第6章 复合材料的界面
合集下载
第六章复合材料mme06
6.4.1 金属陶瓷
一、组成及分类
金属陶瓷是金属(通常为钛、镍、钴、铬等及其合金) 和陶瓷(通常为氧化物、碳化物、硼化物和氮化物 等)组成的非均质材料,是颗粒增强型的复合材料。 金属和陶瓷按不同配比组成工具材料(陶瓷为主)、 高温结构材料(金属为主)和特殊性能材料。 二、性能及应用 ●氧化物金属陶瓷 ---多以钴或镍作为粘接金属,热 稳定性和抗氧化能力较好,韧性高。
通常,复合材料的复合结果是密度大大减小,高的比 强度和比模量是复合材料的突出性能特点。 二、抗疲劳性能和抗断裂性能
1. 很好的抗疲劳性能
●复合材料中的纤维缺陷少,本身抗疲劳能力高;
●基体的塑性和韧性好,能够消除或减少应力集中,不易产生 微裂纹; ●塑性变形的存在又使微裂纹产生钝化而减缓了其扩展。
例如:碳纤维增强树脂的疲劳强度为拉伸强度的 70%~ 80%,一般金属材料却仅为30%~50%。 2. 抗断裂能力好 基体中有大量细小纤维,较大载荷下部分纤维断裂 时载荷由韧性好的基体重新分配到未断裂纤维上, 构件不会瞬间失去承载能力而断裂。
6.3.3 碳基复合材料
• 一、组成及特点---碳基复合材料是碳纤维及其制品(如
碳毡)增强的碳基复合材料。
●具有许多碳和石墨的特点,如密度小、导热性 高、膨胀系数低以及对热冲击不敏感; ●具有优越的机械性能:强度和冲击韧性比石墨高5 ~10倍,比强度非常高;随温度升高强度升高;断裂 韧性高、蠕变低; ●化学稳定性高,耐磨性极好, 是耐温最高的高温复合材料 (达2800℃)。
●自动控温开关
由温度膨胀系数不同的黄铜片和铁片复合而成的,如果单 用黄铜或铁片,不可能达到自动控温的目的。导电的铜片 两边加上两片隔热、隔电塑料,可实现一定方向导电、另 外方向绝缘及隔热的双重功能。
第六章复合材料表界面的分析表征
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯酸 碳纤维; C. 氧等离子处理碳纤维; D. 未处理 碳纤维
41
不同处理碳纤维增强复合材料冲击 载荷与冲击时间的对应关系
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯 酸碳纤维; C. 氧等离子处理碳纤维; D. 未 处理碳纤维
氧等离子处理(曲线C)碳纤维 复合丝试样的冲击载荷曲线主 要弹性承载能U1差不多比未处 理者增加近3倍,表明基体变形 更大,也有更多的纤维发生形 变。相反塑性承载能U2却小到 可略视的地步,几乎没有什么 纤维拔出和与基体的脱粘,充 分表明了强结合的界面特征。
25
碳纤维表面官能团的分析
还原剂,消除自由基,证明等 离子处理产生的大部分是游离
基,不是酚羟基
图6-25 等离子处理时间对自由基浓度的影响
在等离子处理初期,自由基浓度迅速增加,处 理5分钟后,自由基浓度增加渐趋平缓。
27
图6-26 UHMWPE纤维表面活性的衰减
经等离子处理后的UHMWPE纤维暴露在空气中,表 面自由基的浓度随时间而衰减,表面活性在逐渐减小
36
6.4.2 复合材料界面的动态力学分析
a-接枝玻纤 b-未接枝玻纤 涂敷聚苯乙烯树脂的玻璃纤维辫子的动态
力学扭辫曲线
曲线b在92℃处出现一个 尖锐的聚苯乙烯玻璃化转变 损耗峰,而曲线a上,在聚 苯乙烯玻璃化转变损耗峰高 温一侧还有一个小峰,一般 称为α’峰,也叫做界面峰。
界面粘结强,则试样承 受周期负荷时界面的能力损 耗大,α’峰越明显。
复合材料界面受到因 热膨胀系数不同引起 的热残余应力。热残 余应力的大小正比于 两者的热膨胀系数之 差Δα和温差ΔT, 也与基体和纤维的模 量有关。
29
❖ 6.4 界面力学性能的分析表征
41
不同处理碳纤维增强复合材料冲击 载荷与冲击时间的对应关系
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯 酸碳纤维; C. 氧等离子处理碳纤维; D. 未 处理碳纤维
氧等离子处理(曲线C)碳纤维 复合丝试样的冲击载荷曲线主 要弹性承载能U1差不多比未处 理者增加近3倍,表明基体变形 更大,也有更多的纤维发生形 变。相反塑性承载能U2却小到 可略视的地步,几乎没有什么 纤维拔出和与基体的脱粘,充 分表明了强结合的界面特征。
25
碳纤维表面官能团的分析
还原剂,消除自由基,证明等 离子处理产生的大部分是游离
基,不是酚羟基
图6-25 等离子处理时间对自由基浓度的影响
在等离子处理初期,自由基浓度迅速增加,处 理5分钟后,自由基浓度增加渐趋平缓。
27
图6-26 UHMWPE纤维表面活性的衰减
经等离子处理后的UHMWPE纤维暴露在空气中,表 面自由基的浓度随时间而衰减,表面活性在逐渐减小
36
6.4.2 复合材料界面的动态力学分析
a-接枝玻纤 b-未接枝玻纤 涂敷聚苯乙烯树脂的玻璃纤维辫子的动态
力学扭辫曲线
曲线b在92℃处出现一个 尖锐的聚苯乙烯玻璃化转变 损耗峰,而曲线a上,在聚 苯乙烯玻璃化转变损耗峰高 温一侧还有一个小峰,一般 称为α’峰,也叫做界面峰。
界面粘结强,则试样承 受周期负荷时界面的能力损 耗大,α’峰越明显。
复合材料界面受到因 热膨胀系数不同引起 的热残余应力。热残 余应力的大小正比于 两者的热膨胀系数之 差Δα和温差ΔT, 也与基体和纤维的模 量有关。
29
❖ 6.4 界面力学性能的分析表征
《无机非金属材料科学基础》第6章 固体的表面与界面行为
平衡时,此膨胀功必然等于新增加的表面能8πrγdr, 即
由此我们可以得到一个重要的结论:肥皂池的半径越 小,泡膜两侧的压差越大。
上式是针对球形表面而言的压差计算式,对于 一般的曲面,即当表面并非球形时,压差的计算式 有所不同。一般地讲,描述一个曲面需要两个曲率 半径之值;对于球形,这两个曲率半径恰好相等。一 般曲面两个曲率的半径分别为R1和R2。我们可以得 到一般曲面的压差计算式:
1. 共价键晶体表面能
2. 离子晶体表面能
每一个晶体的自由焓都是由两部分组成,体积 自由焓和一个附加的过剩界面自由焓。为了计算 固体的表面自由焓,我们取真空中0K下一个晶体 的表面模型,并计算晶体中一个原子(离子)移到晶 体表面时自由焓的变化。在0K时,这个变化等于 一个原子在这两种状态下的内能之差。
目录
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节
