考研数学《概率论与数理统计》知识点总结
考研数学三必背知识点:概率论与数理统计
概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。
例如:掷硬币的结果、抽取扑克牌的花色等。
2.概率:概率是描述随机事件发生可能性大小的数值。
概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。
3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。
例如:掷骰子的结果、抽取彩色球的颜色等。
4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。
例如:掷骰子的点数、抽取扑克牌的点数等。
5.概率分布:随机变量的概率分布描述了每个取值发生的概率。
常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。
6. 期望值:期望值是衡量随机变量取值的平均值。
对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。
7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。
方差=Var(X)=E[(X-E[X])^2]。
8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。
独立性的判定通常通过联合概率、条件概率等来进行推导。
二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。
总体是指要研究的对象的全部个体或事物的集合。
2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。
统计量是根据样本计算得到的参数估计值,用来估计总体参数。
3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。
4.统计分布:统计分布是指样本统计量的分布。
常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。
5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。
(完整版)概率论与数理统计知识点总结(详细)
《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
(完整版)概率论与数理统计知识点总结(免费)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结免费超详细版
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其统计规律的数学学科,在自然科学、工程技术、社会科学、经济管理等众多领域都有着广泛的应用。
以下是对概率论与数理统计中一些重要知识点的详细总结。
一、随机事件与概率1、随机试验随机试验是指在相同条件下可以重复进行,试验结果不止一个且事先不能确定的试验。
2、样本空间样本空间是随机试验所有可能结果组成的集合。
3、随机事件随机事件是样本空间的子集。
4、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。
5、概率的定义概率是对随机事件发生可能性大小的度量。
6、古典概型具有有限个等可能结果的随机试验。
7、几何概型样本空间是某个区域,且每个样本点出现的可能性与区域的面积、体积等成正比。
8、条件概率在已知某事件发生的条件下,另一事件发生的概率。
9、乘法公式用于计算两个事件同时发生的概率。
10、全概率公式将复杂事件的概率通过划分样本空间分解为简单事件的概率之和。
11、贝叶斯公式在已知结果的情况下,反推导致该结果的原因的概率。
二、随机变量及其分布1、随机变量用数值来描述随机试验的结果。
2、离散型随机变量取值可以一一列举的随机变量。
3、离散型随机变量的概率分布列出随机变量的取值以及对应的概率。
4、常见的离散型随机变量分布包括 0-1 分布、二项分布、泊松分布等。
5、连续型随机变量取值充满某个区间的随机变量。
6、连续型随机变量的概率密度函数用于描述连续型随机变量的概率分布。
7、常见的连续型随机变量分布包括均匀分布、正态分布、指数分布等。
8、随机变量的函数的分布已知随机变量的分布,求其函数的分布。
三、多维随机变量及其分布1、二维随机变量由两个随机变量组成的向量。
2、二维随机变量的联合分布函数描述二维随机变量的概率分布。
3、二维离散型随机变量的联合概率分布列出二维离散型随机变量的取值组合以及对应的概率。
4、二维连续型随机变量的联合概率密度函数用于描述二维连续型随机变量的概率分布。
考研数学中的概率论与数理统计知识点总结
考研数学中的概率论与数理统计知识点总结随着社会的发展,考研越来越受到广大学子的关注和追捧。
为了帮助考研学子们更好地备考,本文将对考研数学中的概率论与数理统计知识点进行总结和梳理。
一、概率论1.基本概念概率是研究随机事件发生可能性的一种数学方法。
其中,随机事件是指在相同的条件下可能出现也可能不出现的事件。
2.概率的计算概率有三种计算方法:古典概型、几何概型和统计概型。
其中,古典概型适用于有限个等可能性事件的概率计算;几何概型适用于连续性问题的概率计算;统计概型适用于大量重复实验的概率计算。
3.条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。
其计算公式为P(A|B)=P(AB)/P(B)。
4.独立事件当事件A和事件B的发生没有相互影响时,称它们是独立事件。
根据概率乘法公式可以得到独立事件的计算公式为P(AB)=P(A)P(B)。
5.随机变量随机变量是指一个随机试验结果所对应的数值,可以分为离散型和连续型两种。
其中,离散型随机变量是指取到有限个或无限个可数值的随机变量,例如掷骰子的点数;连续型随机变量是指取到某一区间内任意一个数值的随机变量,例如人的身高。
二、数理统计1.基本概念数理统计是利用概率论在统计学中进行数据分析和研究的一种数学方法。
其中,总体是指含有可度量或可观察的某种特征的全部个体群体;样本是指对总体的部分观测数据。
2.参数估计参数估计是指通过样本中的数据对总体中某个或某些参数进行估计的方法。
其中,点估计是指通过样本数据直接估计总体参数的值;区间估计是指通过样本数据估计总体参数的值所在的区间。
3.假设检验假设检验是指在已知总体参数的情况下,通过样本所得到的样本统计量来推断总体参数是否符合某种假设的方法。
其中,显著性水平是指假设检验中犯错误的概率,一般取0.05或0.01。
4.方差分析方差分析是指通过方差比较来确定组间差异和组内差异及其大小的方法。
其中,单因素方差分析是指只考虑一个因素对结果影响的方差分析;双因素方差分析是指考虑两个因素对结果影响的方差分析。
概率论与数理统计知识点总结(PDF)
概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。
样本空间是随机试验所有可能结果的集合。
2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。
事件之间可以进行并、交、补等运算。
3.概率的定义和性质:概率是描述随机事件发生可能性的数值。
概率具有非负性、规范性和可列可加性等性质。
4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。
事件独立表示两个事件之间的发生没有相互关系。
5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。
贝叶斯公式是一种用于更新事件概率的方法。
6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。
分布函数是随机变量取值在一点及其左侧的概率。
7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。
8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。
方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。
二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。
抽样分布是统计量的概率分布,用于推断总体参数。
2.估计和点估计:估计是利用样本数据对总体参数进行推断。
点估计是利用样本数据得到总体参数的一个具体数值。
3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。
评估方法包括最大似然估计、矩估计等。
4.区间估计:区间估计是对总体参数进行估计的区间范围。
置信区间是对总体参数真值的一个区间估计。
5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。
检验方法包括参数检验和非参数检验。
6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。
7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结免费超详细版
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。
以下是对概率论与数理统计主要知识点的详细总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
我们通常用大写字母A、B、C 等来表示。
随机事件的关系包括包含、相等、互斥(互不相容)和对立等。
2、概率的定义概率是用来度量随机事件发生可能性大小的数值。
概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。
概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。
3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。
二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。
2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。
