小学数学图形的认识与测量二练习题

合集下载

苏教版数学小学阶段 图形与几何 专项练习

苏教版数学小学阶段 图形与几何 专项练习

图形与几何(一)图形的认识与测量一、填空题。

1、等腰梯形有()条对称轴,等边三角形有()条对称轴,圆有()条对称轴,正方形有()条对称轴。

等腰梯形有()条对称轴。

2、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。

3、一个三角形中,最小的角是46°,按角分类,这个三角形是()三角形。

4、一个三角形三个内角度数的比是2:3:4,三个角的度数分别是()()(),它是()角三角形。

5、用圆规画一个直径5厘米的圆,圆规两脚间的距离应是()厘米,画得的圆的周长是()厘米,面积是()平方厘米。

画一个周长25.12厘米的圆,圆规两脚间的距离是()厘米,画成的圆的面积是()。

6、一张长方形的纸,长是10厘米,宽是6厘米,从这张纸上剪下一个最大的正方形,剩下的纸的面积是()平方厘米。

7、在一块边长是20厘米的正方形木板上锯下一个最大的圆。

这个圆的面积是()平方厘米,剩下的边料的面积是()平方厘米。

8、一个三角形的面积是120平方分米,底是30分米,高是()分米。

9、用两个相同的正方体木块拼成一个长方体,长方体的表面积比两个正方体的表面积的和少16平方厘米,一个正方体的表面积是()平方厘米。

10、将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是()平方厘米。

11、把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来圆柱体的表面积减少()平方分米。

12、在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是()平方厘米。

13、两个正方形的边长之比是2:3,它的周长之比是(),面积之比是()。

14、把两个棱长是4cm的正方体连成一个长方体,这个长方体表面积是()。

15、把一个圆柱从侧面展开后,得到一个周长是125.6cm的正方形,这个圆柱的底面半径是()cm。

16、把一个高3cm的圆柱形钢材熔铸成与它底面积相等的圆锥体,这个圆锥体的高是()cm。

数学六年级下人教版6.2.1图形的认识与测量 练习(含答案)

数学六年级下人教版6.2.1图形的认识与测量 练习(含答案)

数学六年级下人教版6.2 .1图形的认识与测量练习(含答案)1.填空。

(1)一长5cm的正方形,它的周长是()cm,面积是()cm²。

(2)在长40cm、宽6cm的长方形铁皮上剪去一个最大的圆,圆的周长是()cm。

(3)一个平行四边形,底是12cm,高是4cm,面积是()cm²,与它等底等高的三角形的面积是()cm²。

(4)在周长相等的正方形、圆和长方形中,面积最大的是(),面积最小的是()。

(5)一个圆的周长是50.24cm,它的半径是()cm,面积是()cm²。

(6)一个环形的内圆直径是10cm,外圆直径是16cm,它的面积是()cm²。

(7)将一个长方形框架拉成一个平行四边形,周长(),面积()。

(填“变大”“变小”或“不变”)(8)下图中,甲、乙、丙三个三角形的面积比是()。

(9)一个钟表的分针长10cm,1小时后,分针针尖走过的路程是()cm,分针扫过的面积是()cm²。

(10)一个底为4cm的三角形,面积是24cm²,这个三角形的高是()cm。

2.判断。

(1)圆的周长是直径的π倍。

()(2)如下图,在平行线之间的五个图形,它们的面积都相等。

()(3)一个平行四边形,相邻两条边的长分别是89平方厘米。

()(4)半圆的周长是它所在圆周长的一半。

()(5)周长相等的两个圆,面积也相等。

()(6)如左图,A部分的周长和面积分别大于B部分的周长和面积。

()3.选择。

(1)两个圆的直径之比是2:3,它们的周长之比是(),面积之比是()。

①2:3 ②8:27 ③4:9 ④1:9(2)如果两个长方形的面积相等,那么它们的周长()。

①一定相等②不一定相等③一定不相等(3)如下图,甲、乙两个图形的周长相比()。

①甲比乙长②乙比甲长③一样长④不能确定(4)甲和乙的涂色部分的面积相比()。

①甲>乙②甲<乙③甲=乙(5)一个正方形,边长增加3厘米,面积就增加8cm和12cm,其中一条边上的高是5cm。

六年级数学小升初专项测评卷(十九)立体图形的认识与测量(二)(解析版)

六年级数学小升初专项测评卷(十九)立体图形的认识与测量(二)(解析版)