表面与界面物理化学基本知识 固体的表面(固-气) 固-液界面 浆体胶体化学原理 固-固界面
6.1 表面与界面物理化学基本知识
固体的界面可一般可分为表面、界面和相界面: 1)表面:表面是指固体与真空的界面。 2)界面:相邻两个结晶空间的交界面称为“界面”。 3)相界面:相邻相之间的交界面称为相界面。相界面有
界面间的吻合和结合强度。
表面微裂纹是由于晶体缺陷或外力作用而产生。微 裂纹同样会强烈地影响表面性质,对于脆性材料的强度 这种影响尤为重要。
脆性材料的理论强度约为实际强度的几百倍,正是 因为存在于固体表面的微裂纹起着应力倍增器的作用, 使位于裂缝尖端的实际应力远远大于所施加的应力。
葛里菲斯(Griffith)建立了著名的玻璃断裂理论, 并导出了材料实际断裂强度与微裂纹长度的关系
R 2E C
由此我们可以得到一个重要的结论:肥皂池的半径越 小,泡膜两侧的压差越大。
上式是针对球形表面而言的压差计算式,对于 一般的曲面,即当表面并非球形时,压差的计算式 有所不同。一般地讲,描述一个曲面需要两个曲率 半径之值;对于球形,这两个曲率半径恰好相等。一 般曲面两个曲率的半径分别为R1和R2。我们可以得 到一般曲面的压差计算式:
1. 共价键晶体表面能
2. 离子晶体表面能
每一个晶体的自由焓都是由两部分组成,体积 自由焓和一个附加的过剩界面自由焓。为了计算 固体的表面自由焓,我们取真空中0K下一个晶体 的表面模型,并计算晶体中一个原子(离子)移到晶 体表面时自由焓的变化。在0K时,这个变化等于 一个原子在这两种状态下的内能之差。
目录
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节
表面与界面物理化学基本知识 固体的表面(固-气) 固-液界面 浆体胶体化学原理 固-固界面
6.1 表面与界面物理化学基本知识
固体的界面可一般可分为表面、界面和相界面: 1)表面:表面是指固体与真空的界面。 2)界面:相邻两个结晶空间的交界面称为“界面”。 3)相界面:相邻相之间的交界面称为相界面。相界面有
界面间的吻合和结合强度。
表面微裂纹是由于晶体缺陷或外力作用而产生。微 裂纹同样会强烈地影响表面性质,对于脆性材料的强度 这种影响尤为重要。
脆性材料的理论强度约为实际强度的几百倍,正是 因为存在于固体表面的微裂纹起着应力倍增器的作用, 使位于裂缝尖端的实际应力远远大于所施加的应力。
葛里菲斯(Griffith)建立了著名的玻璃断裂理论, 并导出了材料实际断裂强度与微裂纹长度的关系
R 2E C
第6章 界面特性
为了尽可能形成低能晶界, 为了尽可能形成低能晶界,在晶界过渡区中: 在晶界过渡区中:
通过改变晶格常数大小, 通过改变晶格常数大小,使两边原子得到匹配; 使两边原子得到匹配;
形成一定数目的失配位错, 形成一定数目的失配位错,使其两边原子获得匹配。 使其两边原子获得匹配。即尽可能通过 原子有序排列的过渡形成低能晶界。 原子有序排列的过渡形成低能晶界。
陶瓷中的晶界偏析现象 压电陶瓷制备的电压敏传感器,其灵敏度与 ZnO压电陶瓷制备的电压敏传感器, 电压的非线性对应关系是由在晶界区偏析出的 尖晶石等晶界相和偏析的钴、锰等元素决定。 锰等元素决定。 Bi2O3尖晶石等晶界相和偏析的钴、 偏析区约1~2nm。
2. 晶界的一般特征
多晶体中的晶界大都是大角度晶界。 多晶体中的晶界大都是大角度晶界。
在一般情况下, 在一般情况下,我们只考虑偏析发生在表面很薄的范围内, 我们只考虑偏析发生在表面很薄的范围内,这 属于平很偏析, 属于平很偏析,产生平衡偏析的动力是减小比表面能使系统的 自由能达到最小。 自由能达到最小。在统计热力学中, 在统计热力学中,在计算自由能时, 在计算自由能时,一般只 考虑表面积, 考虑表面积,而没有考虑表面的厚度。 而没有考虑表面的厚度。 实际上观察到的偏析范围较宽, 实际上观察到的偏析范围较宽,
(2)薄膜内表面偏析 羟基磷灰石陶瓷涂层溶解度较大, 羟基磷灰石陶瓷涂层溶解度较大,影响了植入材料的长效性。 影响了植入材料的长效性。 Ca5(PO4)3F有较小的溶解度, 有较小的溶解度,但F离子含量太高, 离子含量太高,生物活性不佳。 生物活性不佳。 涂层以Ca5(PO4)3(OH)1-xFx形式存在, 形式存在,并呈氟梯度分布为最理想。 并呈氟梯度分布为最理想。
偏析的自发趋势: 偏析的自发趋势:一般来说,晶界结构比晶内松散,具有一定的表面 界面效应,且晶界结构缺陷比晶内多,溶质原子(离子)处在晶内的 能量比处在晶界的能量要高,所以溶质原子有自发向晶界偏聚的的趋 势,这就会发生晶界偏析,使系统能量降低。
复合材料第六章功能复合材料
材料在复合后所得的复合材料,依据其 产生复合效应的特征,可分为两大类:
一类复合效应为线性效应; 另一类则为非线性效应。 在这两类复合效应中,又可以显示出不 同的特征。
7
下表列出了不同复合效应的类别。
不同复合效应的类别
线性效应 平均效应 平行效应 相补效应 相抵效应
复合效应 非线性效应 相乘效应 诱导效应 共振效应 系统效应
30
2、功能复合材料的设计
复合材料的最大特点在于它的可设计性。
因此,在给定的性能要求、使用环境及 经济条件限制的前提下,从材料的选择途径 和工艺结构途径上进行设计。
31
例如,利用线性效应的混合法则,通过 合理铺设可以设计出某一温度区间膨胀系数 为零或接近于零的构件。
又如XY平面是压电,XZ平面呈电致发光 性,通过铺层设计可以得到YZ平面压致发光 的复合材料。
EcEmVmEfVf
10
平行效应
显示这一效应的复合材料,它的各 组分材料在复合材料中,均保留本身 的作用,既无制约,也无补偿。
11
对于增强体(如纤维)与基体界 面结合很弱的复合材料,所显示的复 合效应,可以看作是平行效应。
12
相补效应
组成复合材料的基体与增强体,在性 能上相互补充,从而提高了综合性能,则 显示出相补效应。
55
音光
电气 信号
磁性 信号
磁头
作为磁 性保留
记录材料
磁记录再生的原理示意图
56
由麦克风及摄像机将声音及光变成电 信号,再由磁头变成磁信号,从而固定在 磁记录介质上。
读出时,与记录过程相反,使声音和 图像再生。
57
理想的磁记录介质要尽可能地高密度, 能长期保存记录,再生时尽可能高输出。
一类复合效应为线性效应; 另一类则为非线性效应。 在这两类复合效应中,又可以显示出不 同的特征。
