kg/m3. With a compressive strength of 50MPa, light weight concrete may be used in load bearing structures. One of the best examples is the gymnasium of the University of Illinois which has a span of 122m and is constructed of concrete with a density of 1700kg/m3. Another example is the two 20-story apartment houses at the Xi-Bian-Men in Beijing. The walls of these two buildings are light weight concrete with a density of 1800kg/m3.The tallest reinforced concrete building in the world today is the 76-story Water Tower Building in Chicago with a height of 262m. The tallest reinforced concrete building in China today is the 63-story International Trade Center in GuangZhou with a height a height of 200m. The tallest reinforced concrete construction in the world is the 549m high International Television Tower in Toronto, Canada. He prestressed concrete T-section simply supported beam bridge over the Yellow River in Luoyang has 67 spans and the standard span length is 50m.In the design of reinforced concrete structures, limit state design concept has replaced the old allowable stresses principle. Reliability analysis based on the probability theory has very recently been introduced putting the limit state design on a sound theoretical foundation. Elastic-plastic analysis of continuous beams is established and is accepted in most of the design codes. Finite element analysis is extensively used in the design of reinforced concrete structures and non-linear behavior of concrete is taken into consideration. Recent earthquake disasters prompted the research in the seismic resistant reinforced of concrete structures. Significant results have been accumulated.3. SPECIAL FEATURES OF THE COURSEReinforced concrete is a widely used material for construction. Hence, graduates of every civil engineering program must have, as a minimum requirement, a basic understanding of the fundamentals of reinforced concrete.The course of Reinforced Concrete Design requires the prerequisite of Engineering Mechanics, Strength of Materials, and some if not all, of Theory of Structures, In all these courses, with the exception of Strength of Materials to some extent, a structure is treated of in the abstract. For instance, in the theory of rigid frame analysis, all members have an abstract EI/l value, regardless of what the act value may be. But the theory of reinforced concrete is different, it deals with specific materials, concrete and steel. The values of most parameters must be determined by experiments and can no more be regarded as some abstract. Additionally, due to the low tensile strength of concrete, the reinforced concrete members usually work with cracks, some of the parameters such as the elastic modulus I of concrete and the inertia I of section are variable with the loads.The theory of reinforced concrete is relatively young. Although great progress has been made, the theory is still empirical in nature in stead of rational. Many formulas can not be derived from a few propositions, and may cause some difficulties for students. Besides, due to the difference in practice in different countries, most countries base their design methods on their own experience and experimental results. Consequently, what one learns in one country may be different in another country. Besides, the theory is still in a stage of rapid。
土木工程专业Reinforced-Concrete钢筋混凝土大学毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土文献、资料英文题目:Reinforced Concrete文献、资料来源: __________________________ 文献、资料发表(出版)日期: _____________________ 院(部):专业:_________________________________________ 班级:_________________________________________ 姓名:_________________________________________ 学号:_________________________________________ 指导教师:翻译日期:2017.02.14外文文献翻译Reinforced ConcreteCon crete and rein forced con crete are used as build ing materials in every coun try. In many, in clud ing the Un ited States and Can ada, rein forced con crete is a dominant structural material in engin eered con structi on.The uni versal n ature of rein forced con crete con structi on stems from the wide availability of rei nforci ng bars and the con stitue nts of con crete, gravel, sand, and cement, the relatively simple skills required in con crete con structi on, and the economy of rein forced con crete compared to other forms of con structi on. Con crete and rein forced con crete are used in bridges, build ings of all sorts un dergro und structures, water tan ks, televisi on towers, offshore oil explorati on and product ion structures, dams, and eve n in ships.Rein forced con crete structures may be cast-i n-place con crete, con structed in their fin al locatio n, or they may be precast con crete produced in a factory and erected at the con structi on site. Con crete structures maybe severe and functional in design, or the shape and layout and be whimsical and artistic. Few other buildi ng materials off the architect and engin eer such versatility and scope.Con crete is stro ng in compressi on but weak in tension. As a result, cracks develop whe never loads, or restrai ned shri nkage of temperature changes, give rise to tensile stresses in excess of the tensile strengthof the con crete. In a pla in con crete beam, the mome nts about the n eutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beamfails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the con crete in such a way that the tension forces n eeded for mome nt equilibrium after the con crete cracks can be developed in the bars.The con structi on of a rein forced con crete member invo Ives build ing a from of mold in the shape of the member being built. The form must be strong eno ugh to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies,wind, and so on. The reinforcement is placed in this form and held in place duri ng the con cret ing operati on. After the con crete has harde ned, the forms are removed. As the forms are removed, props of shores are in stalled to support the weight of the con crete un til it has reached sufficie nt stre ngth to support the loadsby itself.The designer must proportion a concrete memberfor adequate strengthto resist the loads and adequate stiffness to prevent excessive deflecti ons. In beam must be proporti oned sothat it can be con structed.For example, the reinforcement must be detailed so that it can beassembled in the field, and since the con crete is placed in the form after the rei nforceme nt is inplace, the con crete must be ableto flow around,between, andpast the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masonry, or timber depends on the availability of materials and on a number of value decisions.The choice of structural system is made by thearchitect of engineer early in the design, based on the followingcon siderati ons:1. Economy. Freque ntly, the foremost con sideratio n is the overall const of the structure. This is, of course, a fun cti on of the costs ofthe materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall con structi on time since the con tractor and owner must borrow or otherwise allocate money to carry out the con struct ion and will not receive a retur n on this investment until the building is ready for occupancy. In a typical large apartme nt of commercial project, the cost of con struct ion financing willbe a significant fraction of the total cost. As a result, financial savings due to rapid con structi on may more tha n offset in creased material costs. For this reas on, any measures the desig ner can take to sta ndardize the desig n and forming will gen erally pay off in reduced overall costs.In many cases the Ion g-term economy of the structure may be more importa nt tha n the first cost. As a result, maintenance and durability are importa nt con siderati on.2. Suitability of material for architectural and structural function.A rein forced con crete system freque ntly allows the desig ner to comb ine the architectural and structural functions. Con crete has the adva ntage that it is placed in a plastic con diti on and is give n the desired shapeand texture by meansof the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearingelements while providing the finished floor and / or ceiling surfaces. Similarly, rein forced con crete walls can providearchitecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Fin ally, the choice of size of shape is governed by the designer and not by the availability of standard manu factured members.3. Fire resista nee. The structure in a buildi ng must withsta nd theeffects of a fire and rema in sta nding while the build ing is evacuated and the fire is exti nguished. A con crete buildi ng in here ntly has a 1- to 3-hour fire rat ing without special fireproofi ng or other details. Structural steel or timber build ings must be fireproofed to atta in similar fire ratin gs.4. Low maintenan ce. Con crete members in here ntly require less maintenance than do structural steel or timber members. This is particularly true if den se, air-e ntrained con crete has bee n used forsurfaces exposed to the atmosphere, and if care has bee n take n in the desig n to provide adequate drain age off and away from the structure. Special precauti ons must be take n for con crete exposed to salts such as deici ng chemicals.5. Availability of materials. Sand, gravel, ceme nt, and con cretemixi ng facilities are very widely available, and rein forci ng steel canbe tran sported to most job sites more easily tha n can structural steel. As a result, re in forced con crete is freque ntly used in remote areas.On the other hand, there are a nu mber of factors that may cause one to selecta material other tha n rein forced con crete. These in clude:1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to crack ing. In structural uses this is overcome by using rei nforceme nt to carry ten sile forces and limit crack widths to with in acceptable values. Un less care is take n in desig n and con struct ion, however, these cracks maybe unsightly or mayallow penetration of water. Wherthis occurs, water or chemicals such as road deicing salts may cause deterioration or stai ning of the con crete. Special desig n details are required in such cases. In the case of water-retai ning structures, special details and /of prestress ing are required to preve nt leakage.2. Forms and shori ng. The con structi on of a cast-i n-place structureinvo Ives three steps not encoun tered in the con struct ion of steel or timberstructures. These are ( a ) the con struct ion of the forms, ( b ) the removal of these forms, and (c) propp ing or shori ng the new con crete to support its weight until itsstrength is adequate. Each of these steps invoIves labor and / or materials, which are not necessary with other forms of con structi on.3. Relatively low strength per unit of weight for volume. Thecompressive strength of concrete is roughly 5 to 10%that of steel, while its unit den sity is roughly 30% that of steel. As a result, a con cretestructure requires a larger volume and a greater weight of material than does acomparable steel structure. As a result, Iong-span structures are ofte n built from steel.4. Time-depe ndent volume cha nges. Both con crete and steelundergo-approximately the same amount of thermal expansionandcon tracti on. Because there is less mass of steel to be heated or cooled, andbecause steel is a better con crete, a steel structure is gen erallyaffected by temperature cha nges to a greater exte nt tha n is a con crete structure.On the other hand, con crete un dergoes fryi ng shri nkage, which, if restrained, may cause deflections or cracking. Furthermore, deflecti ons will tend to in crease with time, possibly doubli ng, due to creep of the con crete un der susta ined loads.In almost every branch of civil extensiveuse is made of reinforced foundations.Engineers and architects reinforced con crete desig n throughout theirprofessi onal careers. Muchof this text is directly concerned with the behavior and proporti oningof components that makeup typical reinforced concrete structures-beams, colu mns, and slabs. Once the behavior of these in dividual eleme nts is un derstood, the desig ner will have the backgro und to an alyze and desig n a wide range of complex structures, such as foun datio