小升初专项培优测评卷(十九)参考答案与试题解析一.填一填(共12小题)1.(2019•茂名)一个边长3厘米的正方形,以它的一条边为轴,旋转后的图形是 ,这个旋转后的图形的体积是 立方厘米.【分析】将正方形,围绕它的一条边为轴旋转一周,得到的是圆柱,圆柱的高和圆柱的底面半径都是正方形的边长,由此数据利用圆柱的体积公式解答即可. 【解答】解:根据分析可知,旋转后的图形 圆柱; 体积是:23.1433⨯⨯, 3.1493=⨯⨯,84.78=(立方厘米); 答:这个旋转后的图形的体积是 84.78立方厘米. 故答案为:圆柱;84.78.【点评】解答此题的关键是找出旋转所得到的图形与原图形之间的数据关系,注意常见的旋转体圆柱、圆锥、球.2.(2019•南京)有一张长方体铁皮(如图),剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为10厘米,那么圆柱的底面积是 平方厘米,体积是 立方厘米.【分析】剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,圆柱的底面半径是10厘米,高是20厘米,根据圆柱体的底面半径为10厘米,2s r π=求出圆柱的底面积即可;然后用圆柱的底面积乘以高即可求出圆柱的体积. 【解答】解:根据分析,圆柱的底面半径是10厘米,高是20厘米,圆柱的底面积:223.1410314s r π==⨯=(平方厘米) 圆柱的体积:314206280v sh ==⨯=(立方厘米) 故答案为:314、6280.【点评】此题中分析出圆柱的底面半径是10厘米,高是20厘米是解答的关键.3.(2019•保定模拟)(单位:)cm 以直角三角形的长直角边为轴旋转一周(如图)得到几何体是 ,体积是 3cm .【分析】(1)如图,以4cm 的直角边为轴旋转一周,可以得到一个高是4厘米,底面半径是3厘米的圆锥. (2)根据圆锥的体积公式213V r h π=即可求出这个圆锥的体积.【解答】解:(1)以4cm 的直角边为轴旋转一周,可以得到一个立体图形,这个立体图形是圆锥体; (2)213.14343⨯⨯⨯3.1434=⨯⨯ 37.68=(立方厘米)故答案为:圆锥体,37.68.【点评】本题一是考查将一个简单图形绕一轴旋转一周所组成的图形是什么图形,二是考查圆锥的体积计算.4.(2019•株洲模拟)两个完全相同的圆柱能拼成一个长12厘米的圆柱,但表面积比原来减少了25.12平方厘米,原来一个圆柱体的体积是 立方厘米.若将原来一个圆柱体削成一个最大的圆锥,则体积会减少 立方厘米.【分析】但表面积比原来减少了25.12平方厘米,说明了原来一个圆柱的底面积是25.12平方厘米除以2,两个完全相同的圆柱能拼成一个长12厘米的圆柱,说明了高就是12厘米除以2,然后再运用圆柱的体积公式V Sh =进行计算即可,再根据等底等高圆锥的体积是截得的圆柱体积的13,列式计算即可求解.【解答】解:25.122(122)÷⨯÷ 12.566=⨯75.36=(立方厘米)75.363(31)÷⨯- 75.3632=÷⨯ 50.24=(立方厘米)答:原来一个圆柱体的体积是75.36立方厘米,体积会减少50.24立方厘米. 故答案为:75.36;50.24.【点评】本题运用“底面积⨯高=体积”进行计算即可.同时考查了等底等高的圆柱和圆锥体积间的关系. 5.(2019春•上海月考)一个直角三角形的三条边长分别是3cm 、4cm 和5cm ,若以直角边为轴旋转一圈,旋转一圈形成的图形体积是 立方厘米.(π取3.14)【分析】根据题意可知:以直角三角形的一条直角边(3厘米)为轴旋转一周得到的圆锥的底面半径是4厘米高是3厘米,如果三角形的另一条直角边(4厘米)为轴旋转一周得到的圆锥的底面半径4厘米,高是3厘米,根据圆锥的体积公式:213V r h π=,把数据代入公式解答.【解答】解:213.14343⨯⨯⨯13.14943=⨯⨯⨯ 37.68=(立方厘米); 213.14433⨯⨯⨯ 13.141633=⨯⨯⨯ 50.24=(立方厘米); 答:形成图形的体积是37.68立方厘米或50.24立方厘米. 故答案为:37.68、50.24.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.6.(2019春•通州区校级期末)把一个圆柱木料削成一个最大的圆锥,体积减少了24立方厘米,原来圆柱的底面积是9平方厘米,削成的圆锥的高是 厘米.【分析】把一个圆柱木料削成一个最大的圆锥,也就是削成的圆锥与圆柱等底等高,因为等底等高的圆柱的体积是圆锥体积的3倍,所以把一个圆柱木料削成一个最大的圆锥,减少部分的体积相当于圆锥体积的(31)-倍,根据已知一个数的几倍是多少,求这个数,用除法求出圆锥的体积,再根据圆锥的体积公式:13V sh =,那么3h V S =÷,把数据代入公式解答.【解答】解:24(31)39÷-⨯÷ 24239=÷⨯÷ 1239=⨯÷ 369=÷4=(厘米)答:削成的圆锥的高是4厘米. 故答案为:4.【点评】此题主要考查等底等高的圆柱与圆锥体积之间的关系及应用.7.(2019春•成武县期末)底面积是230cm ,高是5cm 的圆锥的体积是 50 3cm ,与它等底等高的圆柱的体积是 3cm .【分析】根据圆锥的体积公式:13V sh =,把数据代入公式即可求出圆锥的体积,等底等高的圆柱的体积是圆锥体积的3倍,据此解答即可. 【解答】解:1305503⨯⨯=(立方厘米),503150⨯=(立方厘米), 答:这个圆锥的体积是50立方厘米,与它等底等高的圆柱的体积是150立方厘米. 故答案为:50、150.【点评】此题主要考查圆锥体积公式的灵活运用,以及等底等高的圆柱与圆锥体积之间的关系及应用,关键是熟记公式.8.(2019春•环江县期中)一个圆柱和一个圆锥等底等高,如果圆柱比圆锥的体积多376dm ,则圆柱的体积是 3dm ,圆锥的体积是 3dm .【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(31)-倍,根据已知一个数的几倍是多少,求这个数,用除法求出圆锥的体积,进而求出圆柱的体积. 【解答】解:76(31)÷- 762=÷38=(立方分米) 383114⨯=(立方分米)答:圆柱的体积是114立方分米,圆锥的体积是38立方分米. 故答案为:114、38.【点评】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用.9.(2019春•交城县期中)如图,把一个底面半径为4cm 的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了240cm ,圆柱的高是 cm ,体积是 3cm .【分析】根据圆柱体积公式的推导过程可知,把圆柱切拼成一个近似长方体,体积不变,拼成长方体的表面积比圆柱的表面积增加了以圆柱的高为长.圆柱的底面半径为宽的两个长方形的面积,已知长方体的表面积比圆柱增加了40平方厘米,由此可以求出圆柱的高,根据圆柱的体积公式:2V r h π=,把数据代入公式解答.【解答】解:40245÷÷=(厘米) 23.1445⨯⨯3.14165=⨯⨯=⨯50.245=(立方厘米)251.2答:圆柱的高是5厘米,体积是251.2立方厘米.故答案为:5、251.2.【点评】此题考查的目的是理解掌握圆柱体积公式的推导过程及应用,以及圆柱体积公式的灵活运用,关键是熟记公式.10.(2019春•武穴市校级期中)一个棱长是6dm的正方体容器装满了水后,倒入一个底面积是218dm的圆锥形容器正好装满,这个圆锥的高是.【分析】倒入前后的水的体积不变,由此先利用正方体的容积公式3=求出水的体积,再利用圆锥的高=V a水的体积3⨯÷底面积即可解答.【解答】解:666216⨯⨯=(立方分米)⨯÷=(分米)21631836答:这个圆锥形容器的高是36分米.故答案为:36分米.【点评】此题考查了正方体和圆锥的体积公式的灵活应用,此题中水的体积就是正方体和圆锥的容积,抓住水的体积不变进行解答是关键.11.(2019•防城港模拟)将一段底面直径和高都是10厘米的圆木沿直径切割成两个半圆柱,表面积之和比原来增加了平方厘米.【分析】根据题意可知:把一个圆柱沿底面直径和高切割成两个半圆柱,两个半圆柱的表面积之和比原来的表面积增加了两个正方形的面积,每个长方形的长等于圆柱的高、宽等于圆柱的底面直径,根据正方形的面积公式:2=,把数据代入公式解答.S a【解答】解:10102⨯⨯=⨯1002200=(平方厘米),答:表面积之和增加了200平方厘米.故答案为:200.【点评】此题解答关键是明确:把一个圆柱沿底面直径和高切割成两个半圆柱,两个半圆柱的表面积之和比原来的表面积增加了两个正方形的面积.12.(2019•泉州)图中一个小球的体积是立方厘米,一个大球的体积是立方厘米.【分析】又放入5个同样大的小球后,水面升高了,升高的水的体积就是这5个同样大的小球的体积,升高的部分是一个长5厘米,宽5厘米,高1046-=厘米的长方体,根据长方体的体积计算公式:长方体的体积=长⨯宽⨯高计算出体积,再除以4就是一个小球的体积,进一步求出一个大球的体积.【解答】解:55(104)5⨯⨯-÷=⨯⨯÷5565=÷1505=(立方厘米)30⨯⨯-÷(55430)2=-÷(10030)2=÷702=(立方厘米)35答:图中一个小球的体积是30立方厘米,一个大球的体积是35立方厘米.故答案为:30,35.【点评】本题主要考查特殊物体体积的计算方法,将物体放入或取出,水面上升或下降的体积就是物体的体积.长方体的体积=长⨯宽⨯高.本题易错点是别忘了算出体积后除以5.二.选一选(共8小题)13.(2019•衡阳模拟)把一个正方体加工成一个最大的圆柱体,下面的说法正确的是() A.正方体的体积等于圆柱体的体积B.正方体的表面积等于圆柱体的表面积C.正方体的棱长等于圆柱的高D.正方体的棱长等于圆柱的底面周长的一半【分析】由题意可知:这个最大圆柱体的底面直径和高都等于正方体的棱长,正方体的棱长已知,于是可以求出圆柱的底面积,进而求出其体积.【解答】解:把一个正方体加工成一个最大的圆柱体,则正方体的棱长等于圆柱的高; 故选:C .【点评】解答此题的关键是明白:这个最大圆柱体的底面直径和高都等于正方体的棱长.再根据圆柱的体积公式解答即可.14.(2019春•滨海县期末)下面的三句话中,( )是错误的. A .圆锥的顶点到底面圆心的距离是圆锥的高B .一个圆柱侧面展开图是正方形,这个圆柱的底面周长和高相等C .三角形的底和高成反比例【分析】A 、根据圆锥的高的含义:从圆锥的顶点到底面圆心的距离是圆锥的高;进行判断;B 、由圆柱的侧面展开图的特点可知:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高,再由“一个圆柱的侧面展开是一个正方形”可知,圆柱的高与底面周长相等,由此即可得出答案;C 、判断三角形的底和高是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.据此进行判断. 【解答】解:A 、从圆锥的顶点到底面圆心的距离是圆锥的高,是正确的;B 、由分析可知:当“圆柱侧面展开图是正方形”时,圆柱的高与底面周长相等,原题说法正确;C 、三角形的底⨯高=面积2⨯,因为没有说明面积一定,则面积2⨯就不一定,是底和高对应的乘积不一定,所以三角形的底和高不成反比例. 故选:C .【点评】本题考查了立体图形的基本知识,属基础题.15.(2019•长沙模拟)一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是( ) A .πB .2πC .r【分析】由圆柱体的侧面展开图是一个正方形可知,圆柱体的高和底面周长相等,由此写出圆柱的高与底面半径的比并求出比值即可.【解答】解:底面周长即圆柱的高2r π=; 圆柱高与底面半径的比值是:2:2:12r r πππ==; 答:这个圆柱的高与底面直径的比是2π. 故选:B .【点评】此题主要考查圆柱体的侧面展开图的形状,以及展开图的长和宽与圆柱体的底面周长和高的关系. 16.圆柱、圆锥、正方体和长方体的底面周长和高相等,( )的体积最大. A .圆柱B .圆锥C .正方体D .长方体【分析】根据正方体的体积公式:3V a =,长方体的体积公式:V abh =,圆柱的体积公式:V sh =,圆锥的体积公式:13V sh =,假设它们的底面周长都是12.56厘米,高都是3.14厘米,分别依据它们的体积公式计算出各自的体积,再比较即可.【解答】解:假设它们的底面周长都是12.56厘米,高都是3.14厘米, 则圆柱体(圆锥体)的底面半径为12.56 3.1422÷÷=厘米, 所以圆柱的体积是23.142 3.1439.4384⨯⨯=立方厘米; 圆锥的体积是139.438413.153⨯≈(立方厘米);正方体的棱长为12.564 3.14÷=厘米,正方体的体积是3.14 3.14 3.1430.96⨯⨯≈立方厘米;因为12.562 6.28÷=,所以长方体的长和宽可以是3.15厘米和3.13厘米, 长方体的体积是3.15 3.13 3.1430.95883⨯⨯=立方厘米; 39.438430.9630.9588313.15>>>,所以圆柱体的体积最大. 故选:A .【点评】此题主要考查圆柱、长方体、正方体、圆锥体积公式的灵活运用,关键是熟记公式.17.(2019•郑州模拟)把一个圆柱体沿半径和高平均切成若干份以后,重新拼插成一个近似长方体,原来圆柱体的侧面积是281.64cm .长方体的表面积比圆柱体增加( )A .224cmB .226cmC .232cmD .216cm【分析】(1)观察图形可知:把一个圆柱体沿半径和高平均切成若干份以后,重新拼插成一个近似长方体,表面积是增加了以圆柱的半径r 和高h 为边长的两个长方形的面的面积,即表面积是增加了2rh 平方厘米,由此求出rh 的积即可解决问题,(2)圆柱的侧面积2rh π=,则rh =侧面积2π÷,由此即可解决问题. 【解答】解:81.64 3.1422÷÷⨯, 132=⨯,26=(平方厘米);答:长方体的表面积比圆柱体增加了26平方厘米.故选:B.【点评】抓住圆柱切拼成长方体的方法,得出拼组后增加的两个以底面半径和圆柱的高为边长的长方形的面,是解决此类问题的关键.18.(2019•新罗区模拟)一个底面积是220cm的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图)cm.形的体积是(3A.140B.180C.220D.360【分析】根据图形的特点,可以这样理解,用这样两个完全一样的图形拼成一个高是(711)+厘米的圆柱,根据圆柱的体积公式:V sh=,把数据代入公式求出这样两个图形的体积再除以2即可.【解答】解:20(711)2⨯+÷=⨯÷20182=(立方厘米)180答:节后剩下的图形的体积是180立方厘米.故选:B.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式.19.(2019•保定模拟)把一个圆柱削成一个与它等底等高的圆锥,削去的体积是90立方厘米,这个圆柱的体积是多少立方厘米?列式正确的是()A.90330÷=⨯=D.90245÷⨯=C.903270÷=B.9023135【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(31)-倍,据此可以求出圆锥的体积,进而求出圆柱的体积.【解答】解:90(31)3÷-⨯=÷⨯9023=⨯453=(立方厘米)135答:这个圆柱的体积是135立方厘米.故选:B .【点评】此题主要考查等底等高的圆柱和圆锥体积之间的关系及应用.20.(2019•湘潭模拟)一个底面半径是10厘米的圆锥,它的高如果增加3厘米,它的体积将会增加( )立方厘米. A .3.14B .78.5C .314D .7.85【分析】根据圆锥的体积公式:213V r h π=,把数据代入公式解答即可.【解答】解:213.141033⨯⨯⨯13.1410033=⨯⨯⨯ 314=(立方厘米), 答:它的体积将会增加314立方厘米. 故选:C .【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式. 三.计算题(共3小题)21.(2019春•吉水县期末)求如图图形的表面积.(单位:厘米)【分析】观察图形可知,这个图形的表面积等于下面的底面直径是20厘米、高15厘米的圆柱的表面积与上面的底面直径10厘米、高15厘米的圆柱的侧面积之和,据此计算即可解答问题. 【解答】解:23.142015 3.14(202)2 3.141015⨯⨯+⨯÷⨯+⨯⨯ 942628471=++ 2041=(平方厘米)答:这个图形的表面积是2041平方厘米.【点评】此题主要考查了组合图形的表面积的计算方法,一般都是转换到规则图形中利用表面积公式计算即可解答.22.(2019•如东县)如图是一个直角三角形.AC 边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC 为轴旋转一周形成的立体图形的体积是多少立方厘米?【分析】根据三角形的面积公式:2S ah =÷,那么2h S a =÷,据此可以求出AC 边上的高是多少厘米,以AC 为轴旋转一周形成的立体图形是两个同底面的圆锥,两个圆锥高的和是10厘米的圆锥,根据圆锥的体积公式:213V r h π=,把数据代入公式解答. 【解答】解:AC 边上的高:如图:862210⨯÷⨯÷4810=÷4.8=(厘米)21 3.14 4.8103⨯⨯⨯ 1 3.1423.04103=⨯⨯⨯ 241.152=(立方厘米)答:以AC 为轴旋转一周形成的立体图形的体积是241.152立方厘米.【点评】此题主要考查三角形的面积公式、圆锥的体积公式的灵活运用,关键是熟记公式.23.(2019•临川区校级模拟)如图所示,某机器零件中间是一个棱长为2厘米的正方体,两边各是圆柱体的一半,求这个零件的表面积和体积.【分析】由图形可知:两个半圆柱拼成一个圆柱,它的表面积是圆柱的表面积加上正方体的4个面的面积,题的体积是圆柱与正方体的体积和.根据圆柱的表面积=侧面积+底面积2⨯,圆柱的体积=底面积⨯高,正方体的体积=棱长⨯棱长⨯棱长,把数据代入公式解答.【解答】解:3.1422224⨯⨯+⨯⨯12.5616=+28.56=(平方厘米);23.14(22)2222⨯÷⨯+⨯⨯3.14128=⨯⨯+6.288=+14.28=(立方厘米); 答:这个零件的表面积是28.56平方厘米,体积是14.28立方厘米.【点评】此题主要考查圆柱、正方体的表面积公式、体积公式的灵活运用.四.走进生活,解决问题(共7小题)24.(2019•鄂托克旗)用塑料绳捆扎一个圆柱形的蛋糕盒(如图,单位:厘米),打结处正好是底面圆心,打结用去绳长25厘米.扎这个盒子至少用去塑料绳多少厘米?在它的整个侧面贴上商标和说明,这部分的面积是多少平方厘米?【分析】(1)要求扎这个盒子至少用去塑料绳多少厘米,就是求8条直径、8条高和打结用去的绳长的总和;(2)求商标的面积是多少平方厘米,就是求圆柱形蛋糕盒的侧面积,根据“圆柱的侧面积dh π=”解答即可.【解答】解:(1)15850825⨯+⨯+,12040025=++,545=(厘米), 面积:3.145015⨯⨯,15715=⨯,2355=(平方厘米); 答:扎这个盒子至少用去塑料绳545厘米,在它的整个侧面贴上商标和说明,这部分的面积是2355平方厘米.【点评】解答此题用到的知识点:①圆柱的侧面积的计算方法;②圆柱的特征.25.(2019•许昌)如图是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?(3)大棚内的空间大约有多大?【分析】(1)根据题干,这个大棚的种植面积就是这个长15米,宽2米的长方形的面积,根据长方形的面积公式即可解答;(2)覆盖在这个大棚上的塑料薄膜的面积,即它所在的圆柱的侧面积的一半,加上一个圆柱的底面积;由此利用圆柱的侧面积和底面积公式即可解答;(3)大棚所在的圆柱的体积的一半,就是这个大棚的空间,根据圆柱的体积公式解答即可.【解答】解:(1)15230⨯=(平方米),答:这个大棚的种植面积是30平方米.(2)23.142152 3.14(22)⨯⨯÷+⨯÷,47.1 3.14=+,50.24=(平方米), 答:覆盖在这个大棚上的塑料薄膜约有50.24平方米.(2)23.14(22)152⨯÷⨯÷,3.14152=⨯÷,23.55=(立方米), 答:大棚的空间是23.55立方米.【点评】解答此题主要分清所求物体的形状,转化为求有关图形的体积或面积的问题,把实际问题转化为数学问题,再运用数学知识解决.26.(2019•萧山区模拟)一个底面直径是4厘米的圆锥如图,从顶点沿着高将它切成两半后,表面积增加了24平方分米.这个圆锥的体积是多少平方厘米?【分析】根据题意,把一个圆锥沿着高将它切成两半后,表面积增加了24平方分米,增加了两个截面,每个截面都是以底为4厘米,高为圆锥的高的三角形,根据三角形的面积计算方法求出三角形的高(圆锥的高),再根据圆锥体积公式:213V r h π=据此解答. 【解答】解:24平方分米2400=平方厘米2400224÷⨯÷120024=⨯÷600=(厘米)21 3.14(42)6003⨯⨯÷⨯ 1 3.1446003=⨯⨯⨯ 3.14800=⨯2512=(立方厘米)答:这个圆锥的体积是2512立方厘米.【点评】明确增加的两个面是以底为4厘米,高为圆锥的高的三角形,是解答此题的关键.27.(2019•福州)有一个高8厘米,容量为50毫升的圆形容器A ,里面装满了水,现把长16厘米的圆柱B 垂直放入,使B 的底和A 的底面接触,这时一部分水从容器中溢出,当把B 从A 拿走后,A 中的水的高度只有6厘米,求圆柱体B 的体积是多少?【分析】当把长16厘米的圆柱B 垂直放入容器A 时,从容器中溢出的水的体积,就是放入容器A 的高为8厘米的圆柱B 的体积,然后再求出整个圆柱体B 的体积.【解答】解:圆形容器A 的底面积:508 6.25÷=(平方厘米); 溢出水的体积,即放入容器A 的圆柱B 的体积:6.25(86)⨯-,6.252=⨯,12.5=(毫升); 圆柱体B 的体积是:12.5816÷⨯,12.52=⨯,25=(立方厘米); 答:圆柱体B 的体积是25立方厘米.【点评】此题考查了学生对圆柱体体积公式的掌握与运用,以及空间想象力.28.(2019•益阳模拟)一个圆柱形水桶,底面半径为20cm ,里面盛有80cm 深的水,现将一个底面周长为62.8cm 的圆锥形铁块完全浸没在水中,水面上升了116.圆锥形铁块的高度是多少?(π取3.14) 【分析】水面上升说明体积增加了,增加的体积就是沉浸在水桶中圆锥形铁块的体积,增加的这部分也是一个圆柱,根据圆柱体的体积公式求出增加的体积,再根据圆锥体的体积公式列出方程求出圆锥的高即可解答.【解答】解:设圆锥形铁块的高是x 厘米2211(62.8 3.142)20(80)316x ππ⨯÷÷⨯⨯=⨯⨯⨯, 10020003x ππ=, 60x =;答:圆锥形铁块的高是60厘米.【点评】本题主要考查圆锥体体积与圆柱体体积的计算.圆柱体的体积=底面积⨯高,圆锥体的体积=底面积⨯高13⨯. 29.(2019•渝北区)一个装满水的矿泉水瓶,内直径是8厘米.小亮喝了一些,水的高度还有12厘米,把瓶盖拧紧后倒置放平无水部分高10厘米.小亮喝了多少水?【分析】因为原来瓶是装满水的,所以喝的水量就是倒置后无水部分的体积,根据圆柱体的体积公式:2(2)V Sh d h π==÷,10h =厘米,8d =厘米带入计算,即可得解.【解答】解:23.14(82)10⨯÷⨯23.14410=⨯⨯3.141610=⨯⨯502.4=(立方厘米)502.4=(毫升)答:小亮喝了502.4毫升水.【点评】灵活应用圆柱体的体积公式来解决时间问题;明白无水部分的体积就是所喝水的体积是解决此题的关键.30.(2019•西区)一个圆柱形木块切成四块(如图1),表面积增加48平方厘米;切成三块(如图2),表面积增加了50.24平方厘米.若削成一个最大的圆锥体(如图3),体积减少了多少立方厘米?【分析】根据圆柱的切割特点可知,如图2切割成3块,则表面积是增加了4个圆柱的底面的面积,据此求出一个底面的面积是50.24412.56÷=平方厘米,根据圆的面积公式可得:212.56 3.144r =÷=,因为224=,所以这个圆的半径是2厘米,再根据图1的切割方法,沿底面直径切割后,表面积是增加了8个以底面半径和高为边长的长方形,据此可以求出这个长方形的面积是:4886÷=平方厘米,因为半径是2厘米,所以利用长方形的面积公式可得,圆柱的高是:623÷=厘米,据此求出了圆柱的底面半径和高,再利用圆柱的体积公式即可求出这个圆柱的体积,如图3,把这个圆柱先削成一个最大的圆锥,则削掉的部分的体积就是这个圆柱的体积的23.【解答】解:50.24412.56÷=(平方厘米);12.56 3.144÷=,因为224=;所以这个圆柱的底面半径是2厘米;4882÷÷62=÷3=(厘米);213.1423(1)3⨯⨯⨯-23.14433=⨯⨯⨯25.12=(立方厘米)答:体积减少了25.12立方厘米.【点评】抓住圆柱的两种切割特点,根据增加的表面积分别求出这个圆柱的底面半径和高,是解决本题的关键.。