7
下表列出了不同复合效应的类别。
不同复合效应的类别
线性效应 平均效应 平行效应 相补效应 相抵效应
复合效应 非线性效应 相乘效应 诱导效应 共振效应 系统效应
30
2、功能复合材料的设计
复合材料的最大特点在于它的可设计性。
因此,在给定的性能要求、使用环境及 经济条件限制的前提下,从材料的选择途径 和工艺结构途径上进行设计。
31
例如,利用线性效应的混合法则,通过 合理铺设可以设计出某一温度区间膨胀系数 为零或接近于零的构件。
又如XY平面是压电,XZ平面呈电致发光 性,通过铺层设计可以得到YZ平面压致发光 的复合材料。
EcEmVmEfVf
10
平行效应
显示这一效应的复合材料,它的各 组分材料在复合材料中,均保留本身 的作用,既无制约,也无补偿。
11
对于增强体(如纤维)与基体界 面结合很弱的复合材料,所显示的复 合效应,可以看作是平行效应。
12
相补效应
组成复合材料的基体与增强体,在性 能上相互补充,从而提高了综合性能,则 显示出相补效应。
55
音光
电气 信号
磁性 信号
磁头
作为磁 性保留
记录材料
磁记录再生的原理示意图
56
由麦克风及摄像机将声音及光变成电 信号,再由磁头变成磁信号,从而固定在 磁记录介质上。
读出时,与记录过程相反,使声音和 图像再生。
57
理想的磁记录介质要尽可能地高密度, 能长期保存记录,再生时尽可能高输出。
材料表界面 第六章 高分子材料的表面张力
6.3 表面张力与相对分子质量的关系
特例
聚乙二醇分子端基上的羟基之间发生氢键缔合作用,结果 使低聚物的性能变得像相对分子质量无穷大一样。
6.4 表面张力与分子结构的关系
等张比容经验公式:
摩尔体积
(P /V )4
等张比容
等张比容是与物质的分子结构密切有关的量,摩尔体积与物 质的密度有关,因而也与温度有关。因此,影响表面张力的两个 重要因素是温度和分子结构。
6.1 表面张力与温度的关系
利用表面张力与温度的线性关系,可间接地测试固态聚合物的 表面张力。--------第一种得到表面张力的方法
缺点: (1)没有考虑相 变的影响 (2)测试结果不 准确
6.1 表面张力与温度的关系
Macleod (麦克劳德)方程:
0 n log n log A
材料表界面课程主要内容
材料表界面
一、绪论
二、液体界面
三、固体表面 四、固液界面
表界面基础知识
五、表面活性剂
六、高分子材料的表面张力
七、聚合物的表面改性
八、金属材料的表面
九、无机非金属材料的表界面
十、复合材料的界面
第六章 高分子材料的表面张力
什么是高分子材料?
高分子材料:以高分子化合物为基础的材料。
包括橡胶、塑料、纤维、涂料、胶材料在国民经济中的地位
高分子材料占飞机总重的65%。
(即使采用最轻铝/钛合金,其比重也大于2.7,而高分子材料的比重为1.5左右)
高分子材料的重要性
高分子材料表界面特性
高分子材料表界面特性
合成纤维 表面的染色
塑料表面 的喷金
高聚物对 其他材料 的粘接
如果使高聚物熔体在具有不同表 面能的表面上冷却,可得到结晶 度不同的表面,这类表面具有不 同的表面张力。
--复合材料力学第六章细观力学基础
称为纵向有效模量的混合律。
(二)纵向泊松比
21
RVE的纵向应变关系式:
2 f 2V f m2Vm
两边同时除以 1 ,可得:
21 f V f mVm
(三)纵横(面内)剪切模量
G12
在剪应力作用下,RVE的剪应变有如下 关系:
12 f V f mVm
以
12
12
G12
可在复合圆柱模型上施加不同的均匀应力边界条件,利用 弹性力学方法进行求解而得到有效模量,结果为:
2
2Gm
E
f
rf2
ln(
R rf
)
其中 Gm 为基体剪切模量,rf 为纤维半经,R为纤维间距,
l为纤维长度,R与纤维的排列方式和 V f 有关。
ET(短) ET (长)
2、Halpin-Tsai方程
EL Em
1
2
l d
LV
f
1 LV f
ET
1 2TV f
Em 1 TV f
此时,对L取:
RVE的要求: 1 、 RVE 的 尺 寸 << 整 体 尺 寸 , 则宏观可看成一点;
2、RVE的尺寸>纤维直径;
3、RVE的纤维体积分数=复合材料的纤维体积分数。
纤维体积分数:
Vf
vf v
v f —纤维总体积;
v —复合材料体积
注意:
只有当所讨论问题的最小尺寸远大于代表性体积单元时,
复合材料的应力应变等才有意义。
并可由RVE的解向邻近单元连续拓展到整体时,所得的有效 弹性模量才是严格的理论解。
则只有满足上述条件的复合材料的宏观弹性模量才能通过 体积平均应力、应变进行计算;或按应变能计算。
(二)纵向泊松比
21
RVE的纵向应变关系式:
2 f 2V f m2Vm
两边同时除以 1 ,可得:
21 f V f mVm
(三)纵横(面内)剪切模量
G12
在剪应力作用下,RVE的剪应变有如下 关系:
12 f V f mVm
以
12
12
G12
可在复合圆柱模型上施加不同的均匀应力边界条件,利用 弹性力学方法进行求解而得到有效模量,结果为:
2
2Gm
E
f
rf2
ln(
R rf
)
其中 Gm 为基体剪切模量,rf 为纤维半经,R为纤维间距,
l为纤维长度,R与纤维的排列方式和 V f 有关。
ET(短) ET (长)
2、Halpin-Tsai方程
EL Em
1
2
l d
LV
f
1 LV f
ET
1 2TV f
Em 1 TV f
此时,对L取:
RVE的要求: 1 、 RVE 的 尺 寸 << 整 体 尺 寸 , 则宏观可看成一点;
2、RVE的尺寸>纤维直径;
3、RVE的纤维体积分数=复合材料的纤维体积分数。
纤维体积分数:
Vf
vf v
v f —纤维总体积;
v —复合材料体积
注意:
只有当所讨论问题的最小尺寸远大于代表性体积单元时,
复合材料的应力应变等才有意义。
并可由RVE的解向邻近单元连续拓展到整体时,所得的有效 弹性模量才是严格的理论解。
则只有满足上述条件的复合材料的宏观弹性模量才能通过 体积平均应力、应变进行计算;或按应变能计算。
复合材料力学第六章2
其中 N x , N xy , N y为已知外加平面内膜内力载荷值
变分符号
屈曲前平板保持平的,当外载荷达到某一临 界值时,层合板产生微弯状态,即小变形范围。 满足平衡方程。
像弯曲问题推导基本微分方程那样,将几何方程代入 物理方程,再代入平衡方程,就可得以下方程:
