分式方程应用题分类练习
分式方程应用题大全
![分式方程应用题大全](https://img.taocdn.com/s3/m/4f135be7910ef12d2af9e7ae.png)
中考分式方程应用一、工程问题1.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.2.打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?3.一项工程,如果甲、乙两队合做,12天可以完成。
现在,先由甲队独做5天,接着由甲、乙两队合做4天,结果只完成了全部工程的一半。
问:如果让甲、乙两队单独做,要完成这项工程各需多少天?4.有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?二、路程问题1.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?2.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.三、水流问题1.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度2.一船自甲地顺流航行至乙地,用2.5小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.四、数字问题:1.一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.2.一个两位数,它的十位数比个位数小5。
如果把个位数与十位数对调后所得的两位数作为分母,3。
求原两位数。
原两位数作为分子,所得分数的值是8五.其他:1.总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵5.0元,求甲、乙两种糖果每千克各多少元?六、提升1. “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?2. 某机械加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零 件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?求详解3.东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2 000元,购买乙种足球共花费1 400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2 900元,那么这所学校最多可购买多少个乙种足球?4.在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的 (1)求乙队单独完成这项工程需要多少天? (2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是 ,甲队的工作效率是乙队的m 倍(1≤m ≤2),若两队合作40天完成剩余的工程,请写出a 关于m 的函数关系式,并求出乙队的最大工作效率是原来的几倍?5. 烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算. 1 3 1 a。
分式方程应用题专项训练
![分式方程应用题专项训练](https://img.taocdn.com/s3/m/0b028ee44afe04a1b071de52.png)
分式方程应用题专题训练一.行程问题(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
2、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元。
3、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?四.其它开放性新题型1、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
分式方程应用题分类讲解与训练(很全面)
![分式方程应用题分类讲解与训练(很全面)](https://img.taocdn.com/s3/m/e4859e9148d7c1c709a145dd.png)
分式方程应用题分类讲解与训练一、【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1。
5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得xx 6828-=x 5.1828,解得46x =, 经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,即普通快车车的平均速度为46km /h,直达快车的平均速度为69km /h .评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.4060例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度.分析:等量关系:甲用时间=乙用时间+ (小时)例4 一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?解: 设步行速度为x 千米/时,骑车速度为2x 千米/时,依题意,得:方程两边都乘以2x ,去分母,得 30—15=x , 所以,x =15. 检验:当x =15时,2x =2×15≠0,所以x =15是原分式方程的根,并且符合题意.∵,∴骑车追上队伍所用的时间为30分钟.所行距离 速度 时间甲(87-45)千米x 千米/小时乙45千米(x+4)千米/小时30608745x-454x +例5 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得:解得x=15.经检验x=15是这个方程的解.当x=15时,3x=45.即自行车的速度是15千米/小时,汽车的速度为45千米/小时.例6 甲乙两人同时从一个地点相背而行,1小时后分别到达各自的终点A与B;若从原地出发,但是互换彼此的目的地,则甲将在乙到达A之后35分钟到达B,求甲与乙的速度之比。
分式方程应用题专练(含答案)
![分式方程应用题专练(含答案)](https://img.taocdn.com/s3/m/1924c4e371fe910ef12df8ab.png)
分式方程应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从直达的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知至的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从直达所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要几天。
5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,可列方程:6、明与强共同清点一批图书,已知明清点完200本图书所用的时间与强清点完300本图书所用的时间相同,且强平均每分钟比明多清点10本,求明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是多少.分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从直达的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知至的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从直达所用的时间(结果精确到0.01小时).解:设通车后火车从直达所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30(不合题意舍去)经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、明与强共同清点一批图书,已知明清点完200本图书所用的时间与强清点完300本图书所用的时间相同,且强平均每分钟比明多清点10本,求明平均每分钟清点图书的数量.解:设明平均每分钟清点图书x 本,则强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400)解得 300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售通过这段对话,请你求出该地驻军原来每天加固的米数.价-进价,利润率100%=⨯利润进价)解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程240024008(120)x x-=+% .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得: x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+=解得:5x =经检验5x =是原方程的解所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=, 解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意.∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是20千米/时.。