2015小学六年级数学下册总复习图形的认识与测量(二)(人教版)

2015小学六年级数学下册总复习图形的认识与测量(二)(人教版)

2、一个底面是正方形的长方体, 把它的侧面展开后得到一个边长 是12厘米的正方形。求这个长方 体的体积是多少?
12 3 12 12
3
12÷4=3(厘米) 3×3×12=108(立方厘米) 答:这个长方体的体积是108立方厘米。
3、一个圆柱形木材,沿着一条底面 直径纵向剖开,量得一个纵剖面面积 是6平方分米,那么,圆柱的侧面积是 多少平方分米?
高 厘 米 3
长5厘米
长方体的体积=长×宽×高 V=abh
长方体的体积=底面积×高
正方体的体积:
因为正方体是长、 宽、高都相等的 长方体,所以
V= a
棱 长 厘 米
4 棱长4厘米
正方体的体积=棱长×棱长×棱长
a· a ·

V=
a
3
正方体的体积=底面积×高
圆柱的体积:
长方体的底面积等于圆柱的 底面积
3.14×6=18.84(平方分米)
4、将一个圆柱体沿着底面直径切成 两个半圆柱,表面积增加了40平方 厘米,圆柱的底面直径为4厘米,这 个圆柱的体积是多少立方厘米?
因为增加面积40平方厘米是两个面,一个面是20平方厘米, 20÷4=5厘米是高, 2 所以:V=3.14×(4÷2)×5 =3.14×4×5 =12.56×5=62.8(立方厘米)
m² dm² cm²
m³ dm³ cm³
1m² =100dm² 单位间 1dm² =100cm² 进率 1m² =10000cm²
1m³ =1000dm³ 1dm³ =1000cm³ 1m³ =1000L
判断:
1、长方体、正方体、圆柱体的体
1 2、圆锥的体积是圆柱体积的 3
积都可以用底面积乘以高来计算 √ 。

六年级数学下册试题 一课一练《图形与几何--立体图形的认识与测量(二)》-人教版(含答案).doc

六年级数学下册试题 一课一练《图形与几何--立体图形的认识与测量(二)》-人教版(含答案).doc

《图形与几何--立体图形的认识与测量(二)》一、计算题1.求如图图形的表面积.(单位:厘米)2.有一个半圆柱如图,已知它的底面直径是20厘米,高是8厘米,求它的表面积.3.仔细观察下面图形的特点,然后用较简便的方法求出这个图形的体积:(单位:厘米)4.图形计算求立体图形的体积。