ns, buildi ngs, and bridges, composed of these eleme nts.Si nee rei nforced concrete is a no homogeneous material that creeps, shri nks,and cracks, its stresses cannot be accurately predicted by the traditi onal equati ons derived in a course in stre ngth of materials forhomoge neous elastic materials. Much of rein forced con crete desig n in thereforeempirical, i.e., design equations and design methods are based on experime ntal and engineering and architecture con crete for structures and requires basic knowledge oftime-proved results in stead of being derived exclusively from theoretical formulati ons.A thorough un dersta nding of the behavior of rein forced con crete will allow the desig ner to con vert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete ' s desirable characteristics, its high compressive stre ngth, its fire resista nee, and its durability.Concrete, a stone like material, is madeby mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives (that modify properties ) into a workable mixture. In its un harde ned or plastic state, concrete can be placed in forms to produce a large variety of structural eleme nts. Although the harde ned con crete by itself, i.e., without any rein forceme nt, is stro ng in compressi on, it lacks ten sile stre ngth and therefore cracks easily. Because unrein forced con crete is brittle, it cannot undergo large deformations under load and fails sudde nly-without warni ng. The additi on fo steel rein forceme nt to the con crete reduces the n egative effects of its two prin cipal in here nt weaknesses, its susceptibility to cracking and its brittleness. Whenthe rein forceme nt is stro ngly bon ded to the con crete, a strong, stiff, and ductile con struct ion material is produced. This material, calledrei nforced con crete, is used exte nsively to con struct foun dati ons,structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Twoother characteristics of concrete that are present even when concrete is rein forced are shri nkage and creep, but the n egative effects of these properties can be mitigated by careful desig n.A code is a set tech ni cal specificati ons and sta ndards that con trol importa nt details of desig n and con struct ion. The purpose of codes it produce structures so that the public will be protected from poor of in adequate and con struct ion.Two types f coeds exist. One type, called a structural code, is orig in ated and con trolled by specialists whoare concerned with the proper use of a specific material or who are invo Ived with the safe desig n of a particular class of structures.The sec ond type of code, called a build ing code, is established to cover con struct ion in a give n region, ofte n a city or a state. The objective of a build ing code is also to protect the public by acco un ti ng for the in flue nee of the local en vir onmen tal con diti ons on con structi on. For example, local authorities may specifyadditional provisions toaccount for such regional conditions as earthquake, heavy snow, ortorn ados. Nati onal structural codes gen rally are in corporated into local build ing codes.The America n Con crete In stitute ( ACI ) Buildi ng Code coveri ng the desig n of rein forced con crete build in gs. It contains provisi ons coveri ngall aspects of re in forced con crete manu facture, desig n, and con structi on. It includes specifications on quality of materials, details on mixing andplacing concrete, design assumptions for the analysis of continuous structures, and equati ons for proporti oning members for desig n forces.All structures must be proporti oned so they will not fail or deform excessively un der any possible con diti on of service. Therefore it is important that an engineer use great care in anticipating all the probable loads to which a structure will be subjected duri ng its lifetime.Although the desig n of most members is con trolled typically by dead and live load acting simultaneously, consideration must also be given tothe forces produced by wind, impact, shrinkage, temperature change, creep and support settleme nts, earthquake, and so forth.The load associated with the weight of the structure itself and its perma nent comp onents is called the dead load. The dead load of con crete members, which is substantial, should never be neglected in design computations. The exact magnitude of the dead load is not known accurately un til members have bee n sized. Since some figure for the dead load must be used in computations to size the members, its magnitude must be estimated at first. After a structure has been analyzed, the memberssized, and architectural details completed, the dead load can be computed more accurately. If the computed dead load is approximately equal to the initial estimate of its value ( or slightly less ), the design is complete,but if a significant differenee exists between the computed and estimated values of dead weight, the computations should be revised using an improved value of dead load. An accurate estimate of dead load is particularly importa nt whe n spa ns are long, say over 75 ft ( 22.9 m ),because dead load con stitutes a major porti on of the desig n load.Live loads associated with building use are specific items of equipme nt and occupa nts in a certa in area of a build ing, buildi ng codes specify values of un iform live for which members are to be desig ned.After the structure has bee n sized for vertical load, it is checkedfor wi nd in comb in ati on with dead and live load as specified in the code. Windloads do not usually con trol the size of members in buildi ng lessthan 16 to 18 stories, but for tall buildings wind loads becomesignificant and cause large forces to develop in the structures. Under these conditions economycan be achieved only by selecting a structural system that is able to tran sfer horiz on tal loads into the ground efficie ntly.钢筋混凝土在每一个国家,混凝土及钢筋混凝土都被用来作为建筑材料。
土木工程混凝土论文中英文资料外文翻译文献
土木工程混凝土论文中英文资料外文翻译文献外文资料STUDIES ON IMPACT STRENGTH OF CONCRETESUBJECTED TO SUSTAINEDELEVATED TEMPERATUREConcrete has a remarkable fire resisting properties. Damage in concrete due to fire depends on a great extent on the intensity and duration of fire. Spalling cracking during heating are common concrete behaviour observed in the investigation of the fire affected structures. Plenty of literature is available on the studies of concrete based on time temperature cures. In power, oil sectorsand nuclear reactors concrete is exposed to high temperature for considerable period of time. These effects can be reckoned as exposure to sustained elevated temperature. The sustained elevated temperature may be varying from a few hours to a number of years depending upon practical condition of exposures. The knowledge on properties under such conditions is also of prime importance apart from the structures subjected to high intensity fire. Impact studies of structure subjected to sustained elevated temperature becomes more important as it involves sensitive structures which is more prone to attacks and accidents. In this paper impact studies on concrete subjected to sustained elevated temperature has been discussed. Experiments have been conducted on 180 specimens along with 180 companion cube specimens. The temperatures of 100°C, 200°C and 300°C for a duration of exposure of 2 hours 4 hours and 6 hours has been considered in the experiments. The results are logically analyzed and concluded.1. INTRODUCTIONThe remarkable property of concrete to resist the fire reduces the damage in a concrete structure whenever there is an accidental fire. In most of the cases the concrete remains intact with minor damages only. The reason being low thermal conductivity of concrete at higher temperatures and hence limiting the depth of penetration of firedamage. But when the concrete is subjected to high temperature for long duration the deterioration of concrete takes place. Hence it is essential to understand the strength and deformation characteristics of concrete subjected to temperature for long duration. In this paper an attempt has been made to study the variation in Impact Strength of concrete when subjected to a temperature range 100oC, 200oC and 300oC sustained for a period of 2 hrs, 4 hrs and 6 hrs.The review of the literature shows that a lot of research work [1 – 3] has taken place on the effect of elevated temperature on concrete. All these studies are based on time –temperature curves. Hence an attempt has been made to study the effect of sustained elevated temperature on impact strength of concrete and the results are compared with the compressive strength. The experimental programme has been planned for unstressed residual strength test based on the available facilities. Residual strength is the strength of heated and subsequently cooled concrete specimens expressed as percentage of the strength of unheated specimens.2. EXPERIMENTAL INVESTIGATION2.1. TEST SPECIMEN AND MATERIALSA total of 180 specimens were tested in the present study along with 180 companion cubes. An electric oven capable of reaching a maximum temperature of 300oC has been used for investigation. Fine and coarse aggregates conforming to IS383 has been used to prepare the specimen with mix proportions M1 = 1:2.1:3.95 w/c = 0.58, M2 = 1:1.15:3.56 w/c = 0.53, M3 = 1:0.8:2.4 w/c = 0.4.2.2 TEST VARIABLESThe effects of the following variables were studied.2.2.1 Size sSize of Impact Strength Test Specimen was 150 mm dial and 64 mm thickness and size of companion cube 150 x 150 x 150 mm.2.2.2 Maximum TemperatureIn addition to room temperature, the effect of three different temperatures (100oC, 200oC and 300oC) on the compressive strength was investigated.2.2.3 Exposure Time at Maximum TemperatureThree different exposure times were used to investigate the influence of heat on compressive strength; they are 2 hrs, 4 hrs and 6 hrs.2.2.4 Cooling MethodSpecimens were cooled in air to room temperature.3. TEST PROCEDUREAll the specimens were cast in steel moulds as per IS516 and each layer was compacted. Specimens were then kept in their moulds for 24 hours after which they were decoupled and placed into a curing tank until 28 days. After which the specimens were removed and were allowed to dry in room temperature. These specimens were kept in the oven and the required target temperature was set. Depending on the number of specimen kept inside the oven the time taken to reach the steady state was found to vary. After the steady state was reached the specimens were subjected to predetermined steady duration at the end of which the specimens are cooled to room temperature and tested.ACI drop weight impact strength test was adopted. This is the simplest method for evaluating impact resistance of concrete. The size of the specimen is 150 mm dial and 64 mm thickness. The disc specimens were prepared using steel moulds cured and heated and cooled as. This consists of a standard manually operated 4.54 kg hammer with 457 mm drop. A 64 mm hardened steel ball and a flat base plate with positioning bracket and lugs. The specimen is placed between the four guides pieces (lugs) located 4.8 mm away from the sample. A frame (positioning bracket) is then built in order to target the steel ball at the centre of concrete disc. The disc is coated at the bottom with a thin layer of petroleum jelly or heavy grease to reduce the friction between the specimen and base plate. The bottom part of the hammer unit was placed with its base upon the steel ball and the load was applied by dropping weight repeatedly. The loading was continued until the disc failed and opened up such that it touched three of the four positioning lugs. The number of blows that caused this condition is recorded as the failure strength. The companion cubes were tested for cube compression strength (fake).4. ANALYSIS AND RESULTS4.1 RESIDUAL COMPRESSIVE STRENGTH VS. TEMPERATUREFrom Table 1, at 100°C sustained elevated temperature it is seen that the residual strength of air cooled specimens of mixes M1, M2 and M3 has increased in strength 114% for M1 mix, 109% for M2 mix and 111% for M3 mix for 6 hours duration of exposure. When the sustained elevated temperature is to 200°C for air cooled specimens there is a