化工热力学公式总结

合集下载

化工热力学公式

化工热力学公式

热力学是以热力学第一、第二定律及其他一些基本概念理论为基础,研究能量、能量转换以及与转换有关的物质性质相互之间关系的科学。

有工程热力学、化学热力学、化工热力学等重要分支。

化工热力学是将热力学原理应用于化学工程技术领域。

化工热力学主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。

热力学的研究方法,原则上可采用宏观研究方法和微观研究方法。

以宏观方法研究平衡态体系的热力学称为经典热力学。

体系与环境:隔离体系,封闭体系,敞开体系流体的P-V-T关系在临界点C :临界点是汽液两相共存的最高温度和最高压力,即临界温度Tc,临界压力Pc。

纯流体的状态方程(EOS) 是描述流体P-V-T性质的关系式。

由相律可知,对纯流体有:f( P, T, V ) = 0混合物的状态方程中还包括混合物的组成(通常是摩尔分数)。

状态方程的应用(1)用一个状态方程即可精确地代表相当广泛范围内的P、V、T实验数据,借此可精确地计算所需的P、V、T数据。

(2)用状态方程可计算不能直接从实验测定的其它热力学性质。

(3)用状态方程可进行相平衡和化学反应平衡计算。

压缩因子(Z)即:在一定P,T下真实气体的比容与相同P,T下理想气体的比容的比值.理想气体方程的应用(1 )在较低压力和较高温度下可用理想气体方程进行计算。

(2 )为真实气体状态方程计算提供初始值。

(3 )判断真实气体状态方程的极限情况的正确程度,当或者时,任何的状态方程都还原为理想气体方程。

维里方程式Virial系数的获取( 1 ) 由统计力学进行理论计算目前应用很少( 2 ) 由实验测定或者由文献查得精度较高( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的数据两项维里方程维里方程式Z=PV/RT=1+ B/P (1)用于气相PVT性质计算,对液相不能使用;(2)T<Tc, P<1.5MPa, , 用两项维里方程计算,满足工程需要;温度更高时,压力的范围可以更大些。

化工原理公式总结

化工原理公式总结

化工原理公式总结
化工原理公式总结如下:
1. 质量平衡公式:
输入质量 = 输出质量 + 累积质量
2. 物质平衡公式:
输入组分质量流率 = 输出组分质量流率 + 生成/消耗组分质量流率 + 储存组分质量流率
3. 能量平衡公式:
输入能量 = 输出能量 + 生成/消耗能量 + 储存能量
4. 平均温度计算公式:
平均温度= ∫(T*dA) / ∫dA,其中 T 为温度,dA 为面积微元
5. 理想气体状态方程:
PV = nRT,其中 P 为压力,V 为容积,n 为物质的摩尔数,R 为气体常数,T 为温度
6. 液体体积膨胀公式:
V2 = V1 * (1 + β * ΔT),其中 V1 为初始体积,V2 为最终体积,β 为膨胀系数,ΔT 为温度变化
7. 理想混合气体摩尔分数公式:
Xi = ni / n,其中 Xi 表示组分 i 的摩尔分数,ni 表示组分 i 的摩尔数,n 表示总摩尔数
8. 溶液浓度计算公式:
质量分数 = 溶质质量 / 总溶液质量
摩尔分数 = 溶质摩尔数 / 总溶液摩尔数
体积分数 = 溶质体积 / 总溶液体积
9. 反应速率公式:
反应速率 = k * [A]^m * [B]^n,其中 k 为速率常数,[A] 和[B] 表示反应物 A 和 B 的浓度,m 和 n 为反应级数
10. 溶解度公式(亨利定律):
P = K * C,其中 P 为气体的分压,K 为溶解度常数,C 为溶质的浓度。

物化期末公式总结

物化期末公式总结

物化期末公式总结一、热力学方面的公式1. 热力学第一定律:ΔU = Q + W这个公式表示了能量的守恒,其中,ΔU是系统内能的变化,Q是系统吸收或释放的热量,W是系统对外界做功。