0 x Nx kx 0 Ny Aij y Bij ky 0 xy N xy k xy
D12 D22 D26
D16 k x D26 k y D66 k xy
u0, x w0, xx Bij v0, y Dij w0, yy u0, y v0, x 2w0, xy
B12 B22 B26
B16 k x B26 k y B66 k xy
u0, x w0, xx Aij v0, y Bij w0, yy u0, y v0, x 2w0, xy
D11 w, xxxx 4 D16 w, xxxy 2 D12 2 D66 w, xxyy 4 D26 w, xyyy D22 w, yyyy B11 u, xxx 3B16 u, xxy B12 2 B66 u, xyy B26 u, yyy B16 v, xxx B12 2 B66 v, xxy 3B26 v, xyy B22 v, yyy N x w, xx 2 N xy w, xy N y w, yy 0
A11u, xx 2 A16u, xy A66u, yy A16v, xx A12 A66 v, xy A26v, yy B11w, xxx 3B16 w, xxy B12 2 B66 w, xyy B26 w, yyy 0 A16u, xx A12 A66 u, xy A26u, yy A66v, xx 2 A26v, xy A22v, yy B16 w, xxx B12 2 B66 w, xxy 3B26 w, xyy B22 w, yyy 0
变分符号
屈曲前平板保持平的,当外载荷达到某一临 界值时,层合板产生微弯状态,即小变形范围。 满足平衡方程。
像弯曲问题推导基本微分方程那样,将几何方程代入 物理方程,再代入平衡方程,就可得以下方程:
0 x Nx kx 0 Ny Aij y Bij ky 0 xy N xy k xy
D12 D22 D26
D16 k x D26 k y D66 k xy
u0, x w0, xx Bij v0, y Dij w0, yy u0, y v0, x 2w0, xy
B12 B22 B26
B16 k x B26 k y B66 k xy
u0, x w0, xx Aij v0, y Bij w0, yy u0, y v0, x 2w0, xy
D11 w, xxxx 4 D16 w, xxxy 2 D12 2 D66 w, xxyy 4 D26 w, xyyy D22 w, yyyy B11 u, xxx 3B16 u, xxy B12 2 B66 u, xyy B26 u, yyy B16 v, xxx B12 2 B66 v, xxy 3B26 v, xyy B22 v, yyy N x w, xx 2 N xy w, xy N y w, yy 0
A11u, xx 2 A16u, xy A66u, yy A16v, xx A12 A66 v, xy A26v, yy B11w, xxx 3B16 w, xxy B12 2 B66 w, xyy B26 w, yyy 0 A16u, xx A12 A66 u, xy A26u, yy A66v, xx 2 A26v, xy A22v, yy B16 w, xxx B12 2 B66 w, xxy 3B26 w, xyy B22 w, yyy 0
东大金属凝固原理第六章
15
二、单晶生长的方法 根据熔区的特点,单晶生长的方法可以分为正常凝 固法和区熔法。
(一) 正常凝固法
正常凝固法制备单 晶,最常用的有坩 埚移动、炉体移动 及晶体提拉等单向 凝固方法。
16
1、坩埚移动或炉体移动单向凝固法 最常用的是将尖底坩埚垂直沿炉体逐渐下降,单 晶体从尖底部位缓慢向上生长;也可以将“籽晶”放 在坩埚底部,当坩埚向下移动时, “籽晶”处开始
8
二、单向凝固的方法
1.发热剂法
型壳(精密铸造壳型)放在绝热箱中,底部放水 冷结晶器,浇铸金属后,在上部盖发热剂,使 上部金属处于高温,四周绝热,下部冷却,建立 自下而上的凝固条件。
缺点:无法调节GL 和R,制备小型柱状晶铸件(叶
片)。
9
2.功率降低法(P.D法) 加热线圈分成两段, 铸件不移动,型壳加热到 一定温度,向型壳内加入 过热的金属液,切断下部
1
§6-1 定向凝固工艺
单向凝固又称单向结晶,是使金属或合金由熔 体中单向生长晶体的一种工艺方法。单向凝固是用 于制备单晶、柱状晶和内生复合材料的凝固工艺方 法。其中最重要的工艺参数是:
GL-固液界面前沿液相中的温度梯度
R-固液界面前沿推进速度,晶体生长速度。
GL/R是控制晶体长大形态的重要判据(影响界面 稳定性) 在提高GL的条件下,增加R,才获得所要求的晶体 形态,细化组织,改善质量,并且提高单向凝固铸 件的生产率。
向右,每重熔一次都有提纯作用,纯度提高一
次,经多次重熔,得到高纯材料。
25
26
区域提纯效果与K0和搅 拌程度有关。 K0越小, 搅拌越好,提纯效果越 好。感应加热,电磁搅 拌,液相溶质分布均匀, 界面前沿溶质浓度低, 固相中的溶质少,提纯 效率高。
第6章-2 金属基复合材料的界面及其表征
5
6.2.6.2 界面对金属基复合材料力学性能的影响
界面结合强度对复合材料 的冲击性能影响较大。纤维 从基体中拔出,纤维与基体 脱粘后,不同位移造成的相 对摩擦都会吸收冲击能量, 并且界面结合还影响纤维和 基体的变形能力。
三种复合材料的典型冲击载荷- 时间关系曲线
1-弱界面结合 2-适中界面结合 3-强界面结合
1
界面组成及成分变化
2
界面区的位错分布
3
界面强度的表征
4
界面残余应力的测定
5 界面结构的高分辨观察及其原子模拟
10
6.3.1 界面组成及成分变化
确定界面上有无新相形成是界面表征的主要内容之一。新相可能是 增强体与基体通过扩散反应而在界面处形成的新相, 也可能是基体组 元与相界处杂质元素反应在界面处优先形核而成为新相。 一般情况下常用明场像或暗场像对界面附近区域形貌进行观察, 通 过选区衍射和X射线能谱进行微区结构和成分分析。 当析出物十分细小时, 可采用微衍射和电子能量损失谱来分析其结 构和成分, 电子能量损失谱尤其适合于对C、O等轻元素的分析。可 以准确判知界面析出物的结构、成分和形貌特征。
1、金属基复合材料界面可分成哪些类型?请分别举 例说明不同类型界面的特征。 2、金属基复合材料的界面结合有哪几种?什么样的 界面结合对力学性能更有利?
