解直角三角形教学设计12 人教版〔优秀篇〕

合集下载

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。

2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。

(2)通过将实际问题转化为数学问题,体会数学建模的思想。

3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。

(2)培养学生严谨的科学态度和合作交流的意识。

二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。

2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。

已知 a = 3,b = 4,求 c 的长度。

(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。

通过复习,为学习解直角三角形做好知识铺垫。

2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。

直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。

只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。

(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。

由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。

解直角三角形教案(完美版)

解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。

解直角三角形单元教学设计

解直角三角形单元教学设计

解直角三角形单元教学设计
一、教学目标
1. 理解解直角三角形的概念,掌握解直角三角形的方法,能运用解直角三角形的方法解决实际问题。

2. 通过解直角三角形的学习,进一步感受数学与生活的密切联系,体会数学在解决实际问题中的作用。

二、教学内容
1. 解直角三角形的有关概念。

2. 解直角三角形的方法。

3. 运用解直角三角形解决实际问题。

三、教学重点与难点
重点:掌握解直角三角形的方法。

难点:运用解直角三角形解决实际问题。

四、教学准备
1. 教师准备教学课件、三角板等教具。

2. 学生准备直尺、计算器等学习工具。

五、教学过程
1. 导入新课
教师通过复习旧知或引入实际生活情境,引导学生进入新课学习。

2. 探索新知
教师引导学生通过观察、思考、小组合作等方式,探究解直角三角形的概念和方法,并进行适当讲解和补充。

学生要认真听讲,积极思考,勇于表达自己的想法和意见。

3. 练习巩固
教师布置相关练习题,学生独立或小组合作完成,并进行交流和展示。

教师对学生的练习进行点评和指导,帮助学生巩固所学知识。

4. 归纳小结
教师对本节课所学内容进行归纳总结,强调重点和难点,帮助学生形成完整的知识体系。

学生要认真听讲,积极思考,做好笔记。

5. 布置作业
教师布置适量作业,要求学生按时完成,并进行检查和批改。

学生要认真完成作业,积极思考,勇于挑战自己。

解直角三角形教案

解直角三角形教案

解直角三角形教案作为一名教学工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么优秀的教案是什么样的呢?以下是小编整理的解直角三角形教案,欢迎阅读与收藏。

解直角三角形教案1一、教学目标(一)知识教学点巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程1.创设情境,导入新课。

例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。

这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。

但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的`意义。

解直角三角形教案2教材与学情:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

《解直角三角形》教学设计 【完整版】

《解直角三角形》教学设计 【完整版】

小组合作问题1:
你能否编一道“解直角三角形”的问题,让别的同学验证一下,看是否能求出其它元素?
小组合作问题2:
组织学生分析生活中的实际问题。

(方向角问题) 各小组汇总、归纳解题方法。

三、能力拓展
近日,A 城气象局测得龙卷风中心在A 城的正西方向240公里的B 处,正以每小时12公里的速度向北偏东60º的方向转移。

距离沙尘暴中心150公里的范围为受影响区域。

问:A 城是否受这次龙卷风的影响? 遵循巩固与发展相结合的原则,培养学生的创新意识
四、归纳总结 学生归纳总结
西 东

B
A
O。

解直角三角形优秀教案

解直角三角形优秀教案

余弦(cosine)
余弦是邻边与斜边的比值,即 cos(θ) = 邻边 / 斜边。
三角函数诱导公式
和差公式
用于计算两个角的和或差的三角 函数值,如 sin(A + B)、cos(A -
B) 等。
倍角公式
用于计算一个角的两倍或一半的三 角函数值,如 sin(2A)、cos(A/2) 等。
辅助角公式
用于将某些复杂的三角函数表达式 转化为简单的形式,如 sin(A)cos(B) + cos(A)sin(B) = sin(A + B) 等。
提问环节,老师答疑解惑
在小组讨论的基础上,鼓励学生提出 问题和疑惑,老师进行针对性的解答 和指导。
通过老师的答疑解惑,帮助学生解决在 解直角三角形过程中遇到的实际问题, 提高解题能力。
05
课堂总结与拓展延伸
回顾本节课重点内容
直角三角形的定义和性质
01
直角三角形是一个角为90度的三角形,具有一些特殊的性质和
增加实例分析
通过引入更多实际问题的例子,让学生更好地理解解直角三角形的 应用,提高学生的学习兴趣和积极性。
强化练习和辅导
针对部分学习困难的学生,应加强课后辅导和练习,通过一对一或小 组辅导的形式,帮助学生解决学习中遇到的问题。
分享成功经验和优秀案例
成功经验
本次教学中,通过引入实际问题、组织学生进行小组讨论和合作学习等方式,有效 地提高了学生的学习兴趣和参与度。
注意事项
在解题前要认真审题,明确已知条件和 未知量;在解题过程中要注意单位换算 和精确度问题;在解题后要及时检验结 果的合理性。
布置课后作业及预习任务
课后作业
布置与本节课内容相关的练习题, 要求学生独立完成,并按时提交。