分式方程的典型应用题
![分式方程的典型应用题](https://img.taocdn.com/s3/m/9d3b28e0f46527d3250ce068.png)
分式方程的典型应用题用于过关检测一工程问题1.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?2.某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?3.某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:(1)甲队单独完成这项工程刚好如期成完成;(2)乙队单独完成这项工程要比规定的日期多用6天;(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.4.丽园开发工司的960件新产品需要精加工才能投放市场,现有甲乙两个工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
(1)甲、乙两工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由两个工厂单独完成,也可以由两个工厂合作完成,在加工的过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助,请帮公司选择一种即省时又省钱的加工方案。
二行程问题5.八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.6.小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25 米,求小明从商店到学校的速度。
分式方程应用题的常见类型汇总(含答案)
![分式方程应用题的常见类型汇总(含答案)](https://img.taocdn.com/s3/m/0c176c7d783e0912a2162a52.png)
分式方程应用题的常见类型汇总类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________________.2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?3.(扬州中考)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.求原来每天制作多少件?4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?类型2 行程问题5.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回.出租车的平均速度比公共汽车多20千米/时,回来时路上所花的时间比去时节省了14.设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )A.40x+20=34×40xB.40x=34×40x+20C.40x+20+14=40xD.40x=40x+20-146.(贵阳中考)2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州高速铁路将开始试运行.从贵阳到广州,乘特快列车的行程约为1 800 km,高铁开通后,高铁列车的行程约为860 km,运行时间比特快列车所用的时间减少了16 h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?8.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B品牌足球?9.某商场销售的一款空调机,每台的标价是1 635元.在一次促销活动中,按标价的8折销售,仍有9%的利润率.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台.问:共盈利多少元?参考答案1.520+45x=12.设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得1 000x+5=900x,解得x=45.经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.设原来每天制作x件,由题意,得480x-480(1+50%)x=10,解得x=16.检验:x=16时,1.5x≠0,所以x=16是原分式方程的解.答:原来每天制作16件.4.(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验x=20是方程的解且符合题意.1.5x=30.故甲,乙两公司单独完成此项工程,各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意得12(y+y-1 500)=102 000,解得y=5 000,甲公司单独完成此项工程所需的施工费为:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为:30×(5 000-1 500)=105 000(元).故甲公司的施工费较少.5.A6.设特快列车的平均速度为x km/h,根据题意可列出方程为1 800x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的根.答:特快列车的平均速度为91 km/h.7.设九年级学生有x人,根据题意,列方程得:1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验x=352是原方程的解.答:这个学校九年级学生有352人.8.(1)设购买一个A品牌足球x元,则购买一个B品牌足球(x+30)元,根据题意得2 500x=2 000x+30×2,解得x=50.经检验,x=50是原方程的解.x+30=80.答:购买一个A品牌足球需50元,购买一个B品牌足球80元.(2)设本次购买a个B品牌足球,则购进A品牌足球(50-a)个,根据题意得50×(1+8%)(50-a)+80×0.9a≤3 260,解得a≤3119 .∵a取正整数,∴a最大值为31.答:此次华昌中学最多可购买31个B品牌足球.9.(1)设这款空调机每台的进价为x元,则根据利润率公式有:9%=1 635×0.8-xx.解这个方程,得x=1 200.检验略.答:这款空调机每台的进价为1 200元.(2)1 200×0.09×100=10 800.答:商场盈利10 800元.。
分式方程应用题专题训练
![分式方程应用题专题训练](https://img.taocdn.com/s3/m/f574b992f121dd36a32d8278.png)
分式⽅方程应⽤用题专题复习⼀一.⾏行行程问题(1)⼀一般⾏行行程问题1、从甲地到⼄乙地有两条公路路:⼀一条是全⻓长600Km的普通公路路,另⼀一条是全⻓长480Km的告诉公路路。
某客⻋车在⾼高速公路路上⾏行行驶的平均速度⽐比在普通公路路上快45Km,由⾼高速公路路从甲地到⼄乙地所需的时间是由普通公路路从甲地到⼄乙地所需时间的⼀一半,求该客⻋车由⾼高速公路路从甲地到⼄乙地所需要的时间。
2、我军某部由驻地到距离30千⽶米的地⽅方去执⾏行行任务,由于情况发⽣生了了变化,急⾏行行军速度必需是原计划的1.5倍,才能按要求提前2⼩小时到达,求急⾏行行军的速度。
3.甲、⼄乙两地相距828km,⼀一列列普通快⻋车与⼀一列列直达快⻋车都由甲地开往⼄乙地,直达快⻋车的平均速度是普通快⻋车平均速度的1.5倍.直达快⻋车⽐比普通快⻋车晚出发2h,⽐比普通快⻋车早4h到达⼄乙地,求两⻋车的平均速度.(2)⽔水航问题3、轮船顺⽔水航⾏行行80千⽶米所需要的时间和逆⽔水航⾏行行60千⽶米所⽤用的时间相同。
已知⽔水流的速度是3千⽶米/时,求轮船在静⽔水中的速度。
⼆二.⼯工程问题1、⼀一台甲型拖拉机4天耕完⼀一块地的⼀一半,加⼀一天⼄乙型拖拉机,两台合耕,1天耕完这块地的另⼀一半。