3
6.2.6 界面对性能的影响
不同类型和用途的金属基复合材料界面的作用和最佳界面结构 性能有很大差别。
纤维增强脆性基体复合材料的微观断裂模型 (a)纤维“桥接” (b)裂纹穿过纤维造成脆断
11
挤压铸造Al18B4O33w /Al-2.5%Mg 复合材料界面 TEM 照片
4Al18B4O33+33Mg = 33MgAl2O4+6Al+16B
6.2.6.2 界面对金属基复合材料力学性能的影响
界面结合强度对复合材料 的冲击性能影响较大。纤维 从基体中拔出,纤维与基体 脱粘后,不同位移造成的相 对摩擦都会吸收冲击能量, 并且界面结合还影响纤维和 基体的变形能力。
三种复合材料的典型冲击载荷- 时间关系曲线
1-弱界面结合 2-适中界面结合 3-强界面结合
1
界面组成及成分变化
2
界面区的位错分布
3
界面强度的表征
4
界面残余应力的测定
5 界面结构的高分辨观察及其原子模拟
10
6.3.1 界面组成及成分变化
确定界面上有无新相形成是界面表征的主要内容之一。新相可能是 增强体与基体通过扩散反应而在界面处形成的新相, 也可能是基体组 元与相界处杂质元素反应在界面处优先形核而成为新相。 一般情况下常用明场像或暗场像对界面附近区域形貌进行观察, 通 过选区衍射和X射线能谱进行微区结构和成分分析。 当析出物十分细小时, 可采用微衍射和电子能量损失谱来分析其结 构和成分, 电子能量损失谱尤其适合于对C、O等轻元素的分析。可 以准确判知界面析出物的结构、成分和形貌特征。
1、金属基复合材料界面可分成哪些类型?请分别举 例说明不同类型界面的特征。 2、金属基复合材料的界面结合有哪几种?什么样的 界面结合对力学性能更有利?
3
6.2.6 界面对性能的影响
不同类型和用途的金属基复合材料界面的作用和最佳界面结构 性能有很大差别。
纤维增强脆性基体复合材料的微观断裂模型 (a)纤维“桥接” (b)裂纹穿过纤维造成脆断
11
挤压铸造Al18B4O33w /Al-2.5%Mg 复合材料界面 TEM 照片
4Al18B4O33+33Mg = 33MgAl2O4+6Al+16B
第6章 聚合物复合材料的界面
重要性: 重要性: 第 6 章 复 合 材 料 的 界 面
1. 界面所占面积多: 界面所占面积多: 玻璃钢制品中30%纤维含量的制品与50%纤维含量制 玻璃钢制品中30%纤维含量的制品与50%纤维含量制 30%纤维含量的制品与50% 品的界面数量明显不同 2. 力的传递
基体与纤维之间连接桥梁, 基体与纤维之间连接桥梁,纤维与基体之间的应力 传递作用 3. 影响性能- 影响性能-增韧
提高浸润性的手段
第 6 章 复 合 材 料 的 界 面
界面设计基本原则:改善浸润性,提高界面的粘接强度。 界面设计基本原则:改善浸润性,提高界面的粘接强度。 提高PMC界面粘接强度的措施: 界面粘接强度的措施: 提高 界面粘接强度的措施 (1)使用偶联剂 ) 偶联剂:也称活性浸润剂, 偶联剂:也称活性浸润剂,它既与增强用玻璃纤维表面 形成化学键, 形成化学键,又与基体具有良好的相容性或与基体反应的化 学试剂。 学试剂。 常用的偶联剂:有机硅、有机铬、钛酸酯等。 常用的偶联剂:有机硅、有机铬、钛酸酯等。 有机硅偶联剂的结构通式为: 有机硅偶联剂的结构通式为:R-Si-(OR`)3
6.2 高聚物复合材料界面的形成及作用机理
第 6 章 复 合 材 料 的 界 面
3、机械结合: 当两个表面相互接触后,由于表面粗糙不 机械结合: 当两个表面相互接触后, 平将发生机械互锁。 平将发生机械互锁。 另一方面,尽管表面积随着粗糙度增大而增大, 另一方面,尽管表面积随着粗糙度增大而增大,但 其中有相当多的孔穴,粘稠的液体是无法流入的。 其中有相当多的孔穴,粘稠的液体是无法流入的。无 法流入液体的孔不仅造成界面脱粘的缺陷,而且也形 法流入液体的孔不仅造成界面脱粘的缺陷, 成了应力集中点。 成了应力集中点。
复合材料性能
复合材料的界面定义
复合材料的界面定义
复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的性能和特点。
在复合材料中,界面是指不同组分之间的交界面,是复合材料中最重要的部分之一。
界面的性质和特点直接影响着复合材料的整体性能和应用范围。
因此,对复合材料的界面进行准确的定义是非常重要的。
首先,复合材料的界面可以被定义为不同组分之间的交界面,包括纤维和基体
之间的界面、不同填料之间的界面等。
这些界面通常是由于材料的不同成分或性质所导致的,因此界面的性质往往会对整体材料的性能产生显著的影响。
其次,复合材料的界面还可以被定义为材料的微观结构和相互作用的区域。
在
这些区域中,不同组分之间的相互作用会产生一系列的界面效应,如界面扩散、界面结合、界面应力传递等。
这些效应会直接影响着复合材料的力学性能、热学性能、耐久性等方面。
另外,复合材料的界面还可以被定义为材料的表面区域,包括纤维表面、填料
表面、基体表面等。
这些表面区域往往是复合材料与外界环境或其他材料之间的直接接触区域,因此界面的性质会直接影响着复合材料的耐腐蚀性、黏附性、润湿性等方面。
综上所述,复合材料的界面可以被定义为不同组分之间的交界面、材料的微观
结构和相互作用区域,以及材料的表面区域。
界面的性质和特点直接影响着复合材料的整体性能,因此对复合材料的界面进行准确的定义是非常重要的。
在未来的研究中,我们需要进一步深入理解复合材料的界面定义,探索界面效应对复合材料性能的影响机制,为复合材料的设计、制备和应用提供更加科学、准确的理论基础。
第6章 复合材料性能