单位(分米)5.如图,将三个高都是1米,底面半径分别是1.5米、1米、0.5米的3个圆柱体组成一个物体.①求这个物体的体积?②求这个物体的表面积?6.如图这只工具箱的下半部是棱长为20cm的正方体,上半部是圆柱体的一半.算出它的表面积和体积.7.求下列物体的体积.二、解决问题1.用塑料绳捆扎一个圆柱形的蛋糕盒(如图,单位:厘米),打结处正好是底面圆心,打结用去绳长25厘米.扎这个盒子至少用去塑料绳多少厘米?在它的整个侧面贴上商标和说明,这部分的面积是多少平方厘米?2.砌一个圆柱形的水池,底面直径6米,深3米.在池的周围和底面抹上水泥,每平方米用水泥5千克,大约要用水泥多少千克?(得数保留整千克数)3.一根圆柱形水管,横截面的半径是5厘米,长是1.2米,做100节这样的水管要铁皮多少平米?4.把一个长12厘米,宽6厘米的长方形纸板沿长旋转一周,得到一个圆柱体,这个圆柱体的侧面积是多少?5.如图,是用塑料薄膜覆盖的蔬菜大棚,长16米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?6.在下面两个空容器中,将甲容器注满水,再倒入乙容器,这时乙容器中的水深多少cm?7.如图是一个直角三角形.AC边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC为轴旋转一周形成的立体图形的体积是多少立方厘米?8.如图,ABCD是直角梯形,以AB为轴将梯形旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?9.把一块棱长为8厘米的正方体铁块熔铸成一个底面半径是10厘米的圆锥形铁块,这个圆锥形铁块的高度是多少?10.一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥体铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥体的底面积是多少平方厘米?( 取3.14)11.如图:在长方体容器内装有水,已知容器内壁底面长为25厘米,宽为20厘米,现把小圆柱体和小圆锥体浸没于水中,水面上升了2厘米.如果圆锥和圆柱的底面积相等高也相等,圆维的体积是多少?12.一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?13.有甲、乙两只圆柱形玻璃杯,其内直径依次是18厘米、12厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?14.有一个高8厘米,容量为50毫升的圆形容器A,里面装满了水,现把长16厘米的圆柱B 垂直放入,使B的底和A的底面接触,这时一部分水从容器中溢出,当把B从A拿走后,A中的水的高度只有6厘米,求圆柱体B的体积是多少?15.有一种容器,瓶颈以下部分呈圆柱形,内有水550mL.现在容器中装有一些水,正放时水的高度为25cm,倒放时空余部分的高度为5cm.问:容器的容积是多少毫升?在水面上,16.在底面长60厘米、宽40厘米的长方形鱼缸中竖直放入一个圆柱体氧气泵,有16其余被水浸没.此时水位比放入前上升了2厘米,氧气泵的体积是多少立方厘米?17.如图所示,某机器零件中间是一个棱长为2厘米的正方体,两边各是圆柱体的一半,求这个零件的表面积和体积.18.小明把一块橡皮泥揉成圆柱形,切成三块(如图),表面积增加了50.24平方厘米,切成四块(如图),表面积增加了96平方厘米,这块橡皮泥的体积是多少立方厘米?19.将一个圆锥从顶点沿底面直径切开,其表面积比原来增加了60平方厘米,如果圆锥的高是6厘米,则圆锥的体积是多少立方厘米?20.把3个长6厘米,底面积相等的圆柱体拼成一个大圆柱,表面积减少了18.84立方厘米,拼成的大圆柱的体积是多少立方厘米?21.一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?22.把一个圆柱按如图1沿直径方向切成两个半圆柱,表面积增加240cm,按图2方式切成两个圆柱,表面积就会增加225.12cm,求这个圆柱的体积.23.如图所示,把底面周长18.84厘米,高10厘米的圆柱切成若干等分,拼成一个近似的长方体.这个长方体的底面积、表面积和体积各是多少?24.一段体积是52.8立方分米的圆柱木料,切削成一个最大的圆锥体,削去部分的体积是多少立方分米?25.一个正方体木块棱长为2dm,把它切削成一个最大的圆锥体.求这个圆锥体与原来正方体的体积比是多少?26.一个底面直径是4厘米的圆锥如图,从顶点沿着高将它切成两半后,表面积增加了24平方分米.这个圆锥的体积是多少平方厘米?27.把一个棱长为6dm的正方体铁块放入一个圆柱形容器内,完全浸没后水面上升了4cm,如果把一个圆锥形铅块放入圆柱容器中,完全浸没后水面上升了1.5cm,求这个圆锥形铅块的体积.28.有甲乙两只圆柱形水桶,甲水桶的底面半径是8cm.乙水桶的底面半径是6cm.甲水桶里没有水,乙水桶里有水且高度是25cm,现把乙水桶里的水倒一部分给甲水桶,使两只水桶里的水的高度一样.求这时甲水桶里有水多少立方厘米?29.一个圆柱形水桶里放入一段半径5厘米的圆钢,把它全部放入水中,桶里的水面上升了9厘米,如果把水中的圆钢提起,使它露出水面8厘米,那么桶里的水面就下降4厘米,求圆钢的体积.(π取3.14)30.一个圆柱形水桶,底面半径为20cm,里面盛有80cm深的水,现将一个底面周长为62.8cm的圆锥形铁块完全浸没在水中,水面上升了1.圆锥形铁块的高度是多少?(π取3.14)1631.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了1厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了4.5厘米.求圆锥的高.32.在一个底面积为34平方厘米的圆柱形容器中,放入等底等高的一根圆柱形物体和一个圆露出水面,圆锥完全浸没,圆锥的体积是多少立方厘锥形物体,水面上升10厘米,圆柱有15米?33.一个圆柱形木块按图甲中的方式切成形状、大小相同的四块,表面积增加了296cm;按图乙中的方式切成形状、大小相同的三块,表面积增加了250.24cm.若把它削成一个最大的圆锥,体积减小多少立方厘米?34.如图,在密封的容器中装有一些水,水面距底部的高度是10cm.如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?答案一、计算题1.解:23.142015 3.14(202)2 3.141015⨯⨯+⨯÷⨯+⨯⨯942628471=++2041=(平方厘米)答:这个图形的表面积是2041平方厘米.2.解:23.142082 3.14(202)208⨯⨯÷+⨯÷+⨯251.2314160=++725.2=(平方厘米)答:它的表面积是725.2平方厘米.3.解:224143.14()9 3.14()9232⨯⨯+⨯⨯⨯,13.1449 3.14493=⨯⨯+⨯⨯⨯, 113.0437.68=+, 150.72=(立方厘米); 答:这个图形的体积是150.72平方厘米.4.解:223.14[(202)(102)]15⨯÷-÷⨯3.14[10025]15=⨯-⨯3.147515=⨯⨯3532.5=(立方分米), 答:这个立体图形的体积是3532.5立方分米.5.解:(1)2223.14(1.510.5)1⨯++⨯,3.14(2.2510.25)=⨯++,3.14 3.5=⨯,10.99=(立方米), 答:这个物体的体积是10.99立方米.(2)大圆柱的表面积:23.14 1.522 3.14 1.51⨯⨯+⨯⨯⨯,14.139.42=+,=(平方米),23.55中圆柱侧面积:2 3.1411 6.28⨯⨯⨯=(平方米),小圆柱侧面积:2 3.140.51 3.14⨯⨯⨯=(平方米),这个物体的表面积:23.55 6.28 3.1432.97++=(平方米);答:这个物体的表面积是32.97平方米.6.解:表面积:23.1420202 3.141020205⨯⨯÷+⨯+⨯⨯,=÷+⨯+⨯,12562 3.141004005=++,6283142000=(平方厘米);2942体积:2⨯⨯÷+⨯⨯,3.14102022020203.141002028000=⨯⨯÷+,=+,31408000=(立方厘米);11140答:它的表面积是2942平方厘米,体积是11140立方厘米.7.解:2⨯÷⨯+÷3.14(42)(57)2=⨯⨯÷3.144122=⨯3.1424=(立方厘米),75.36答:图中物体的体积是75.36立方厘米.二、解决问题1.解:(1)15850825⨯+⨯+,=++,12040025=(厘米),545面积:3.145015⨯⨯,15715=⨯,=(平方厘米);2355答:扎这个盒子至少用去塑料绳545厘米,在它的整个侧面贴上商标和说明,这部分的面积是2355平方厘米.2.解:需要抹水泥的面积是:2⨯÷+⨯⨯,3.14(62) 3.1463=⨯+,3.14956.52=+,28.2656.52=(平方米),84.78⨯≈(千克),84.785424答:大约要用水泥424千克.3.解:5厘米0.05=米,⨯⨯⨯⨯3.140.052 1.2100=⨯⨯⨯3.140.1 1.2100=⨯0.3768100=(平方米);37.68答:做100节这样的水管至少需要37.68平方米的铁皮.4.解:3.146212⨯⨯⨯,6.28612=⨯⨯,=⨯,37.6812=(平方厘米),452.16答:这个圆柱体的侧面积是452.16平方厘米.5.解:(1)16232⨯=(平方米)答:这个大棚的种植面积是32平方米.(2)2⨯⨯÷+⨯÷3.142162 3.14(22)=+50.24 3.14=(平方米)53.38答:覆盖在这个大棚上的塑料薄膜约有53.38平方米.6.解:1124⨯=(厘米)3答:乙容器中的水深4厘米.7.解:AC边上的高:如图:862210⨯÷⨯÷4810=÷4.8=(厘米)21 3.14 4.8103⨯⨯⨯ 1 3.1423.04103=⨯⨯⨯ 241.152=(立方厘米)答:以AC 为轴旋转一周形成的立体图形的体积是241.152立方厘米.8.解:如下图:2213.1428 3.142(85)3⨯⨯-⨯⨯⨯- 13.1448 3.14433=⨯⨯-⨯⨯⨯ 100.4812.56=-87.92=(立方厘米), 答:这个立体图形的体积是87.92立方厘米.9.解:38512=(立方厘米)23512(3.1410)⨯÷⨯1536314=÷4.89≈(厘米)答:这个圆锥形铁块的高大约是4.89厘米.10.解:容器水下降的体积:23.1460.5⨯⨯3.14360.5=⨯⨯56.52=(立方厘米);圆锥的底面积:1÷⨯56.52(9)3=÷56.523=(平方厘米);18.84答:这个圆锥体的底面积是18.84平方厘米.11.解:圆锥和圆柱的体积和:⨯⨯=(立方厘米);2520210001000(13)÷+=÷10004=(立方厘米),250答:圆锥体的体积是250立方厘米.12.解:8210+=(厘米),8⨯=(立方厘米),32.425.9210答:瓶内酸奶体积是25.92立方厘米.13.解:22⨯÷⨯÷÷÷3.14(182)2 3.14(122)=⨯÷81236=(厘米)4.5答:这时乙杯中的水位上升了4.5厘米.14.解:圆形容器A的底面积:÷=(平方厘米);508 6.25溢出水的体积,即放入容器A的圆柱B的体积:6.25(86)⨯-,=⨯,6.252=(毫升);12.5圆柱体B的体积是:12.5816÷⨯,=⨯,12.52=(立方厘米);25答:圆柱体B 的体积是25立方厘米.15.解:根据题意画示意图如下:解:550[25(255)]÷÷+550[2530]=÷÷55506=÷ 3660()cm =3660660cm =毫升答:容器的容积是多少毫升660毫升.16.解:160402(1)6⨯⨯÷-548006=÷ 648005=⨯ 5760=(立方厘米)答:氧气泵的体积是5760立方厘米.17.解:3.1422224⨯⨯+⨯⨯12.5616=+28.56=(平方厘米);23.14(22)2222⨯÷⨯+⨯⨯3.14128=⨯⨯+6.288=+14.28=(立方厘米); 答:这个零件的表面积是28.56平方厘米,体积是14.28立方厘米.18.解:根据题意得250.24412.56()cm ÷=50.244 3.14÷÷12.56 3.14=÷24()cm =422=⨯所以半径是2厘米.9682÷÷122=÷6=(厘米)12.56675.36⨯=(立方厘米)答:这块橡皮泥的体积是75.36立方厘米.19.解:圆锥的底面直径:6022610÷⨯÷=(厘米); 圆锥的体积:21 3.14(102)63⨯⨯÷⨯ 1 3.142563=⨯⨯⨯ 157=(立方厘米), 答:这个圆锥的体积是157立方厘米.20.解:18.844(63)÷⨯⨯,4.7118=⨯,84.78=(立方厘米), 答:拼成的大圆柱的体积是84.78立方厘米.21.解:底面直径:43.96 3.1414÷=(厘米),1482224⨯⨯=(平方厘米), 答:表面积增加了224平方厘米.22.解:圆柱的底面积:25.12212.56÷=(平方厘米),底面半径的平方:12.56 3.144÷=,因为2的平方是4,所以圆柱的底面半径是2厘米,圆柱的高:402(22)2045÷÷⨯=÷=(厘米),体积:23.1425⨯⨯,3.1445=⨯⨯,62.8=(立方厘米), 答:这个圆柱的体积是62.8立方厘米.23.解:底面半径是:18.84 3.1423÷÷=(厘米)底面积是:23.14328.26⨯=(平方厘米)表面积是:218.8410 3.14321032⨯+⨯⨯+⨯⨯188.456.5260=++304.92=(平方厘米)体积是:23.14310⨯⨯3.1490=⨯282.6=(立方厘米)答:这个长方体的底面积是28.26平方厘米,表面积是304.92平方厘米,体积是282.6立方厘米.24.解:252.835.23⨯=(立方分米)答:削去部分的体积是35.2立方分米.25.解:21 3.14(22)2:(222)3⨯⨯÷⨯⨯⨯1 3.1412:83=⨯⨯⨯ 6.28:24=628:2400=157:600=. 答:这个圆锥体与原来正方体的体积比是157:600.26.解:24平方分米2400=平方厘米2400224÷⨯÷120024=⨯÷600=(厘米)21 3.14(42)6003⨯⨯÷⨯ 1 3.1446003=⨯⨯⨯ 3.14800=⨯2512=(立方厘米)答:这个圆锥的体积是2512立方厘米.27.解: 1.56664⨯⨯⨯ 1.52164=⨯ 81=(立方分米)答:这个圆锥形铅块的体积是81立方分米. 28.222:86625x x πππ⨯+⨯=⨯⨯64363625x x πππ+=⨯1003625x ππ=⨯1001003625100x ππππ÷=⨯÷9x =23.14891808.64⨯⨯=(立方厘米); 答:这时甲水桶里有水1808.64立方厘米.29.解:设圆钢的高为h 厘米,圆钢体积23.14578.5V h h =⨯⨯=水桶底面积78.59h =÷因为下降的水的体积=水面上圆钢的体积 2(78.59)4 3.1458h ÷⨯=⨯⨯, 478.5 3.142589h ⨯=⨯⨯, 43.14200(78.5)9h =⨯÷⨯, 4628(78.5)9h =÷⨯,18h =,圆钢体积23.14578.5181413V h =⨯⨯=⨯=(立方厘米). 答:这段圆钢的体积是1413立方厘米.30.解:设圆锥形铁块的高是x 厘米 2211(62.8 3.142)20(80)316x ππ⨯÷÷⨯⨯=⨯⨯⨯, 10020003x ππ=, 60x =;答:圆锥形铁块的高是60厘米.31.解:23.14221⨯⨯÷3.14421=⨯⨯÷25.12=(平方厘米)225.12 4.53[3.14(62)]⨯⨯÷⨯÷339.12[3.149]=÷⨯12=(厘米)答:圆锥的高是12厘米.32.解:放入等底等高的一根圆柱形钢材和一个圆锥以后,水面上升10厘米, 增加体积:3410340⨯=(立方厘米),由圆柱体和圆锥体体积公式知:等低等高的圆柱体积是圆锥体积的3倍, 设圆锥体体积为x ,则圆柱体体积为3x ,13(1)3405x x -+=, 173405x =, 100x =;答:圆锥的体积是100立方厘米.33.解:50.24412.56÷=(平方厘米)设圆柱底面半径为r 厘米23.1412.56r ⨯=23.14 3.1412.56 3.14r ⨯÷=÷24r =因为224=所以2r =96826÷÷=(厘米)112.566(1)3⨯⨯- 212.5663=⨯⨯ 50.24=(立方厘米)答:体积减小50.24立方厘米.34.解:高6厘米的圆锥容器中水倒入等底的圆柱容器中高是632÷=(厘米)+-2(106)=+246=(厘米),答:如果将这个容器倒过来,这时水面距底部的高度是6厘米.。