2. 热力学第二定律:ΔS≥0这个公式表示了熵的增加趋势,系统在无限接近绝对零度时,熵趋于最小。

3. 热力学第三定律:绝对零度熵为0这个公式表示了在绝对零度下,熵为0。

4. 焓的变化:ΔH = ΔU + PΔV这个公式表示了焓的变化,其中,ΔH是焓的变化,ΔU是系统内能的变化,P是压强,ΔV 是体积的变化。

5. 熵的变化:ΔS = Q/T这个公式表示了熵的变化,其中,ΔS是熵的变化,Q是系统吸收或释放的热量,T是温度。

二、化学反应方程的计算1. 物质的量与摩尔质量:物质的量n = m/M其中,n是物质的量,m是物质的质量,M是摩尔质量。

2. 化学反应的平衡常数:Kc = ([C]^c[D]^d) / ([A]^a[B]^b)其中,[C]、[D]、[A]、[B]分别表示化学反应中的物质浓度,a、b、c、d分别表示化学反应中物质的摩尔系数。

3. 反应速率与物质浓度的关系:v = k[A]^a[B]^b其中,v表示反应速率,k表示速率常数,[A]、[B]分别表示反应物质的浓度。

三、电化学方面的公式1. Faraday定律:m = nFz其中,m是电化学反应的产物质量,n是电子数,F是法拉第定数,z是电化学反应的化学当量。

2. 电池方程:Ecell = Ecathode - Eanode这个公式表示了电池的电动势,Ecell是电池的电动势,Ecathode是阴极半反应的标准电势,Eanode是阳极半反应的标准电势。

3. 纳仑方程:Ecell = E°cell - (RT/nF)lnQ这个公式表示了电池的电动势,E°cell是标准电动势,R是理想气体常量,T是温度,n 是电子数,F是法拉第定数,Q是反应物质浓度的比值。

化工热力学公式

化工热力学公式

化工热力学公式 The document was finally revised on 2021热力学是以热力学第一、第二定律及其他一些基本概念理论为基础,研究能量、能量转换以及与转换有关的物质性质相互之间关系的科学。

有工程热力学、化学热力学、化工热力学等重要分支。

化工热力学是将热力学原理应用于化学工程技术领域。

化工热力学主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。

热力学的研究方法,原则上可采用宏观研究方法和微观研究方法。

以宏观方法研究平衡态体系的热力学称为经典热力学。

体系与环境:隔离体系,封闭体系,敞开体系流体的P-V-T关系在临界点C :临界点是汽液两相共存的最高温度和最高压力,即临界温度Tc,临界压力Pc。

纯流体的状态方程(EOS) 是描述流体P-V-T性质的关系式。

由相律可知,对纯流体有:f( P, T, V ) = 0混合物的状态方程中还包括混合物的组成(通常是摩尔分数)。

状态方程的应用(1)用一个状态方程即可精确地代表相当广泛范围内的 P、V、T实验数据,借此可精确地计算所需的P、V、T数据。

(2)用状态方程可计算不能直接从实验测定的其它热力学性质。

(3)用状态方程可进行相平衡和化学反应平衡计算。

压缩因子(Z)即:在一定P,T下真实气体的比容与相同P,T下理想气体的比容的比值. 理想气体方程的应用(1 )在较低压力和较高温度下可用理想气体方程进行计算。

(2 )为真实气体状态方程计算提供初始值。

(3 )判断真实气体状态方程的极限情况的正确程度,当或者时,任何的状态方程都还原为理想气体方程。

维里方程式Virial系数的获取( 1 ) 由统计力学进行理论计算目前应用很少( 2 ) 由实验测定或者由文献查得精度较高( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的数据两项维里方程维里方程式Z=PV/RT=1+ B/P(1)用于气相PVT性质计算,对液相不能使用;(2)T<Tc, P<, , 用两项维里方程计算,满足工程需要;温度更高时,压力的范围可以更大些。