复合材料基本力学特性-破坏机理
(1)脆性破坏
(2)脆性破坏 伴随纤维拔出
(3)不规则破坏
复合材料基本力学特性-破坏机理
纤维的表面都会有缺陷,使纤维沿长度方向存 在弱点,尤其是脆性纤维对这种缺陷敏感性强 缺陷在复合材料中或多或少地随机分布,纤维 在外力作用下将在缺陷处出现断裂,可见断裂 很难发生在一个平面内 纤维中的缺陷不仅位置不同,而且严重程度也 不同
复合材料基本力学特性-破坏机理
复合材料的破坏特征
⒈ 聚合物复合材料的拉伸σ~ε关系,呈脆 性破化特征(纤维无屈服) ⒉ 破坏形貌(拉伸)
⑴ 脆性破坏 况(见图a) 断面平滑整齐对,发生在f-r间粘附较好的情
⑵ 脆性破坏纤维拔出 断面较不规则,有纤维拔出对应σb较 低, 发生在r-f粘附较差的情况(见图b) ⑶ 不规则破坏 断面很不规则,纤维拔出很多,对应σb最 低,发生在r-f粘附很差的情况,产生大量脱胶现象(见图c)
复合材料基本力学特性-力学效应
σ f Ef = σ m Em
组分应力比与相应的弹性模量比相等: 为了在纤维中达到高应力以充分发挥高强度 纤维的效用,纤维的弹性模量应远大于基体 的弹性模量。
复合材料基本力学特性-力学效应
横向拉伸模量(串联模型)
1 / E2 = V f / E f + Vm / Em
强度
σ Tu = σ mu
ET Em
1 ⎞ ⎛ ⎜1 − V f 2 ⎟ ⎠ ⎝
失效应变
ε Tu
⎛ ⎞ = ε mu ⎜1 − V f ⎟ ⎝ ⎠
1 2
复合材料基本力学特性-力学效应
纵向压缩性能的复合效应
纵向压缩载荷作用下,单向复合材料的失效模式有三种:
第一章 表界面基础知识
令F=p-W环,R=R’+r,则可得
F 4 ( R' r ) 4R
经Harkins和Tordan校正
F f 4R
校正因子f 与两个无量纲量 有关,可从校正因子图查出
材料表面与界面
5、吊板法
p = W总 - W板 = 2(l + d)σ
l 和d 分别为吊板的宽度和厚度
气 相
液 相
材料表面与界面
表面张力(含义3-热力学含义)
根据热力学第一、第二定律,可以导出:
U H F G ( ) S ,V ( ) S , P ( )V ,T ( ) P ,T A A A A
表面张力为各种特定条件下,改变单位面积所引起的内能 U、焓H、自由能F、自由焓G的变化值,由于经常在恒温 恒压下研究表面能,故下式较常用
G A P,T
(1-3)
材料表面与界面
表面张力(含义3-热力学含义)
令GS为比表面自由焓,A为总表面积,则总表面自由焓为
G G A
S
代入式(1-3)得:
S G G S A( ) P ,T A
纯液体分子是可流动的, 表面改变并不引起表面结 构分子间平均距离及排列 情况变化,故:
材料表面与界面
理解
式(1-2)才是laplace方程的一般形式,是表面化学 的基本定律之一 当两个曲率半径相等时,R1=R2= r时,曲面成为 球面,式(1-2) 变成(1-1) 对于平液面,两个曲率半径均为无限大, Δp=0表 示跨过液面不存在压差
材料表面与界面
1.3 液体表面张力的测试
材料表面与界面
理解表明能
表面能是创造பைடு நூலகம்质表面时对破坏分子间化学键的度量。在 固体物理理论中,表面原子比物质内部的原子具有更多的 能量,因此,根据能量最低原理,原子会自发的趋于物质 内部而不是表面 表面能的另一种定义是,材料表面相对于材料内部所多出 的能量。把一个固体材料分解成小块需要破坏它内部的化 学键,所以需要消耗能量。如果这个分解的过程是可逆的 ,那么把材料分解成小块所需要的能量与小块材料表面所 增加的能量相等,即表面能增加 也可以这样理解,由于表面层原子朝向外面的键能没有得 到补偿,使得表面质点比体内质点具有额外的势能,称为 表面能
F 4 ( R' r ) 4R
经Harkins和Tordan校正
F f 4R
校正因子f 与两个无量纲量 有关,可从校正因子图查出
材料表面与界面
5、吊板法
p = W总 - W板 = 2(l + d)σ
l 和d 分别为吊板的宽度和厚度
气 相
液 相
材料表面与界面
表面张力(含义3-热力学含义)
根据热力学第一、第二定律,可以导出:
U H F G ( ) S ,V ( ) S , P ( )V ,T ( ) P ,T A A A A
表面张力为各种特定条件下,改变单位面积所引起的内能 U、焓H、自由能F、自由焓G的变化值,由于经常在恒温 恒压下研究表面能,故下式较常用
G A P,T
(1-3)
材料表面与界面
表面张力(含义3-热力学含义)
令GS为比表面自由焓,A为总表面积,则总表面自由焓为
G G A
S
代入式(1-3)得:
S G G S A( ) P ,T A
纯液体分子是可流动的, 表面改变并不引起表面结 构分子间平均距离及排列 情况变化,故:
材料表面与界面
理解
式(1-2)才是laplace方程的一般形式,是表面化学 的基本定律之一 当两个曲率半径相等时,R1=R2= r时,曲面成为 球面,式(1-2) 变成(1-1) 对于平液面,两个曲率半径均为无限大, Δp=0表 示跨过液面不存在压差
材料表面与界面
1.3 液体表面张力的测试
材料表面与界面
理解表明能
表面能是创造பைடு நூலகம்质表面时对破坏分子间化学键的度量。在 固体物理理论中,表面原子比物质内部的原子具有更多的 能量,因此,根据能量最低原理,原子会自发的趋于物质 内部而不是表面 表面能的另一种定义是,材料表面相对于材料内部所多出 的能量。把一个固体材料分解成小块需要破坏它内部的化 学键,所以需要消耗能量。如果这个分解的过程是可逆的 ,那么把材料分解成小块所需要的能量与小块材料表面所 增加的能量相等,即表面能增加 也可以这样理解,由于表面层原子朝向外面的键能没有得 到补偿,使得表面质点比体内质点具有额外的势能,称为 表面能