⼄乙型拖拉机单独耕这块地需要⼏几天?2、某市为治理理污⽔水,需要铺设⼀一段全⻓长3000⽶米的污⽔水输送管道,为了了尽量量减少施⼯工对城市交通造成的影响,实际施⼯工时每天的⼯工效⽐比原计划增加25%,结果提前30天完成了了任务,实际每天铺设多⻓长管道?例例2某⼯工程由甲、⼄乙两队合做6天完成,⼚厂家需付甲、⼄乙两队共8700元,⼄乙、丙两队合做10天完成,⼚厂家需付⼄乙、丙两队共9500元,甲、丙两队合做5天完成全部⼯工程的,⼚厂家需付甲、丙两队共5500元.⑴求甲、⼄乙、丙各队单独完成全部⼯工程各需多少天?⑵若⼯工期要求不不超过15天完成全部⼯工程,问由哪个队单独完成此项⼯工程花钱最少?请说明理理由.三.利利润(成本、产量量、价格、合格)问题1、某煤矿现在平均每天⽐比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
(10)列分式方程解应用题专项练习60题(有答案)ok
![(10)列分式方程解应用题专项练习60题(有答案)ok](https://img.taocdn.com/s3/m/46113aed05a1b0717fd5360cba1aa81145318f40.png)
列分式方程解应用题60题(有答案)1.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.2.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.3.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程.已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?4.甲,乙两组学生去距学校4.5km的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少.5.甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、乙两队单独完成此项工程各需多少天?6.某校师生为爱心基金捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天多50人,且两天人均捐款数相等.问这两天共有多少人捐款?人均捐款额是多少?7.甲做90个零件所用的时间和乙做120个零件所用的时间相同,又知每小时甲、乙两人共做35个机器零件.求甲、乙每小时各做多少个零件.8.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务.甲、乙两队独做各需几天才能完成任务?9.甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.10.甲乙两地相距360km,新修的高速公路开通后,在甲乙两地行驶的汽车的平均速度提高了50%,而从甲地到乙地的时间缩短了2h.求汽车提速后的平均车速?11.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台?12.一个工人生产奥运会吉祥物“福娃欢欢”,计划30天完成,若每天多生产5个,则在26天完成且多生产了14个.则这个工人原计划每天生产多少个福娃欢欢?13.孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清点10本.已知孙明清点完200本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.14.某人骑自行车的速度比步行的速度每小时多走8千米,已知步行12千米所用的时间和骑自行车36千米所用的时间相等,这个人步行每小时走多少千米?15.甲、乙两班同学参加“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵,甲班种60棵树所用的时间与乙班种66棵所用的时间相等,问:甲、乙两班每小时各种多少棵树?16.甲、乙合打一份稿件,4小时后,甲有事离去,由乙继续打6小时完成.已知甲打4小时的稿件乙需5小时完成.求甲、乙独打这份稿件各需多少小时?17.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?18.甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.19.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期4天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?20.某货车在发生交通事故后,沿一条小路向高速公路逃离,交警巡逻车立即沿另一公路向高速追击,在货车刚进入高速公路路口时,将它截住.已知警车的速度比货车快40千米/时,警车驶到高速公路行驶的路程是货车的2倍,求警车的速度.21.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤所需的时间相同.问现在平均每天采煤多少吨?22.甲、乙两人从学校出发,前往距学校12千米的新华书店.甲每小时比乙多走2千米,乙比甲提前1小时出发,结果两人同时到达.求甲、乙两人每小时各走多少千米?23.甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?25.某工程要在规定日期内完成.若由甲单独做,则刚好如期完成;若由乙单独做,则要超过3天完成,现在先由甲、乙合做2天,剩下的工程由乙单独做,结果刚好按时完成.求规定的天数.26.“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?27.2010年春季我国西南五省持续干旱,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划生产1500桶纯净水支援灾区人民,在生产了300桶纯净水后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天生产多少桶纯净水?28.小颖和几位同学去文具店购买练习本,该文具店规定,如果购买达到一定的数量,则可以按批发价购买,于是他们凑到60元钱以批发价购买,这样购得的练习本数量比用零售价购得的练习本数量多30本,若每本练习本的批发价是零售价的,问每本练习本的零售价是多少元?29.某工厂引进新技术后,平均每小时比原来多生产30个零件.若现在生产900个零件所需时间与原来生产600个零件所需时间相等,现在平均每小时生产多少个零件?30.为了帮助灾区重建家园,学校号召同学们自愿捐款.已知第一次捐款总数为4 800元,第二次捐款总数为5 000元,第二次捐款人数比第一次捐款人数多20人,且恰好相等.问第一次捐款人数是多少?31.某公园在2008年北京奥运花坛的设计中,有一个造型需要摆放1800盆鲜花,为奥运作奉献的精神促使公园园林队的工人们以原计划1.2倍的速度,提前一小时完成了任务,工人们实际每小时摆放多少盆鲜花?32.某顾客第一次在商店买若干件小商品花去4元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,购买一打以上可以拆零买,这样,第二次花去4元买同样小商品的件数量是第一次的1.5倍.问他第一次买的小商品是多少件?33.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?34.某工厂加工495件产品,在加工了90件后进行了技术改造,使每天生产的产品数量是原来的1.5倍,结果共用了12天圆满完成了任务,问原来每天加工多少件产品?35.阅读下面一段文字:高圆带了9元去商店买笔记本,她想买一种软面抄,正好需付9元,但售货员建议她买另一种质量更好的硬面抄,只是这种笔记本的价格比软面抄要高出一半,因此她只能少买一本笔记本.请你根据以上信息确定:这种软面抄和硬面抄的价格各是多少?高圆原来打算买多少本笔记本?36.为加强防汛工作,市工程队准备对长江堤岸一段长为2500米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加固的长度是多少米?37.甲、乙两名志愿者为灾后重建搬运物资.已知甲、乙两人每小时共搬运1500 kg物资,且甲搬运300 kg物资的时间与乙搬运200 kg物资所用的时间相同.求甲每小时比乙多搬运多少物资?38.今年全国“助残日”期间,某中学学生踊跃捐款,奉献自己的一份爱心、其中八年级一班学生共捐款450元,二班学生共捐款390元.已知一班平均每人捐款金额是二班平均每人捐款金额的1.2倍,且二班比一班多2人,那么这两个班各有多少人?39.一件工程甲单独做15天可以完成,乙单独做12天可以完成,甲,乙,丙三人合作4天可以完成,那么丙单独做,几天可以完成?40.2009年12月,相距1050公里的A、B两市的高速铁路建成通车,高速铁路上的旅客列车时速是原普通铁路的3.5倍,运行在两市间的旅客列车运行时间因此缩短7.5小时,求高速铁路的时速.41.应用题:已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?42.某市教育局向一贫困山区县赠送3600个学生用的科学记算器以满足学生学习的需要、现用A,B两种不同的包装箱进行包装,单独用B型包装箱比单独用A型包装箱少用15个,已知每个B型包装箱装计算器的个数是A型包装箱的1.5倍,求A,B两种包装箱每个各能装计算器多少个?43.