量子力学答案(第二版)苏汝铿第三章课后答案3.17-3#11
量子力学教程(二版)习题答案
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式:ννπνρννd e ch d kT h 11833-=, 及λνc =、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k #1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学(二)习题参考答案
2µ (U1 − E ) h2 2µ E h2
ψ 2 '' ( x) + k 2ψ 2 ( x ) = 0, k =
西华师大物理与电子信息学院
4
四川省精品课程——量子力学补充习题参考答案
ψ 3'' ( x) − β 2ψ 3 ( x) = 0, β =
其解分别为:
2µ (U 2 − E ) h2
ψ 1 ( x) = A1eα x + B1e −α x ψ 2 ( x) = C sin(kx + δ ) ψ 3 ( x ) = A2e β x + B2 e− β x
2
2
⑤
而透射系数
⑥
2) 、当 E<U0 时,有ψ 2 '' ( x ) − k3 2ψ 2 ( x ) = 0 , k3 = 其解为:ψ 2 ( x ) = Ce
− k3 x
+ De k3 x = Ce − k3 x (ψ 2 有限条件)
⑦
以下可以重复前面的求解过程。 不过, 为了简单我们亦可以在前面得到的结果⑤中做代 换 k2 =i k3 ,得到
由(18)式, (16) 、 (17)变成 或由 (19) 式, (16) 、 (17) 变成
(20)或(21)式就是讲义上习题 2.7 的结果。 a) 将 δ = 0 代入ψ 2 ( x) 中有:ψ 2 ( x) = C sin kx 由连续性条件:ψ 2 ( a) = ψ 3 ( a ) → C sin( ka ) = B2 e − β a
ψ m (ϕ ) =
除了 m=0 的态之外, E m 圴是二重简并的。 5、梯形式——— U ( x ) =
0, x < 0 U 0 , x > 0
量子力学课后答案
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学答案(第二版)苏汝铿第4章课后答案4.11-4#16
1 3
1 3
1 3 0 = 0
0 1 6 1 6
0 1 6 1 2
(ii)
0 1 0 2 Lx 1 0 1 2 0 1 0
tr ( Lx ) tr 0 2 6 0 2 12 2 12 2 12 2 12 2 4 2 12
e i sin 0
4.12 由下述三个纯态不相干混合而成的角动量为 1 的粒子体系,假定 每个态都等概率,这三个态是:
(1)
1 0 0
2
0 0 1 1 1 0 2 2 0 1
= =
1 m 1 1 ˆ 1 exp(it ) 1 a ˆ 0 exp( it ) 0 a i 2 2 2 m sin t 2
所以只有当态失为能量本征态时,x 和 p 的平均值不变
取 1,所以 L y =0 又因为 Lx , L y iLz
0 1 Lx L y L y Lx 1 0 2 0 1 i 0 i i 0 0 0 0 2 2 i i 0 i 0 0 i 0 0 i 0 0 1 0 1 i 0 i i 0 i 1 0 1 2 0 0 0 0 i 0 i 0 1 0 0 i i 0 0 0 0 0 0 0 0 0 i 0 i
3
0 0 1
(i) (ii)
求这个体系的密度矩阵 ,并证明 tr 1 选 1,角动量为 1 的矩阵由题(4.7)的矩阵给出,求 Lx , L y , Lz 的平 均值
量子力学教程习题答案
令
d1 ( x) 0 ,得 dx
x0
x
1
x
x 时, 1 ( x) 0 。显然不是最大几率的位置。 由 1 ( x) 的表达式可知, x 0 ,
d 21 ( x) 2 3 2 2 2 2 3 2 x 2 而 [( 2 6 x ) 2 x ( 2 x 2 x )] e dx2 2 2 4 3 [(1 5 2 x 2 2 4 x 4 )]e x
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
其解为
2 ( x) A sin kx B coskx
④
13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥
⑤
B0 A sin ka 0
A0 s i n ka 0 ka n
1 n [1 cos ( x a)]dx a 2 a
a a
A 2 A 2 a n x cos ( x a)dx 2 a 2 a a A 2 a n A a sin ( x a) 2 n a a
2 a
A 2 a
∴归一化常数 A
1 a
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
量子力学 第三章习题与解答
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