decrease in strength up to 910% approximately for M1 mix for a duration of 6 hours, but in case of M2 mix it is 82% and for M3 mix it is 63% maximum for 6 hours duration of exposure. When the concrete mixes M1, M2 and M3 are exposed to 300°C sustained temperature there is a reduction in strength up to 78% for M1 mix for 6 hour duration of exposure.4.2 RESIDUAL COMPRESSIVE STRENGTH VS DURATION OF EXPOSUREFrom Table 1, result shows that heating up to 100°C for 2 hours and 4 hours, the residual strength of mix M1 has decreased where as the residual strength of mix M2 and M3 has increased. The residual strength is further increased for 6 hours duration of exposure in all the three mixes M1, M2 and M3 even beyond the strength at room temperature. When the specimens of mixes M1, M2 and M3 are exposed to 200°C for 2,4 and 6 hours of duration, it is observed that the residual strength has decreased below the room temperature and has reached 92% for M1 mix, 82 and 73% for M2 and M3 mix respectively. Concrete cubes of mixes M1, M2 and M3 when subjected to 300°C temperature for 2,4 and 6 hours the residual strength for mix M1 reduces to 92% for 2 hours up to 78% for six hours duration of exposure, for M2 mix 90% for 2 hours duration of exposure up to 76% for six hour duration of exposure, for M3 mix 88% up to 68% between 2 and 6 hours of duration of exposure.5. IMPACT STRENGTH OF CONCRETE5.1 RESIDUAL IMPACT STRENGTH VS TEMPERATUREFrom the table 1, it can be observed that for the sustained elevated temperature of 100°C the residual impact strength of all the specimens reduces and vary between 20 and 50% for mix M1, 15 to 40% for mix M2 and M3. When the sustained elevated temperature is 200°C the residual impact strength of all the mixes further decreases. The reduction is around 60-70% for mix M1, 55 to 65% for M2 and M3 mix. When the sustained elevated temperature is 300°C it is observed that the residual impact strength reduces further and vary between 85 and 70% for mix M1 and 85 to 90% for mix M2 and mix M3.5.2 RESIDUAL IMPACT STRENGTH VS DURATION OF EXPOSUREFrom the Table 1 and Figures 1 to 3, it can be observed that there is a reduction in impact strength when the sustained elevated temperature is 100°C for 2 hrs, 4 hrs and 6 hrs, and its range is 15 to 50% for all the mixes M1, M2 and M3. The influence of duration of exposure is higher for mix M1 which decreases more rapidly as compared to mix M2 and mix M3 for the same duration of exposure. When the specimens are subjected to sustained elevated temperature of 200°C for 2,4 and 6 hour of duration, further reduction in residual impact strength is observed as compared to at 100°C. The reduction is in the range of 55-70% for all the mixes. The six hour duration of exposure has a greater influence on the residual impact strength of concrete. When the sustained elevated temperature is 300°C for 2,4 and 6 hours duration of exposure the residualimpact strength reduces. It can be seen that both temperature and duration of exposure have a very high influence on the residual impact strength of concrete which shows a reduction up to 90% approximately for all the mixes.6. CONCLUSIONThe compressive strength of concrete increases at 100oC when exposed to sustained elevated temperature. The compressive strength of concrete decreases when exposed to 200°C and 300°C from 10 to 30% for 6 hours of exposure. Residual impact strength reduces irrespective of temperature and duration. Residual impact strength decreases at a higher rate of 20% to 85% as compared to compressive strength between 15% and 30 % when subjected to sustained elevated temperature. The impact strength reduces at a higher rate as compared to compressive strength when subjected to sustained elevated temperature.混凝土受持续高温影响的强度的研究混凝土具有显着的耐火性能。
外文翻译---混凝土,钢筋混凝土和预应力混凝土
Concrete, Reinforced Concrete, andPrestressedConcreteConcrete is a stone like material obtained by permitting a carefully proportioned mixture of cement, sand and gravel or other aggregate, and water to harden in forms of the shape and dimensions of the desired structure. The bulk of the material consists of fine and coarse aggregate.Cement and water interact chemically to bind the aggregate particles into a solid mass. Additional water, over and above that needed for this chemical reaction, is necessary to give the mixture workability that enables it to fill the forms and surround the embedded reinforcing steel prior to hardening. Concretes with a wide range of properties can be obtained by appropriates adjustment of the proportions of the constituent materials.Special cements,special aggregates, and special curing methods permit an even wider variety of properties to be obtained.These properties depend to a very substantial degree on the proportions of the mix, on the thoroughness with which the various constituents are intermixed, and on the conditions of humidity and temperature in which the mix is maintained from the moment it is placed in the forms of humidity and hardened. The process of controlling conditions after placement is known as curing.To protect against the unintentional production of substandard concrete, a high degree of skillful control and supervision is necessary throughout the process,from the proportioning by weight of the individual components, trough mixing and placing, until the completion of curing.The factors that make concrete a universal building material are so pronounced that it has been used, in more primitive kinds and ways than at present, for thousands of years, starting with lime mortars from 12,000 to 600 B.C. in Crete, Cyprus, Greece, and the Middle East. The facility with which , while plastic, it can be deposited and made to fill forms or molds of almost any practical shape is one of these factors. Its high fire and weather resistance are evident advantages.Most of the constituent materials,with the exception of cement and additives,are usually available at low cost locally or at small distances from the construction site. Its compressive strength, like that of natural stones,is high,which makes it suitable for members primarily subject to compression, such as columns and arches. On the other hand, again as in natural stones,it is a relatively brittle material whose tensile strength is small compared with its compressive strength. This prevents its economical use in structural members that ate subject to tension either entirely or over part of their cross sections.To offset this limitation,it was found possible,in the second half of thenineteenth century,to use steel with its high tensile strength to reinforce concrete, chiefly in those places where its low tensile strength would limit the carrying capacity of the member. The reinforcement, usually round steel rods with appropriate surface deformations to provide interlocking, is places in the forms in advance of the concrete. When completely surrounded by the hardened concrete mass, it forms an integral part of the member.The resulting combination of two materials,known as reinforced concrete,combines many of the advantages of each:the relatively low cost,good weather and fire resistance, good compressive strength, and excellent formability of concrete and the high tensile strength and much greater ductility and toughness of steel.It is this combination that allows the almost unlimited range of uses and possibilities of reinforced concrete in the construction of buildings,bridges,dams, tanks, reservoirs, and a host of other structures.In more recent times, it has been found possible to produce steels, at relatively low cost, whose yield strength is 3 to 4 times and more that of ordinary reinforcing steels.Likewise,it is possible to produce concrete4to5times as strong in compression as the more ordinary concrete. These high-strength materials offer many advantages, including smaller member cross sections, reduced dead load, and longer spans. However, there are limits to the strengths of the constituent materials beyond which certain problems arise.To be sure,the strength of such a member would increase roughly in proportion to those of the materials. However, the high strains that result from the high stresses that would otherwise be permissible would lead to large deformations and consequently large deflections of such member under ordinary loading conditions.Equally important,the large strains in such high-strength reinforcing steel would induce large cracks in the surrounding low tensile strength concrete, cracks that would not only be unsightly but that could significantly reduce the durability of the structure.This limits the useful yield strength of high-strength reinforcing steel to 80 ksi according to many codes and specifications; 60 ksi steel is most commonly used.A special way has been found, however, to use steels and concrete of very high strength in combination. This type of construction is known as prestressed concrete. The steel,in the form of wires,strands,or bars, is embedded in the concrete under high tension that is held in equilibrium by compressive stresses in the concrete after hardening,Because of this precompression,the concrete in a flexural member will crack on the tension side at a much larger load than when not so precompressed. Prestressing greatly reduces both the deflections and the tensile cracks at ordinaryloads in such structures, and thereby enables these high-strength materials to be used effectively. Prestressed concrete has extended, to a very significant extent, the range of spans of structural concrete and the types of structures for which it is suited.混凝土,钢筋混凝土和预应力混凝土混凝土是一种经过水泥,沙子和砂砾或其他材料聚合得到经过细致配比的混合物,在液体变硬使材料石化后可以得到理想的形状和结构尺寸。
土木工程专业钢筋混凝土土方工程大学毕业论文英文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土土方工程文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.141 外文翻译1.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, andwalls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.1.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where thedistance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.1.3 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was desi gned for. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failureby fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) 。
毕业设计外文资料翻译——翻译译文
毕业设计外文资料翻译(二)外文出处:Jules Houde 《Sustainable development slowed down by bad construction practices and natural and technological disasters》2、外文资料翻译译文混凝土结构的耐久性即使是工程师认为的最耐久和最合理的混凝土材料,在一定的条件下,混凝土也会由于开裂、钢筋锈蚀、化学侵蚀等一系列不利因素的影响而易受伤害。
近年来报道了各种关于混凝土结构耐久性不合格的例子。
尤其令人震惊的是混凝土的结构过早恶化的迹象越来越多。
每年为了维护混凝土的耐久性,其成本不断增加。
根据最近在国内和国际中的调查揭示,这些成本在八十年代间翻了一番,并将会在九十年代变成三倍。
越来越多的混凝土结构耐久性不合格的案例使从事混凝土行业的商家措手不及。
混凝土结构不仅代表了社会的巨大投资,也代表了如果耐久性问题不及时解决可能遇到的成本,更代表着,混凝土作为主要建筑材料,其耐久性问题可能导致的全球不公平竞争以及行业信誉等等问题。
因此,国际混凝土行业受到了强烈要求制定和实施合理的措施以解决当前耐久性问题的双重的挑战,即:找到有效措施来解决现有结构剩余寿命过早恶化的威胁。
纳入新的结构知识、经验和新的研究结果,以便监测结构耐久性,从而确保未来混凝土结构所需的服务性能。
所有参与规划、设计和施工过程的人,应该具有获得对可能恶化的过程和决定性影响参数的最低理解的可能性。
这种基本知识能力是要在正确的时间做出正确的决定,以确保混凝土结构耐久性要求的前提。
加固保护混凝土中的钢筋受到碱性的钝化层(pH值大于12.5)保护而阻止了锈蚀。
这种钝化层阻碍钢溶解。
因此,即使所有其它条件都满足(主要是氧气和水分),钢筋受到锈蚀也都是不可能的。
混凝土的碳化作用或是氯离子的活动可以降低局部面积或更大面积的pH值。
当加固层的pH值低于9或是氯化物含量超过一个临界值时,钝化层和防腐保护层就会失效,钢筋受腐蚀是可能的。
建筑类外文文献及中文翻译
forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、 steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ , Ⅲ , Ⅳ grade reinforcing bar (including welding bad reinforcing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2 must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy.Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ , Ⅲ grade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil building and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ , Ⅲ grade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of the actual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土结构中钢筋连接综述改革开放以来,随着国民经济的快速、持久发展,各种钢筋混凝土建筑结构大量建造,钢筋连接技术得到很大的发展。
外文翻译---钢筋混凝土结构设计制约因素(部分)
外文资料翻译The constraintion of reinforced concrete structure design ( part)Part 1. Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptionsbased on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.Part 2 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method whichintroduces some simplifying assumptions.钢筋混凝土结构设计制约因素(部分)第一部分:钢筋混凝土混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。