某市为处理污水需要铺设一条长为3000米的管道、为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务,求实际施工时每天铺设管道的长度.44.今年我国西南地区遭受严重旱灾,受灾人口达6130多万.为了帮助灾区重建家园,某学校号召师生自愿捐款,第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数.45.甲乙两站相距480千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车的2.5倍,结果客车比货车早6小时到达乙站,求两种车的速度各是多少?46.某养鱼专业户要想估计鱼塘里大概有多少条鱼,他进行了如下操作:先从鱼塘里捞上来200条鱼,分别做上记号后,又放回鱼塘,一段时间后,他又从鱼塘捞上来200条鱼,发现有4条是做了记号的,由此他就知道了鱼塘大概有多少条鱼,请你说明其中的道理,并求出该鱼塘里大概多少条?47.1罐咖啡甲、乙两人一起喝10天喝完,甲单独喝则需12天喝完,1包茶叶甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完,假如甲在有茶叶的情况下决不喝咖啡,而乙在有咖啡的情况下决不喝茶,问两人一起喝完1包茶叶和1罐咖啡需要多少天?48.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.49.某商店销售一种书包,七月份的销售额为6000元.为了让附近的孩子们在新学期能背上新书包,店主决定让利销售,在八月份将每个书包按原价的8折销售,结果销售量比七月份增加了50个,销售额比七月份增加了800元.求七月份每个书包的售价.50.“我国水资源形势非常严峻”,为了节约用水.某市今年3月1日起调整居民用水价格,每立方水费上涨25%.已51.某小组学生准备外出春游,预计共需费用120元,临出发时,有2人因故不能参加,但总费用不变,这样春游的学生人均费用增加,问原计划每人付费多少元?52.某厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合,其平均价值比甲种原料每斤少3元,比乙种原料每斤多1元,问混合后的单价每斤多少元?53.先锋中学九年级学生由距江南10km的学校出发前往参观,一部分同学骑自行车先走,过了20min后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为xkm/h,利用速度,时间,路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程,并求出问题的解.速度(千米/时)所用时间(时)所走的路程(千米)骑自行车x 10乘汽车1054.阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.55.2008年初,我国南方地区遭受雪灾,为保持道路畅通,市政府决定用铲雪机铲去扬威大道上的积雪.如果只用﹣台A型铲雪机单独工作,需要10小时才能全部铲完,在该铲雪机工作2小时后,一台B型铲雪机加入合作,然后一起工作了3小时将扬威大道上的积雪全部铲完,求B型铲雪机单独工作需要多少小时铲完?56.北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心.无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:信息一:(1)班共捐款540元,(2)班共捐款480元.请你根据以上三条信息,求出八(1)班平均每人捐款多少元?57.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系;(2)原计划若干天卸载完这批货物,但由于后一批货物要提前2天到达,则实际每天卸货数量比原计划每天多20%,恰好按时卸载完毕,求原计划每天卸载多少货物?58.2008年夏季奥运会的主办国于2001年7月13日揭晓.当时,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000千米处会合,并同时向北京进发,绿队走完2000千米时,红队走完1800千米,随后红队的速度比原来提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两队的速度比.(2)问红绿两支车队能否同时到达北京并说明理由.(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京求出第一支车队到达北京时,两支车队的距离.(单位:千米)59.列方程或方程组解应用题:某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元商场第二个月共销售多少件?60.阅读并解答:先阅读下列计算方法:某商店将甲乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=(元/千克),其中m1、m2分别为甲乙两种糖果的重量(千克),a1、a2分别为甲乙两种糖果的单价(元/千克).再解答下列问题:已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克.(1)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,已知混合糖果的单价为18.4元/千克,问:这箱甲种糖果有多少千克?(2)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再出售时,混合糖果的单价为17.5元/千克.问:这箱甲种糖果有多少千克?参考答案:1.解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时2.解:设船在静水中的速度是x千米/时.由题意得:.解得:x=21.经检验:x=21是原方程的解.答:船在静水中的速度是21千米/时3.解:设乙队单独完成所需天数x 天,则甲队单独完成需x天,由题意,得即=1 解得x=6 经检验,x=6是原方程的根x=6时,x=4答:甲、乙两队单独完成分别需4天、6天4.解:设甲组速度为xkm/小时,则乙组速度为3xKm/小时.列方程:.解得:x=6.经检验:x=6是方程的解.∴3x=18.答:步行速度为6km/小时,骑自行车的速度为18km/小时5.解:设甲队单独完成此项工程需2x天,则乙队需要3x天.由题意得:.解之得:x=2.经检验;x=2是所列分式方程的根.∴2x=2×2=4,3x=3×2=6.答:甲队单独完成需4天,乙队需6天6.解:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程.解得x=200.检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款=24(元).答:两天共参加捐款的有450人,人均捐款24元7.解:设甲每小时做x个零件,则乙每小时做(35﹣x)个零件.根据题意列方程得:.解得:x=15.经检验,x=15是原方程的解.答:甲每小时做15个零件,乙每小时做20个零件8.解:设甲独做需要x天完成任务,根据题意得:×9+(﹣)×(9+21)=1,解得:x=24,经检验:x=24是方程的解,∴1÷(﹣)=48,答:甲、乙两队独做分别需要24天和48天完成任务9.解:设步行速度为x千米/时,那么骑车速度是4x千米/时,10.解:设提速前的平均车速为x km/h,根据题意得:﹣=2 解得:x=60 经检验:x=60是原方程的解,所以,(1+50%)x=90(km/h)答:汽车提速后的平均车速为90km/h.11.解:设原来每天装配机器x台,依题意得:,解这个方程得:x=6,经检验:x=6是原方程的解,答:原来每天装配机器6台12.解:设原计划每天生产x个零件.依题意可列:,解得x=29.经检验,x=29是原方程的根.答:这个工人原计划每天生产29个福娃欢欢13.解:设孙明平均每分钟清点图书x本.根据题意得:.解这个方程得:x=20.经检验:x=20是原方程的解.答:孙明平均每分钟清点图书20本14.解:设这个人步行每小时走x千米.依题意得:=.方程两边同乘以x(x+8)得:12(x+8)=36x.解得:x=4.经检验:x=4是原分式方程的解.(6分)答:这个人步行每小时走4千米.15.解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵,根据题意得:,解这个方程得:x=20,经检验:x=20是原方程的根.所以当x=20时,x+2=20+2=22.所以甲班每小时种20棵树,乙班每小时种22棵树16.解:设甲单独打这份稿件需要4x小时,则乙单独打这份稿件需要5x小时.依题意,列方程:()×=1.解方程得:x=3.经检验:x=3符合题意.∴4x=12,5x=15.