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。

2、过程与方法目标(1)通过解直角三角形的学习,让学生体会数学知识在实际生活中的广泛应用,培养学生将实际问题转化为数学问题的能力。

(2)通过对问题的探究,让学生经历思考、分析、解决问题的过程,培养学生的逻辑思维能力和创新精神。

3、情感态度与价值观目标(1)在探究解直角三角形的过程中,培养学生勇于探索、敢于创新的精神,激发学生学习数学的兴趣。

(2)通过实际问题的解决,让学生体会数学与生活的紧密联系,感受数学的实用性,增强学生的应用意识。

二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。

(2)会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

2、教学难点(1)选择合适的锐角三角函数关系式解直角三角形。

(2)将实际问题转化为解直角三角形的数学问题,并正确选择恰当的解法。

三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、复习引入(1)复习直角三角形的性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理);直角三角形的两个锐角互余。

(2)复习锐角三角函数的定义:正弦(sin)、余弦(cos)和正切(tan)。

2、探索新知(1)引导学生思考:在一个直角三角形中,除直角外的五个元素(三条边和两个锐角)之间有什么关系?(2)师生共同总结得出:三边之间的关系:a²+ b²= c²(其中 a、b 为直角边,c 为斜边)两锐角之间的关系:∠A +∠B = 90°边角之间的关系:sin A = a/c,cos A = b/c,tan A = a/b(3)给出解直角三角形的定义:由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

《解直角三角形》教学设计方案

《解直角三角形》教学设计方案

《解直角三角形》教学设计方案《《解直角三角形》教学设计方案》这是优秀的教学设计文章,盼望可以对您的学习工作中带来协助!学习主题介绍学习主题名称:解直角三角形主题内容简介:本节的重点和难点是直角三角形的解法。

为了使学生娴熟驾驭直角三角形的解法,使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系。

正确选用这些关系,是正确、快速地解直角三角形的关键。

学习目标分析1. 学问与技能:使学生驾驭直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;2. 过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步造就学生分析问题、解决问题的实力;3. 情感看法与价值观:通过本节的学习,向学生渗透数形结合的数学思想,造就他们良好的学习习惯。

学情分析前需学问驾驭状况:本班学生对前面学过的三角函数根本学问点,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等前需学问驾驭教好,可以进一步学习。

对微课的相识:本班学生对微课不生疏。

曾经在班上进展过微课录制,学生能了解微课的制作过程,能很简单地承受这种教学方式。

对微课应用于课堂充溢新奇和期盼。

学生特征分析学习看法:学生已驾驭三角函数根本学问点,具有必须的转化和类比推理实力。

对于第一次采纳微课进展协助学习有深厚的爱好,对微课这一新型教学方法充溢了新奇。

学习风格:本班的学生在与他人合作和沟通过程中,能较好地理解他人的思索方法和结论。

,适合开展小组合作学习;也能针对他人所提的问题进展反思,初步形成评价与反思的意识,能对学问归纳总结;踊跃参加数学活动,对数学有新奇心和求知欲。

微课在课堂或课后的运用会有很大的收益。

微课用于学生学习的教学策略分析微课用于学生学习的目的:微课主要用于突破难点,对难点的具体讲解,通过微课,将重难点直观化、形象化,便于学生对新学问的承受,也可以在课后用于学问的稳固。