化工热力学总结

化工热力学总结

xi 1
xi 0
亨利定律
id ˆ f i k i xi
因此,一个更为广义的理 想混合物的定义式应为 标准态 逸度
稀溶液的溶质近似 遵守亨利定律。
2.非理想混合
只要有一个条件不符合理想混合物热力学性质的, 我们就称为非理想混合物。我们知道,对于理想混 合物: id
id ˆ f i fi xi
2.开系流动过程的能量平衡:
E Q'W
' s i t2 t1 t2 1 2 1 2 h gz u m dt h gz u j m j dt i j i i i j t 1 2 2 j
3.开系稳流过程的能量平衡:
B 0 0.083
1
ZRT V p
0.422 Tr1.6
0.172 B 0.139 4.2 Tr
Bpc B 0 B1 RTc
判断用普遍化压缩因子法还是用普遍化第二 维里系数法的依据:
Tr 0.686 0.439pr 或者 Vr 2.0 时:
用普遍化第二维里系数法,否则用普遍化压缩因子。
100kg/kmol(空气)。冷却水入口温度为5℃,出口 温度为16℃,空气离开压缩机时的温度为145℃。假 设所有对环境的传热均可忽略。试计算实际供给压 气机的功。假设空气为理想气体,其摩尔定压热容
Cp=29.3kJ/(kmol· K)。
解:以被压缩的空气为系统,以1kmol空气作为基准。 在此过程中空气放出的热量为:
绝热时:
ws h
5.轴功的计算:
⑴ 可逆轴功Ws(R) :(无任何摩擦损耗的轴功)
ws R
p2 p1
1 vdp gz u 2 2

化工热力学总结

化工热力学总结

PV B C D z 1 2 3 RT V V V
PV z 1 B ' P C ' P 2 D' P 3 RT
一般取两项
z 1 B p
'
B z 1 V
BP z 1 RT
R—K Eq 式(2-6)、式(2-22)
普遍化关系式法 ① 两参数通用Z图
id
ˆ id x f 0 f i i i
10. Q函数表达式

f 0 i L R f i
f 0 i HL K i
11. 理想溶液及性质
nG E / RT nQ ln i n n i i T , P,n j i T , P,n j i
R T T
(2) 对真实气体 等P:ΔHp,ΔSp,计算式同理想气体,但Cp≠Cp‘ 等T: 积分
H V V T P T T P
S V P T T P
H T
4.剩余性质的定义式
5. 热容的定义式
U Cv T V
ME M M
H Cp T P
二.热力学关系式 热力学性质的关系式,最基本的是四个微分方程, 由四个微分方程式,据数学关系推导出的Maxwell 关系式。 原始函数关系式
H=u+PV G=H—TS
2.中压下 (1)V、L两相皆看作理想溶液
ki yi / xi f oL i / f ov i f T , P
Ki可由列线图查取 (2)非理想体系(电算)
yi f i
ov
xi f i
oL
3.高压下

化工热力学期末复习总结

化工热力学期末复习总结

H C2 2
S
gz Q Ws
S出 S产出
在不同条件下可以简化
S积累
gz 体系
一般式 mi si
Q T ''
T'
T
S 产出
S 积累
4.有效能计算 功:100%有效能 热量:恒温热源
Q H
T2 T1
C P dT
T平
物流某状态点 i 的有效能 EI T0 S0 S
V dP
dP S
dH E
C P dT V
P 0
V T
T V T
P
dP
P
R T
dP
有关计算 1.H、S 的计算
( 1) 对理想气体
等P
H T
'
P
CP'
S ' T
P
CP' T
积分
H P
T2 T1
CP ' dT
S P '
T2 C ' P dT T1 T
等T
H T
合物,其压力和体积与组成的关系分别表示成 Dalton 分压定律 pi pyi 和 Amagat 分体积定律Vi ( nV ) yi 。
但对于真实气体,由于气体纯组分的非理想性及混合引起的非理想性,使得分压定律和分体积定律无法准确地描述真实 气体混合物的 p –V -T 关系。为了计算真实气体混合物的 p –V -T 关系,我们就需要引入混合规则的概念。混合规则 有虚拟临界参数法和 Kay 规则、立方型状态方程的混合规则、气体混合物的第二维里系数。 2-10 状态方程主要有哪些类型? 如何选择使用? 请给学过的状态方程之精度排个序。 【参考答案】:状态方程主要 有立方型状态方程(vdW,RK,SRK,PR);多参数状态方程(virial 方程);普遍化状态方程(普遍化压缩因子法、普 遍化第二 virial 系数法)、液相的 Rackett 方程。 在使用时:(1)若计算液体体积,则直接使用修正的 Rackett 方程 (2-50)~(2-53),既简单精度又高,不需要用立方型状态方程来计算;(2)若计算气体体积,SRK,PR 是大多数流体的