土力学 英译汉
Soil mechanics is concerned with the use of the laws of mechanics and hydraulics in engineering problems related to soils . soil is natural aggregate of mineral grains , with or without organic constituents formed by the chemical and mechanical weathering of rock . it consists of three phases : solid mineral matter , water , and air or other gas . soil are extremely variable in composition , and it was this heterogeneity that long discouraged scientific studies of these deposits . gradually , the investigation of failures of retaining walls , foundations , embankments , pavements, and other structures resulted in a body of knowledge concerning the nature of soils and their behaviour sufficient to give rise to soil mechanics as a branch of engineering science .土力学是一门在工程上与土有关的科学,它使用了力学和水力学的定律。
土是含或不含有机质的矿物颗粒自然的堆积,是由岩石受到化学和力学机械风化而成。
土木工程外文文献翻译(含中英文)
Experimental research on seismic behavior of abnormal jointin reinforced concrete frameAbstract :Based on nine plane abnormal joint s , one space abnormal joint experiment and a p seudo dynamic test of a powerplant model , the work mechanism and the hysteretic characteristic of abnormal joint are put to analysis in this paper. A conception of minor core determined by the small beam and small column , and a conclusion that the shear capacity of ab2normal joint depends on minor core are put forward in this paper. This paper also analyzes the effect s of axial compres2 sion , horizontal stirrup s and section variation of beam and column on the shear behavior of abnormal joint . Finally , the formula of shear capacity for abnormal joint in reinforced concrete f rame is provided.Key words : abnormal j oint ; minor core ; seismic behavior ; shear ca paci t yCLC number :TU375. 4 ; TU317. 1 Document code :A Article ID :100627930 (2006) 022*******1 Int roductionFor reinforced concrete f rame st ructure , t he joint is a key component . It is subjected to axialcomp ression , bending moment and shear force. The key is whet her the joint has enough shear capaci2ty. The Chinese Code f or S eismic Desi gn of B ui l di ngs ( GB5001122001) adopt s the following formulato calculate t he shear capacity of the reinforced concrete f rame joint .V j = 1. 1ηj f t b j h j + 0. 05ηj Nb jb c+ f yv A svjh b0 - a′ss(1)Where V j = design value of t he seismic shear capacity of the joint core section ;ηj = influential coefficient of t he orthogonal beam to the column ;f t = design value of concrete tensile st rength ;b j = effective widt h of the joint core section ;h j = dept h of the joint core section , Which can be adopted as t he depth of the column section int he verification direction ;N = design value of axial compression at t he bot tom of upper column wit h considering the combi2 nation of the eart hquake action , When N > 015 f c b c h c , let N = 0. 5 f c b c h c ;b c = widt h of t he column section ;f yv = design value of t he stirrup tensile st rengt h ;A svj = total stirrup area in a set making up one layer ;h b0 = effective dept h of t he beam.If t he dept h of two beams at the side of t he joint is unequal , h b0 = t he average depth of two beams.a′s = distance f rom the cent roid of the compression beam steel bar to the ext reme concrete fiber . s = distance of t he stirrup .Eq. 1 is based on t he formula in t he previous seismiccode[1 ] and some modifications made eavlicr and it is suit2able to the normal joint of reinforced concrete f rame , butnot to t he abnormal one which has large different in t hesection of t he upper column and lower one (3 600 mm and1 200 mm) , lef t beam and right beam (1 800 mm and 1200 mm) . The shear capacity of abnormal joint s calculat2ed by Eq. 1 may cause some unsafe result s. A type of ab2normal joint which of ten exist s in t he power plant st ruc2t ure is discussed ( see Fig. 1) , and it s behavior was st ud2ied based on t he experiment in t his paper2 Experimental workAccording to the above problem , and t he experiment of plane abnormal joint s and space abnormal joint , a p seudo dynamic test of space model of power plant st ruct ure was carried out . The aim of t hisst udy is to set up a shear force formula and to discuss seismic behavior s of t he joint s.According to the characteristic of t he power plant st ruct ure , nine abnormal joint s and one space abnormal joint were designed in t he experiment . The scale of the model s is one2fif t h. Tab. 1 and Tab.2 show t he dimensions and reinforcement detail s of t he specimens.Fig. 2 shows the typical const ruction drawing of t he specimen. Fig. 3 shows the loading set up . These specimens are subjected to low2cyclic loading , the loading process of which is cont rolled by force and displacement , t he preceding yield loading by force and subsequent yield by t he displacement .The shear deformation of the joint core , t he st rain of the longit udinal steel and t he stirrup are main measuring items.3 Analysis of test result s3. 1 Main resultsTab. 3 shows t he main result s of t he experiment .3. 2 Failure process of specimenBased on t he experiment , t he process of t he specimens’failure includes four stages , namely , t he initial cracking , t he t horough cracking , the ultimate stage and t he failure stage.(1) Initial cracking stageWhen t he first diagonal crack appears along t he diagonal direction in t he core af ter loading , it s widt h is about 0. 1mm , which is named initial cracking stage of joint core. Before t he initial cracking stage , t he joint remains elastic performance , and the variety of stiff ness is not very obvious on t hep2Δcurve. At t his stage concrete bear s most of the core shear force while stirrup bears few. At t he timewhen t he initial crack occur s , t he st ress of t he stirrup at t he crack increase sharply and t he st rain is a2bout 200 ×10 - 6 —300 ×10 - 6 . The shear deformation of t he core at t his stage is very small (less than 1×10 - 3 radian ,generally between 0. 4 ×10 - 3 and 0. 8 ×10 - 3 radian) .(2) Thorough cracking stageWit h the load increasing following t he initial cracking stage , the second and t hird crossing diago2 nal cracks will appear at t he core. The core is cut into some small rhombus pieces which will become at least one main inclined crack across t he core diagonal . The widt h of cracks enlarges obviously , andt he wider ones are generally about 0. 5mm , which is named core t horough cracking stage. The st ress of stirrup increases obviously , and the stirrup in t he middle of t he core is near to yielding or has yiel2 ded. The joint core shows nonlinear property on t he p2Δcurve , and it enter s elastic2plastic stage. Theload at t horough cracking stage is about 80 % —90 % load.(3) Ultimate stageAt t his stage , t he widt h of t he cracks is about 1mm or more and some new cracks continue to oc2 cur . The shear deformation at t he core is much larger and concrete begins to collap se. Af ter several cyclic loading , the force reaches the maximum value , which is called ultimate stage. The load increase is due to t he enhancing of the concrete aggregate mechanical f riction between cracks. At t he same timet he st ress of stirrup increases gradually. On t he one hand stirrup resist s t he horizontal shear , and on t he ot her hand the confinement effect to t he expanding compression concrete st rengthens continuous2ly , which can also improve t he shear capacity of diagonal compression bar mechanism.(4) Failure stageAs the load circulated , concrete in t he core began to collap se , and t he deformation increased sharply , while the capacity began to drop . It was found t hat t he slip of reinforcement in t he beam wasvery serious in t he experiment . Wit h t he load and it s circulation time increasing , t he zoon wit houtbond gradually permeated towards t he internal core , enhancing t he burden of t he diagonal compressionbar mechanism and accelerates the compression failure of concrete. Fig. 4 shows t he p hotos of typical damaged joint s.A p seudo dynamic test of space model ofpower plant st ruct ure was carried out to researcht he working behavior of t he abnormal joint s in re2al st ructure and the seismic behavior of st ructure.Fig. 5 shows the p hoto of model .The test includes two step s. The fir st is thep seudo dynamic test . At t his step , El2Cent rowave is inp ut and the peak acceleration variesf rom 50 gal to 1 200 gal . The seismic response is measured. The second is t he p seudo static test . Theloading can’t stop until t he model fail s.Fig. 7 Minor coreThe experiment shows t hat t he dist ribution and development of t hecrack is influenced by t he rest rictive effect of the ort hogonal beam , andt he crack of joint core mainly dist ributes under t he orthogonal beam( see Fig. 6) , which is different f rom t he result of t he plane joint test ,but similar to J 4210.3. 3 Analysis of test results3. 3. 1 Mechanical analysisIn t he experiment , t he location of the initial crack of t he exteriorjoint and the crushed position of concrete both appear in the middle oft he joint core , and t he position is near t he centerline of t he upper col2umn. The initial crack and crushed position of t he concrete of the interior joint both appear in t he mi2 nor core ( see Fig. 4 ,Fig. 7) . For interior abnormal joint t he crack doesn’t appear or develop in t he ma2j or core out side of the mi nor core until t horough cracking takes place , while t he crack seldom appearsin t he shadow region ( see Fig. 7) as the joint fail s. Therefore , for abnormal joint , t he shear capacity oft he joint core depends on t he properties of t he mi nor core , namely , on t he st rengt h grades of concrete ,t he size and the reinforcement of t he mi nor core , get t he effect of t he maj or core dimension can’t be neglected.Mechanical effect s are t he same will that of t he normal joint , when t he forces t ransfer to t he mi2 nor core t hrough column and beam and reinforcement bar . Therefore , t he working mechanisms of nor2mal joint , including t russ mechanism , diagonal compression bar mechanism and rest rictive mechanismof stirrup , are also suitable for mi nor core of t he abnormal joint , but their working characteristic is not symmet rical when the load rever ses. Fig. 8 illust rates t he working mechanism of t he abnormal joint .When t he load t ransfer to mi nor core , t he diagonal compression bar area of mi nor core is biggert han normal joint core2composed by small column and small beam of abnormal joint , which is due to t he compressive st ress diff usion of concrete compressive region of the beam and column , while at t hesame time t he compression carried by the diagonal compression bar becomes large. Because t he main part of bond force of column and beam is added to t he diagonal comp ression bar but cont rasting wit h t he increased area of diagonal compression bar , t he increased action is small . The region in the maj orcore but out of the mi nor core has less st ress dist ribution and fewer cracks. The region can confine t heexpansion of t he concrete of t he mi nor core diagonal compression bar concrete , which enhances t he concrete compressive st rengt h of mi nor core diagonal compression bar .Making t he mi nor core as st udy element , the area increment of concrete diagonal compression barin mi nor core is related to t he st ress diff usion of t he beam and column compressive region. The magni2t ude of diff usion area is related to height difference of t he beam sections and column sections. Name2ly , it is related to t he size of mi nor core section and maj or core section. Thus , the increased shearst rengt h magnit ude caused by mi nor core rest rictive effect on maj or core can be measured quantitative2ly by t he ratio of maj or core area to mi nor core area. And it al so can be expressed that t he rest rictive effect is quantitatively related to t he ratio. Obviously , t he bigger t he ratio is and t he st ronger t he con2finement is , t he st ronger t he bearing capacity is.The region in the maj or core but under the mi nor core still need stirrup bar because of t he hori2 zontal force t ransferred by bigger beam bar . But force is small .3. 3. 2 load2displacement curves analysisFig. 