答:独打这份稿件,甲需12小时,乙需15小时.17.解:设大队的速度是x千米/时,先遣队的速度是1.2x千米/时,由题意得,解得x=5,经检验,x=5是原方程的解,∴1.2x=6,答:先遣队和大队的速度分别是6千米/时,5千米/时18.解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.答:甲的速度为4.5千米/时,乙的速度为6千米/时19.解:设规定日期是x天.根据题意得:+=1.解这个分式方程得:x=12.经检验:x=12是原方程的解,并且符合题意.由题意得:=.解之得:x=80.经检验:x=80是原方程的解.答:警车的速度为80千米/时21.解:设现在平均每天采煤x吨,依题意得,解得x=1100经检验,x=1100是方程的解.答:现在平均每天采煤1100吨22.解:设甲每小时走x千米,根据题意列方程得:=﹣1 整理得:x2﹣2x﹣24=0(3分)解这个方程得:x1=6x2=﹣4 经检验,x1x2是原方程的解,但x2<0不符合题意舍去,取x=6∴x﹣2=4(1分)答:甲每小时走6千米,乙每小时走4千米.(1分)23.解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解 1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时24.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件25.解:设规定天数为x天,依题意得,2×(+)+(x﹣2)×=1,解得:x=6,经检验x=6是原方程的解,答:规定的天数是6天26.解:设原来车辆的平均速度为x千米/小时.由题意可得:.解这个方程得:x=60.经检验:x=60是原方程的解.答:原来车辆的平均速度为60千米/小时27.解:设原来每天生产x桶纯净水,依题意得:,解这个方程,得x=100,经检验,x=100是原方程的解.答:原来每天生产100桶纯净水.28.解:设每本练习本的零售价是x元,则每本练习本的批发价是x,根据题意得:,解得x=0.5.将x=0.5代入检验得是方程的解.答:每本练习本的零售价是0.5元.29.解:设现在平均每小时生产x个零件,依题意得:解得:x=90 经检验,x=90是方程的解且符合题意.答:现在平均每小时生产90个零件.30.解:设第一次捐款人数是x,则第二次捐款人数是(x+20).依题意得:.解方程得:x=480.经检验:x=480是原方程的解.答:第一次捐款人数是48031.解:设工人原计划每小时摆放x盆鲜花,则实际每小时摆放1.2x盆鲜花.依题意得:=+1,解这个方程得:x=300.经检验:x=300是原方程的解.∴1.2x=360.答:工人们实际每小时摆放360盆鲜花32.解:设他第一次买的小商品是x 件.﹣=,解得:x=20,经检验x=20是原方程的解.答:他第一次买的小商品是20件33.解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.34.解:设:原来每天加工x件,则进行技术改造后,每天生产的产品数量为1.5x件.依题意列出方程:=12,解得:x=30,经检验,x=30是原分式方程的解.答:原来每天加工30件产品35.解:设每本软面抄的价格为x元,则每本硬面抄的价格为1.5x元.由题意得:.解之得:x=3.∴1.5×3=4.5(元),9÷3=3(本).答:软面抄单价3元/本,硬面抄单价4.5元/本,高原原计划买3本笔记本36.解:设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=米列方程:∴x=100 经检验:x=100是原方程的解.所以x(1+50%)==150米答:现在每天加固的长度是150米37.解:设甲、乙每小时搬运物资分别为xkg和(1500﹣x)kg,由题意得,解得x=900,经检验x=900是原方程的解,也符合实际意义.由900﹣(1500﹣900)=300(千克∕小时),知甲比乙每小时多搬运300kg物资38.解:设一班有x 人,根据题意得,解得:x=50,经检验,x=50是原分式方程的解,答:一班有50人,二班有52人39.解:设丙单独做x天可以完成.依题意列方程得:4(++)=1.解得:x=10.经检验,x=10是方程的根,也符合题意.答:丙单独做10天可以完成40.解:设普通列车时速为x公里/时,则,解之得:x=100,经检验:x=100是原方程的解,∴3.5x=350.答:高速铁路的时速为350公里/时41.解:设江水每小时的流速是x千米.根据题意,得,解得x=4.经检验,x=4是原方程的根.则江水每小时的流速是4千米42.解:设每个A型包装箱能够装x个计算器,则B型包装箱能装1.5x个计算器,依题意有:解这个方程,得x=80,经检验x=80是原方程的根,∴1.5x=120,答:每个A型包装箱能装80个计算器,每个B型包装箱能装120个计算器.43.解:设原计划施工时每天铺设管道xm,则实际施工时每天铺设管道1.5xm.据题意得:=25 解得x=40.经检验x=40是原方程的解. 1.5x=60答:实际施工时每天铺设管道60m.44.解:设第一次捐款人数为x,则解得x=400 经检验x=400是方程的解,答:第一次捐款人数为40045.解:设货车的速度为x千米/时,则客车的速度为2.5x千米/时,根据题意可列关于时间的方程式:﹣=6,解得:x=48(千米/时)故可知,货车的速度为48千米/时,客车的速度是120千米/时46.解:设该鱼塘里大概有x条鱼,依题意得,解之得:x=10000,经检验x=10000是方程的解,答:该鱼塘里大概有10000条鱼47.解:设甲单独喝茶叶的时间为x天,乙单独喝咖啡的时间为y天,根据题意列方程得,,解得y=60;,解得x=30.因此30天后甲喝完茶叶而乙只喝完咖啡的一半(),故剩下的咖啡变成两人合喝,由题意可知,他们两人还能喝÷()=5天.所以两人用30+5=35天才全部喝完.答:两人一起喝完1包茶叶和1罐咖啡需要35天48.解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480 经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人49.解:设7月份每个书包售价为x元,则8月份每个书包售价为0.8x元,根据题意得﹣=50,解得x=50(元),经检验:x=50是所列方程的根且符合题意,答;7月份每个书包售价为50元。
(完整版)分式方程应用题专题(含答案)
![(完整版)分式方程应用题专题(含答案)](https://img.taocdn.com/s3/m/2cf08b77da38376bae1fae4e.png)
1分式方程 应用题专题1、我国“八纵八横”铁路骨干网的第八纵通道温(州)福(州)——铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高(污水处理率).40% 污水处理量污水排放量(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加,按照国家要求“2010年省会城市的污水处理20%率不低于”,那么我市2010年每天污水处理量在2007年每70%天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?24、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天B.4天C.3天D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .B .C .D .66602x x =-66602x x =-66602x x =+66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜kg ,根据x 题意,可得方程( )A .B .9001500300x x =+9001500300xx =-C .D .9001500300x x =+9001500300x x=-a38、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?4510、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤m ,则得x 方程为 .通过这段对话,请你求出该地驻军原来每天加固的米数.411、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利4%润提高了.这种计算器原来每个进价是多少元?(利润售5%=价进价,利润率)-100%=⨯利润进价12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修m ,则根据题意可得方程 x .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用小871时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用220为元、乙队每天的工作费用为元.