化工热力学公式范文

化工热力学公式范文

化工热力学公式范文化工热力学是研究化学反应与热力学的相互关系的一门学科。

热力学是一个描述物质能量转化和传递的科学,它包括理论基础、实验方法和应用。

在化工过程中,热力学公式被广泛应用于计算与预测反应的热力学性质,以及热力学参数对反应均衡和传递的影响。

下面是一些常用的化工热力学公式。

1.焓变公式(ΔH):ΔH = ΣH(products) - ΣH(reactants)ΔH表示反应的焓变,H代表反应体系的焓(能量),反应前后体系的焓变化量即为反应热,可以判断反应是吸热反应还是放热反应。

2. 阿伦尼乌斯公式(Arrhenius equation):k = A × exp(-Ea/RT)k表示反应速率常数,A为频率因子,Ea为活化能,R为理想气体常数,T为反应温度。

该公式描述了化学反应速率与温度的关系,温度越高,反应速率越快。

3. 盖因斯-亨德森公式(Gibbs-Helmholtz equation):ΔG=ΔH-TΔSΔG为自由能变化,ΔH为焓变,T为绝对温度,ΔS为熵变。

该公式描述了自由能与焓、熵之间的关系,通过计算ΔG值可以判断反应是否可逆、自发发生。

4. 凯库勒公式(Clausius-Clapeyron equation):ln(P2/P1) = ΔHvap/R × (1/T1 - 1/T2)P1、P2为两个不同温度下的饱和蒸汽压,ΔHvap为蒸发热,R为理想气体常数,T1、T2为对应温度。

该公式描述了物质的蒸汽压与温度之间的关系,可以用于计算物质的汽化热。

5.放热反应的焓变公式:q=m×C×ΔTq为反应所释放的热量(焓变),m为物质的质量,C为物质的比热容,ΔT为温度变化。

该公式用于计算放热反应的热量释放。

6.反应平衡常数的计算:Kc=[C]^c×[D]^d/[A]^a×[B]^bKc表示反应平衡常数,[C]^c、[D]^d分别代表反应产物C、D的浓度或压力的指数,[A]^a、[B]^b分别代表反应物A、B的浓度或压力的指数。

化工热力学总结

化工热力学总结

化工热力学总结(1)写出多相系统的热力学方程;(2)二组分溶液,若已知一组分的逸度和组分含量,如何求另一组分的逸度? (3)低压下,由气液相平衡关系测得{P ,y ,x ,T },如何由提供的这些数据算出活度系数。

(4)GE> 0,属于正负偏差溶液?为什么?(5)真实溶液在反应器中,经过绝热变化后,系统熵变∆S= - 13000 J ,判断此过程的可能性。

(6)二组分溶液,其超额Gibbs 自由能满足:GE/RT=150-45x1-5x13,求各组分的活度系数r1, r2Gibbs 函数(G 函数) 应用反映真实气体与理想气体性质之差,称之为剩余G 函数。

与逸度或逸度系数的关系:反映真实溶液和理想溶液性质之差,称为过量Gibbs 函数。

与活度或活度系数的关系为:实验数据的热力学一致性检验 相平衡和化学平衡 有效能的综合利用:理想功与有效能也是一种Gibbs 函数。

理想功: 有效能: 第二章 流体的 P-V-T 关系2.1 纯物质的P-V-T 关系 2.2 气体的状态方程 2.3 对比态原理及其应用2.4 真实气体混合物的P-V-T 关系 2.5 液体的P-V-T 性质 理想气体方程TSH G -=RTTS H RT G RR R pf -===ϕln )ln(0ˆ(/)ln()ln ii i j iE f i f x i T p n nG RT n γ≠⎡⎤∂==⎢⎥∂⎣⎦、、0G T p ∆=、恒定id 00()W H T S G T p T =-∆+∆=∆,,X 00000()()(,,)E H H T S S G T p T p =--+-=∆,PV RTZ PVRT===11 在较低压力和较高温度下可用理想气体方程进行计算。

2 为真实气体状态方程计算提供初始值。

3 判断真实气体状态方程的极限情况的正确程度,当 或者 时,任何的状态方程都还原为理想气体方程。

立方型状态方程立方型状态方程可以展开成为 V 的三次方形式。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结1.热平衡公式:对于封闭系统,内能变化等于热变化和功变化之和。