解直角三角形优秀教案

解直角三角形优秀教案

解直角三角形【教学目标】1.让学生感受通过作辅助线,把非直角三角形转化为直角三角形来解决问题的方法。

2.让学生经历观察、操作、实践,培养学生运用所学知识解决未知问题的能力,实现从感性到理性,从已知到新知的矛盾特征的转化过程,形成新的知识网络。

3.通过课堂为学生提供的充分从事数学活动的机会,让学生理解并掌握基本数学知识与技能,了解数形结合的思想方法,培养转化、化归的思想方法,进而获得广泛的数学活动的经验。

4.通过学习,让学生在学习活动中获得成功的体验,锻炼克服困难,战胜困难的意志,建立自信心。

5.在学生充分参与知识形成过程中,学会与人合作、交流的学习方法,形成大胆质疑、实事求是的科学态度,感受数学的严谨性及数学结论的确定性。

【教学重点】非直角三角形的解法。

【教学难点】通过作辅助线,把非直角三角形转化为直角三角形。

【教学方法】谈话法、小组合作法、指导练习法。

【教学准备】三角板【教学过程】一、探索新知(一)问题:1.在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?讨论复习:师:Rt△ABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(1)两锐角互余∠A +∠B =90°;(2)三边满足勾股定理a 2+b 2=c 2;(3)边与角关系sinA =cosB=a c ,cosA =sinB=b c ,tanA =a b ,tanB=b a 。

利用上面这些关系,如果知道直角三角形中的两个元素,就可以求出其他元素。

由直角三角形中已知的元素,求出其他所有未知元素的过程,叫做解直角三角形。

3.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=4、c=8,求这个三角形的其他元素。

(出示问题,小组研讨后,找生板书过程)解:在Rt △ABC 中,∠C=90°,根据勾股定理,a 2+b 2=c 2,a=4,c=8∴b=.344822=-在Rt △ABC 中,∠C=90°,sinB=,2184a ==c ∴∠A=30°,∠B=90°-30°=60°师:我们已知直角三角形的两边长,求出其他未知元素,这个过程叫做什么呢?师:在直角三角形中,已知两边,我们可以求出其他未知元素,在Rt △ABC 中,如果已知一边和一个锐角,你能求出这个三角形的其他元素吗?4.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=128,∠B=60°,解这个直角三角形。

解直角三角形教学设计

解直角三角形教学设计

《解直角三角形》教学设计一、教材分析:本节课是在学习了“勾股定理”“锐角三角函数”等内容的基础上对运用所学知识解直角三角形的进一步探究。

通过直角三角形中边角关系的学习,学生将进一步体会数学知识之间的联系,并为运用解直角三角形的相关知识解决简单的实际问题奠定了基础。

二、学情分析:学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用还不熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。

三、学习目标:1.知道直角三角形的六个元素和解直角三角形的含义.2.会用勾股定理和锐角三角函数解直角三角形,并能解决简单的实际问题.四、学习重点:会通过已知条件解直角三角形五、教学过程:1.自主学习(1)直角三角形有哪些元素?分别是什么?它们之间有什么关系? 三边之间的关系:a 2+b 2=_____;锐角之间的关系:∠A+∠B=_____; 边角之间的关系:sinA=_____,cosA=_____,tanA=_____.(2)利用这些关系,除直角外,至少需要知道几个元素就可以求其他的元素了?2.重点研讨(1)已知两边例1:如图,在Rt △ABC 中,∠C = 90°,2=AC ,6=BC ,求这个直角三角形的其他元素.(2)已知一边和一锐角例2:如图,在Rt △ABC 中,∠C =90°,∠B =30°,b=20,求这个直角三角形的其他元素 .AB C 26A C B c a b=20 30° BAC c a b小结:1.在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的 个元素(至少有1个是 ),就可以求出其余的3个未知元素.2.由直角三角形中 求出 的过程,叫做 .3.巩固训练(1)在△ACB 中,∠C=90°,AB=4,AC=3,欲求∠A 的值,最适宜的做法是( )A.计算tanA 的值求出B.计算sinA 的值求出C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出(2)在Rt △ABC 中,∠C=90°,∠B=35°,AB=3,则BC 的长为( )A.3sin35°B.2cos35°C.3cos35°D.3tan35° (3)在Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)∠B=45°,c=14;(2)b=15,∠B=60°.4.延伸迁移 (1)如图,在△ABC 中, 求sinA 的值.(2)在△ABC 中,∠ABC=60°,AD 是BC 边上的高, 求△ABC 的面积.4.达标检测(1)如果等腰三角形的底角为30°,腰长为 6 cm ,那么这个三角形的面积为( )A.4.5 cm 2B. 39 cm 2C. 318 cm 2D.36 cm 2(2)如图,在 △ABC 中,32=AC ,︒=∠30A ,︒=∠45B ,求AB 的长.A B 410,sin 5AB AC B ===5. 学习反思:通过本节课的学习,你有什么收获?六、作业布置:(1)《作业设计》1-5.(2)选做题:《作业设计》6.七、板书设计:八、教学反思:通过本节课的学习,学生进一步熟悉了直角三角形边角之间的关系,并为运用解直角三角形解决实际问题做了准备,在本章的教学中具有承上启下的作用。