陶瓷基复合材料(CMC)
CMC制备工艺
• 制造工艺也可大 致分为配料-成型 -烧结-精加工等 步骤。
• 改进的浆体法
陶瓷基复合材料的制备还有溶胶凝胶法、液态浸渍法、 直接氧化法等,新近发展起来的制备陶瓷基复合材料的 方法还有聚合物先驱体热解工艺、原位复合工艺等。
CMC界面
• 陶瓷基复合材料界面可分为两大类:无 反应界面和有反应界面。 • 无反应界面
概 述
• 陶瓷基复合材料的基体为陶瓷。
• 碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、 重量轻和价格低等优点。化学键往往是介于离子键与共价键之 间的混合键。
• 陶瓷基复合材料中的增强体通常也 称为增韧体。
• 从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。 • 碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数 的构件;其它常用纤维是玻璃纤维和硼纤维。 • 纤维增强陶瓷基复合材料,是改善陶瓷材料韧性的重要手段。
CMC制备工艺
CMC制备工艺
• 晶须与颗粒增韧陶瓷基复合材料的加工 与制备
• 晶须与颗粒的尺寸均很小,只是几何形状上有些区别, 用它们进行增韧的陶瓷基复合材料的制造工艺是基本 相同的。 • 基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。 所用设备也不复杂设备。 过程简单。混合均匀,热压烧结即可制得高性能的复合材料。
CMC性能
• 室温力学性能
• 拉伸强度
• 与金属基和聚合物基复合材料不同,对于陶瓷基复合 材料来说陶瓷基体的失效应变低于纤维的失效应变; 因此最初的失效往往是陶瓷基体的开裂,这种开裂是 由晶体中存在的缺陷引起的。
CMC性能与应用
单向连续纤维强化 陶瓷基复合材料的 拉伸失效有两种形 式:
(1)突然失效。纤维强度较 低,界面结合强度较高, 基体裂纹穿过纤维扩展, 导致突然失效。 (2)如果纤维较强,界面结 合相对较弱,基体裂纹沿 着纤维扩展,纤维失效前, 纤维-基体界面脱粘、因此 基体开裂并不导致突然失 效,复合材料的最终失效 应变大于基体的失效应变。
第六章 功能复合材料
压力-发光 电场-发光 (场致发光)
压电复合材料
• 压电陶瓷和聚合物基体按照一定的联接方 式、一定的体积比例和一定的空间几何分 布复合而成。
• 在电场的作用下,可以引起电介质中带电 粒子的相对位移而发生极化。但是,在某 些电介质晶体中,也可以通过纯粹的机械 作用(拉应力、压应力或切应力)而发生极化, 并导致介质两端表面内出现符号相反的束 缚电荷,其电荷密度与外力成比例。这种 由于机械力的作用而使电介质晶体产生极 化并形成表面荷电的效应,称为压电效应。 晶体的这一性质就叫压电性。
1-3型水泥基压电复合材料
• 1-3型水泥基压电复合材料是由一维的压电 陶瓷柱平行地排列于三维连通的水泥基体 中而构成的两相压电复合材料。这种复合 材料集中了各相材料的优点,互补了单相的 缺点,具有低声阻抗、高机电耦合系数和低 机械品质因数等优点,更重要的是通过调节 压电陶瓷柱的体积分数及形状参数便可使 复合材料的声阻抗与混凝土材料的声阻抗 相匹配,从而有效地解决智能材料在土木工 程中的相容性问题。
压电陶瓷弯曲变形器
压电陶瓷风扇和继电器
压电振动加速计
0-3型压电复合材料
• 由不连续的陶瓷颗粒分散于三维连通 的聚合体基体中形成的。 • 可以做成薄片、棒或线材。
• 浇注树脂是非常关键的步骤,为了使树脂与 PZT柱结合紧密,树脂与PZT柱的界面上不 能存在气孔,因为气孔的存在易使声波产生 全反射,而且会导致力的传递不连续。因此, 要求树脂的流动性好,固化时间长。
功能复合材料的主要类型
功能特征 磁功能 复合材料 主要类型 屏蔽复合材料 吸波复合材料 透波复合材料 聚合物基导电复合材料 本征导电聚合物材料 压电复合材料 陶瓷基导电复合材料 水泥基导电复合材料 金属基导电复合材料 导电纳米复合材料 超导复合材料 减少电磁波对信息 用途 系统的干扰、减弱 吸收或衰减入射的 柔韧磁体、磁记录 电磁波对人体健康 电磁波,使其因干 隐身材料 的损害。 涉而消失或将其电 雷达罩、天线罩 磁能转换为其他形 屏蔽 式的能量。 防静电、开关 压电传感器 高压绝缘 建筑物绝缘 高强、耐热导电材料 锂电池 医用核磁成像技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接触角
Contact angle
阶段II 增强材料与基体材料间通过相互作用而 使界面固定下来,形成固定的界面层。
界面层的结构: 界面粘合力的性质 界面层的厚度 界面层的组成
◇ 界面层的作用机理
化学键理论 弱边界理论 物理(浸润)吸附理论
机械粘结理论
界面的形成与作用机理
化学键理论(偶联理论)
三、水对复合材料及界面的破坏作用
水对树脂的降解 物理效应(可逆):破坏树脂内氢键或其他次价键,使
树脂增塑,热机械性能下降; 化学效应(不可逆):与树脂内化学键发生化学作用, 树脂降解
水溶胀树脂导致界面破坏 树脂溶胀,在界面上产生剪应力。当剪应力大于 界面粘接力时,界面破坏。
三、水对复合材料及界面的破坏作用
三、水对复合材料及界面的破坏作用