即:ΔU=Q-W其中,ΔU表示内能变化,Q表示系统吸收或放出的热量,W表示系统对外做功。

2.热容公式:热容是单位质量物质温度变化1°C所吸收或放出的热量。

Q=mCΔT其中,Q表示吸收或放出的热量,m表示物质的质量,C表示热容,ΔT表示温度变化。

3.平衡常数(K)公式:对于化学反应:aA+bB↔cC+dD反应的平衡常数(K)定义为反应物浓度的乘积与生成物浓度的乘积之比:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]表示反应物和生成物的摩尔浓度。

4.反应焓变(ΔH)公式:反应焓变是化学反应进行过程中吸热或放热的量。

根据焓守恒定律,反应焓变可以通过反应物和生成物焓变的差值表示:ΔH=ΣnΔHf(生成物)-ΣmΔHf(反应物)其中,n和m为反应物和生成物的系数,ΔHf表示物质的标准生成焓。

5.反应熵变(ΔS)公式:反应熵变是化学反应进行过程中熵的变化。

根据熵守恒定律,反应熵变可以通过反应物和生成物熵变的差值表示:ΔS=ΣnS(生成物)-ΣmS(反应物)其中,n和m为反应物和生成物的系数,S表示物质的熵。

6.反应自由能变(ΔG)公式:反应自由能变是化学反应进行过程中自由能的变化,可以通过反应物和生成物的自由能差值表示:ΔG=ΣnG(生成物)-ΣmG(反应物)其中,n和m为反应物和生成物的系数,G表示物质的自由能。

7.热力学平衡公式:对于可逆反应,根据吉布斯自由能变可以推导出热力学平衡公式:ΔG=ΔH-TΔS其中,ΔG为反应的吉布斯自由能变,ΔH为反应的焓变,ΔS为反应的熵变,T为温度。

以上是化工热力学中常用的公式总结,这些公式在研究和设计化工过程中起到了重要的作用。

通过应用这些公式,可以计算和预测系统的热力学性质和能量转化,从而优化化工过程的设计和操作。

同时,这些公式也为研究反应机理和确定过程条件提供了理论基础。

热力学计算公式整理

热力学计算公式整理

热力学计算公式整理热力学是研究物质的热与能的转化关系的学科,是广泛应用于化学、物理、工程等领域的重要理论基础。

在热力学计算中,有一系列公式被广泛应用于热力学参数的计算和分析。

1.热力学基本方程:对于一个热力学系统,其内部能量U可以由其热力学状态变量来表示,常用的基本方程有:U=TS-PV+μN其中,U为内部能量,T为温度,S为熵,P为压力,V为体积,μ为化学势,N为摩尔数。

2.热力学函数的计算:(1)焓(H)的计算公式:H=U+PV其中,H为焓,U为内部能量,P为压力,V为体积。

(2)外界对系统做的功(W)计算公式:W=-∫PdV其中,W为功,P为压力,V为体积,积分为从初态到末态的过程。

(3)熵(S)的计算公式:dS=dQ/T其中,S为熵,dS为熵的微分,dQ为系统的热量变化,T为温度。

(4) Helmholtz自由能(A)的计算公式:A=U-TS其中,A为Helmholtz自由能,U为内部能量,T为温度,S为熵。

(5) Gibbs自由能(G)的计算公式:G=U-TS+PV其中,G为Gibbs自由能,U为内部能量,T为温度,S为熵,P为压力,V为体积。

3.热力学热力学参数的计算:(1)热容的计算公式:Cv=(∂U/∂T)V其中,Cv为定容热容,∂U/∂T为导数,V为体积。

Cp=(∂H/∂T)P其中,Cp为定压热容,∂H/∂T为导数,P为压力。

(2)趋近于绝对零度时的熵变ΔS的计算公式:ΔS = Cvln(T2/T1) + Rln(V2/V1)其中,ΔS为熵的变化,Cv为定容热容,T2和T1为温度的变化,R 为气体常数,V2和V1为体积的变化。