解直角三角形的应用 优质课教案

解直角三角形的应用 优质课教案

解直角三角形的应用【教学目标】1.知识目标:理解仰角、俯角的意义,准确运用这些概念来解决一些实际问题。

2.能力目标:培养学生将实际问题抽象成数学模型并进行解释与应用的能力。

3.情感与态度目标:在探究学习过程中,注重培养学生的合作交流意识,激发学生学习数学的兴趣。

【教学重难点】1.理解仰角和俯角的概念;2.能解与直角三角形有关的实际问题。

【教学过程】一、课前延伸:1.仰角和俯角。

在实际测量时,从低处观测高出的目标时,( )与( )所成的锐角叫做仰角;从高出观测低处的目标时,( )与( )所成的锐角叫做俯角。

2.解决直角三角形的应用思路。

(1)把实际问题转化为解直角三角形的问题,关键是找出实际问题中的( ),直角三角形( )之间的关系,是解决与直角三角形有关的实际问题的重要工具。

(2)解答过程的思路:实际问题 解直角三角形的问题二、课内探究:1.创设问题情景,引出新知:上海东方明珠塔于1994年10月1日建成,在各国广播电视塔的排名榜中,当时其高度列亚洲第一、世界第三。

与外滩的“万国建筑博览群”隔江相望。

在塔顶俯瞰上海风景,美不胜收。

运用本章所学过的知识,能测出东方明珠塔的高度来吗?2.探究新知:转化 问题答案 求出有关的边或角(1)认识仰角与俯角:想要解决刚才的问题,我们先来了解仰角、俯角的概念,利用多媒体演示仰角、俯角。

(2)引导学生小组探究解决导入中提出的问题。

为了测量东方明珠塔的高度,同学们在距离东方明珠塔200米处的地面上,用高1.20米的测角仪测得东方明珠塔顶的仰角为60°48′。

根据测量的结果,小亮画了一张示意图,其中( )表示东方明珠塔,( )为测角仪的支架,DC=( )米,CB=( )米,∠ADE=( )。

(3)探究解直角三角形的简单应用。

例1:如图,厂房屋顶人字架的跨度为10米,上弦AB =BD ,∠A =260,求中柱BC 和上弦AB 的长(精确到0.01米)。

处理方法:师: (1)题目中已知哪些条件,还要求哪些条件?(2)请同学们独立思考,自己解决。

解直角三角形复习教案-人教版(优秀教案)

解直角三角形复习教案-人教版(优秀教案)