三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。
2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系: 1.A ⊂B ,A 发生必导致B 发生. 2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),k n kk n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a a b x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b ll c X c P -=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(exp[21)(22σμσπ--=x x f ;t t x F xd ]2)(exp[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2exp[21)(2π.即μ=0,ζ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F . 正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3ζ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3ζ,μ+3ζ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |ζ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*.连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,ζ12,ζ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =||条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ). 正态卷积:若X 和Y 相互独立且X ~N (μ1,ζ12),记Y ~N (μ2,ζ22),则对Z=X+Y 有Z ~N (μ1+μ2,ζ12+ζ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x x zx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则: ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为ζ(X ),ζ(X )= . 通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1. 正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21exp{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n nx x x μμμ ==μX . 性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.)(x D第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=ζ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=ζk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.~ 近似的min Q1 M Q3 max当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布:记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点. 由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,则有),(~2n N X σμ,其中X 是样本均值. 定理二:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,ζ12)和N (μ2,ζ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当ζ12=ζ22=ζ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ.设总体X 均值μ及方差ζ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d =θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ). 结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m e t t F -=>}{,则)(}){()(1i m i m n m m n t P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21n X X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,ζ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μζ2已知 )1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μζ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= ζ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2ζ12,ζ22已知 )1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2ζ12=ζ22=ζ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ()12112--+±-n n S tY X w α2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμ2)1()1(2122 22112-+-+-=nnS nSnSwζ12/ζ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X~N(μ,ζ2),两个总体X~N(μ1,ζ12),Y~N(μ2,ζ22).第八章假设实验定义:H0:原假设或零假设,为理想结果假设;H1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H0实际为真时,却拒绝H0.第Ⅱ类错误:H0实际为假时,却接受H0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P{当H0为真拒绝H0}≤α,α称为显著水平.拒绝域:取值拒绝H0.临界点:拒绝域边界.双边假设检验:H0:θ=θ0,H1:θ≠θ0.右边检验:H0:θ≤θ0,H1:θ>θ0.左边检验:H0:θ≥θ0,H1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H0备择假设H1检验统计量拒绝域1 ζ2已知μ≤μ0μ>μ0nXZσμ-=z≥zαμ≥μ0μ<μ0z≤-zαμ=μ0μ≠μ0|z|≥zα/22 ζ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 ζ1,ζ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 ζ12=ζ22=ζ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知ζ2≤ζ02ζ2>ζ02222)1(σχSn-=χ2≥χα2(n-1)ζ2≥ζ02ζ2<ζ02χ2≤χ21-α(n-1)ζ2=ζ02ζ2≠ζ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知ζ12≤ζ22ζ12>ζ222221SSF=F≥Fα(n1-1,n2-1) ζ12≥ζ22ζ12<ζ22F≤F1-α(n1-1,n2-1)ζ12=ζ22ζ12≠ζ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概率论的基本概念
第二章随机变量及其分布
第三章多维随机变量及其分布
第四章随机变量的数字特征
⎪⎪⎪⎭
⎝nn n n c c c 21
第五章大数定律及中心极限定理
第六章样本及抽样分布
定义:
样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个
值≥x p.
箱线图:x p选
择:
记
⎪⎩
⎪
⎨
⎧
∈
+
∉
=
+
+
N
np
x
x
N
np
x
x
np
np
np
p当
,
当
,
]
[
2
1
1
)
(
)
(
)1
]
([
.
分位数,记为Q2或M,称为样本中位
数.
分位数,记为Q1,称为第一四分位数.
分位数,记为Q3,称为第三四分位数.图形:
图形特点:M为数据中心,区间[min,Q1],[Q1,
M],[M,Q3],[Q3,max]数据个数各占1/4,
区间越短数据密集.
四分位数间距:记IQR=Q3-Q1;若数据X<Q1-或X>Q3+,就认为X是疑似异常值.
抽样分布:样本平均
值:
i
n
i
X
n
X
1
1
=
∑
=
样本方
差:
)
(
1
1
)
(
1
1
2
2
1
2
1
2X
n
X
n
X
X
n
S
i
n
i
i
n
i
-
∑
-
=
-
∑
-
=
=
=
样本标准
差:
2
S
S=
样本k
阶(原
点)矩:
k
i
n
i
k
X
n
A
1
1
=
∑
=,
k≥1
样本k
阶中
心矩:
k
i
n
i
k
X
X
n
B)
(
1
1
-
∑
=
=
,k≥2
经验分
布函数:
)
(
1
)
(x
S
n
x
F
n
=,∞
<
<
∞
-x.
)
(x
S表示F的一个样本X1,X2,…,X n 中不大于x的随机
变量的个数.
第七章参数估计
正态总体均值、方差的置信区间与单侧置信限(置信水平为α
1)
-
单个总体X~N(μ,σ2),两个总体X~N(μ1,σ12),Y~N(μ2,σ22).第八章假设实验。