图形的认识与测量 练习题

图形的认识与测量 练习题

图形的认识与测量练习题图形的认识与测量——练习题一、基础知识1、什么是图形?列举几种常见的图形,如三角形、圆形、矩形等。

2、图形的属性包括哪些?简要介绍每个属性的含义及其在图形认识与测量中的应用。

3、解释“图形的周长”和“图形的面积”的概念,并给出计算方法。

4、什么是图形的比例?解释比例尺的概念,并给出两种常见的比例尺形式。

二、问题解答5、有一个矩形,长为6cm,宽为4cm。

求该矩形的周长和面积。

51、有一个正方形,边长为5cm。

求该正方形的周长和面积。

511、有一个圆,半径为3cm。

求该圆的周长和面积。

5111、在一个比例尺为1:100的图纸上,测量一个实际长度为10m的物体,那么在图纸上的长度是多少?三、实践操作9、给你一个任务,需要测量并计算以下图形的面积: (a) 一个不规则的土地; (b) 一个圆形的游泳池; (c) 一块矩形的稻田。

在操作过程中,需要注意哪些问题?如何解决?91、在一个比例尺为1:500的地图上,标注并测量一个建筑物的占地面积。

你需要哪些工具和软件?如何操作?四、思考与探索11、在实际生活中,图形认识与测量的应用有哪些?列举三个实例。

111、思考:对于一个复杂的图形,如何准确地测量其面积?介绍一种或多种方法。

1111、探索:在网络上搜索并了解有关三维图形认识与测量的知识和技术,对比与二维图形的异同点。

通过本次练习题,旨在加深对图形认识与测量的理解,掌握基本概念和方法,同时培养实际操作和解决问题的能力。

在未来的学习和工作中,我们将进一步应用这些知识,以便更好地服务于实际生活和生产。

小学数学总复习图形的认识与测量(填空题)

小学数学总复习图形的认识与测量(填空题)

绝密★启用前小学数学总复习图形的认识与测量(填空题)题号一总分得分一.填空题(共70小题,共700分)1.如图若以长方形的一条宽为轴旋转一周后,甲乙两部分所成的立体图形的体积比是.(10分)2.测量土地,一般要用到的测量工具有、、,如果没有测量工具或对测量结果要求不十分精确时,可以用测或测.(10分)3.橡皮擦一端对齐的尺子刻度是1刻度,另一端对齐4厘米,橡皮擦长度为厘米(10分)4.我会填。

1元硬币厚约2汽车每小时行驶约78小学生身高约130建筑物高约8(10分)5.两条直线相交成直角时,这两条直线,其中一条直线叫做另一条直线的.(10分)6.量一量,想一想。

长方形的长是厘米,宽是厘米,从中截取一个最大的正方形.正方形的边长是厘米.(10分)7.拼成一个正方形最少需要根小棒。

拼成一个三角形最少需要根小棒。

拼成一个长方形最少需要根小棒。

(10分)8.请你先以A为顶点画一个70°的角.再以B为顶点画一个20°的角,组成一个三角形.最后以AB为底,画出三角形的高.这个三角形是一个三角形.(10分)9.把相应的序号填在横线上。

是正方形,是长方形,是圆,是三角形。

(10分)10.(2014·湖北武汉)小明用6个棱长为a厘米的正方体拼成一个表面积是22a2平方厘米的长方体,这个长方体的棱长总和是厘米。

(10分)11.下图中有多少个正方形。

个正方形。

(10分)12.用四根小棒做出一个正方形如图:,对这个正方形沿一角挤压,挤压后,变成这是形,它和正方形的相同点是:,不同点是:。

(10分)13.我会数也会涂。

涂一涂红色蓝色黄色绿色个个个个(10分)14.赵云如何移动才能靠近曹操?(10分)15.观察七巧板。

其中三角形有5个,1个,还有1个,一共有个图形。

(10分)16.长方形与平行四边形的关系是.(10分)17.周长相等的正方形、长方形和圆形,的面积最大,面积最小.(10分)18.一张正方形纸上下对折,再左右对折,得到的图形是形,它的面积是原正方形面积的.(10分)19.数图形。

小学六年级数学中所有图形与几何的知识合集+练习题(有答案)

小学六年级数学中所有图形与几何的知识合集+练习题(有答案)

(一)图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。

常用的长度单位三、面积单位是用来测量物体的表面或平面图形的大小的。

常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。

边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。

边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。

线段、射线都是直线上的一部分。

线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。

角的大小与两边叉开的大小有关,与边的长短无关。

角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。

围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。

常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。

圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。

通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。

六年级数学下册《图形的认识与测量》练习题及答案解析

六年级数学下册《图形的认识与测量》练习题及答案解析

六年级数学下册《图形的认识与测量》练习题及答案解析学校:___________姓名:___________班级:____________一、填空题1.长方形的周长是48cm,长和宽的比是3∶2,长和宽分别是( )cm和( )cm。

2.问题:观察这两种相交的情况,它们有什么不同?不同点:________________________________什么是垂直?________________________________生活中的垂直现象?________________________________3.数一数下面图形内部一共有( ) 个角。

4.在同圆或等圆中,半径与直径的比是( )。

5.下图是一张纸折起来后所形成的图形。

已知∶1=40°,∶3=( ),∶2=( )。

6.字母N、O、M、U、S、H中是轴对称图形的字母有____,有无数条对称轴的字母是____,有两条对称轴的字母是____。

二、判断题7.同一平面内两条直线的位置关系是相交或平行。

( )8.在美术本上画了一栋50米高的房子,比较合适的比例尺是1∶50。

( )9.圆和三角形都是轴对称图形。

( )10.三角形的面积是平行四边形面积的一半。

( )11.一个长方体最多有2个面是正方形。

( )12.圆柱体的底面直径和高可以相等.( )13.一个三角形三内角度数的比是1∶4∶5,这个三角形是直角三角形。

( )三、作图题14.分别画两条直线,使一条与已知直线平行,另一条与已知直线垂直。

15.用一张正方形的纸折出135°的角,请标出折痕,折痕用虚线表示。

参考答案与解析:1.14.49.6【分析】将长方形的周长除以2,求出长和宽的和。

将这个和除以(3+2),求出一份长和宽的长度,从而利用乘法分别求出长和宽。

【详解】48÷2÷(3+2)=24÷5=4.8(cm)长:4.8×3=14.4(cm)宽:4.8×2=9.6(cm)所以,长和宽分别是14.4cm和9.6cm。

图形的认识与测量练习题

图形的认识与测量练习题

图形得认识与测量(一)一、填空。

1、直线上两点间得一段叫(),把线段得一端无限延长就得到一条()。

2、1平角=()直角,1周角=()平角3、工人叔叔把电线杆上得线架与自行车架子做成三角形,这就是应用了三角三具有()得特征,而推拉或防盗门则就是由许多小平边四边形组成得,这就是应用平行四边形()得特性。