解直角三角形【课标要求】.掌握直角三角形的判定、性质..能用面积法求直角三角形斜边上的高..掌握勾股定理及其逆定理,能用勾股定理解决简单的实际问题. .理解锐角三角函数定义(正弦、余弦、正切、余切),知道四个三角函数间的关系. .能根据已知条件求锐角三角函数值. .掌握并能灵活使用特殊角的三角函数值..能用三角函数、勾股定理解决直角三角形中的边与角的问题. .能用三角函数、勾股定理解决直角三角形有关的实际问题. 【课时分布】解直角三角形部分在第一轮复习时大约需要课时,其中包括单元测试,下表为课时安排(仅供参考).【知识回顾】 .知.基锐如图则 解直角三角形(△,∠=°) ⑴三边之间的关系:.⑵两锐角之间的关系:∠+∠=°..⑶边角之间的关系:A a c ∠的对边=斜边 A bc∠的邻边=斜边.A a A b ∠∠的对边=的邻边 A b A a∠∠的邻边=的对边.⑷解直角三角形中常见类型:①已知一边一锐角. ②已知两边.③解直角三角形的应用. .能力要求例 在△中,∠=°,=,=,⊥于点,求∠的四个三角函数值.【分析】求∠的四个三角函数值,关键要弄清其定义,由于∠是在△中的一个内角,根据定义,仅一边是已知的,此时有两条路可走,一是设法求出和,二是把∠转化成∠,显然走第二条路较方便,因为在△中,三边均可得出,利用三角函数定义即可求出答案. 【解】 在△中,∵∠=°∴∠+∠=°, ∵⊥,∴∠+∠=°,∴∠=∠.∴∠∠, ∠∠.【说明】本题主要是要学生了解三角函数定义,把握其本质题中角的转换.(或可利用射影定理,求出、,从而利用三角函数定义直接求出)例 如图,在电线杆上的处引拉线、固定电线杆,拉线和地面成°角,在离电线杆米的处安置测角仪,在处测得电线杆上处的仰角为°,已知测角仪离为米,求拉线的长.(结果保留根号)【分析】求的长,此时就要借助于另一个直角三角形,故过点作⊥,垂足为,在△中,可求出,从而求得,在△中,即可求出的长. 【解】 过点作⊥,垂足为点,在△中,∵∠=°,=,∴°,∴× ∴,. 答:拉线的长为米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键.老师在复习过程中应加以引导和总结.例 如图,某县为了加固长米,高米,坝顶宽为米的迎水坡和背水坡,它们是坡度均为∶,橫断面是梯形的防洪大坝,现要使大坝顺势加高米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形的面积,在此问题中,主要抓住坡度不变,即与的坡度均为∶.【解】 ⑴∵,即,∴∠°. ⑵过点、分别作⊥,⊥,垂足分别为、.由题意可知:==,∴=, ∴==, ∵, ∴,∴梯形=()×=.∴需要土方为× () .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度==坡角的正切值,虽然年中考时计算器不能带进考场,但学生应会使用计算器,所以建议老师还是要复习一下计算器的使用方法.例 某风景区的湖心岛有一凉亭,其正东方向有一棵大树,小明想测量、之间的距离,他从湖边的处测得在北偏西°方向上,测得在北偏东°方向上,且量得、间距离为米,根据上述测量结果,请你帮小明计算、之间的距离.(结果精确到米,参考数据:°≈°≈°≈°≈) 【分析】本题涉及到方位角的问题,要解出的长,只要去解△ 和△即可.【解】过点作⊥,垂足为. 由题知:∠α°,∠β°.在△中,°,∴=°≈.°,∴°≈.在△中,∵∠°,∴. ∴≈米.答:间距离约为米.【说明】本题中涉及到方位角的问题,引导学生画图是本题的难点,找到两个直角三角形的公共边是解题的关键,教师在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例 在某海滨城市附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南°方向千米的海面处,并以千米 时的速度向西偏北°的的方向移动,台风侵袭范围是一个圆形区域,当前半径为千米,且圆的半径以千米 时速度不断扩张.()当台风中心移动小时时,受台风侵袭的圆形区域半径增大到千米;又台风中心移动小时时,受台风侵袭的圆形区域半径增大到千米.()当台风中心移动到与城市距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈). 【分析】⑴由题意易知. ⑵先要计算出和的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与比较即可. 【解】⑴; (6010)t +. ⑵作⊥于点,可算得 1002141OH =≈(千米),设经过小时时,台风中心从移动到,则201002PH t ==,算得52t =(小时),此时,受台风侵袭地区的圆的半径为:601052130.5+⨯≈(千米)<(千米).北 βα∴城市不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.例如图所示:如图,某人在山坡坡脚处测得电视塔尖点的仰角为°,沿山坡向上走到处再测得点的仰角为°,已知米,山坡坡度为,(即∠)且、、在同一条直线上。

《解直角三角形》教案

《解直角三角形》教案

《解直角三角形》教案《解直角三角形》教案一、文章类型及教学目标本文属于教学论文类型,旨在探讨如何通过教案设计实现解直角三角形知识的教学目标。

教学目标包括:1、掌握解直角三角形的方法和步骤;2、理解解直角三角形在解决实际问题中的应用;3、培养学生对几何问题的分析能力和解题能力。

二、教学内容及难点分析本节课的教学内容主要包括以下方面:1、锐角三角函数的基本概念及意义;2、直角三角形的边角关系;3、解直角三角形的方法及步骤;4、应用解直角三角形解决实际问题。