水的浸入(通过扩散作用进入界面) 从树脂宏观裂纹进入(有化学应力和热应力产生裂纹); 树脂内存在的杂质(水溶性杂质); 复合材料成型中在材料内部产生的气泡 水对玻纤的腐蚀 水溶解玻纤表面碱金属氧化物,溶液呈碱性,并加剧玻 纤表面腐蚀破坏,最后导致玻纤SiO2骨架破坏,玻纤强度 降低,复合材料性能下降。
界面反应性(与层剪强度有关)
反应性增加,强度增加
残余应力
残余应力增加,界面强度降低
热膨胀系数不同引起热引力; 树脂固化体积收缩引起的内应力
界面破坏机理
在复合材料中,受外力作用时,基体中会产生微裂纹, 并由基体逐渐扩展到纤维表面,使纤维脱粘(或拔出), 甚至断裂。 弱界面:韧性破坏(纤维脱粘或拔出) 强界面:脆性破坏(纤维断裂) 界面存在物理键(即范德华力)和化学键。其中化 学键是主要的,界面破坏时,二种键均受到破坏。
两相高聚物相互溶解、扩散 高聚物之间的粘接作用与其自粘作用(同种分子 间的扩散)一样,也是高聚物分子键与链段的相互扩 散(不同分子)引起的,由此产生强大的粘接力。
界面的形成与作用机理
电子静电理论
金属晶体-增强材料可看成一个电容器,二者各为一极 板,相互接触而使电容器充电,形成双电层,产生静电引力, 使基体育增强材料粘接在一起。
该理论不能解释属性相近的聚合物也能牢固粘接,因为 非极性聚合物之间是不能粘接的。
机械联结理论
基体与增强物的粘接为机械粘接作用。首先液态基体 渗入增强物的空隙中,然后基体凝固或固化而机械的镶嵌在 增强物表面,产生机械结合力。
界面的形成与作用机理
变形层理论
偶联剂涂层是一种柔性层或变形层,能提供具有“自 愈能力”的化学键。在外载作用下,处于不断形成与断裂的 动态平衡状态,起到均匀传递应力,减弱界面应力的作用, 从而提高基体与增强物的粘接性能。
※ 玻璃纤维的表面处理
采用有机硅烷偶联剂与有机络合物偶联剂进行处理
有机硅烷偶联剂
有机硅烷偶联剂处理机理:
1)硅烷偶联剂水解
2)硅醇之间进行缩合反应,形成低聚体;
3)吸水玻璃纤维的表面与硅醇之间形成氢键;
4)最后干燥脱水,玻璃纤维表面与硅醇之间形成共价键
处理方法:
1)在玻璃纤维清洁的表面直接涂覆偶联剂; 2)在玻璃纤维纺丝的过程中用偶联剂进行处理; 3)在制备复合材料时,将偶联剂直接掺混到基体中
对整体的性能有着决定性的影响
界面层的组成、结构与性能
填充、增强材料与基体材料的组成及它们间的反应性能
6.2 高聚物复合材料界面的形成及作用机理
◇ 界面层的形成
阶段I
增强材料与基体之间能够浸润和接触
浸润性表示液固发生接触的情况,是良好粘结的必要条件
浸润现象(Wetting)
不浸润 完全浸润 不完全浸润
单烷氧基脂肪酸型 单烷氧基焦磷酸酯型 螯合型 配位体型
偶联机理:
与硅烷偶联剂偶联机理相似
6.4 复合材料界面分析技术
红外光谱研究(IR)---- 高聚物界面
电子显微镜法: TEM、SEM ---聚合物表面、复合材料断面
X射线光电子能谱(XPS)
-----材料表面元素组成、表面基团及其含量
Summary & Problem
优先吸附理论
增强物优先吸附树脂中的不同成分(助剂),使界面 层结构与性能具有梯度变化,有利于消除应力,改善复合材纤维表面晶体大小及比表面积
晶体增大,模量增高,表面更光滑,惰性增加,粘合强度下 降;比表面积增加,界面增大,粘合强度提高。
浸润性
浸润性增加,空隙率减小,杂质少,粘合强度增加
界面在复合材料中发挥着越来越重要的作 用,界面的优化设计是实现复合材料性能的关键 所在。请结合某种具体的复合材料,掌握界面的
相关基础知识以及如何改善界面的方法。
Next on ……
第7章 复合材料理化性能
7.1 7.2 7.3
功能复合材料的发展和应用 复合材料的理化性能 复合材料的热物理性能及耐烧蚀性能
Polymer Composites
Review
第5章 复合材料力学性能
5.1 概 述 5.2 各向异性弹性材料力学基础
5.3 单层板的弹性特性
5.4 单层板的强度理论 5.5 复合材料的力学性能试验 5.6 单向复合材料各组分的强度准则 5.7 复合材料单向层板均匀各向同性材料的强度理论
5.8 纤维复合材料的疲劳行为
偶联剂分子至少有含有两种官能团,一种官能团 可与增强材料反应,另一种可与基体反应(参与固化 反应)。通过偶联剂的作用,将增强材料与树脂基体 通过共价键牢固地连接在一起。 该理论不能解释许多未使用偶联剂或偶联剂不与 增强材料、基体反应的复合材料体系。
界面的形成与作用机理
扩散理论(增强材料为有机纤维)
5.9 单向复合材料的破坏模式
Content
第6章 复合材料的界面
6.1 研究复合材料界面的重要性
6.2 高聚物复合材料界面的形成及作用机理
6.3 填充、增强材料的表面处理
6.4 复合材料界面分析技术
6.1 研究复合材料界面的重要性 复合材料内部存在大量界面层 界面层成为复合材料组成的一部分
使不同材料结合成为一个整体
水进入孔隙产生渗透压导致界面破坏 水进入孔隙,溶解杂质,浓度增加,渗透压增加, 一定温度、时间时,渗透压大于粘接力,导致界面破坏 水促使破坏裂纹的扩展 水降低了纤维的内聚能,脆化纤维; 水的表面腐蚀作用,使纤维表面形成了新的缺陷; 凝集在裂纹尖端的水能产生很大的毛细压力
6.3 填充、增强材料的表面处理
处理效果:改善复合材料性能
耐水性、电绝缘性及耐老化性能
※ 碳纤维的表面处理
处理方法:
氧化法(气相氧化法、液相氧化法、阳极氧化法) 沉积法 电沉积及与电聚合法 等离子体处理法
处理效果:
改善碳纤维的表面性能
增加与高聚物的粘结力
※ 粉状填料的表面处理
采用钛酸酯偶联剂进行处理 钛酸酯偶联剂主要结构类型