9 shows t he typical load2displacement curves at t he beam end of t he exterior and interiorjoint . The figure showing t hat t he rigidity of t he specimens almo st doesn’t degenerate when t he initialcrack appear s in t he core , and a turning point can be found at t he curve but it isn’t very obvious. Wit ht he crack developing , an obvious t urning point can be found at t he curve , and at t his time , t he speci2men yields. Then t he load can increase f urt her , but it can’t increase too much f rom yielding load to ultimate load. When t he concrete at t he core collap ses and the plastic hinge occured at t he beamend ,t he load begins to decrease rat her t han increase.The ductility coefficient of two kinds of joint s is basically more than 3 (except for J 3 - 9) . But it should be noted t hat the design of specimens is based on the principle of joint core failure. The ratio of reinforcement of beam and column tends to be lower t han practical project s. If t he ratio is larger , t he failure of joint is probably prior to t hat of beam and column , so t he hysteretic curve reflect s t he ductil ity property of joint core.Joint experiment should be a subst ruct ure test (or a test of composite body of beams and col2 umns) . So t he load2displacement curves at t he beam end should be a general reflection of t he joint be2havior work as a subst ruct ure. Providing t hat the joint core fails af ter t he yield of beam and column (especially for beam) , t he load2displacement curves at t he beam end is plump , so the principle of “st rong col umn and weak beam , st ron ger j oi nt" should be ensured which conforms to t he seismic re2sistant principle.The experiment shows t hat t he stiff ness of joint core is large. Before the joint reaches ultimatestage , t he stiff ness of joint core decreases a little and the irrecoverable residual deformation is very small under alternate loading. When joint core enter s failure stage , t he shear deformation increases sharply , and t he stiff ness of joint core decreases obviously , and t he hysteretic curve appears shrink2 age , which is because of t he cohesive slip of beam reinforcement .3. 4 Influential Factors of Abnormal Joint Shear CapacityThe fir st factor is axial compression. Axial compression can enlarge t he compression area of col2 umn , and increase t he concrete compression area of joint core[124 ] . At t he same time , more shearst ransferred f rom beam steel to t he edge of joint core concrete will add to t he diagonal compression bar ,which decreases t he edge shear t hat leads to the crack of joint core concrete. So t he existence of axial comp ression cont ributes to imp roving t he capacity of initial cracks at joint core.The effect of axial compression on t horough cracking load and ultimate load isn’t very obvious[1 ] . The reason is t hat cont rasting wit h no axial compression , the accumulated damage effect of joint coreunder rever sed loading wit h axial compression is larger . Alt hough axial compression can improve t heshear st rengt h of concrete , it increases accumulated damage effect which leads to a decrease of the ad2vantage of axial compression. Therefore t he effect of axial compression on t horough cracking loadandultimate load is not very obvious.Hence , considering the lack of test data of abnormal joint , t he shear capacity formula of abnormal joint adopt 0. 05 nf c b j h j to calculate the effect of axial compression , which is based on the result s of t his experiment and referenced to t he experimental st udy and statistical analysis of Meinheit and J irsa ,et [5 ] .The second factor is horizontal stirrup . Horizontal stirrup has no effect on t he initial crackingshear of abnormal joint , while greatly improves t he t horough cracking shear . Af ter crack appeared , t he stirrup begins to resist t he shear and confines t he expansion of concrete[ 6 ] . This experiment showst hat t he st ress of stirrup s in each layer is not equal . When the joint fail s , t he stirrup s don’t yield simultaneous. Fig. 10 shows t he change of st ress dist ribution of stirrup s along core height wit h t he loadincreasing. Through analyzing test result s , it can be known t hat 80 percent of the height at the joint core can yield.The last factor is the change of sec2tion size of t he beam and column. Thesection change decreases t he initial crack2ing load about 30 p resent of abnormaljoint and makes t he initial crack appear att he position of joint mi nor core. The rea2son for t his p henomenon is t hat small up2per column section makes t he confinementof mi nor core concrete decrease and t heedge shear increase. But t he section change has lit tle effect on thorough cracking load. Af ter t horoughcracking , the joint enter s ultimate state while the external load can’t increase too much , which is dif2 ferent f rom t he behavior of abnormal joint t hat can carry much shear af ter thorough cracking.3. 5 Shear force formula of abnormal jointAs a part of f rame , t he design of joint shall meet t he requirement s of the f rame st ruct ure design , namely , t he joint design should not damage t he basic performance of t he st ruct ure.According to the principle of st ronger j oi nt , it is necessary for joint to have some safety reserva2 tion. The raised cost for conservational estimation of t he joint bearing capacity is small . But t he con2 servational estimation is very important to t he safety of the f rame st ruct ure. At t horough cracking stage , t he widt h of most cracks is more t han 0. 2 mm , which is bigger than t he suggested limit value in t he concrete design code. Big cracks will influence t he durability of st ruct ure. Hence , the bearing capacity at t horough cracking stage is applied to calculating t he bearing capacity of joint . According to t he analysis of t he working mechanisms of abnormal joint , it could be concludedt hat t he bearing capacity of joint core mainly depends on mi nor core when t he force t ransferred f rommaj or core to mi nor core. All kinds of working mechanisms are suitable to mi nor core element . Thus , a formula for calculating t he shear capacity of abnormal joint can be obtained based on Eq. 1. According to the above analysis of influential factor s of shear capacity of abnormal joint , and ref2 erence to Eq. 1 , a formula for calculating t he shear capacity of reinforced concrete f rame abnormal jointis suggested as followsV j = 0. 1ηjξ1 f c b j h j + 0. 1ηj nξ2 f c b j h j +ξ3 f yv A svj h0 - a′s s(2)Where h0 = effective dept h of small beam section in abnormal joint ;ξ1 = influential coefficient consider2ing mi nor core on working as cont rol element for calculating ;ξ2 = influential coefficient considering effect of axial compression ratio , it s value is 0. 5 , andξ3 = influential coefficient considering t hestir2rup doesn’t yield simultaneous , it s value is 0. 8 , n = N/ f c b c h j .From Fig. 8 , the shear capacity of abnormal joint depends on mi nor core , while maj or core has re2st rictive effect on mi nor core. The effect is related to t he ratio of maj or core area to mi nor core area , so assumingξ1 =αA d A x (3)Where A d = area of abnormal joint maj or core , choosing it as t he value of t he dept h of big beam multiplying t he height of lower column ; A x = area of abnormal joint mi nor core , choosing it as t he value oft he depth of small beam multiplying the height of upper column ; andα= parameter to be defined , it s value is 0. 8 derived f rom t he result s of t he experiment ( see Tab. 4)Then Eq. 2 can be replaced byV j = 0. 1ηjαA d A x f c b j h j + 0. 05ηj n f c b j h j + 0. 8 f yv h0 - a′s s(4)4 ConclusionsThe following conclusions can be drawn f rom t his study.(1) The seismic behavior of abnormal joint in reinforced concrete f rame st ruct ure is poor . Af tert horough cracking , t he joint enter s ultimate state while the external load can’t increase too much , andt he safety reservation of joint isn’t sufficient .(2) The characteristic of bearing load of minor core is similar to that of normal joint , but t he area bearing load is different . The shear capacity depend on t he size , t he st rengt h of concrete and the rein2forcement of mi nor core in abnormal joint . The maj or core has rest rictive effect on mi nor core. (3) Joint experiment should be a subst ruct ure test or a test of composite body of beams and col2 umns. Therefore t he load2displacement curves of t he beam end should be a general reflection of t he joint behavior working as a subst ruct ure. Studies of t he hysteretic curve of subst ruct ure should be based on t he whole st ructure. It is critical to guarantee t he stiff ness and st rengt h of joint core in prac2tice.(4) The formula of shear capacity for abnormal joint in reinforced concrete f rame is provided.References[1 ] TAN GJ iu2ru . The seismic behavior of steel reinforced concrete f rame [M] . Nanjing :Dongnan University Press ,1989 :1572163.[2 ] The research group of reinforcement concrete f rame joint . Shear capacity research of reinforced concrete f rame jointon reversed2cyclic loading[J ] . Journal of Building St ructures , 1983 , (6) :9215.[3 ] PAULA Y T ,PARK R. Joint s reinforced concrete f rames designed for earthquake resistance[ R] . New Zealand :De2partment of civil Engineering , University of Canterbury , Christchurch , 1984.[4 ] FU Jian2ping. Seismic behavior research of reinforced concrete f rame joint with the consideration of axialforce[J ] .Journal of Chongqing Univ , 2000 , (5) :23227.[5 ] MEINHEIT D F ,J IRSA J O. Shear st rength of R/ C beam2column connections [J ] . ACI St ructural Journal , 1993 ,(3) :61271.[6 ] KITA YAMA K, OTANI S ,AO YAMA H. Development of design criteria for RC interior beam2column joints ,de2sign of beam2column joint s for seismic resistance[ R] . SP123 ,ACI ,Det roit , 1991 :61272.[7 ] GB5001122001 ,Code for seismic design of buildings [ S] . Beijing : China Architectural and BuildingPress ,2001.钢筋混凝土框架异型节点抗震性能试验研究摘要:基于8个钢筋混凝土框架异型节点的试验研究,分析了异型框架节点的受力与常规框架节点的异同。
土木工程类外文文献翻译---钢筋混凝土可编辑
土木工程类外文文献翻译---钢筋混凝土外文文献翻译院系_________________________班级_________________________姓名_________________________指导教师_________________________2012年2月20 日2 外文翻译21 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement water fine aggregate coarse aggregate crushed stone or gravel air and often other admixtures The plastic mix is placed and consolidated in the formwork then cured to facilitate the acceleration of the chemical hydration reaction lf the cementwater mix resulting in hardened concrete The finished product has high compressive strength and low resistance to tension such that its tensile strength is approximately one tenth lf its compressive strength Consequently tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete elementIt is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved This is possible because concrete can easily be givenany desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned the finished product becomes strong durable and in combination with the reinforcing bars adaptable for use as main members of any structural system The techniques necessary for placing concrete depend on the type of member to be cast that is whether it is a column a bean a wall a slab a foundation a mass columns or an extension of previously placed and hardened concrete For beams columns and walls the forms should be well oiled after cleaning them and the reinforcement should be cleared of rust and other harmful materials In foundations the earth should be compacted and thoroughly moistened to about 6 in in depth to avoid absorption of the moisture present in the wet concrete Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type as the case requires unless it is placed by pumping It must be kept in mind however that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concreteHydration of the cement takes place in the presence of moisture at temperatures above 50°F It is necessary to maintain such a condition in order that the chemical hydration reaction can take place If drying is too rapid surface cracking takes place This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydrationIt is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element such as geometrical