其中,教学难点为:1、如何理解锐角三角函数的概念及意义;2、如何运用三角函数解决几何问题;3、如何引导学生将解直角三角形的方法应用于实际问题。

三、教学方法及教学步骤为了实现教学目标,本节课将采用以下教学方法:1、演示法:通过几何画板等工具,演示解直角三角形的具体过程;2、案例分析法:通过具体案例,引导学生分析问题,理解解直角三角形的方法;3、小组讨论法:分组进行讨论,让学生互相交流解题思路,拓展解题方法。

教学步骤如下:1、导入新课:回顾已学知识,引出解直角三角形的新课题;2、讲解概念:介绍锐角三角函数的基本概念及意义;3、讲解方法:讲解解直角三角形的方法及步骤,并通过例题进行说明;4、案例分析:引入具体案例,引导学生分析问题,并运用所学知识解决问题;5、小组讨论:分组进行讨论,让学生互相交流解题思路,拓展解题方法;6、课堂小结:总结本节课的重点和难点,回顾解直角三角形的方法及步骤;7、布置作业:布置相关练习题,巩固所学知识。

四、具体讲解及关键词句在讲解过程中,需要注意以下关键词句:1、锐角三角函数:强调锐角三角函数是直角三角形中锐角与对边、邻边之间的比值;2、直角三角形的边角关系:介绍勾股定理以及三角函数与边长、角度之间的关系;3、解直角三角形的方法及步骤:重点讲解如何通过三角函数值来求解未知量,并强调解题步骤的正确性;4、应用解直角三角形解决实际问题:通过具体案例,让学生理解解直角三角形在实际问题中的应用,并掌握解题思路。

解直角三角形 教案

解直角三角形 教案

解直角三角形教案教案标题:解直角三角形教案目标:1. 理解直角三角形的定义和性质;2. 掌握解直角三角形的方法和步骤;3. 能够应用解直角三角形的知识解决实际问题。

教学准备:1. 教师准备:教学课件、直角三角形的图形和实物模型、解直角三角形的示例题目和答案;2. 学生准备:直角三角形的定义和性质的笔记、直尺、铅笔、计算器。

教学过程:步骤一:导入和复习(5分钟)1. 教师通过展示直角三角形的图形和实物模型,引发学生对直角三角形的认识和兴趣;2. 复习直角三角形的定义和性质,要求学生回答直角三角形的特点和性质。

步骤二:解直角三角形的方法和步骤(15分钟)1. 教师介绍解直角三角形的方法和步骤,包括勾股定理、正弦定理和余弦定理;2. 通过示例题目演示解直角三角形的步骤,解释每一步的原理和意义;3. 强调解直角三角形时需要注意的常见错误和解题技巧。

步骤三:练习和巩固(20分钟)1. 学生分组进行练习,完成教师提供的解直角三角形的练习题;2. 教师巡回指导,解答学生的问题,纠正他们的错误;3. 鼓励学生互相合作,共同解决难题。

步骤四:应用和拓展(10分钟)1. 教师提供一些实际问题,要求学生运用解直角三角形的知识解决问题;2. 学生个别或小组讨论,找出解决问题的方法和步骤;3. 学生展示解决问题的过程和结果,进行讨论和评价。

步骤五:总结和反思(5分钟)1. 教师总结解直角三角形的方法和步骤,强调学生的学习成果;2. 学生反思自己在解直角三角形过程中的收获和困难,提出问题和建议;3. 教师回答学生的问题,给予肯定和鼓励。

教学延伸:1. 学生可以通过使用计算机软件或在线资源,进一步练习和巩固解直角三角形的知识;2. 学生可以尝试解决更复杂的直角三角形问题,拓展解题能力;3. 学生可以与同学分享解直角三角形的方法和经验,互相学习和提高。

教学评估:1. 教师观察学生在课堂上的参与和表现,给予口头评价;2. 教师布置解直角三角形的作业,检查学生的掌握情况;3. 教师可以通过小测验或考试,对学生的解直角三角形能力进行评估。