4、一个等边三角形,它得每个内角都就是()度,等腰直角三角形得两个底角都就是()度。

5、三角形三个角度数得比就是2:4:3,最大得角就是()。

6、一个三角形底就是3分米,高就是4分米,它得面积就是()。

7、一个平行四边形得底长18厘米,高就是底得12,它得面积就是()。

8、一个直径4厘米得半圆形,它得周长就是(),它得面积就是()。

9、课本得宽为X厘米,长比宽多2厘米,课本得面积就是()平方厘米。

10、六个边长为2厘米得正方形拼成一个长方形,拼成得长方形得周长可能就是(),也可能就是(),拼成得长方形得面积就是()平方厘米。

11、一个圆得半径扩大2倍,它得周长扩大()倍,面积扩大()倍。

12、在平面上画圆,圆心决定圆得(),半径决定圆得()。

13、画圆时,圆规两脚张开得距离就是所画圆得()。

14、圆有()条对称轴,扇形有()条对称轴。

15、有大小两个圆,它们得半径得差就是2厘米,两个圆得周长差就是()。

16、圆可以剪拼成一个近似得长方形,这个长方形得长相当于圆周长得()%,宽就是圆得()。

17、一个等腰三角形得周长就是160厘米,它得腰得长度与底得长度比就是3∶2,这个三角形得一条腰长()厘米,底长()厘米。

18、一个梯形得下底就是18厘米。

如果下底缩短8厘米,就成为一个平行四边形,面积减少28平方厘米,原梯形得高就是()厘米。

方形长与宽得中点,空白部分与阴影部分得比就是()二、判断题。

1、角得两条边越长,角就越大。

………………()2、两端都在圆上得线段就是直径。

……………()3、一条直线也可瞧成一个平角。

北师大版六年级数学下册期末《图形的认识与测量》专项试卷附答案

北师大版六年级数学下册期末《图形的认识与测量》专项试卷附答案

北师大版六年级数学下册方法技能分类评价7.图形的认识与测量一、认真审题,填一填。

(第1题6分,其余每空2分,共22分)1.如图中的线段,()和()是互相平行的,()和()是互相垂直的,()和()也是互相垂直的。

2.圆有()条对称轴,等边三角形有()条对称轴,正方形有()条对称轴。

3.一个等腰三角形的一个底角是30°,它的顶角是()°,按角分,这个三角形是()三角形。

4.如图,∠1=30°,∠2=25°,∠3=()°。

(第4题图)(第5题图)5.如图,圆的周长是12.56 cm,正方形的周长是()cm,圆的面积是()cm2。

二、仔细推敲,选一选。

(每小题3分,共15分)1.下面的图形是用木条钉成的支架,最不容易变形的是()。

2. 一个立体图形,从左面看形状是,从上面看形状是,共有()种搭法。

A. 3B. 6C. 7D. 83.下面的平面图中,能折成正方体的是()。

4.三角形中最小的一个角是50°,按角分类这是一个()三角形。

A.锐角B.直角C.钝角5.一个长方体按以下三种方法分割成了两个长方体,表面积分别增加了48 cm2、64 cm2、24 cm2,原来长方体的表面积是()cm2。

A. 136B. 68C. 272三、动手操作,我能行。

(共15分)(1)以点A为顶点画一个80°的角。

(5分)(2)过B点画直线l的平行线。

(5分)(3)画出B点到直线l的最短线段并量出长度。

(5分)四、细心的你,算一算。

(共12分)1.计算下面阴影部分的面积。

(单位:分米)(8分)2.计算下面图形的体积。

(4分)五、聪明的你,答一答。

(共36分)1.用一张长方形的铁皮做一个圆柱形罐子(如图),剪下图中的阴影部分可以围成一个圆柱,将它放在桌上。

(铁皮厚度忽略不计)(1)这个罐子占了多大的桌面?(6分)(2)用这个罐子装油漆,如果每升油漆重0.6千克,最多能装多少千克油漆?(6分)2.一辆自行车的轮胎外直径约是70 cm,如果平均每分转100周,通过一座1099 m的桥需要多少分?(10分)3.华华家有一个无盖的玻璃鱼缸,长6 dm,宽4 dm,高6 dm。

六年级数学下册方法技能提升卷9图形的认识与测量运动与位置新人教版

六年级数学下册方法技能提升卷9图形的认识与测量运动与位置新人教版

方法技能提升卷9.图形的认识与测量、运动与位置一、认真审题,填一填。

(每小题4分,共20分)1.过两点可以画( )条直线,圆有()条对称轴。

2.一个等腰三角形的一个底角是30°,顶角是( ),按角分这个三角形是( )三角形。

3.教室里王磊的位置用(5,4)表示,芳芳坐在他的正前面,芳芳的位置用数对表示是( , )。

4.琪琪从家向南偏西50°方向行1000米到学校,她放学沿原路返回应向北偏( )方向行( )米到家。

5.一个圆形花坛的直径是4 m,现在沿着花坛的外围铺一条宽1 m的石子路,这条石子路的面积是( )m2。

二、火眼金睛,判对错。

(每小题5分,共20分)1.小于90°的角是锐角。

( )2.一条射线长30.6 m。

( )3.从不同的方向观察物体的形状一定不同。

( )4.若一个圆柱的侧面展开后是一个正方形,则圆柱的高一定与底面周长相等。

( )三、仔细推敲,选一选。

(每小题4分,共12分)1.下面的图形是用木条钉成的支架,最不容易变形的是( )。

2.右图中,图形甲变换得到图形乙,下面说法正确的是( )。

A.先绕点O顺时针旋转90°,再向右平移3格B.先向右平移5格,再绕点O顺时针旋转90°C.先绕点O逆时针旋转90°,再向右平移5格D.先向右平移3格,再绕点O逆时针旋转90°3.一个立体图形,从左面看形状是,从上面看形状是,共有( )种搭法。

A.3 B.6 C.7 D.8四、画一画。

(共30分)1.根据给出的对称轴画出图形的另一半。

(5分)2.按要求画图。

(1)画出长方形绕点A顺时针方向旋转90°后的图形,旋转后点B对应点的位置用数对表示是( , )。

(2分)(2)按1:2的比画出三角形缩小后的图形,缩小后的三角形的面积是原来面积的。

(2分)(3)如果1个小方格表示1 cm2,以点(15,4)为圆心,分别画出半径为2 cm和4 cm的同心圆,这两个圆之间的圆环的面积是( )cm2。

冀教版数学六年级下册测量(2)

冀教版数学六年级下册测量(2)

返回
测量(2)
一个(yī ɡè)蓄水池(如下图),长10米,宽4米,深2米。
(1)蓄水池占地面积有多大? 10×4 = 40(平方米) 答:占地面积是40平方米。
第十七页,共二十七页。
返回
测量(2)
一个(yī ɡè)蓄水池(如下图),长10米,宽4米,深2 米。
(2)在蓄水池的底面和四周(sìzhōu)抹上水泥,
底面:3.14×1.52=7.065(平方米)
上面:3.14×(1.82-1.52)=3.1086(平方米) (16.014+22.608+7.065+3.1086)×5=243.978(千克)
第二十三页,共二十七页。
返回
测量(2)
某苗圃基地计划建一个圆柱形蓄水池,如下图。 (单位:米)
(4)如果(rúguǒ)每次按蓄水池容积的85%蓄 水,那么一次蓄水大约多少吨?(1立方米的 水重1吨)
答:操场的长增加了30米。
80米
?米
(2)现在操场的面积是多少平方米?
60×80+1800=6600(平方米) 60×(80+30)=6600(平方米)
答:现在操场的面积是6600平方米。
第十页,共二十七页。
返回
测量(2)
巩固练习 怎样(zěnyàng)测量一个马铃薯的体积?
2cm
30 × 30 × 2
(2)铁箱的表面积是多少(duōshǎo)
平方厘米?
80×60-20×20×4=3200(平方厘米)
第七页,共二十七页。
返回
测量(2)
有一块(yī kuài)长方形铁皮,先在它的四个角上分别剪去一
个边长是20厘米的正方形,然后沿虚线折起,焊接成一个 没有盖的铁箱。

六年级数学下册总复习突破卷平面图形的认识与测量

六年级数学下册总复习突破卷平面图形的认识与测量

六年级数学下册总复习突破卷平面图形的认识与测量一、填空。

(每空2分,共20分)1.下图中有()条线段,()条射线,()条直线。

2.一个直角三角形,三条边长的比是3:4:5,已知它的周长是36厘米,它的面积是()平方厘米,斜边上的高是()厘米。

3.如图,已知长方形的面积是30 cm2,半圆形的面积是()cm2。

4.如图,一个长方形模型,变形后成了一个平行四边形,原来这个长方形的面积是()cm2,变形后的平行四边形的周长是()cm。

5.下面的梯形是由一张长方形纸片折叠而成的。

这个梯形的高是()cm,面积是()cm2。

二、选择。

(每小题4分,共20分)1.小明把一根吸管剪成三段,然后围成三角形,下图中()不能作为第一刀的切点。

A.①B.②C.③D.④2.如图,把一个面积为28.26平方厘米的圆剪拼成一个近似的梯形,则这个梯形的周长是()厘米。

A.21.42 B.24.84C.30.84 D.46.263.一个半圆形的周长是30.84厘米,这个半圆形的直径是()厘米。

A.6 B.12C.3 D.94.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕。

若∠ABC=30°,则∠EBD的度数是()。

A.30° B.45°C.60° D.75°5.下图中长方形内甲、乙两阴影部分的面积相比较,()。

A.甲大B.乙大C.相等D.无法比较三、求阴影部分的面积。

(单位:厘米)(每小题9分,共18分) 1.2.四、解决问题。

(共42分)1.如图是学校平面图的一部分,其中地下有一根水管经过点A,并与图中的下水道平行。

(1)请在图中画一条直线表示这根水管。

(6分)(2)点A处有一个水龙头,现在要从此处挖一条排水沟连接到下水道,应怎样挖才能使其长度最短?(请在图中画一条线段表示排水沟)(6分)2.如图,一张等腰三角形纸片,底与高的比是8:3。

沿着三角形底边上的高将它剪开,再拼成一个长方形。

冀教版小学数学六年级下册《图形与几何》练习试题(含答案)

冀教版小学数学六年级下册《图形与几何》练习试题(含答案)

第1课时图形的认识1.认真填一填。

(1)经过一点可以画()条直线,经过两点可以画()条直线。

(2)过直线外一点到这条直线所画的线段中,()最短。

(3)角的大小要看两条边()的大小,与两边画出的长短没有关系。

(4)长方体和正方体都有()个面,()条棱,()个顶点。

(5)圆柱的侧面展开图是(),圆锥的侧面展开图是()形。

(6)()是圆内最长的线段。

2.仔细选一选。

(1)下面的图形中,()是正方体的展开图。

(2)只有一条对称轴的图形是()。

A.正方形B.平行四边形C.等腰三角形(3)从下面4条线段中选3条围成一个三角形,不可以选()。

(4)如右图所示,平行四边形的面积()正方形的面积。

A.大于B.小于C.等于(5)下面的图形中,()是由旋转得到的。

(6)一个三角形的内角之比是1∶2∶3,这个三角形是()三角形。

A.钝角B.直角C.锐角D.不能确定3.火眼金睛辨真伪。

(1)半圆的周长是整个圆周长的一半。

()(2)用同样长的铁丝分别围成正方形和圆,其中圆的面积较大。

()(3)两个面积相等的梯形一定能拼成平行四边形。

()。

() (4)把一个圆柱形的木料削成一个最大的圆锥,削去的部分相当于圆柱的124.我是小画家。

(1)画一个边长是1厘米的正方形。

(2)过直线l外一点P画出它的平行线和垂线。

5.如图所示,求∠1,∠2的度数。

6.在方格纸中分别画出下面立体图形从正面、上面、左面看到的图形。

第1课时图形的认识1.(1)无数一(2)垂线段(3)分开(4)6128(5)长方形扇(6)直径2.(1)A(2)C(3)C(4)C(5)C(6)B3.(1)✕(2)√(3)✕(4)✕4.(1)(2)5.∠1=180°-130°=50°∠2=180°-65°-50°=65°6.如图所示第2课时测量(1)1.认真填一填。