(3)等温过程中的吸热计算公式:q=ΔH=nCpΔT其中,q为吸热,ΔH为焓的变化,n为物质的摩尔数,Cp为定压热容,ΔT为温度的变化。

(4)等温过程中的做功计算公式:w=-ΔG=PΔV其中,w为做功,ΔG为Gibbs自由能的变化,P为压力,ΔV为体积的变化。

化工热力学总结

化工热力学总结

(mjsj)out> (misi)in
j
i
对于可逆绝热过程, ΔSg = 0,则有:
(mjsj)out (misi)in
j
i
三、温熵图
1
T 3 6 4
2
T T2/
T2
5
P2 P1
2/ 2
S 图4-9 节流膨胀过程
S 图4-10 等熵膨胀过程
四、卡诺循环
热机效率 制冷效率
c 1 TL
m
j
dt
3.开系稳流过程的能量平衡:
0 Q Ws H Ep EK
当进出物料只有一种时:
Q Ws
q ws
mh gmz 1
h
gz
1
2
u
2
mu
2
2
4.几种简化形式:
1 u 2 gz p 0
2
h 1 u2 0 2
h q ws
绝热时: ws h
5.轴功的计算:
⑴ 可逆轴功Ws(R) :(无任何摩擦损耗的轴功)
子的相互作用;……
3. 范德瓦尔斯方程
p
RT V b
a V2
4. RK方程
p
RT V b
T 1/ 2V
a (V
b)
5. SRK方程
p RT aT
V b V (V b) 6. PR方程
p
RT V b
V
(V
aT
b)
bV
b
1)T>Tc
2)T=Tc
仅有一个实根,对应于超临界 流体和气体的摩尔体积。
TH
TL
TH TL
热泵的制热系数
TH
TH TL
例:某热泵功率为10kW,周围自然环境温度为0℃。 用户要求供热的温度为90℃。求此热泵最大的供热 量以及热泵从环境吸收的热量。