widthdepth area of reinforcement steel strain concrete strain steel stress and so on Consequently trial and adjustment is necessary in the choice of concrete sections with assumptions based on conditions at site availability of the constituent materials particular demands of the owners architectural and headroom requirements the applicable codes and environmental reinforced concrete is often a site-constructed composite in contrast to the standard mill-fabricated beam and column sections in steel structuresA trial section has to be chosen for each critical location in a structural system The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load Since more than one trial is often necessary to arrive at the required section the first design input step generates into a series of trial-and-adjustment analysesThe trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design Hence every design is an analysis once a trial section is chosen The availability of handbooks charts and personal computers and programs supports this approach as a more efficient compact and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design22 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering this is a field where there are real opportunities for the enthusiast In 1935 most of the methods now inuse for carrying and excavating earth with rubber-tyred equipment did not exist Most earth was moved by narrow rail track now relatively rare and the main methods of excavation with face shovel backacter or dragline or grab though they are still widely used are only a few of the many current methods To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines Generally the only reliable up-to-date information on excavators loaders and transport is obtainable from the makersEarthworks or earthmoving means cutting into ground where its surface is too high cuts and dumping the earth in other places where the surface is too low fills Toreduce earthwork costs the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness From the available maps ahd levels the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork On the site when further information becomes available he can make changes in jis sections and layoutbut the drawing lffice work will not have been lost It will have helped him to reach the best solution in the shortest timeThe cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine This is not always possible but when it canbe done it is ideal being both quick and cheap Draglinesbulldozers and face shovels an do this The largest radius is obtained with the draglineand the largest tonnage of earth is moved by the bulldozer though only over short distancesThe disadvantages of the dragline are that it must dig below itself it cannot dig with force into compacted material it cannot dig on steep slopws and its dumping and digging are not accurate Face shovels are between bulldozers and draglines having a larger radius of action than bulldozers but less than draglines They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful but its dumping radius is considerably less than that of the same escavator fitted with a face shovelRubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel They can dig the material deeply but only below themselves to a fairly flat surface carry it hundreds of meters if need be then drop it and level it roughly during the dumping For hard digging it is often found economical to keep a pusher tractor wheeled or tracked on the digging site to push each scraper as it returns to dig As soon as the scraper is fullthe pusher tractor returns to the beginning of the dig to heop to help the nest scraperBowl scrapers are often extremely powerful machinesmany makers build scrapers of 8 cubic meters struck capacity which carry 10 m 3 heaped The largest self-propelled scrapers are of 19 m 3 struck capacity 25 m 3 heaped and they are driven by a tractor engine of 430 horse-powersDumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials Dumpers have the earth container over the front axle on large rubber-tyred wheels and the container tips forwards on most types though in articulated dumpers the direction of tip can be widely varied The smallest dumpers have a capacity of about 05 m 3 and the largest standard types are of about 45 m 3 Special types include the self-loading dumper of up to 4 m 3 and the articulated type of about 05 m 3 The distinction between dumpers and dump trucks must be remembered dumpers tip forwards and the driver sits behind the load Dump trucks are heavy strengthened tipping lorries the driver travels in front lf the load and the load is dumped behind him so they are sometimes called rear-dump trucks23 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures The safety factor which according to modern trends is independent of the nature and combination of the materials used can usually be defined as the ratio between the conditions This ratio is also proportional to the inverse of the probability risk of failure of the structureFailure has to be considered not only as overall collapse of the structure but also as unserviceability or according to a more precise Common definition As the reaching of a limit state which causes the construction not to accomplish the task it was designed for There are two categories of limit state1 Ultimate limit sate which corresponds to the highest value of the load-bearing capacity Examples include local buckling or global instability of the structure failure of some sections and subsequent transformation of the structure into a mechanism failure by fatigue elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure and sensitivity of the structure to alternating loads to fire and to explosions2 Service limit states which are functions of the use and durability of the structure Examples include excessive deformations and displacements without instability early or excessive cracks large vibrations and corrosionComputational methods used to verify structures with respect to the different safety conditions can be separated into1 Deterministic methods in which the main parameters are considered as nonrandom parameters2 Probabilistic methods in which the main parameters are considered as random parametersAlternatively with respect to the different use of factors of safety computational methods can be separated into1 Allowable stress method in which the stresses computed under imum loads are compared with the strength of the material reduced by given safety factors2 Limit states method in which the structure may be proportioned on the basis of its imum strength This strength as determined by rational analysis shall not be less than that required to support a factored loadequal to the sum of the factored live load and dead load ultimate state The stresses corresponding to working service conditions with unfactored live and dead loads are compared with prescribed values service limit state From the four possible combinations of the first two and second two methods we can obtain some useful computational methods Generally two combinations prevail1 deterministic methods which make use of allowable stresses2 Probabilistic methods which make use of limit statesThe main advantage of probabilistic approaches is that at least in theory it is possible to scientifically take into account all random factors of safety which are then combined to define the safety factor probabilistic approaches depend upon1 Random distribution of strength of materials with respect to the conditions of fabrication and erection scatter of the values of mechanical properties through out the structure2 Uncertainty of the geometry of the cross-section sand of the structure faults and imperfections due to fabrication and erection of the structure3 Uncertainty of the predicted live loads and dead loads acting on the structure4 Uncertainty related to the approximation of the computational method used deviation of the actual stresses from computed stresses Furthermore probabilistic theories mean that the allowable risk can be based on several factors such as1 Importance of the construction and gravity of the damage byits failure2 Number of human lives which can be threatened by this failure3 Possibility andor likelihood of repairing the structure4 Predicted life of the structureAll these factors are related to economic and social considerations such as1 Initial cost of the construction2 Aortization funds for the duration of the construction3 Cost of physical and material damage due to the failure of the construction4 Adverse impact on society5 Moral and psychological viewsThe definition of all these parameters for a given safety factor allows construction at the optimum cost However the difficulty of carrying out a complete probabilistic analysis has to be taken into account For such an analysis the laws of the distribution of the live load and its induced stresses of the scatter of mechanical properties of materials and of the geometry of the cross-sections and the structure have to be known Furthermore it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material on the cross-sections and upon the load acting on the structure These practical difficulties can be overcome in two ways The first is to apply different safety factors to the material and to the loads without necessarily adopting the probabilistic criterion The second is an approximate probabilistic method which introduces some simplifyingassumptions semi-probabilistic methods1 中文翻译11钢筋混凝土素混凝土是由水泥水细骨料粗骨料碎石或卵石空气通常还有其他外加剂等经过凝固硬化而成将可塑的混凝土拌合物注入到模板内并将其捣实然后进行养护以加速水泥与水的水化反应最后获得硬化的混凝土其最终制成品具有较高的抗压强度和较低的抗拉强度其抗拉强度约为抗压强度的十分之一因此截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异因此需要对结构设计的基本原理进行修改将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置可以最好的利用这两种材料这一要求是可以达到的因混凝土由配料搅拌成湿拌合物经过振捣并凝固硬化可以做成任何一种需要的形状如果拌制混凝土的各种材料配合比恰当则混凝土制成品的强度较高经久耐用配置钢筋后可以作为任何结构体系的主要构件浇筑混凝土所需要的技术取决于即将浇筑的构件类型诸如柱梁墙板基础大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等对于梁柱墙等构件当模板清理干净后应该在其上涂油钢筋表面的锈及其他有害物质也应该被清除干净浇筑基础前应将坑底土夯实并用水浸湿6英寸以免土壤从新浇的混凝土中吸收水分一般情况下除使用混凝土泵浇筑外混凝土都应在水平方向分层浇筑并使用插入式或表面式高频电动振捣器捣实必须记住过分的振捣将导致骨料离析和混凝土泌浆等现象因而是有害的水泥的水化作用发生在有水分存在而且气温在50°F以上的条件下为了保证水泥的水化作用得以进行必须具备上述条件如果干燥过快则会出现表面裂缝这将有损与混凝土的强度同时也会影响到水泥水化作用的充分进行设计钢筋混凝土构件时显然需要处理大量的参数诸如宽度高度等几何尺寸配筋的面积钢筋的应变和混凝土的应变钢筋的应力等等因此在选择混凝土截面时需要进行试算并作调整根据施工现场条件混凝土原材料的供应情况业主提出的特殊要求对建筑和净空高度的要求所用的设计规范以及建筑物周围环境条件等最后确定截面钢筋混凝土通常是现场浇注的合成材料它与在工厂中制造的标准的钢结构梁柱等不同因此对于上面所提到的一系列因素必须予以考虑对结构体系的各个部位均需选定试算截面并进行验算以确定该截面的名义强度是否足以承受所作用的计算荷载由于经常需要进行多次试算才能求出所需的截面因此设计时第一次采用的数值将导致一系列的试算与调整工作选择混凝土截面时采用试算与调整过程可以使复核与设计结合在一起因此当试算截面选定后每次设计都是对截面进行复核手册图表和微型计算机以及专用程序的使用使这种设计方法更为简捷有效而传统的方法则是把钢筋混凝土的复核与单纯的设计分别进行处理12土方工程由于和土木工程中任何其他工种的施工方法与费用相比较土方挖运的施工方法与费用的变化都要快得多因此对于有事业心的人来说土方工程是一个可以大有作为的领域在1935年目前采用的利用轮胎式机械设备进行土方挖运的方法大多数还没有出现那是大部分土方是采用窄轨铁路运输在这目前来说是很少采用的当时主要的开挖方式是使用正铲反铲拉铲或抓斗等挖土机尽管这些机械目前仍然在广泛应用但是它们只不过是目前所采用的许多方法中的一小部分因此一个工程师为了使自己在土方挖运设备方面的知识跟得上时代的发展他应当花费一些时间去研究现代的机械一般说来有关挖土机装载机和运输机械的唯一可靠而又最新的资料可以从制造厂商处获得土方工程或土方挖运工程指的是把地表面过高处的土壤挖去挖方并把它倾卸到地表面过低的其他地方填方为了降低土方工程费用填方量应该等于挖方量而且挖方地点应该尽可能靠近土方量相等的填方地点以减少运输量和填方的二次搬运土方设计这项工作落到了从事道路设计的工程师的身上因为土方工程的设计比其他任何工作更能决定工程造价是否低廉根据现有的地图和标高道路工程师应在设计绘图室中的工作也并不是徒劳的它将帮助他在最短的时间内获得最好的方案费用最低的运土方法是用同一台机械直接挖方取土并且卸土作为填方这并不是经常可以做到的但是如果能够做到则是很理想的因为这样做既快捷又省钱拉铲挖土机推土机和正铲挖土机都能做到这点拉铲挖土机的工作半径最大推土机所推运的图的数量最多只是运输距离很短拉铲挖土机的缺点是只能挖比它本身低的土不能施加压力挖入压实的土壤内不能在陡坡上挖土而且挖卸都不准确正铲挖土机介于推土机和拉铲挖土机的之间其作用半径大于推土机但小于拉铲挖土机正铲挖土机能挖取竖直陡峭的工作面这种方式对推土机司机来说是危险的而对拉铲挖土机则是不可能的每种机械设备应该进行最适合它的性能的作业正铲挖土机不能挖比其停机平面低很多的土而深挖坚实的土壤时反铲挖土机最适用但其卸料半径比起装有正铲的同一挖土机的卸料半径则要小很多在比较平坦的场地开挖如果用拉铲或正铲挖土机运输距离太远时则装有轮胎式的斗式铲运机就是比不可少的它能在比较平的地面上挖较深的土但只能挖机械本身下面的土需要时可以将土运至几百米远然后卸土并在卸土的过程中把土大致铲平在挖掘硬土时人们发现在开挖场地经常用一辆助推拖拉机轮式或履带式对返回挖土的铲运机进行助推这种施工方法是经济的一旦铲运机装满助推拖拉机就回到开挖的地点去帮助下一台铲运机斗式铲运机通常是功率非常大的机械许多厂家制造的铲运机铲斗容量为8 m3满载时可达10 m3最大的自行式铲运机铲斗容量为19立方米满载时为25 m3由430马力的牵引发动机驱动翻斗机可能是使用最为普遍的轮胎式运输设备因为它们还可以被用来送混凝土或者其他建筑材料翻斗车的车斗位于大橡胶轮胎车轮前轴的上方尽管铰接式翻斗车的卸料方向有很多种但大多数车斗是向前翻转的最小的翻斗车的容量大约为05立方米而最大的标准型翻斗车的容量大约为45m3特殊型式的翻斗车包括容量为4 m3的自装式翻斗车和容量约为05 m3的铰接式翻斗车必须记住翻斗车与自卸卡车之间的区别翻斗车车斗向前倾翻而司机坐在后方卸载因此有时被称为后卸卡车13结构的安全度规范的主要目的是提供一般性的设计原理和计算方法以便验算结构的安全度就目前的趋势而言安全系数与所使用的材料性质及其组织情况无关通常把它定义为发生破坏的条件与结构可预料的最不利的工作条件之比值这个比值还与结构的破坏概率危险率成反比破坏不仅仅指结构的整体破坏而且还指结构不能正常的使用或者用更为确切的话来说把破坏看成是结构已经达到不能继续承担其设计荷载的极限状态通常有两种类型的极限状态即1强度极限状态它相当于结构能够达到的最大承载能力其例子包括结构的局部屈曲和整体不稳定性某此界面失效随后结构转变为机构疲劳破坏引起结构几何形状显著变化的弹性变形或塑性变形或徐变结构对交变荷载火灾和爆炸的敏感性2使用极限状态它对应着结构的使用功能和耐久性器例子包括结构失稳之前的过大变形和位移早期开裂或过大的裂缝较大的振动和腐蚀根据不同的安全度条件可以把结构验算所采用的计算方法分成1确定性的方法在这种方法中把主要参数看作非随机参数2概率方法在这种方法中主要参数被认为是随机参数此外根据安全系数的不同用途可以把结构的计算方法分为1容许应力法在这种方法中把结构承受最大荷载时计算得到的应力与经过按规定的安全系数进行折减后的材料强度作比较2极限状态法在这种方法中结构的工作状态是以其最大强度为依据来衡量的由理论分析确定的这一最大强度应不小于结构承受计算荷载所算得的强度极限状态计算荷载等于分别乘以荷载系数的活载与恒载之和把对应于不乘以荷载系数的活载和恒载的工作使用条件的应力与规定值使用极限状态相比较根据前两种方法和后两种方法的四种可能组合我们可以得到一些实用的计算方法通常采用下面两种计算方法确定性的方法这种方法采用容许应力概率方法这种方法采用极限状态至少在理论上概率法的主要优点是可以科学的考虑所有随机安全系数然后将这些随机安全系数组合成确定的安全系数概率法取决于1制作和安装过程中材料强度的随机分布整个结构的力学性能数值的分散性2截面和结构几何尺寸的不确定性由结构制作和安装造成的误差和缺陷而引起的对作用在结构上的活载和恒载的预测的不确定性所采用的近似计算方法有关的不精确性实际应力与计算应力的偏差此外概率理论意味着可以基于下面几个因素来确定允许的危险率例如建筑物的重要性和建筑物破坏造成的危害性2由于建筑物破坏使生活受到威胁的人数3修复建筑的可能性4建筑物的预期寿命所有这些因素均与经济和社会条件有关例如1建筑物的初始建设费2建筑物使用期限内的折旧费3由于建筑物破坏而造成的物质和材料损失费4在社会上造成的不良影响5精神和心理上的考虑就给定的安全系数而论所有这些参数的确定都是以建筑物的最佳成本为依据的但是应该考虑到进行全概率分析的困难对于这种分析来说应该了解活载及其所引起的盈利的分布规律材料的力学性能的分散性和截面的结构几何尺寸的分散性此外由于强度的分布规律和应力的分布规律之间的相互关系是困难的这些实际困难可以采用两种方法来克服第一种方法对材料和荷载采用不同的安全系数而不需要采用概率准则第二种方法是引入一些而简化假设的近似概率方法半概率方法1建筑工程学院土木工程系土木084班。