曾谨言《量子力学导论》第二版的课后答案
(
)
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
( ) ( )
2.4)设一维自由粒子的初态ψ ( x,0 ) = e
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ℏ ⎜ 2 m ⎟ ⎝ ⎠
ip0 x / ℏ
, 求ψ ( x, t ) 。
解:
ψ ( x, t ) = e
∫p
即
x
⋅ dx = n x h ,
(n x
= 1, 2 , 3 , ⋯)
p x ⋅ 2a = n x h
∴ p x = n x h / 2a ,
( 2a :一来一回为一个周期)
同理可得,
p y = n y h / 2b ,
p z = n zห้องสมุดไป่ตู้h / 2c ,
n x , n y , n z = 1, 2 , 3 , ⋯
(4)
E = ∫ d 3r ⋅ w 。
(b)由(4)式,得
. . ⎤ . ∂w ℏ 2 ⎡ . * * * = ∇ ψ ⋅ ∇ ψ + ∇ ψ ⋅ ∇ ψ + ψ Vψ + ψ *V ψ ⎢ ⎥ ∂t 2m ⎣ ⎦
=
. . . . ⎛ .* 2 ℏ2 ⎡ ⎛ .* *⎞ 2 * ⎞⎤ * * ⎜ ⎟ ⎜ ⎟ ∇ ⋅ ψ ∇ ψ + ψ ∇ ψ − ψ ∇ ψ + ψ ∇ ψ + ψ V ψ + ψ V ψ ⎢ ⎟ ⎜ ⎟⎥ 2m ⎣ ⎜ ⎝ ⎠ ⎝ ⎠⎦
. ⎛ ⎞ ⎞ * ℏ2 2 � . ⎛ ℏ2 2 ⎟ ⎜ = −∇ ⋅ s + ψ * ⎜ − ∇ + V ψ + ψ − ⎜ 2m ⎟ ⎜ 2m ∇ + V ⎟ ⎟ψ ⎝ ⎠ ⎝ ⎠ . . ⎛ * � *⎞ = −∇ ⋅ s + E ⎜ ⎜ψ ψ + ψ ψ ⎟ ⎟ ⎝ ⎠ ∂ � ( ρ :几率密度) = −∇ ⋅ s + E ρ ∂t � = −∇ ⋅ s (定态波函数,几率密度 ρ 不随时间改变)
量子力学课后答案1.1到4.4题
•第一章 绪论 •第二章 波函数和薛定谔方程 •第三章 力学量的算符表示 •第四章 态和力学量的表象 •第五章 微扰理论 •第六章 弹性散射 • 第七章 自旋和全同粒子1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 11833-=, 及λνc =、λλνd c d 2-=得 1185-=kT hc e hc λλλπρ, 令kThc x λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x x e xe 用图解法求得97.4=x ,即得97.4=kT hc m λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 第一章绪论 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=⨯≈==-mE h p h λ # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkT h mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμE b E a ==,相空间面积为 ,2,1,0,2=====⎰n nh E E ab pdq νωππ 所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为 ()ϕω+=t A q sin 速度为 ()ϕωω+='t A q cos ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=n νμωnh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学答案(第二版)苏汝铿第三章课后答案3.1-3#15
i
(ⅴ) [ p, pf ( x) p]
i
pf ' p
证明:根据题给的对易式以及 x, f ( x) 0;
[ p, pfp ] p 2 fp pfp 2 p( pf fp ) p
pf ' p
i
(ⅵ) [ p, fp 2 ]
i
f ' p2
证明:根据题给的对易式以及 x, f ( x) 0;
( L r r L) x ( Ly z Lz y) ( yLz zLy ) [ Ly , z] [ Lz , y] i x i x 2i x
由于轮换对称性,得到待征的公式:
ˆ r r L ˆ 2i r L
ˆ ˆp ˆ 2i p ˆ L ˆ (2) L p
所以原命题得证。
ˆ2 L ˆ3 L ˆ 3-2 若算符 e 满足 e 1 L 2! 3!
ˆ L
ˆ L
ˆn L n!
,直接通过对易关系证明:
ˆ, a ˆ [L ˆ] e L ae L a
ˆ ˆ
1 ˆ ˆ 1 ˆ ˆ ˆ ˆ ]] [ L ˆ ]]] [ L[ L, a [ L[ L, a 2! 3!
1 ˆnr aL ˆ ˆr L (n r )!r !