化工计算常用公式与数据

化工计算常用公式与数据

化工计算常用公式与数据化工计算在化学工程与技术领域中是至关重要的一部分。

化工计算常用于流程设计、物质平衡、热力学计算、反应动力学等方面。

在化工计算中,常用的公式与数据被广泛应用于各种问题的解决。

下面是一些常用的化工计算公式与数据:1.质量平衡公式:质量平衡公式用于计算化工过程中的物质流量。

其一般形式为:输入质量=输出质量+反应质量。

质量平衡公式可应用于各种化工过程中,如化工反应、蒸馏等。

2.能量平衡公式:能量平衡公式用于计算化工过程中的能量流动。

其一般形式为:输入能量=输出能量+产生/吸收的能量。

能量平衡公式可应用于化工过程中的加热、冷却、压缩等。

3.热力学计算公式:热力学计算公式用于计算化工过程中的热力学性质,如物质的热容、热导率、比热等。

常用的热力学计算公式包括能量平衡公式、吉布斯自由能公式、焓表公式等。

4.流体力学公式:流体力学公式用于计算化工过程中的流体流动性质,如胀缩流动、湍流流动、管道流动等。

常用的流体力学公式包括泊肃叶斯方程、雷诺数公式、二次管道流动公式等。

5.反应动力学公式:反应动力学公式用于计算化工反应过程中的反应速率、反应平衡常数等。

常用的反应动力学公式包括阿伦尼乌斯方程、核心壳层模型等。

6.化学物性数据:化学物性数据是化工计算中不可或缺的一部分,用于计算物质的物理与化学性质。

常用的化学物性数据包括物质的摩尔质量、密度、溶解度、沸点、熔点等。

以上只是化工计算中一小部分常用的公式与数据,实际上在化工计算中还有很多其他的公式与数据被广泛应用。

化工计算是化学工程与技术的重要组成部分,通过合理的应用化工计算公式与数据,可以提高化工过程的效率、节约资源、降低生产成本。

化工热力学复习总结

化工热力学复习总结

第2章流体的P-V-T 关系1.掌握状态方程式和用三参数对应态原理计算PVT 性质的方法。

2.了解偏心因子的概念,掌握有关图表及计算方法。

1. 状态方程:在题意要求时使用该法。

① 范德华方程:常用于公式证明和推导中。

② R —K 方程: ③ 维里方程:2. 普遍化法:使用条件:在不清楚用何种状态方程的情况下使用。

三参数法:① 普遍化压缩因子法② 普遍化第二维里系数法3、Redlich-Kwong (RK )方程3、Soave (SRK )方程4、Peng-Robinson (PR )方程()22a 0.45724c r cR T T P α=0.0778c cRT b P =§2-5高次型状态方程5、virial 方程 virial 方程分为密度型:和压力型:第3章 纯物质的热力学性质1、热力学性质间的关系dU TdS pdV =-H=U+PV d H T d S V d =+A=U-TS d A S d Tp d V =--G=H-TS d G S d TV d =-+ Maxwell 关系式S V T P V S ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ S P T V P S ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ V T P S T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ P TV S T P ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 转换公式: 1Z X YX Y Z Y Z X ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭3.2计算H ∆和S ∆的方法1.状态方程法: P P V d H C d T V T d PT ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦ P PC V d S d T d PT T ∂⎛⎫=- ⎪∂⎝⎭ 2.剩余性质法:①普遍化压缩因子图()()1R R RTC C CH H HRT RT RT ω=+ ()()01R R RTS S S R RRω=+②普遍化的第二维里系数方法0101R T r r r C r r H dB dB P B T B T RT dT dT ω⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦ 01R T r r r S dB dB P R dT dT ω⎛⎫=-+ ⎪⎝⎭0 1.60.4220.083r B T =-14.20.1720.139r B T =-导出: 0 2.60.675r r dB dT T = 15.20.772r rdB dT T = 第6章 化工过程能量分析热力学第一定律一、功 Wp dVδ=-外不可逆过程: 2112W P dV =-⎰外体可逆过程: 21V rev V W p dV =-⎰体体规定:体系吸热为正,放热为负;对外做功为负,接受功为正。

最新化工热力学公式总结

最新化工热力学公式总结
偏离函数定义
随状态变化 逸度定义
饱和蒸汽和液体性质关系
偏摩尔性质偏ຫໍສະໝຸດ 尔性质表示摩尔性质摩尔性质与摩尔性质关系 Gibbs-Duhem方程在T,p恒定
Leiwis-randall规则
活度系数
超额性质
热力学第一定律
价格便宜些□
2003

§
1
300-400
据调查,大学生对此类消费的态度是:手工艺制品消费比“负债”消费更得人心。
vdW方程 RK方程 PR方程 对应态原理 偏心因子 普遍化virial方程 dU=TdS-pdV dH=TdS+Vdp dA=-SdT-pdV dG=-SdT+VdpdZ=MdX+NdY
精明的商家不失时机地打出“自己的饰品自己做”、“
众上所述,我们认为:我们的创意小屋计划或许虽然会有很多的挑战和困难,但我们会吸取和借鉴“漂亮女生”和“碧芝”的成功经验,在产品的质量和创意上多下工夫,使自己的产品能领导潮流,领导时尚。在它们还没有打入学校这个市场时,我们要巩固我们的学生市场,制作一些吸引学生,又有使学生能接受的价格,勇敢的面对它们的挑战,使自己立于不败之地。

化工热力学1-3章小结

化工热力学1-3章小结
r
二 阶 维 里 方 程 , 图 2-10 曲 线 上 方 , 或
Vr≥2时用。低压
6
三参数Z图
B. 普压法:图2-10曲线下方,或Vr<2时用
z z 0 Z 1
Z0
查图
2-6,7
Z1
2-8,9
普遍化方法重点是三参数
运用三参数普遍化关系式计算时,一
定是要注意普维法和普压法的应用条件。
7
液体pVT性质
普维法(计算) 2. 普遍化方法
普压法(查图计算) 3. EOS法
13
熵变和焓变的计算
物系从状态1→2,T0、p0状态为基准态 △H=H2R-H1R+Cpmh*(T2-T1)
△S=S2R-S1R+Cpms*ln(T2/T1)-Rln(p2/p1)
C
* pmh
R

A

BTam

C 3
4Ta2m T1T2
D T1T2
Tam

T1
T2 2
C
* pms
R
A BTlm TamTlm C

D T1T2
2

Tlm

T2 T1 ln T2
T114
液体熵变和焓变的计算
dS Cp dT V dp Cp dT Vdp
T
T p
T
dH
EOS法:virial Eq、 RK Eq
普遍化 关系式法
阿玛格定律- Z图法 虚拟临界常数法(Kay规则) 三参数普遍化关系式法。
9
第三章 流体的热力学性质
一、基本概念
1、剩余性质: M R M M