土木工程专业英语带译文
13
Key characteristics Three physical characteristics give reinforced concrete itsehavior(性能)of reinforced concrete Materials Concrete is a mixture of of Coarse (stone or brick chips) and Fine (generally sand) aggregates with a binder material (usually Portland cement). When mixed with a small amount of water, the cement hydrates form microscopic opaque crystal lattices encapsulating and locking the aggregate into a rigid structure. 混凝土是粗粒(石块或砖块)和细粒(通常是沙粒)与粘结材料(通常是波特兰水泥) 的混合物。 当与少量水混合时,水泥水合物形成微观不透明晶格,将聚集体封装并锁定在 刚性结构中。
Reinforced concrete can be classified as precast or cast in-situ concrete. • 钢筋混凝土可以分为预制或现浇混凝土。
9
• Much of the focus on reinforcing concrete is placed on floor systems. Designing and implementing the most efficient floor system is a key to creating optimal building structures. Small changes in the design of a floor system can have significant impact on material costs, construction schedule, ultimate strength, operating costs, occupancy levels and end use of a building. • 大部分建筑注重加强混凝土的地板系统。 设计和实施最高效的地板系统是 创建最佳建筑结构的关键。 地板系统设计的微小变化会对建筑物的材料成本, 施工进度,最终强度,运营成本,入住率和最终用途产生重大影响。
钢筋混凝土常用英语
PEC土木匠程英语证书考试-钢筋混凝土构造常用词汇aggregateallowable stress designaxial compressionaxial compressive loadaxial tensionbe bent coldbeam depthbeam-to-column connections bent-up barbottom reinforcement cantilever beamcast-in-place concrete centroidal axis[sen'tr??d?l] 骨料允许应力设计轴压轴心压力轴拉冷弯梁高梁柱节点弯起钢筋底筋悬臂梁现浇混凝土中心轴['?ks ?s]clear coverclear spacingclear spancoarse aggregatecollar tie beam/ring-beam columncolumn-to-footing connection compression reinforcement compression-controlled section compressive strength 保护层净距净跨粗骨料圈梁柱柱脚节点受压钢筋受压控制截面抗压强度1 / 8concrete structures construction jointscontinuing barcontinuouscontinuous beamscontinuous slabscorrosion protectioncrackcracking momentcreepcross sectionsectioncuredeep beamdeformed/spiral reinforcement depth of slabdepth-span ratiodesign load combinations development length/lap length durabilitydynamic amplification factor effective compressive flange effective cross-sectional area effective depth of section effective prestress 混凝土构造施工缝连续钢筋连续连续梁连续板防腐开裂,裂痕开裂弯矩徐变横截面截面保养深梁螺纹钢筋板厚高跨比设计荷载组合搭接长度持久性动力放大系数有效受压翼缘有效截面截面有效高度有效预应力2 / 8elastic deflection 弹性变形embedment length 锚固长度equivalent rectangular column 正方形截面柱factored load 乘以分项系数的荷载fine aggregate 细骨料fire protection 防火fixed 固定flange 翼板Flexural and compression 压弯构件members['flek ??r?l]footings of buildings 建筑物底部grade 等级grade 60 concrete C60 混凝土grade beam 地基梁gross section 全截面grout 水泥浆grouting 灌浆high-early-strength cement 高强水泥high-strength steel bar 高强钢筋hydraulic cement [ha?'dr?:l?k] 水泥inclined beam 斜梁inclined stirrup 斜向箍筋in-plane force 面内荷载isolation joint 分开缝joint 节点3 / 8lap splices 搭接large volumes of concrete 大概积混凝土length over 梁、柱全长lift-slab construction 升板施工lightweight aggregate 轻骨料lightweight concrete 轻质混凝土loaded area 荷载面积longitudinal reinforcement 纵筋long-time deflection 永远变形loss of prestress 预应力损失mechanical anchorage 机械锚固[m ??k?n ?kl] ['??k? r?d?]mechanical connections 机械连结midspan 跨中minimum slab thickness 最小板厚mix 搅拌mix proportions 配比moment magnification factor 弯矩放大系数moment of inertia [??n?:??] 惯性矩moment-resisting frames 刚架negative moment 负弯矩negative moment reinforcement 梁上部纵筋neutral axis [?nju:tr?l ??ksis] 中和轴nominal diameter of bar 钢筋直径nominal strength 强度标准值4 / 8non pre-stressed reinforcement nonbearing wallnon-potable water nonstructural members nonsway columnnonsway frameone-way slabsopeningoverall thickness overstressedpedestalpilasterplain concreteplain reinforcementplastic hinge regioncementpositive momentpositive moment reinforcement post-tensionpre-cast concreteprestress lossespre-stressed concretepre-stressing tendons pretensionrectangular beam 非预应力钢筋非承重墙非饮用水非构造构件非摇晃柱无侧移框架单向板开洞总厚超应力基座壁柱素混凝土光面钢筋塑性铰区水泥正弯矩梁下部纵筋后张拉预制混凝土预应力损失预应力混凝土预应力钢筋先张法矩形梁5 / 8reduction factors reinforced concrete reinforced gypsum concrete 折减系数钢筋混凝土钢筋石膏混凝土reinforcement around structural 钢骨外包混凝土steel corereinforcement ratiorelaxation of tendon stress residual deflection /deformation ribseismic hookseismic zonessettlement of supportsseven-day strength 配筋率钢筋预应力废弛剩余变形肋箍筋抗震钩地震区支座沉降7 天强度shear barshear reinforcement shear wallsshoreshort-limb shear wall shrinkage/contraction shrinkage-compensating 抗剪钢筋梁箍筋剪力墙支撑架短肢剪力墙缩短无缩短混凝土concreteside face reinforcement simply supported beams simply supported solid slabs six-bar-diameter梁腰筋简支梁简支板六倍钢筋直径6 / 8slabslab without beams.slagslag cementspan lengthspecial-shaped column spiral reinforcement splitting tensile strength standard deviationsteam curingsteel-encased concrete core stiffness reduction factor stirrupstrengthstrength designstrength-reduction factor strong column/weak beam strong connection structural diaphragm structural members structural trussesstrutsupportsupport reactiontensile strain楼板无梁楼盖矿渣火山灰水泥跨度异形柱柱箍筋拉裂强度标准差蒸汽保养钢包中心混凝土刚度折减系数箍筋强度强度设计强度折减系数强柱弱梁强节点构造隔板构造构件构造桁架支柱支座支座反力拉应变7 / 8tensile strength抗拉强度tensionandshear act 拉力与剪力同时作用simultaneouslytension reinforcement 受拉钢筋tension-controlled section 受拉控制截面top reinforcement 顶筋torsion reinforcement 抗扭钢筋transverse reinforcement 横向钢筋two-way slab 双向板volumetric ratio 体积比wall pier 短肢墙water-cement ratio 水灰比web 腹板welded splices 焊接white Portland cement 白水泥8 / 8。
土木工程专业外语课文翻译及课后练习答案剖析
专业英语课文翻译Lesson 4Phrases and Expressions1.moisture content 含水量,含湿度; water content 2.cement paste 水泥浆 mortar 3.capillary tension 毛细管张力,微张力 4.gradation of aggregate 骨料级配 coarse fine (crushed stone, gravel) 5.The British Code PC100 英国混凝土规范PC100; nowaday BS8110 6. coefficient of thermal expansion of concrete 混凝土热膨胀系数 7. The B.S Code 英国标准规范 8. sustained load 永久荷载,长期荷载 9. permanent plastic strain 永久的塑性应变 stress 10. crystal lattice 晶格, 晶格 11. cement gel 水泥凝胶体 12. water-cement ratio 水灰比 13. expansion joint 伸缩缝 14. stability of the structure 结构的稳定性 structural stability15. fatigue strength of concrete 混凝土的疲劳强度Volume Changes of ConcreteConcrete undergoes volume changes during hardening. 混凝土在硬结过程中会经历体积变化。
If it loses moisture by evaporation, it shrinks, but if the concrete hardens in water, it expands. 如果蒸发失去水分,混凝土会收缩;但如果在水中硬结,它便膨胀。
土木工程专业外语课文翻译
专业英语课文翻译Lesson 4Phrases and ExpressionsVolume Changes of ConcreteConcrete undergoes volume changes during hardening. 混凝土在硬结过程中会经历体积变化。
If it loses moisture by evaporation, it shrinks, but if the concrete hardens in water, it expands. 如果蒸发失去水分,混凝土会收缩;但如果在水中硬结,它便膨胀。
The causes of the volume changes in concrete can be attributed to changes in moisture content, chemical reaction of the cement with water, variation in temperature, and applied loads. 混凝土体积变化的原因可归结为含水量的变化、水泥与水的水化反应、温度变化和所施加的荷载。
ShrinkageThe change in the volume of drying concrete is not equal to the volume of water removed. The evaporation of free water causes little or no shrinkage. 混凝土干燥时的体积变化量不等于它所失去的水的体积。
自由水的蒸发基本不产生收缩。
As concrete continues to dry, water evaporates and the volume of the restrained cement paste changes, causing concrete to shrink, probably due to the capillary tension that develops in the water remaining in concrete. 随着混凝土的不断变干,水分蒸发,受约束水泥浆的体积也变化,导致了混凝土的收缩,这多半是由于残留在混凝土中的水的毛细张力所致。
钢筋混凝土中英文资料外文翻译文献
钢筋混凝土中英文资料翻译1 外文翻译1.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of anystructural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructionalmethod compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.1.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline.Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.1.3 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “limit state ” which causes the construction not to accomplish the task it was designedfor. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions offabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) 。
土木)外文资料翻译5.3
淮阴工学院毕业设计外文资料翻译学院(系):建筑工程系专业:土木工程(建筑工程方向)姓名:学号:外文出处:Journal of Wuhan University(用外文写)Technoology-Mater.Sci.Ed附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文随时间变化的钢筋混凝土阻力分析摘要∶对钢筋混凝土材料时间相关性的分析方法进行介绍,讨论钢筋混凝土的作用机理,然后再研究随时间而定的钢筋混凝土抵抗力。
此外,钢筋混凝土结构中的钢材腐蚀也是需要被分析的。
鉴定随时间而变的抵抗力的实际统计方法,包括物质的材料,结构尺寸,影响计算的确定。
另外,范例中估计随时间而变钢筋混凝土结构构件的抵抗力是给的。
关键字∶不定分析;随时间变化的抵抗力;钢筋混凝土1.介绍:因为钢筋混凝土材料适用于很多地方,并且价格便宜,所以它在土木工程中是一种非常有用的材料。
因此,这种材料大量的被使用。
然而,传统的建筑结构设计和钢筋混凝土材料的研究很少注意到钢筋混凝土强度和时间的关系,尤其是作用在材料上的不同影响作用几乎是不予研究的。
直到近年来,在建筑施工中的一些研究才涉及这个问题——关于钢筋混凝强度与时间相关性的。
已做过的关于钢筋混凝土柱破坏概率的研究表明低强度的钢筋混凝土柱破坏概率低于偶然的荷载作用下的破坏概率。
并且这种计算方法已经被运用到随时间而变化的破坏概率的计算上。
低强度的和Liu[4] 混凝土结构耐久性上的研究认为这种作用加速了其的破坏。
并且Lu [6]等已经论述钢筋腐蚀的情况。
一般而言,依赖不同因素的钢筋混凝土抵抗力明显减小。
在对混凝土结构安全性校核上,基础理论为钢筋混凝土耐久性分析提供了建议。
研究随时间而变的钢筋混凝土结构的性质的是必要的。
2.影响钢筋混凝土机理的因素许多因素对钢筋混凝土抵抗力都产生影响。
在水区域内存在着超过50种化学腐蚀元素,水在其中工作并且起调节作用。
获得一次相关钢筋混凝土模型的实际方法是一种多因素理解方法。
建筑材料(中英文双语)
永久荷载作用下的徐变(P)
组合梁的徐变
桥面板在时间to时在压力作用下。这也是荷载M1被施加 的时候。由于徐变,从混凝土到钢材时变横截面受力发展 拉力重新分配;因此,混凝土压力变得更低,钢材压力变 得更高。 重分配不仅依赖于时间,也与荷载有关;重分配的规模 和最终结果取决于何在类型。
在静定结构中,由于徐变产生的外加位移和旋转自由发展 同时被称为初始效应。在非静定结构中,由于初始变形被 限制所以附加内力出现;这些内力被称作二次应力。二次 内力与徐变并行发展。这意味着它们为永久作用且大小不 断改变。
0 1
0 3 0 5
ONTENTS
由于徐变导致的时变变 形
混凝土的弹性模量随时间的 发展
强度等级
0 2
时间相关的变形收缩
0 4
时间对水泥水化的影响
1.2由于徐变导致的时变变形
混凝土会产生时变变形。如果作用一个压应力,混凝土 会先产生弹性变形,接着产生时变变形 压应力作用下的时变变形称为徐变,系数φ(t, t0) 为徐变 系数。徐变主要是由于不受限制的水分子从高压区运动低 压区产生的,并取决于 a.混凝土受压龄期 b.混凝土的密度 c.环境的湿度 d.环境温度 e.混凝土构件的厚度
0 4
混凝土的弹性模量随时间的 发展
时间对水泥水化的影响
1.1 强度等级
欧洲标准:普通混凝土强度等级采用符号C与两个表示28d圆 柱体抗压标准强度fck 和28d立方体抗压标准强度fck,cube 的数字表示。因此,C35/45表示fck=35MPa和 fck,cube=45MPa的混凝土。
C
目 录
Structural materials 建筑材料
C
目 录
0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随时间变化的钢筋混凝土阻力分析外文翻译Prepared on 24 November 2020毕业设计(论文)外文资料翻译系(部):建筑工程系专业:土木工程班级: B070704姓名: 123学号: 123外文出处:Journal of Wuhan University附件: 1. 原文; 2. 译文2010年12月29日附件1:原文随时间变化的钢筋混凝土阻力分析摘要∶对钢筋混凝土材料时间相关性的分析方法进行介绍,讨论钢筋混凝土的作用机理,然后再研究随时间而定的钢筋混凝土抵抗力。
此外,钢筋混凝土结构中的钢材腐蚀也是需要被分析的。
鉴定随时间而变的抵抗力的实际统计方法,包括物质的材料,结构尺寸,影响计算的确定。
另外,范例中估计随时间而变钢筋混凝土结构构件的抵抗力是给的。
关键字∶不定分析;随时间变化的抵抗力;钢筋混凝土1.介绍:因为钢筋混凝土材料适用于很多地方,并且价格便宜,所以它在土木工程中是一种非常有用的材料。
因此,这种材料大量的被使用。
然而,传统的建筑结构设计和钢筋混凝土材料的研究很少注意到钢筋混凝土强度和时间的关系,尤其是作用在材料上的不同影响作用几乎是不予研究的。
直到近年来,在建筑施工中的一些研究才涉及这个问题——关于钢筋混凝强度与时间相关性的。
已做过的关于钢筋混凝土柱破坏概率的研究表明低强度的钢筋混凝土柱破坏概率低于偶然的荷载作用下的破坏概率。
并且这种计算方法已经被运用到随时间而变化的破坏概率的计算上。
低强度的和Liu[4] 混凝土结构耐久性上的研究认为这种作用加速了其的破坏。
并且Lu [6]等已经论述钢筋腐蚀的情况。
一般而言,依赖不同因素的钢筋混凝土抵抗力明显减小。
在对混凝土结构安全性校核上,基础理论为钢筋混凝土耐久性分析提供了建议。
研究随时间而变的钢筋混凝土结构的性质的是必要的。
2.影响钢筋混凝土机理的因素许多因素对钢筋混凝土抵抗力都产生影响。
在水区域内存在着超过50种化学腐蚀元素,水在其中工作并且起调节作用。
获得一次相关钢筋混凝土模型的实际方法是一种多因素理解方法。
通常,对于单一的因素,许多结果只考虑到混凝土的碳化作用,碳化的厚度可以用下面公式来表示:可以写为:D ( t) = K t (1)式中D ( t),K和t分别为厚度,速度系数与碳化的时间。
到目前为止,虽然有许多模型被运用到钢筋的断裂,疲劳破坏中,但是还没有大家都认可的结论存在。
一般而言,能够降低钢筋混凝土的抵抗力的变量有钢筋的几何尺寸,周边环境情况以及随时间而变的抵抗力等。
显而易见,钢筋混凝土抵抗力的变化是的一个随机函数过程或者说是一系列材料和结构变量的相互作用。
钢筋混凝土在空气中的碳化被称之为中和反应。
它是合成物与在空中的CO2以及钢筋混凝土中的碱性材料缓慢中和的过程。
在空气中完全地碳化密实混凝土中的钢筋保护层需要花费几十年的时间,但是碳化非密实混凝土的只要几年。
如果稀薄的碳化材料的含量比较高,则钢筋混凝土强度就会下降并且在碳化过程中结构的横截面也会加快缩小。
碳化作用会造成碱度的降下和钢筋的腐蚀。
钢筋腐蚀是钢筋表面中的铁不断地失去电子然后在溶于水,再在有氧的条件下与水发生反应。
所以,消耗几倍时间大量的浸蚀材料。
这样可以使产生钢筋混凝土保护层产生裂缝,并且沿着钢筋方向降低钢筋与混凝土之间的粘结力,从而造成钢筋混凝土结构承载能力的损失。
近来的研究表明钢筋最严重的腐蚀是非碳化保护层15mm 处。
另一方面,由于不完善的表层和在混凝土上的裂缝,使腐蚀的开始时间可能会提前,并且腐蚀速度也可能大大地提高。
当钢筋应力小于其屈服点时,其破坏速度是固定的。
但是当钢筋应力超过屈服点时,破坏速度将提高几倍。
后者被称为应力破坏,它是脆性的和危险的体现。
钢的锈蚀会减小钢筋的承压面积,破坏粘结力以及降低结构的有效性。
空气的腐蚀以及所有的液体都会对钢筋混凝土产生巨大的影响。
它们会造成钢筋混凝土的腐蚀,混凝土保护层厚度的减少,最终加快钢筋的锈蚀。
当结构承担活荷载时,钢筋混凝土结构产生疲劳破坏,造成强度极限和刚度的递减,而且使其产生并且扩大裂缝。
通常疲劳破坏可以被分为固定和随机破坏,前者被用来决定荷载周期,而后者相对于任意的材料和荷载而言。
除以上所述外,还有其他许多因素对其有影响。
例如温度(包括温度的高低,变化周期,冻害, 湿度(包括干湿周期)),以及荷载的调幅。
荷载的调幅可以使钢筋混凝土结构的抵抗力降低。
3.任意时间相关性分析属于该情况结构的随机变量是彼此相互独立的,并且认为随时间变化为特征的材料,以随机时间相依函数为特征的钢筋混凝土可以用下面公式来表示:式中:()O K t 这一随机变量指出了结构材料与试验材料性质的差异;O K 是建筑试验材料性质的差异系数,f K 是试验材料的随机变量。