《28.2.1 解直角三角形》教学设计教学反思-2023-2024学年初中数学人教版12九年级下册

《28.2.1 解直角三角形》教学设计教学反思-2023-2024学年初中数学人教版12九年级下册

《解直角三角形》教学设计方案(第一课时)一、教学目标1. 理解并掌握直角的定义,以及角度的度量方法。

2. 学会使用角度和边长之间的关系解直角三角形。

3. 培养观察、分析和解决问题的能力。

二、教学重难点1. 教学重点:理解直角的定义,掌握解直角三角形的技巧和方法。

2. 教学难点:灵活运用解直角三角形的知识解决实际问题。

三、教学准备准备直尺、量角器、三角板、习题集等教学工具。

同时,提前设计好教案,准备好讲解的顺序和内容。

四、教学过程:本节课的教学对象是八年级的学生,他们已经掌握了一定的直角三角形的基础知识和基本技能,具有一定的观察、分析、解决问题的能力。

为了提高他们的数学素养和解决问题的能力,我设计了以下的教学过程:(一)引入课题教师可以通过引导学生观察身边的环境,让学生认识到直角三角形的广泛应用。

比如:我们学校的大门和旁边的楼房是否可以看作是直角三角形?这个问题能激发学生的好奇心,引导他们进入新课的学习。

(二)讲解新知在引入环节后,教师可以介绍解直角三角形的概念、方法和步骤。

可以通过一些例题来加深学生对新知识的理解,同时也可以培养学生的解题能力。

(三)实践操作为了让学生更好地掌握解直角三角形的知识,教师可以设计一些实践活动,如测量建筑物的高度、河流宽度等。

学生可以通过小组合作的方式进行实践操作,从而增强他们的团队合作能力和解决问题的能力。

(四)课堂小结在课程结束前,教师需要引导学生回顾本节课的主要内容,帮助他们形成清晰的知识体系。

同时,教师也需要对学生的学习情况进行总结和评价,以便更好地指导他们的学习。

(五)作业布置为了巩固学生的知识,教师可以布置一些与解直角三角形相关的作业,如解答一些典型例题、进行实践活动等。

这样可以帮助学生更好地掌握所学知识,同时也可以培养他们的自主学习能力。

(六)教学反思在每一节课结束后,教师都需要进行教学反思,分析教学效果和学生的学习情况,以便更好地改进教学方法和策略。

同时,教师也需要关注学生的反馈,及时调整教学方案,以满足学生的学习需求。

解直角三角形教案 人教版

解直角三角形教案 人教版

解直角三角形教案人教版
教学设计思想
本节课是在锐角三角函数的基础上研究解直角三角形的方法及其在实际中的应用。

本节开始设计了一个实际背景,其中包括两个实际问题,这样就结合实际问题背景,探讨了解直角三角形的内容。

引导学生根据问题情境画出图形,把实际问题抽象为几何问题,再通过图形找出直角三角形中边、角之间的关系。

然后通过大量的实际问题,让学生体会解直角三角形的实际应用。

教学目标
知识与技能:
1.熟记直角三角形中边与边的关系,角与角的关系和边与角的关系。

2.会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形。

3.并会用解直角三角形的有关知识解决简单的实际问题。

过程与方法:
1.通过实例,感受解直角三角形对解决实际问题的必要性。

2.通过对直角三角形的构造过程,学会问题的转化意识。

情感态度价值观:
通过本节课的学习,培养解决实际问题的能力及用数学的意识,在数学应用的过程中学会问题的转化意识,逐步形成数
学价值观。

教学重难点
重点:会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形。

难点:把实际问题中的数量关系抽象为直角三角形中元素之间的关系。

教学媒体
多媒体
课时安排
2课时
教学过程设计
第一课时:
一、情景引入
【师】房屋坏了,我们要上房顶维修。

可房屋很高,我们怎么上去呢?
【生】可以用梯子!把梯子靠在墙上,顺着梯子爬上去,就可以了阿。

解直角三角形教案

解直角三角形教案

解直角三角形教案标题:解直角三角形教案教案概述:本教案旨在帮助学生理解和运用解直角三角形的方法。

通过引导学生观察和发现,培养其解决实际问题的能力,并提供相关实例和练习,巩固所学知识。

教学目标:1. 理解直角三角形的定义及其性质,能够辨别直角三角形;2. 掌握解决直角三角形相关问题的方法和步骤;3. 能够应用直角三角形的解法解决实际问题。

教学重点:1. 直角三角形的定义及其性质;2. 解决直角三角形相关问题的方法和步骤。