(2)
ˆn 的齐次式,共有(n+1)项,对此展开式(1) 这个级数的通项是指 L (2)发现二者相同,
因而待证式子得证。
3-3 设 x, p i , f ( x) 是 x 的可微函数,证明:
2 (ⅰ) x, p f ( x) 2i pf .
所以待证命题得证。
ˆ p ˆ 2i p ˆp ˆ L ˆ 成立。 根据轮换对称性,待证式 L
量子力学(周世勋)习题答案 第3章
12
2
(
x
ip 2
)2
p2 2 2
2
p2
e e dx 2 22
12
2
(
x
ip 2
)2
p2
e 2 22
2
1
p2
e 2 22
动量几率分布函数为
( p) c( p) 2
1
p2
e 22
#
3.2.氢原子处在基态 (r, ,)
1 e r / a0 ,求: a03
(1)r 的平均值;
24a2*p04(r(2)a4(02r,a,402
) )d
2
2a
2 0
c(
p)
1 (2)3/ 2
0
1
e r / a0 r 2 dr
e
i
pr cos
sin
d
2 d
a03
0
0
2
r 2e r / a0 dr
e
i pr cos
d ( cos )
(2)3/ 2 a03 0
0
2
(2)3/ 2
a2 n
x
cos
n a
x
a3 n2 2
sin
n a
x
a n
x 2 cos n a
x
2a 2 n2 2
x
sin
n a
x
2a 3 n3 3
cos
n a
a
x]
0
4 15 n3 3
[1 (1)n ]
∴
(E)
Cn
2
240 n6 6
[1 (1)n ]2
960
2
5k 2 2 8
苏汝铿量子力学课后习题及答案
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
Prof.
Ru-Keng Su
Shaoyu Yin Jia Zhou & Yi Li Department of Physics, Fudan University, Shanghai 200433, China
2ikA ˜ 2ik−V ˜A V ˜ 2ik−V
(13)
(14)
(15)
= = 3
ik A, ik−mV /¯ h2 2 mV /¯ h A. ik−mV /¯ h2
(16)
So the transmission ratio is
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
T =
h ¯ω p2 C (p, t) C (p, t)dp = =− 2m 4
∗
h ¯ 2 d2 ψ (x, t) ψ (x, t)dx. 2m dx2
∗
Or using the Virial theorem (QM book of Su, Chapter 3.8, P117 ), T = 1 dU 1 h ¯ω x = U = E = . 2 dx 2 4 (9)
1/3
1.41 ∗ 10−12 eV.
(23)
2.4. (QM book of Su, Ex.2.14.) The state of electron in Hydrogen atom is ψ = √1 3 e−r/a0 , where a0 is the Bohr radius. Try to find: (i) The expectation value of r.
苏汝铿量子力学课后习题及答案chapter3
ˆ, B ˆ ⎤ = 0 。对于有三个分量 x,y,z 的算符,在证明中往往只证明 ˆ 对易,就是说, ⎡ A 和B
⎣ ⎦
其中的任一个分量,其余分量类推。 证:
( p × l + l × p ) x = p y l z − pz l y + l y pz − lz p y
=⎡ ⎣ p y , lz ⎤ ⎦+⎡ ⎣l y , p z ⎤ ⎦
所以有
(3.1)
ˆ 2α ˆ ˆ ˆ 2 −β ˆ = 2β αβ
(2)如果
(3.2)
ˆ n −1α ˆ n−2 ˆ ˆ n −1 − β ˆ = nβ αβ
成立,利用数学归纳法可以证明第三式,实际上
(3.3)
ˆ n −1 α ˆ n−2 )β ˆ =ቤተ መጻሕፍቲ ባይዱ(β ˆ ˆ ˆ n = αβ ˆ ˆ n −1 β ˆ + (n − 1) β αβ ˆ n −1 (αβ ˆ n −1 ˆ ˆ ) +(n − 1) β =β ˆ n −1 ( βα ˆ n −1 ˆ ˆ + 1) +(n − 1) β =β ˆ =β
∫
∞
−∞
ˆ ( x)ψ ( x)dx 来算 ψ *n ( x ) F n
ˆ 写成 p ˆ 的对易形式 ˆx 和 H 其平均值,并巧妙的使用薛定谔方程而证得。而方法二是把 F 1 ˆ ⎤ ,进而证得命题。 ˆ = − d V ( x) = 1 [ p ˆx, H ˆ x , V ( x) ] = ⎡ p F ⎦ i= i= ⎣ dx
1 ˆ⎤ ˆ = − d V ( x) = 1 [ p ˆ x , V ( x)] = ⎡ p ˆx, H F ⎦ i= i= ⎣ dx ˆ 的期望值为 于是在体系束缚定态ψ n ( x) 中,此力 F F= 1 1 ∞ ˆ ⎤ψ ( x)dx ˆ x , V ( x ) ] = ∫ ψ n* ( x ) ⎡ p ˆx, H [p ⎣ ⎦ n −∞ i= i= 1 ∞ * * ˆ ψ ( x)dx − ∞ ( H ˆxH ˆ xψ n ( x)dx = ψ n ( x) p n ∫−∞ ˆψ n ( x)) p ∫ i= −∞ =0