化工原理化工计算所有公式总结

化工原理化工计算所有公式总结

化工原理化工计算所有公式总结化工原理是研究物质在化学变化过程中的行为和性质的科学,化工计算则是应用数学和物理原理来解决化工过程中的问题。

下面总结了一些常见的化工原理和计算公式,以帮助理解和应用化工原理。

1.质量守恒方程质量守恒方程描述了化工过程中物质质量的守恒关系。

对于一个系统,质量守恒方程可以表示为:Σ(mi · Ai) = Σ(mo · Ao)其中,mi是进料流体的质量流率,Ai是进料流体的截面积,mo是出料流体的质量流率,Ao是出料流体的截面积。

2.能量守恒方程能量守恒方程描述了化工过程中能量的守恒关系。

对于一个系统,能量守恒方程可以表示为:Σ(mi · Hi) + Σ(Qi) = Σ(mo · Ho) + Σ(Qo)其中,Hi和Ho是进料和出料流体的焓,Qi和Qo是进料和出料流体的热量。

3.物质的摩尔质量计算物质的摩尔质量是物质的质量和物质的摩尔数的比值。

摩尔质量可以通过元素的摩尔质量来计算,可以根据元素的周期表上的相对原子质量得到。

4.摩尔质量和密度的关系计算摩尔质量和密度有以下关系:摩尔质量=质量/摩尔量密度=质量/体积5.摩尔质量和体积浓度的关系计算摩尔质量和体积浓度有以下关系:摩尔质量=质量/摩尔数体积浓度=摩尔数/体积6.反应热量计算反应热量是化学反应中释放或吸收的热量。

可以通过以下公式计算:反应热量=Σ(νiΔHi)其中,νi是反应物i的摩尔系数,ΔHi是反应物i的摩尔焓变。

7.动力学常数计算动力学常数是描述化学反应速率的参数。

可以通过以下公式计算:k = A · exp(-E/RT)其中,k是动力学常数,A是指前因子,E是活化能,R是气体常数,T是温度。

8.流体流动的雷诺数计算雷诺数可以衡量流体流动的稳定性和变动性。

Re=ρvL/μ其中,Re是雷诺数,ρ是流体的密度,v是流体的速度,L是特征长度,μ是流体的动力黏度。

9.库水平衡计算库水平衡在化工过程中扮演着重要的角色。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结化工热力学是研究化学反应中热效应与热力学性质的科学,其研究内容涉及了固液相变、气液相变、燃烧行为等多个方面。

在热力学的研究中,有一些常用的公式和方程式被广泛应用于工程技术和科学研究中。

本文将从热力学的基本概念和公式、热力学循环、热传导和传质过程等方面,总结常用的化工热力学公式。

一、热力学基本概念和公式1.热力学第一定律:ΔU=Q-W其中ΔU表示系统内能的变化,Q表示系统从外界得到的热量,W表示系统对外界做的功。

2.热力学第二定律:dS≥dQ/T其中dS表示系统熵的增加,dQ表示系统获得的热量,T表示系统的温度。

3. 热力学的物质平衡公式:ΣniΔHi = 0其中ni表示反应物或生成物的物质摩尔数,ΔHi表示反应物或生成物的标准焓变。

4. 化学势:μi = μ0i + RT ln(pi / p0)其中μi表示一些组分的化学势,μ0i表示该组分在标准状态下的化学势,pi表示该组分在实际条件下的分压,p0表示该组分在标准状态下的分压。

二、热力学循环1.热力学效率:η=(W/Q)×100%其中η表示热力学效率,W表示系统对外界做的功,Q表示系统从外界获取的热量。

2.卡诺循环效率:ηC=1-(Tc/Th)其中ηC表示卡诺循环效率,Tc表示循环中冷源的温度,Th表示循环中热源的温度。

3.制冷剂(热泵)性能系数:COP=Q1/W其中COP表示制冷剂(热泵)的性能系数,Q1表示制冷剂(热泵)从低温源吸收的热量,W表示系统对外界做的功。

三、热传导和传质过程1. 热传导方程:q = - kA (dT / dx)其中q表示单位时间内通过物体的热量,k表示物体的热导率,A表示物体的横截面积,dT / dx表示物体温度的变化率。

2. 导湿传质方程:n = - D (dC / dz)其中n表示单位时间内通过物体的水分流量,D表示物体的水分扩散系数,C表示物体的水分浓度,dz表示物体的厚度。

3.理想气体状态方程:PV=nRT其中P表示气体的压力,V表示气体的体积,n表示气体的物质摩尔数,R表示理想气体常数,T表示气体的温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档