教学难点:1. 运用所学知识解决复杂的实际问题;2. 辨别在实际问题中应用直角三角形解法的可能性。

教学准备:1. 教师准备直角三角形的示意图、实例等教学辅助材料;2. 学生准备笔记本和书写工具。

教学流程:1. 导入(5分钟)- 准备一个直角三角形的示意图,让学生观察,并引导他们发现直角三角形的特点。

- 提问:你们观察到直角三角形有哪些特点?直角三角形的定义是什么?2. 知识讲解(15分钟)- 介绍直角三角形的定义和性质,向学生解释其重要性和应用领域。

- 分析解决直角三角形问题的一般步骤,如如何确定已知条件、如何应用三角函数等。

3. 示例演示(15分钟)- 给出一些直角三角形的实例,引导学生观察并分析如何解题。

- 按照步骤解决实例问题,同时让学生参与过程,引导他们思考和讨论。

4. 实践练习(20分钟)- 提供一系列直角三角形问题,让学生独立解决,并在解题过程中发现问题和结果的关系。

- 强调解题过程中的思考方法和步骤,鼓励学生积极参与讨论和合作。

5. 拓展应用(10分钟)- 提供一些拓展应用题,包括实际问题和几何应用,让学生运用所学解决复杂问题。

- 引导学生思考如何将直角三角形解法应用到实际生活中的测量和建模问题中。

6. 总结与反思(5分钟)- 回顾本节课所学内容,学生分享解题过程中的心得体会。

- 引导学生总结解直角三角形的方法和注意事项。

教学辅助:1. 直角三角形的示意图、实例等视觉辅助材料;2. 相关练习题和拓展应用题;3. 教师答案和解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h L a C A B 3 A
B C a b 1.3解直角三角形
教学目标:
1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3、渗透数形结合的数学思想,培养学生良好的学习习惯.
教学重点和难点:
重点:直角三角形的解法.
难点:三角函数在解直角三角形中的灵活运用.
教学过程:
一、引入
1、已知平顶屋面的宽度L 和坡顶的设计高度h (如图)。

你能求出斜面钢条的长度和倾角a 吗?
变:已知平顶屋面的宽度L 和坡顶的设计倾角α(如图)。

你能求出斜面钢条的长度和设计高度h 吗?
2、如图所示,一棵大树在一次强烈的地震中于离地面10米
处折断倒下,树顶落在离树根24米处.大树在折断之前高
多少?
在例题中,我们还可以利用直角三角形的边角之间的关系求出另外两个锐角.
二、新课 1、像这样,在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形.
问:在三角形中共有几个元素?
问:直角三角形ABC 中,∠ C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?
(1)三边之间关系:a 2 +b 2 =c 2 (勾股定理)
(2)锐角之间关系∠A+∠B=90°. (3)边角之间关系
2、例1:如图1—16,在Rt △ABC 中,∠C=90°, ∠A=50 °,AB=3。

求∠B 和a ,b (边长保留2个有效数字)
3、练习1 :P16 1、2
4、例2:(引入题中)已知平顶屋面的宽度L 为10m ,坡顶的设计高度h 为3.5m ,(或设 的邻边
的对边正切函数:斜边的邻边余弦函数:斜边的对边正弦函数:A A A A A A A ∠∠=∠=∠=tan cos sin
计倾角a)(如图)。

你能求出斜面钢条的长度和倾角a。

(长度精确到0.1米,角度精确到1度)
5、练: 如图东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40゜的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离.(精确
说明:本题是已知一边,一锐角.
6、温馨提示:
▲在解直角三角形的过程中,常会遇到近似计算,
本书除特别说明外,边长保留四个有效数字,角度精确到1′.
▲解直角三角形,只有下面两种情况:
(1)已知两条边;(2)已知一条边和一个锐角
(两个已知元素中至少有一条边)
7、你会求吗?
课本P17作业题
三、小结:
在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
四、布置作业:课课通。

相关文档
最新文档