根据以上信息,从节1000550约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?517、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.672007分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为小时.1分x 依题意,得. 5分29833122xx =⨯+解这个方程,得. 8分14991x =经检验是原方程的解. 9分14991x =.148 1.6491x =≈答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50(50)×5350 4分-x2400-=化简得x 210x 12000 5分--=解方程得x 140,x 230(不合题意舍去) 6分==-经检验,x 140,x 230都是原方程的解,==-但x 230不合题意,舍去. 7分=-答: 每盒粽子的进价为40元. 8分3、解:(1)设年平均每天的污水排放量为万吨,2006x 则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05xx-=4分解得56x ≈5分经检验,是原方程的解56x ≈6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.87分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为万吨)1.05x (2)解: 8分59(120%)70.8⨯+= 9分70.870%49.56⨯= 49.563415.56-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加万吨.15.56 10分4、D5、D6、解:设张明平均每分钟清点图书本,则李强平均每分钟清点x 本,(10)x +依题意,得. 3分20030010x x =+解得.20x =经检验是原方程的解.20x =答:张明平均每分钟清点图书20本. 5分注:此题将方程列为或其变式,同样得分.30020020010x x -=⨯7、C8、解:设原来每天加固x 米,根据题意,得 1分. 3分926004800600=-+xx 去分母,得 1200+4200=18x (或18x =5400) 5分解得 . 6分300x =检验:当时,(或分母不等于0).300x =20x ≠∴是原方程的解. 7分300x =答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需x 天, 45……………………1分9根据题意,得 +=1 10x 1245x………………………………… 4分解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,x =20 45…………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分10、22402240220x x-=-11、解:设这种计算器原来每个的进价为元, 1分x 根据题意,得.5分4848(14)1005100(14)x xxx---⨯+=⨯-%%%%%解这个方程,得. 8分40x =经检验,是原方程的根. 9分40x =答:这种计算器原来每个的进价是40元.10分12、240024008(120)xx-=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:-=,……………………………………2分x1500401500+x 815去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.10…………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为元,则第二次购书的进价为x 元.根据题意得:(1)x +1200150010 1.2xx+=4分解得:5x =经检验是原方程的解5x =6分所以第一次购书为(本).12002405=第二次购书为(本)24010250+=第一次赚钱为(元)240(75)480⨯-=第二次赚钱为(元)200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=所以两次共赚钱(元) 848040520+=分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为千米/时,则提速后的速度为x 千米/时,根据题意,得. 3.2x 12801280113.2xx-=4分解这个方程,得.80x =5分经检验,是所列方程的根.80x =6分(千米/时).80 3.2256∴⨯=所以,列车提速后的速度为256千米/时.7分解法二: 设列车提速后从甲站到乙站所需时间为小时,x 则提速前列车从甲站到乙站所需时间为小时,根据题(11)x +意,得..128012803.211x x⨯=+5x ∴=则 列车提速后的速度为=256(千米/时)11 答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需天,则乙队单独完成需要天.根据题x 2x 意得1分 , 111220x x +=3分 解得 .30x = 经检验是原方程的解,且,都符合题意.530x =30x =260x =分 应付甲队(元).∴30100030000⨯= 应付乙队(元).30255033000⨯⨯= 公司应选择甲工程队,应付工程总费用元. 8∴30000分17、解:设甲工程队每周铺设管道公里,x 则乙工程队每周铺设管道()公里 1+x ………………………1分根据题意, 得 311818=+-x x………………………4分解得, 21=x 32-=x ………………………6分经检验,都是原方程的根 21=x 32-=x 但不符合题意,舍去 32-=x ………………………7分∴31=+x 答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里. ………………………8分18、 20。
分式方程应用题专项练习50题[推荐五篇]
![分式方程应用题专项练习50题[推荐五篇]](https://img.taocdn.com/s3/m/ebf627ade43a580216fc700abb68a98270feac49.png)
分式方程应用题专项练习50题[推荐五篇]第一篇:分式方程应用题专项练习50题分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的2;若由甲队先做103天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的2,厂家需付甲、丙两队共55003元。
(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
分式方程应用题含答案(经典)
![分式方程应用题含答案(经典)](https://img.taocdn.com/s3/m/30b5701231b765ce0408140a.png)
分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天4、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 5、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.6.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=-7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对通过这段对话,请你求出该地驻军原来每天加固的米数.城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.19、(2008咸宁) A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?20.(2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
分式方程应用题专项练习
![分式方程应用题专项练习](https://img.taocdn.com/s3/m/fa0bb9b369eae009581becf9.png)
分式方程应用专项练习:1.甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2.有两块面积一样的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5.某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6.某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7.一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