根据统计理论,平均值和标准自差系数()M K t()()100kM k ky t k t μμμ-= (3)式中()0k t μ表示平均值,()0k M k t ζ表示随机过程的标准自差系数 ()0K t , ky μ 和 y k ζ 分别 是试验材料性质的平均值和自差系数标准以及随机变量f k 。
同样地,任意与其类似的解析模型多半可以认为,用来研究任意随时间变化的钢筋混凝土结构的几何参数和计算方法。
同样地,与其类似的分析模型的随时间变化的钢筋混凝土结构的几何参数和计算方法多半可以这样来研究。
钢筋混凝土的抵抗力可以用抵抗力函数R ( x 1 , x 2 , , xn )表示。
其中i x 表示计算结构的参数,例如材料,几何形状,计算方法等。
另外,考虑到疲劳工作,计算模型和最初参数以及与时间相关的抵抗力模型可以用下式表示:式中 : R(R0, t) 是随机抵抗过程,R0 是最初阻力,,η是随机过程的疲劳破坏,Kp 是计算模型的不可测定参数,xi 表示随机过程的物质参数。
许多关于钢锈蚀的实验表明钢的侵蚀过程与正规随机过程相一致。
分离程序,随机时间相关的抵抗力R( R0, t)可以简单地表示为:式中:R ( t)是由时间决定的函数,而R0是任意初阻力。
另外,其它的不能确定的情况应该被考虑 ,例如未确定实际材料的抵抗力大小,几何学尺寸,和计算模型。
对于简单结构,任意过程的抵抗力函数, 可以简单写成:式中:()g t 是与时间有关的函数,()P K t 计算模型是计算模型的不可测定参数,以及()P R t 是由计算模型决定的结构抵抗力。
对于单一结构构件用等式( 7)表示,可以写作:式中:()(),P M K t K t ,以及()A K t 分别表示为随时间变化的计算参数,钢筋混凝土结构构件几何形状和材料的特征。
()k R t 是材料抵抗力标准值。
平均值和标准偏差等式( 8)分别如下式表示:在具体施工应用中,混凝土结构阻力随机过程的递减函数按以下公式计算:式中的()R t 是混凝土结构阻力的随机过程,, ζ是相关的随机变量,以及 ()t φ是随时间变化的函数。
基于混凝土结构设计的耐久性等级,等式(11)可以采用下列公式确定:式中()cu t μ——当钢筋混凝土达到极限时混凝土的抵抗力平均值;()y t σ———当钢筋混凝土达到极限时钢筋的抵抗力平均值;()cu t ζ——钢筋混凝土中的混凝土的标准偏差系数;()y t ζ——钢筋混凝土中的钢筋的标准偏差系数;1α,2α分别为混凝土和钢抵抗力减小系数,; 1α,2α涉及到结构的材料,可以从材料实验中获得;4 工程应用测试轴向受压钢筋混凝土的结构构件,从而得到一些结构阻力的统计资料。
考虑初始值∶C30 的混凝土的平均值 1.41cu μ=,标准偏差0.19cu σ=;;20MnSi 的钢筋,平均值1.14y μ=,偏差标准偏差0.07y σ=; 初始阶段的尺寸是21m 。
混凝土和钢的抵抗力减小系数可以分别从Ref [4]处获得,71810α-=⨯。
62 2.210α-=⨯。
在这种条件下,轴向受压的钢筋混凝土结构相关随机时间抵抗力可以从中获得。
根据钢筋混凝土结构的设计理论,抵抗力函数cu cu y y R A R A R =+,式中cu R 和y R 分别为混凝土和钢筋的初阻力。
其次在论文中使用该理论建议,来计算随机时间而定的抵抗力。
一些统计数据见表格1。
从计算结果中可以清楚的看到,钢筋混凝土的阻力明显地随时间增加而减小。
这个现象是重要,并且在校核钢筋混凝土的安全性上是不能忽略的。
表1 轴向受压的钢筋混凝土结构构件随时间变化的抵抗力5 结论 对于土木工程的研究,设计,建设,钢筋混凝土结构的特征是非常重要的。
任意随时间变化的钢筋混凝土材料的研究对于结构测试,钢筋混凝土结构的养护,安全评估是必需的。
为了结构可靠性的设计,任意随时间变化的实际抵抗力应该被确定。
在论文里针对以材料为特征钢筋混凝土进行研究,其中对混凝土产生影响的因素有混凝土碳化,钢筋腐蚀。
针对随时间而变钢筋混凝土结构的抵抗力,影响钢筋混凝土的其他因素和解析方法是被建议的。
附件2:外文Time-varying resistance of reinforced concreteAbstract: Reinforced concrete analysis of the correlation time are introduced, discussed the mechanism of reinforced concrete, and then study with time-dependent resistance of reinforced addition, steel reinforced concrete structure also needs to beanalysis of the of resistance to change over time the actual statistical methods, including physical materials, structure size calculation to determine addition, the sample estimated change over time the resistance of reinforced concrete structures isgiven.Keywords: uncertainty analysis; resistance over time; reinforced concrete:Because reinforced concrete material used in many places, and the price is cheap, so it is a very useful in civil engineering , a lot of this material is , the traditional structural design and construction of reinforced concrete reinforced concrete little attention to the relationship between intensity and time, especially the role of the different effects of the material is almost no study of the recent years, several studies in building construction was related to this issue - on the strength of reinforced concrete and time-related been done on reinforced concrete columns of the failure probability that low-intensity failure probability of reinforced concrete columns under load than accidental damage this method has been applied to changes over time, the failure probability intensity and Liu [4] research on the durability of concrete structures that this effect accelerate its Lu [6], have already discussed the case of steel general, rely on different factors significantly reduced the resistance of reinforced checking on the safety of concrete structures, the basic theory for the durability of reinforced concrete to provide change over time the nature of reinforced concrete structures is necessary.that affect the mechanism of reinforced concreteMany factors have an impact resistance of reinforced in the water area more than 50 chemicals in the corrosive elements, water, work and play in which the regulatory concrete model to obtain a related approach is a practical understanding of multi-factor , for a single factor, many of the results only take into account the effect of concrete carbonation, carbonation thickness can be expressed using the followingformula:Can be written as: D (t) = K t (1)Where D (t), K and t are the thickness, the speed factor and carbonization time. So far, although many models have been applied to the reinforcement of the fracture, fatigue failure, but has not accepted the conclusions of all general, to reduce the resistance of reinforced concrete reinforcement geometry variables, the surrounding environment as well as resistance to change over time and so , resistance to change is reinforced concrete, a random function or set of materials, processes and structure of variable concrete carbonation in the air is called in and is complex and CO2 in the air as well as the basic material of reinforced concrete and in the slow in the air fully dense protective layer of reinforced concrete will take decades, but the non-compacting concrete carbonation as long as several the thin material with high content of carbon, the strength of reinforced concrete will drop and the structure in the carbonization process will speed up the narrow can cause lowering of alkalinity and steel surface of the steel reinforcement corrosion of iron is steadily losing its electronic and then in water, and then under the conditions in the aerobic react with , the consumption of time many times a lot of erosion allows the production of reinforced concrete protective layer cracks, and along the direction of Jiangdi Gangjin the bond between steel bars and concrete strength, reinforced concrete structure,resulting in the loss of carrying studies suggest that the most serious corrosion of non-reinforced carbon protective layer 15mm the other hand, due to imperfections on the surface and the cracks in the concrete, so that corrosion may be ahead of the start time, and the corrosion rate may be greatly the steel stress is less than the yield point, the damage rate is when the steel stress exceeds the yield point, the damage rate will increase several latter is known as stress fracture, which is brittle and dangerous of steel reinforcement will reduce the pressure area, destroy the structure of bond strength and reduced of the air and all of reinforced concrete liquid will have a huge can cause corrosion of reinforced concrete, concrete cover thickness reduction, and ultimately accelerate the corrosion of the structure bear live loads, fatigue of reinforced concrete structures destroyed, causing the ultimate strength and stiffness of the decline, Erju and expanded to produce failure usually can be divided into fixed and random destruction, the former was used to determine the load cycle, while the latter relative to the terms of any of the materials and from the above, there are many other factors affecting example, temperature (including temperature, height, change cycle, frost, humidity (including wet and dry cycles)), and the load loading can reduce the resistance of reinforced concrete structures.time correlationThe structure of the situation is a random variable is independent of each other, and that over time the material is characterized by random time-dependent function characteristics of reinforced concrete that can use the following formula: Where: The structure of the random variable that material properties of materials andtest the difference;The nature of building test materials is different coefficient of random variables to testthe material.According to statistical theory, the mean and standard deviation coefficient of self-(3)Where indicated, on average,Since the random process that the standard deviation coefficient, Respectively, to test the material properties and the mean and standard deviations ofcoefficients and random variables.Similarly, any analytical model to its most similar to that used to study any time-varying geometric parameters of reinforced concrete structure and method of , a similar analysis model with time-varying geometric parameters of reinforced concrete structures and computational methods to study the most can be.The resistance of reinforced concrete resistance function can be R (x1, x2, ⋯, xn) expressed the calculation of the structure parameters, such as materials, geometry, calculation addition, taking into account the fatigue of work, and the initial model parameters and model with time-related resistance can be expressed as follows: Where: R (R0, t) is a random process of resistance, R0 is the initial resistance,, η is a random process of fatigue failure, Kp can not be measured to calculate the model parameters, xi random process that the material parameters.Many experiments show that the corrosion on the steel corrosion process of steel is consistent with the regular random process, random time-dependent resistance R (R0,t) can be simply expressed as:Where: R (t) is determined by the time function, and R0 is an arbitrary initial resistance.In addition, other circumstances can not be determined should be considered, for example, the resistance of materials determined the actual size, geometry, size, andcomputational models.For simple structures, the resistance function of any process, you can simply write: Where: is the time-related functions, calculation model is to calculate the model parameters can not be measured, and the model determined by the structure ofresistance.For a single structural component with equation (7) that can be written as:Where:, and, respectively, for the calculation of parameters over time, reinforced concrete structural geometry and material material resistance to the standard value. Mean and standard deviation of equation (8), respectively, be expressed as follows: In the specific construction applications, the resistance of concrete structures decreasing function of random process in the following formula: Where is the resistance of the random process of concrete structures, is related random variables, and is a function of change over design of concrete structures based on rank, equation (11) can be determined using the following formula:Where - when the reinforced concrete to reach the limits of the average resistance ofconcrete;--- When the reinforced concrete resistance to limit the average;- Reinforced concrete in the standard deviation coefficient of concrete;- Reinforced concrete are the standard deviation coefficient;, Respectively, decreased resistance of concrete and steel factor;, related to the structure of the material, the experiment can be obtained from the material;4 ApplicationAxial compression tests of reinforced concrete structural members, resulting in somestructural resistance statistics.Consider the initial value:C30 concrete in the mean, standard deviation;; 20MnSi reinforcement, the average deviation of standard deviation; the size of the initial phase of concrete and steel, respectively, from the reduction factor to Ref [4] obtained..Under these conditions, theaxial compression of the reinforced concrete structure can be related to resistance toderive random time.According to the design of reinforced concrete structure theory, the resistance function, where and are the initial resistance of concrete and , the paper proposed to use the theory to calculate the random time-dependent resistance.Some statistics, see Table the results can clearly see that the resistance of reinforced concrete with time significantly phenomenon is important, and in checking on thesafety of reinforced concrete can not be ignored.Table 1, the axial compression of the reinforced concrete structural resistance tochange over timeTime / year 01,020,304,050Average / kNStandard deviation / kNcoefficient of variation5 ConclusionFor civil engineering research, design, construction, characteristic of reinforced concrete structures is very change over time of reinforced concrete for structural testing, reinforced concrete structure maintenance, safety assessment is the design of structural reliability, any real resistance to change over time should be the paper for the material characteristics of reinforced concrete research, in which the factors affecting concrete carbonation of concrete, steel change over time the resistance of reinforced concrete structures, reinforced concrete impact of other factors and theproposed analytical method is.。