量子力学教程第二版答案及补充练习
第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学(第二版)周世勋原著课后习题整理版
证明在定态中,几率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。
2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。
解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。
粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。
量子力学(二)习题参考答案
ψ 1 (− a ) = ψ 2 (− a ) → −C sin ka = A1e −α a
比较以上两式可以得到
B2 = − A1
A1eα x , x < − a 于是有 ψ 0 ( x) = C sin kx, −a < x < a − A e −α x , x > a 1
——奇宇称态!
+∞
( p x x − Et )
4) 、由归一化条件 ψ * ( x)ψ p ' ( x )dx = δ ( p ' − p '' ) 可定出归一化常数 p'
−∞
∫
A= 1
2π h h2 d 2 ,U = 0 2 I dϕ 2
µ =− 4、平面转子(见教科书)—— H
其解为: E m =
m2 h2 , m = 0, ±1, ±2 …… 2I 1 imϕ e , 2π
比较得到:
B2 = A1
于是得
A1eα x , x < − a ψ e ( x) = C cos kx, − a < x < a −α x A1e , x > a
——偶宇称态!
(23)
其中的 C,A1 可由归一化条件和连续性条件定出。 7、 δ 形势—— U ( x ) = f ( x )δ ( x) U(x) E 1 0 2 x (1)
①
②
由①和②消去 B
→ 2 A = (1 +
2k1 k2 k +k )C = 1 2 C → C = A k1 k1 k1 + k 2
③
由①和②消去 C
→
A − B k2 = → A + B k1
量子力学答案(第二版)苏汝铿第三章课后答案3.1-3#6
ˆ ( S ) ˆ SL da ˆ ˆ ˆ ˆ ˆ L ˆ ˆ ˆ SL e SL ae ˆ SL L Le ae , a(S ) dS
ˆ ( S ) ˆ da ˆ (S ) ˆ ˆ d 2a ˆ (S ) L, L, L, a 2 dS dS
ˆ L ˆ r r ˆ ˆ ˆ ˆ ˆL ˆ i zLy Ly z yLz Lz y i x x
ˆ2 , p L ˆ2 p p L ˆ2 L ˆ 2 L ˆ 2 L ˆ 2 , p L ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ L x x x x y z x y , px Ly Ly Ly , px Lz , px Lz Lz Lz , px
p, f
i
f
2 2 p, p f x i p f
(v) p, pf x p p, pfp p, p fp p p, pf p p, f p pf p, p p p, f p 由(iv)知, p, f
3.3 设 x, p i , f ( x) 是 x 的可微函数, 证明:
2 (i) x, p f x 2i pf
(ii) x, pf x p i ( fp pf )
2 (iii) x, f x p 2i fp
ˆ ˆ BA ˆ,B ˆ 满足 AB ˆ ˆ 1 , 求证: 3.1 若算符 A
ˆ ˆ3 B ˆ 3B ˆ3A ˆ2; ˆ ˆ2 B ˆ 2B ˆ2A ˆ , AB (i) AB ˆ ˆ B ˆ nB ˆ A ˆ (ii)用数学归纳法证明: AB
量子力学作业答案精选全文完整版
可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。
解:t x U 与)(无关,是定态问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合,因此有 x,0 x,0 , 故 t=0 时 x * x,0 x x,0 dx 0
并且 x 不随时间变化。 3.18 考虑一质量为 m 的粒子在一维势场 U x U 0
x 中运动,其中 n 是正整数, a
n
其中 an n* x x, 0 dx
因此 x, t
a x e
n n n
iEn t /
对于谐振子 n x N n e
x / 2
2
H n x
2 2
an dxN n e
2 2
x /2
H n x Ae
3.17
在
t=0
时 , 处 在 谐 振 子 势 U
2
1 2 kx 中 的 一 颗 粒 子 的 波 函 数 是 2
x, 0 Ae x
2
/2
sin cos H 0 x 2 2 H 2 x 其 中 和 A 是 实 常 数 ,
x 2 e [ H n x ] dx
2
1
2
mk ,且厄米多项式归一化条件是
2
2n n !