8.今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?9.某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
(完整版)分式方程应用题专题训练(有解析)
![(完整版)分式方程应用题专题训练(有解析)](https://img.taocdn.com/s3/m/8c0ff9e314791711cd791717.png)
华师大版数学八年级下册第16章分式方程应用题专题训练一、行程问题解题策略:在解行程问题的分式方程应用题时,可以依据时间=路程速度,利用分式来表示时间,根据时间之间的关系建立分式方程。
例:马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.分析:设马小虎的速度是x米/分,列表分析如下.依据马小虎多走10分钟建立方程.解:设马小虎的速度是x米/分,根据题意列方程,1600 x -16002x=10解得:x=80经检验,x=80是原方程的根.答:马小虎的速度是80米/分.练习:1、为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?解:设京张高铁最慢列车的速度是x 千米/时。
由题意,得17417418296020x x -=, 解得 180x =经检验,180x =是原方程的解,且符合题意。
答:京张高铁最慢列车的速度是180千米/时.2、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍. (1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?解:(1)设小明步行的速度是x 米/分,由题意得:900900103x x=+, 解得:x=60,经检验:x=60是原分式方程的解, 答:小明步行的速度是60米/分; (2)设小明家与图书馆之间的路程是y 米, 根据题意可得:900260180y ≤⨯ 解得:y ≤600,答:小明家与图书馆之间的路程最多是600米.3、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是x 米/分钟,公交车的速度是2x 米/分钟,根据题意得600300060030002 122x xx-+=-,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.二、工程问题解题策略:在解工程问题的分式方程应用题时,可以依据工作时间=工作量工作效率,利用分式来表示工作时间,根据工作时间之间的关系建立分式方程。
列分式方程解应用题专题训练
![列分式方程解应用题专题训练](https://img.taocdn.com/s3/m/ff0f6f5a6294dd88d1d26b8b.png)
列分式方程解应用题专题训练1、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?2、甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结甲比乙提前20分到达目的地,求甲乙的速度?3、张明4小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1小时清点完另一半图书.如果李强单独清点这批图书需要几小时4、一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦要少1小时,这台收割机每小时收割多少公顷小麦?5、一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求原计划的时间.6、红星粮库需要把晾晒场上的1200吨玉米入库封存.(1)入库所需时间t(天)与入库速度y(吨/天)有什么样的函数关系?(2)粮库有职工60名,每天最多可入库300吨玉米,预计玉米入库最快可在几日内完成?(3)粮库的职工连续工作了两天后,天气预报说未来的几天很可能会下雨,粮库决定次日把剩余的玉米全部入库,需要增加多少人帮忙才能完成任务?7、某汽车油箱的容积为70升,小王把油箱注满油后准备驾驶汽车从县城到300千米外的省城接待客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行使的总路程y(单位:千米)与平均耗油量x(单位:升/千米)之间有怎样的函数关系?(2)如果小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时因为下雨,小王降低了车速,此时每行驶1千米的耗油量增加了一倍,如果小王一直以此速度行驶,邮箱里的油是否够回到县城?如果不够用,至少还需加多少油?8、2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产水平是乙工厂每天加工生产水平的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?9、某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.10、佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.因为水果畅销,第二次购买时,每千克的进价比第一次提升了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?11、某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本能够打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)因为考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?12、一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?。
分式方程的应用题专题
![分式方程的应用题专题](https://img.taocdn.com/s3/m/f93b13e5b8f67c1cfad6b8d8.png)
分式方程的应用题专题1. 我校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.⑴求工程队A原来平均每天维修课桌的张数;⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.2. 在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成。
为了提前完成任务,改由甲、乙两个工程队同时施工,100天就能完成。
试问:若由乙工程队单独施工,需要多少天才能完成任务?3. 某市2006年的污水处理量为10万吨/天,2007年的污水处理量为22万吨/天,2007年日平均污水排放量比2006年日平均污水排放量多5万吨,若2007年每天的污水处量率比2006年每天的污水处理率高20%(污水处理率100=⨯污水处理量污水排放量%).(1)求该市2006年,2007年的日平均污水排放量分别是多少万吨?(2)如果自2006开始,该市每年的日平均污水排放量的年增长率相同,该市为创建旅游城市,计划2009年每天的污水处理率不低于...60%,那么该市2009年每天的污水处理量在2007年每天污水处量的基础上至少需要增加多少万吨,才能达到预期目标?4.2012年秋季至今年5月,我市出现了严重的旱情,今年4月15日至21日,甲、乙两所中学均告断水,上级立刻组织送水活动,每次送往甲中学7600升、乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.(1)求这两所中学师生人数分别是多少人?(2)若送瓶装水,价格为1元/升;若用消防车送饮用泉水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个.其它费用忽略不记.请你计算第一次给乙中学全部送瓶装水或全部用消防车送饮用泉水的费用各是多少?5.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?。
初中数学:分式方程应用题专题练习附详解(精)
![初中数学:分式方程应用题专题练习附详解(精)](https://img.taocdn.com/s3/m/5df4811154270722192e453610661ed9ad5155a6.png)
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .
人教版八年级上册:分式方程应用题分类练习
![人教版八年级上册:分式方程应用题分类练习](https://img.taocdn.com/s3/m/772f19db79563c1ec4da7163.png)
分式方程应用题分类练习一、行程问题1、某校学生利用春假时间去距离学校10km 的静园参观。
一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达。
已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度。
2、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
3、全国铁路实施第六次大面积提速,从A 站到B 站的某次列车提速前的运行时刻表如下,该次列车现在提速后,每小时比提速前7快20,那么按现在的速度终到时刻是多少?4、甲、乙两队同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.km5、中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为 1 352 km,高铁列车比普快列车行驶的路程少52 km,高铁列车比普快列车行驶的时间少8 h.已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速6、初二一班在军训时举行了登山活动,已经知道此山的高度是450米,于是教练员选择较平缓的南面开始登山,他首先把全班学生分成两组,已知第一组的攀登速度是第二组的1.2倍,他们比第二组早15分钟到达山顶.求这两个小组的攀登速度各是多少?二、工程问题1、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.求原计划平均每天生产多少台机器?2、某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工多少套运动服?3、为了维修某高速公路需开凿一条长为1300米的隧道,为了提高工作效率,高速公路建设指挥部决定由甲、乙两个工程队从两端同时开工.已知甲工程队比乙工程队每天能多开凿10米,且甲工程队开凿300米所用的天数与乙工程队开凿200米所用的天数相同,则甲、乙两个工程队每天各能开凿多少米4、甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?5、某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.6、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?7、有一段6000米的道路由甲、乙两个工程队负责完成,已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费700元,乙工程队每天需工程费500元,若甲队先单独工作若干天,再由甲、乙两工程队合作完成剩余的任务,支付工程队总费用不大于7600元,则两工程队最多可合作施工多少天?8、为治理太湖,某市决定铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设多长管道?三、盈利问题1、夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.2、夏天到了,欣欣服装店老板用4500元购进一批卡通团T桖衫,由于深受顾客喜爱,很快售完,老板又用5000元购进第二批该款式T恤杉,所购数量与第一批相同,但每件进价比第一批多了10元.求第二批衣服售价该定为多少元?3、某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的54倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?4、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.5、某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?6、今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?7、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?8、某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?9、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?四、水流问题1、轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,求轮船在静水中的速度为多少?2、轮船顺水航行75千米所需时间于逆水航行50千米所需要的时间一致,已知水流速度是3.5千米每小时,求轮船在静水中的速度是多少?五、耕地问题1、有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,求第一块试验田每公顷的产量为多少千克?2、有两块面积相同的试验田,其中分别收获小麦10000千克和9500千克,已知第一块试验田比第二块试验田的产量每公顷多3000千克,求两块试验田的产量为每公顷多少千克?六、其他问题1、小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.则设他上月买了多少本笔记本?.小丽家去年2、某市从今年1月1日起调整居民用水价格,每立方米水费上涨1312月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.3、母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?4、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?5、某城建部门计划在城市道路两旁栽1500棵树,原计划每天栽若干棵,考虑到季节、人员安排等因素,决定每天比原计划多栽50棵,最后提前5天完成任务,求原计划每天栽树多少棵?6、我国是一个水资源贫乏的国家,第每一个公民都应自觉养成节约用水的意识和习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题分类练习
一、【行程中的应用性问题】
1.电力维修工要到30千米远的郊区进行电力抢技
术工人骑摩托车先走,15分钟后,抢修车装载着
所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.
2.甲乙两辆汽车同时分别从A、B两城沿同一条高速
公路驶向C城.已知A、C两城的距离为450千米,
B、C两城的距离为400千米,甲车比乙车的速度
快10千米/时,结果两辆车同时到达C城.求两车的速度.
3.某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
4.从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
二、【工程类应用性问题】
1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
2、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
3、某项工程,需要在规定的时间内完成。
若由甲队
去做,恰能如期完成;若由乙队去做,需要超过规定日期三天。
现在由甲乙两队共同做2天后,余下的工程由乙队独自去做,恰好在规定的日期内完成,求规定的日期是多少天?
4.甲乙两个水管同时向一个水池注水,一小时能注满水池的
8
7
,如果甲管单独注水40分钟,再由乙管单独
注水半小时,共注水池的
2
1
,甲乙两管单独注水各需多少时间才能注满水池?
三、【营销类应用性问题】
1、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
2、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?
(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
3、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的
价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
4、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?
四、【顺逆水应用问题】
1、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
2、轮船顺水航行80千米所需的时间和逆水航行60千米所需的时间相同,已知船在静水中的速度是21千米/小时,求水流的速度?
3、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。
4、某人在河中游泳,有一次出发点与标志点间来回一趟大约用了 2.5min,假设当时水流的速度是0.015m/s,而其在静水中的游泳速度是0.585m/s,那么出发点与标志点间的距离大约是多少?
五、【其他应用性问题】
1、某校招生录取时,为了防止数据输入出错,2640
名学生的成绩数据分别由两位程序操作员各向计
算机输入一遍,然后让计算机比较两人的输入是否一致,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完。
问这两个操作员每分钟各能输入多少名学生的成绩?
2.某大商场家电部送货人员与销售人员人数之比1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比位2:5.求这个商场家电部原来各有多少名送货和销售人员?
3.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城。
已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城。
求两车的速度。
4.某厂储存了350t煤,由于改进炉灶结构和烧煤技术,每天能节约2t煤,使储存的煤比原计划多用了20天。
(1)若设原计划用x天,则根据每天能节约2t 煤的关系列方程:
(2)若设原计划每天烧yt煤,则根据储存的煤比原计划多了20天的关系列方程:。