(1)一个正方体的棱长是4分米,它的表面积是()平方分米,体积是()立方分米。

小学数学总复习图形的认识与测量(选择题)

小学数学总复习图形的认识与测量(选择题)

绝密★启用前小学数学总复习图形的认识与测量(选择题)题号一总分得分一.单选题(共70小题,共70分)1.下面()不是扇形。

(1分)A.B.C.2.一张正方形纸边长2分米,把它对折成两个同样的长方形,每个长方形的周长是多少?()(1分)A.4分米B.6分米C.8分米3.已知一条直线l和直线外的A、B两点,以A、B两点和直线上某一点做为三角形的三个顶点,就能画出一个等腰三角形,如图中的等腰三角形ABC.除此之外还能画出符合条件的()个等腰三角形.(1分)A.1B.2C.4D.34.小明将一个正方形纸对折两次,如图所示:并在中央点打孔再将它展开,展开后的图形是()(1分)A.B.C.D.5.量角器把半圆平均分成()份。

(1分)A.180B.90C.3606.夜晚时离路灯越近,物体影子()(1分)A.越长B.越短C.不变7.从前面看是图形的是()。

(1分)A.B.C.8.在每格是1平方厘米的方格纸上,画出面积是24平方厘米的长方形(边长为整厘米),你能画()个.(1分)A.3B.4C.59.画已知直线的平行线,可以画()条。

(1分)A.1B.2C.3D.无数10.用同样大小的正方体摆成的物体,从正面看,从上面看,从左面看是()。

(1分)A.B.C.11.下面组合图形的面积是()平方米。

(1分)A.560B.512C.48012.两条直线互相垂直,这两条直线相交成()的角。

(1分)A.180°B.90°C.45°D.135°13.判断两条直线是否垂直可以使用()。

(1分)A.三角板B.量角器C.直尺D.以上都可以14.两条直线相交,有一个角是直角,这两条直线()互相垂直。

(1分)A.一定B.不一定C.不可能15.下列哪一句话是错误的()(1分)A.平行线延长也可能相交B.梯形有无数条高C.平行四边形两组对边分别平行16.下面说法正确的是()。

(1分)A.平行四边形是特殊的长方形B.长方形是特殊的平行四边形C.平行四边形具有稳定性17.如图所示的平行四边形,AB这个底边上的高是()。

《图形的认识与测量第1课时》练习一、填空题1一根铁丝围成一个长方厘米,宽是14厘米,再把这根铁丝

《图形的认识与测量第1课时》练习一、填空题1一根铁丝围成一个长方厘米,宽是14厘米,再把这根铁丝

《图形的认识与测量第1课时》练习一、填空题。

1 一根铁丝围成一个长方厘米,宽是14厘米,再把这根铁丝围成一个正方形,正方形的边长是()厘米。

2 一个直角梯形上、下底之和是15厘米,两条腰分别长4厘米、5厘米。

这个梯形的面积是()。

3 在同一个圆或相等的圆中,所有的半径长度都();所有的直径长度都()。

直径的长度是半径的()。

4 将一个圆平均分成一近似长方形,长方形的面积与圆的面积(),长方形的宽是圆的(),长方形的长是圆的()。

5 测量圆的周长可以用()法和()法。

6 一张正方形纸边长是10这样的正方形纸()张,才能拼成一个大一些的正方形。

拼成的正方形周长是(),面积是()。

二、判断题。

1、两点间线段最短。

()2、直线的两端可以无限延长。

()3、一个2021角用2倍放大镜看,会看到一个40°的角。

()4、一个平角减去一个锐角,得到一个钝角。

()5、射线比直线短。

()6、两条直线的位置关系可分为三种:垂直、平行、相交。

()7、一条射线就是一个周角。

()三、选择题。

1 圆的周长总是它半径的的()。

A、π倍B、2π倍C、2倍2 等边三角形又是()三角形。

A、直角B、钝角C、锐角D、等腰直角3 钟面上9点半时,时针和分针组成的角是()。

A、锐角B、直角C、钝角D、平角4 用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()。

A、长方形B、正方形C、正三角形D、圆5 圆中两端都在圆上的线段。

()A、一定是圆的半径B、一定是圆的直径C、无法确定6、把平行四边形框架拉成长方形后,周长(),面积()。

A、不变B、变小C、变大四、解答题1教室里有一面墙的形状如右图。

粉刷这面墙,每平方米需要800克涂料,一共需要多少千克涂料?2如图,在一块空地上要建一个花坛(粉红色部分)请算出这个花坛的面积。

3下面是一个国际标准田径跑道的示意图。

跑道的一周是多少米?参考答案一、填空题。

1 17厘米解析:长方形和正方形的周长相等,先求出长方形的周长,再求正方形的边长。

小学-数学-苏教版(2014秋)-苏教版六下第7单元《图形的认识 测量》测试卷(2)

小学-数学-苏教版(2014秋)-苏教版六下第7单元《图形的认识 测量》测试卷(2)