(i)写出 x, t ; (ii)求出 x, t 态中测量粒子的能量的可能值和相对概率; (iii)求 t=0 时的 x ,并问 x 是否随时间 t 变化? 解: (1)系统的薛定谔方程为 i
x /2
sin cos H 0 x 2 2 H 2 x
A N0 cos n 0 N 2 2 2 sin n 2 2 2
所以有 x, t A 2
x 不会变小反而会变大。
N=1 时, U x 为邪振子势 U x 上式给出 E
n
U 0 x2 1 m 2 x 2 a2 2
1 ,与结果一致 2
2 2
ቤተ መጻሕፍቲ ባይዱ
n 时, U x 为无限深方势阱,上式给出 E
8ma 2
精确结果为
2
2ma 2
3.19 考虑一维对称势阱中粒子,熟知,在这种情形下至少有一个能级。现在在给定势阱深度
1/ 2 iE0t / sin 2 x eiE2t / cos 0 x e
(2)可能测到的能量为 E0
p cos 2 1 5 cot 2 和E2 = ,相对概率为 0 2 p2 sin 2 2
(3)由于 H 0 x 和H 2 x 都是 x 的偶函数,而且 x, 0 又仅为 0 x 与 2 x 的组
0 U 0
x a / 2 x a / 2
由于在 x a / 2 处, 势场 U 0 有限, 它并不是无限大的, 所以粒子完全有可能在 x a / 2 的 位子出现,也就是说粒子并不是一定在 x a / 2 范围内运动,所以 a 减小时说粒子的空间 位置越来越精确的说法错误;相反地,随着 a 的减小,粒子出现在阱外的几率会越来越大,
px
2b
,
2
b
x
2
1 b E U0 2m 2b a
2n
2 a 2n 2n2 b 2 n 1 dE 2 nU 0, b 求极值。即 0有 0 4mb3 a2n db 8mnU 0
1
U 2 a 2 n n 1 所以 E n 1 20 a n 8mnU 0
2n
U 0 0 ,定性讨论能量的本征值的分布和相应的本征函数的宇称,用不确定性原理估计基
态能量的数量级,并讨论 n=1 和 n 两种特殊情况。 解:由束缚态和一维薛定谔方程的普遍性质可知,U(x)中有无限多个束缚态,且各束缚态无 简 并 , 能 量 本 征 值 是 分 立 的 , 第 m 个 激 发 在 E<U(x) 区 域 应 有 m 个 节 点 , 则 有
x k m 1
由维里定理
,随着 m 的增大, x 也增大
2 2n
2 T 2n U 得 k x
2n
(m 1) k
2n
2mE 其中 2 k
所以 E k m+1 n 1
2
即一般来说随着 n 增加,能级间隔也增加。因为V x V x ,故所有的本征态都有确定 宇称,基态和第二,四· · ·激发态宇称为偶,其余本征态宇称为奇。 下面用不确定原理估计基态能量
2
U 0 的情况下,减少势阱宽度 a 使满足不等式:a 2
空间位置将越来越精确( x
mU 0
初看起来束缚在势阱中的粒子的
a )然而在任何情况下,动量的不确定度 p 应限制在数量级
mU 0 内,于是有不等式 px mU 0 a ,这个结果显然和不确定性原理矛盾,试指
出上述论证中的错误,并求出粒子坐标和动量不确定度的乘积。 解:势场 U x
x, t H x, t t
iEnt /
由于 H 不显含时间 t , 则有 n x, t n x e 而 H n x En n x 用能量本征函数展开 x, 0
x, 0 an n x