苏教版六下第7单元《图形的认识测量》测试卷(2)一、填空题1、锐角三角形有______个锐角;直角三角形有______个锐角.2、一个等腰三角形,周长是86cm,腰长是28cm,这个三角形的底边长是______cm.3、一个长方形的长是20厘米,正好是宽的4倍,宽是______厘米,面积是______平方厘米.4、木材公司运回了100根长方体木料,木料的长、宽、高分别是200cm、35cm、5.5cm,这些木料共有______立方米.(用小数表示)5、用乳胶漆装饰一间会议室的顶棚和四壁,会议室长15米,宽12米,高3.5米,扣除门窗面积34平方米,涂漆的面积是______平方米.如果每平方米用漆0.2千克,那么需要乳胶漆______千克.6、一个长方体的底面是面积为4平方米的正方形,它的侧面展开图正好也是一个正方形,这个长方体的侧面积是______平方米.7、下图中阴影部分的面积是______平方厘米.8、一个圆柱和一个圆锥等底等高,体积相差12.56立方厘米,那么圆柱的体积是______立方厘米,圆锥的体积是______立方厘米.二、选择题9、下面关于直角、锐角和钝角之间的关系,说法正确的是().A. 直角>锐角>钝角B. 锐角>直角>钝角C. 钝角>直角>锐角10、用一个长20分米的铁丝围成一个边长都是整分米数的长方形或正方形,有()种围法.A. 3B. 4C. 511、一根铁丝可围成长18厘米,宽14厘米的长方形.若改围成正方形,这个正方形的面积是().A. 252平方厘米B. 1024平方厘米C. 256平方厘米12、要拼一个从上面、正面、侧面看到的都是的立体图形,至少用小正方体().A.8个B. 7个C. 6个13、一个三角形的三个内角都不小于60°,这个三角形一定是( )三角形.A. 钝角B. 直角C. 等边14、下图是用同样大小的正方体拼成的,甲的表面积与乙的表面积相比较,( ).A. 甲大B. 乙大C. 一样大 15、把一块长9厘米,宽6厘米,高5厘米的长方体切成两个长方体,表面积最少增加( )平方厘米.A. 54B. 60C. 90D. 10816、李师傅利用一张长1.256米、宽0.628米的长方形铁皮做一个水桶的侧面.为了使水桶的容积最大,从( )的正方形铁皮中剪出一个圆形底面最合适.A. 边长20厘米B. 边长30厘米C. 边长40厘米D. 边长50厘米三、判断题17、把半圆等分成180份,每份所对的角就是1°的角. ( )18、用两个相同的正方形拼成一个长方形,这个长方形的周长是24cm ,那么原来每个正方形的周长是12cm. ( )19、一个半圆的半径是r ,这个半圆的周长是()π2r +. ( )20、把一个圆柱削成一个最大的圆锥,削去部分的体积与原来圆柱的体积之比是2:3. ( )四、计算题21、计算下面图形的体积和表面积.22、手工课上,小红用一张直径是20cm 的圆形纸片剪出如图所示的风车图案(空白部分),求被剪掉的纸片(阴影部分)的面积.(π取3.14)23、计算下面图形的表面积和体积.(单位:厘米)五、解答题24、下图是一块三角形稻田,如果每平方米可产大米1.36千克,这块稻田可产大米多少千克?25、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?26、如图,有一个下面是圆柱,上面是圆锥体的容器.圆柱的高度是10厘米,圆锥的高度是6厘米,容器内液面的高度是7厘米.当将这个容器倒过来放时,从圆锥的顶点到液面的高是多少厘米?答案第1页,共6页参考答案1、【答案】3,2【分析】本题考查的是三角形的分类.【解答】三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;所以锐角三角形有3个锐角,直角三角形有2个锐角.故本题的答案是3,2.2、【答案】30【分析】等腰三角形的周长=腰长×2+底边长.【解答】86-28×2=30(cm ).故本题的答案是30.3、【答案】5,100【分析】本题考查的是长方形的面积计算.长方形的面积=长×宽.【解答】一个长方形的长是20厘米,正好是宽的4倍,则宽是:20÷4=5(厘米),所以面积是:20×5=100(平方厘米).故本题的答案是5,100.4、【答案】3.85【分析】本题考查的是长方体的体积计算.长方体的体积=长×宽×高.【解答】一根木料的体积为200×35×5.5=38500(立方厘米),38500立方厘米=0.0385立方米,则100根这样的木料体积为0.0385×100=3.85(立方米).故本题的答案是3.85.5、【答案】335,67【分析】首先理解本题是求长方体的表面积,其次分清装饰的是顶棚和四壁,缺少下面,计算这5个面的总面积,再减去门窗面积;最后求需要乳胶漆多少千克;由此解答.【解答】151215 3.5212 3.52341801058434⨯⨯⨯⨯⨯++-=++-=335(平方米)0.2×335=67(千克)所以涂漆的面积是335平方米,需要乳胶漆67千克.故本题的答案是335,67.6、【答案】64【分析】已知长方体的底面是面积为4平方米的正方形,据此可以求出长方体的底面边长,又知这个长方体的侧面展开是一个正方形,那么这个长方体的底面周长和高相等,根据正方形的周长公式,求出底面周长,然后根据正方形的面积公式解答即可.【解答】长方体的底面是面积为4平方米的正方形,而2×2=4,所以底面边长是2米.又知这个长方体的侧面展开是一个正方形,那么这个长方体的底面周长和高相等,根据正方形的周长公式可知,底面周长是4×2=8(米),这个长方体的侧面积是8×8=64(平方米).故本题的答案是64.7、【答案】15.48【分析】由题意可知:阴影部分的面积=长方形的面积-以长方形的宽为半径的半圆的面积.【解答】所以阴影部分的面积是15.48平方厘米.故本题的答案是15.48.8、【答案】18.84,6.28【分析】因为圆柱的体积是与它等底等高的圆锥体积的3倍,所以等底等高的圆柱与圆-倍,据此可以求出圆锥的体积,进而求出圆柱的体锥的体积差相当于圆锥体积的(31)积.【解答】12.56÷(3-1)=6.28(立方厘米),6.28×3=18.84(立方厘米),所以圆柱的体积是18.84立方厘米,圆锥的体积是6.28立方厘米.故本题的答案是18.84,6.28.9、【答案】C【分析】本题考查的是角的分类.【解答】锐角比直角小,钝角比直角大,所以钝角>直角>锐角.选C.10、【答案】C【分析】要把可能出现的每种情况考虑周全,再根据长方形和正方形的周长公式解答.【解答】第一种情况:长是9分米,宽是1分米的长方形;第二种情况:长是8分米,宽是2分米的长方形;第三种情况:长是7分米,宽是3分米的长方形;第四种情况:长是6分米,宽是4分米的长方形;第五种情况,边长是5分米的正方形,因此有5种围法.选C.11、【答案】C【分析】本题考查的是长方形、正方形的周长和面积计算.【解答】一根铁丝围成长18厘米,宽14厘米的长方形,该长方形的周长是(18+14)×2=64(厘米),所以这根铁丝长64厘米.围成正方形时,正方形的边长=周长÷4=64÷4=16(厘米),这个正方形的面积=边长×边长=16×16=256(平方厘米).选C.12、【答案】C【分析】要拼一个从上面、正面、侧面看到的都是的立体图形,则这是一个正方体,长、宽、高最多都有2个小正方体,至少可以在两个顶点处各少一个小正方体.【解答】立体图形如下:所以至少用6个小正方体.选C.13、【答案】C【分析】本题考查的是三角形的分类及三角形的内角和.【解答】一个三角形的三个内角都不小于60°,即都等于60°,这个三角形一定是等边三角形.选C.14、【答案】A【分析】本题考查的是正方体的表面积的意义及应用.【解答】甲图是在的一条棱中间挖去一个小正方体,与的表面相比,增加了小正方体的2个面,所以比原图形的表面积大;乙图是在的右顶点上挖去一个小正方体,剩下的图形的表面积与原图形的表面积相等;所以甲的表面积比乙的表面积大.选A.15、【答案】B【分析】把一块长9厘米,宽6厘米,高5厘米的长方体切成两个长方体,要使表面积增加最少,就要平行于面积最小的面进行切,切后增加了两个长是6厘米,宽是5厘米的长方形的面积.【解答】6×5×2=60(平方厘米),所以表面积最少增加60平方厘米.选B.16、【答案】C【分析】利用底面周长先求出铁桶的底面直径;从正方形铁皮中剪出一个圆形,圆的直径等于正方形的边长,本题分情况讨论选出答案即可.【解答】1.256米=125.6厘米,0.628米=62.8厘米.(1)当底面周长是125.6厘米时,40×62.8=315507.2(立底面直径是125.6÷3.14=40(厘米),此时水桶的容积是3.14×2方厘米);(2)当底面周长是62.8厘米时,底面直径是62.8÷3.14=20(厘米),此时水桶的容积是3.14×220×125.6=15775.36(立方厘米).315507.2>15775.36,所以为了使答案第3页,共6页水桶的容积最大,从边长40厘米的正方形铁皮中剪出一个圆形底面最合适.选C.17、【答案】✓【分析】本题考查的是角的度量.【解答】把半圆平均分成180份,每一份所对的角叫1度的角,记作:1°.故本题正确.18、【答案】×【分析】本题考查的是求长方形、正方形的周长.【解答】用两个相同的正方形拼成一个长方形,这个长方形的周长是24cm.如图:,长方形的周长是6条正方形的边长之和,所以原来正方形的边长是24÷6=4(cm ),周长是4×4=16(cm ).故本题错误.19、【答案】✓【分析】根据圆的周长公式可计算出圆的周长,那么半圆的周长是圆周长的一半加上一条直径,由此解答即可.【解答】()2π2ππ222rr r r r+=+=+÷,所以这个半圆的周长是()π2r +.故本题正确.20、【答案】✓【分析】根据把一个圆柱削成一个最大的圆锥的特点,可得这个圆柱和圆锥是等底等高的,根据圆锥的体积是与它等底等高的圆柱积的13可知,削掉部分的体积就是圆柱的23. 【解答】因为圆锥的体积是与它等底等高的圆柱体积的13,所以削去部分的体积是圆柱体积的12133-=.削去部分的体积与原圆柱体积的比是2:12:33=.故本题正确. 21、【答案】这个长方体的体积是840cm 3,表面积是562cm 2.【分析】本题考查的是长方体的体积、表面积计算.【解答】体积:15×8×7=840(cm 3)表面积: 215771582cm ⨯⨯⨯⨯⨯⨯(+8+)=(105+56+120)2=2812=562()答:这个长方体的体积是840cm 3,表面积是562cm 2.22、【答案】被剪掉的纸片的面积是157平方厘米.【分析】本题考查的是求组合图形的面积.【解答】如图所示,空白部分可以组成两个直径是10厘米的小圆,求被剪掉的纸片(阴答案第5页,共6页影部分)的面积,用大圆的面积减去两个小圆的面积即可.答:被剪掉的纸片的面积是157平方厘米.23、【答案】表面积是533.8平方厘米,体积是665.68立方厘米.【分析】由图可知,大、小圆柱的体积和就是这个组合图形的体积.因为大小两个圆柱结合在一起,所以它的表面积等于小圆柱的侧面积加上大圆柱的表面积.【解答】答:图形的表面积是533.8平方厘米,体积是665.68立方厘米.24、【答案】这块稻田一共可产大米2121.6千克.【分析】先根据“三角形的面积=底×高÷2”计算出三角形稻田的面积,然后用“每平方米可产大米的重量×稻田的面积”解答即可. 【解答】 1.36654821.3615602121.6⨯⨯÷=⨯=()(千克)答:这块稻田一共可产大米2121.6千克.25、【答案】甲三角形的面积比乙三角形的面积大8平方厘米.【分析】由图意可知:甲与乙的面积差,也就是甲加上丙与乙加上丙的差,甲加上丙的面积和乙加上丙的面积可以求出,从而可以求出甲与乙的面积差.()()()23.1444 3.14144 3.141422=3.1416 3.1456 3.144923.141656983.14170533.8⨯⨯+⨯⨯+⨯÷⨯⨯+⨯+⨯⨯=⨯++=⨯=平方厘米()()()()223.14424 3.141424=3.1444 3.144943.14161963.14212665.68⨯÷⨯+⨯÷⨯⨯⨯+⨯⨯=⨯+=⨯=立方厘米【解答】682482 482322 24168⨯÷-⨯÷=÷-÷=-=(平方厘米)答:甲三角形的面积比乙三角形的面积大8平方厘米.26、【答案】从圆锥的顶点到液面的高是11厘米.【分析】圆柱的体积是与它等底等高的圆锥体积的3倍,所以先把圆柱内6厘米高水的体积的13,即高为2厘米的水的体积倒入圆锥中,正好把圆锥部分装满,则剩下的就是圆柱内水的高度.【解答】圆柱与上面的圆锥底面积相等,所以圆柱内6厘米高的水的体积是这个圆锥的体积的3倍,632÷=(厘米),则把圆柱内2厘米高的水倒入高6厘米的圆锥容器内即可装满,则圆柱内水还剩下725-=(厘米),6511+=(厘米).答:从圆锥的顶点到液面的高是11厘米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学图形的认识与测
量二练习题
Revised final draft November 26, 2020
(3)式与方程
一、填空:
1、一种贺卡的单价是a 元,小英买了5张这样的贺卡,用去( )元;小明买n 张这样的贺卡,付出10元,应找回( )元。

2、比m 的8倍少n 的一半是( );温度由10℃上升t ℃是( )
3、三个连续偶数,中间一个是m ,另外两个分别是( )和( )。

4、四年级同学订《中国少年报》120份,比五年级多订x 份,120-x 表示( ),每份《中国少年报》a 元,120a 表示
( ),(120 -x )a 表( )。

5、某校排练团体操,有108男生和84名女生参加,如果男生和女生都排成每行a 人,男生比女生多排几行用含有字母的式子表示是
( 或 )
二、下面的式子,哪些是方程哪些不是方程,为什么
45 -x <15 x +12 =4 2x - 76
+=48
三、判断题:
1、含有未知数的式子叫方程……………………………………( )
2、n 表示自然数,2n 就可以表示偶数…………………………( )
3、因为22=2×2,所以a2=a ×2…………………………………( )
4、56-X <不是方程……………………………………… ( )
5、c +c=2c ,a ×a=2a 。

………………………………………… ( )
四、选择题:
1、x=25是()方程的解。

(1)100÷x=4 (2)x ÷=3 (3)25+3x=90
2、一辆摩托车t 小时行s 千米,a 小时行( )千米。

(1)as t (2)s at (3)at s
3、7+x 15
是以15为分母的最简真分数,则x 可取的自然数有( )个。

(1)5 (2)4 (3)3 (4)2
4、△代表一个不为0的自然数。

那么,得数最大的是( )
(1)△× 45 (2) △÷45 (3)45
÷△ 五、填表。

服装公司用公式C =10+12n 计算成本费。

C 表示成本费,n 表示做
×3X = X ÷= (-X )×=
12 X +23 X =14 X - X =× 12
X +25%=10
七、列方程不计算:
一个数乘以2,加上3,减5得 一个数的8倍加上30的23
的16,这个数是多少 和是52,这个数是多少
54减去某数的4倍等于6, 一个数的35
加上16的和是28,求某数。

求这个数。

一个数的15 比它的16 多60, 125减去一个数的23
,差是5, 这个数是多少 这个数是多少
根据下面的条件,找出数量间的相等关系。

某班男生人数比女生人数多7人。

2、小明买来4副乒乓球拍和12个乒乓球,共付128元。

3、参加美术活动小组的女生比男生的2倍还多7人。

4、两根同样长的铁丝,一根围成正方形,一根围成圆。

九、列方程解下面各题。

用一辆汽车运一堆货物,运了3次后还剩吨没有运。

已知这堆货物共有20吨,汽车每次运多少吨
2、甲乙两地相距480千米。

两辆汽车同时从两地相对开出,经过5小时相遇。

其中,一辆汽车每小时行56千米,另一辆汽车每小时行多少千米
3、飞机的速度比火车的7倍快30千米,如果飞机每小时行450千米,那么火车每小时行多少千米
4、修一条路,原计划15天完成,实际每天修300米,结果提前3天完成,原计划每天修多少米
5、今年“3.15”期间,某城市因商品质量问题投诉的消费者有408人,比去年同期投诉人的3倍少6人,去年同期投诉的有多少人
十、下面两道题,哪道题用算术方法较简便,哪道题适宜列方程解,选择适当的方法解答。

1、小龙的身高比小丽高1
9。

小丽身高135厘米,小龙身高多少厘米
2、小丽的身高比小华矮
1
16。

小丽身高135厘米,小华身高多少厘米
3、学校长跑队有42人,田径队的人数比长跑队人数的1
2
还多2人,田径队有
多少人
4、学校长跑队有42人,长跑队比田径队人数的1
2
还多2人,田径队有多少人。

相关文档
最新文档