流体力学第三章 3--2 讲

合集下载

流体力学第三章课件

流体力学第三章课件

第三章 流体运动的基本概念和基本方程
的函数。 流体质点的其它物理量也都是 a,b,c,t 的函数。例如流体 质点( 质点(a,b,c)的温度可表为 )的温度可表为T(a,b,c,t) 二、欧拉法(空间点法,流场法) 欧拉法(空间点法,流场法) 欧拉法只着眼于流体经过流场( 欧拉法只着眼于流体经过流场(即充满运动流体质点 的空间)中各空间点时的运动情况, 的空间)中各空间点时的运动情况,而不过问这些运动情 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 然后通过综合流场中所有被研究空间点上各质点的运动要 即表征流体运动状态的物理量如速度、加速度、压强、 素(即表征流体运动状态的物理量如速度、加速度、压强、 密度等)及其变化规律,来获得整个流场的运动特征。 密度等)及其变化规律,来获得整个流场的运动特征。 在固定空间点看到的是不同流体质点的运动变化, 在固定空间点看到的是不同流体质点的运动变化,无 法像拉格朗日方法那样直接记录同一质点的时间历程。 法像拉格朗日方法那样直接记录同一质点的时间历程。
ρ = ρ ( x, y , z , t , )
T = T ( x, y , z , t ) 加速度应该是速度的全导数。注意上速度表达式中x 加速度应该是速度的全导数。注意上速度表达式中 ,y,z 是流体质点在t时刻的运动坐标 时刻的运动坐标, 是流体质点在 时刻的运动坐标,对同一质点来说它们不是独 立变量,而是时间变量t的函数 因此, 的函数。 立变量,而是时间变量 的函数。因此,根据复合函数求导法 则,并考虑到 dx dy dz =u x , =u y , =u z dt dt dt
一个速度场 8
第三章 流体运动的基本概念和基本方程
一个布满了某种物理量的空间称为场。除速度场之外, 一个布满了某种物理量的空间称为场。除速度场之外, 还有压强场。在高速流动时, 还有压强场。在高速流动时,气流的密度和温度也随流动有 变化,那就还有一个密度场和温度场。 变化,那就还有一个密度场和温度场。这都包括在流场的概 念之内。 念之内。 p = p ( x, y, z , t ),

流体力学3章讲稿

流体力学3章讲稿

Chapter 3 流体动力学积分形式的基本方程流体动力学用欧拉法研究流体运动与所受外力的关系,功能守衡关系。

§3.1 拉格朗日型基本方程(理论力学质点系基本方程)1) 连续方程:一个确定的质点系, 质量守恒。

数学表达式 0=dtdm2)动量方程:质点系动量对时间的变化率等于作用在该系统上的合外力数学表达式 F K∑=dtd ⎰⎰⎰⎰⎰+=ττρdA d A n p f3)动量矩方程:质点系对某点的动量矩对时间的变化率等于作用在系统上的所有外力对同一点的力矩代数和。

数学表达式 dtd oM ⎰⎰⎰⎰⎰⨯+⨯=ττρdA d A n p r f r4)能量方程:单位时间内由外界传给质点系的热量Q 与外力对质点系所作的功W 之和, 等于系统的总能量E 对于时间的变化率。

数学表达式 =+W Q dt dE ⎰⎰⎰+=ττρd V e dtd)2(2 因 ⎰⎰⎰+⎰⎰=τλτρd q dA q Q R A 传导热 辐射热 ⎰⎰⋅+⎰⎰⎰⋅=A n dA d W V p V f τρτ 质量力功率 表面力功率即=⎰⎰⎰+ττρd V e dt d )2(2⎰⎰⎰+⎰⎰τλτρd q dA q R A ⎰⎰⋅+⎰⎰⎰⋅+A n dA d V p V f τρτ 拉格朗日型积分形式的能量方程§3.2 欧拉型基本方程利用输运公式 ⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t+dA A )(n V ⋅⎰⎰φ或⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t-dA V n A 入入⎰⎰φ+dA V n A 出出⎰⎰φ和拉格朗日型的积分方程转换得到3.2.1 连续方程令输运公式中Φ=ρ,代入拉氏型连续方程得dt dm =0⎰⎰⎰=0ττρd dt d=⎰⎰⎰∂∂ττρd t +dA A )(n V ⋅⎰⎰ρ即 -=⎰⎰⎰∂∂ττρd t dA A )(n V ⋅⎰⎰ρ 欧拉型连续方程或 =⎰⎰⎰∂∂ττρd tdA V n A 入入⎰⎰ρdA V n A 出出⎰⎰-ρ物理意义:控制体内质量的增加速率, 等于通过控制面A 流入的质量(流入-流出)的代数和。

流体力学课件17第三章流体动力学第二节

流体力学课件17第三章流体动力学第二节

§3-2 迹线和流线
标记线:
定常流时, 迹线和流线,以及标记线重合
§3-2 迹线和流线
流线为欧拉法中的概念 u 中的自变量为欧拉变数
§3-2 迹线和流线
流线的重要性质: 流线不能相交,不能转折(滞点除外) 证明:
§3-2 迹线和流线
迹线和流线的区别: 迹线: 一个质点 一段时间 流线: 许多质点 某一瞬时 例: 喷嘴 轨迹线 方向线
定常流时, 迹线和流线重合
§3-2 迹线和流线
用于形象表示流动情况的一些线条 一、迹线 (pathline)
定义:流场中某流体质 示踪法
§3-2 迹线和流线
迹线微分方程
* 拉格朗日法描述流动的概念 自变量为拉格朗日变数 如 ux= uxf(a,b,c,t)
二、流线 (streamline) 定义:流场中某瞬时的一条空间曲线,在该线上各 点的流体质点速度方向均与曲线在该点的切线方向重合。

流体力学3

流体力学3

第3章理想流体动力学3.1系统和控制体3.1系统和控制体流体力学第三章 系统包含着确定不变的物质的任何集合,称之为系统,系统以外的一切,统称为外界。

系统的边界是把系统和外界分开的真实或假想的曲面。

在流体力学中,系统就是指由确定的流体质点所组成的流体团。

所有的力学定律都是由系统的观念推导而来的。

在系统与外界之间以边界来划分。

系统的边界随着流体一起运动。

在系统的边界处没有质量交换.在系统的边界上,受到外界作用在系统上的表面力。

在系统边界上可以有能量交换,如可以有能量(热或功)进入或跑出系统的边界。

系统流体力学第三章 系统是与拉格朗日观点相联系的。

以确定的流体质点所组成的流体团作为研究的对象。

对应的方程叫拉氏型方程.问题的提出: 但是对大多数实际的流体力学问题来说,感兴趣的往往是流体流过坐标系中某些固定位置时的情况。

例如,在飞机或导弹的飞行; 当燃气轮机在运行时,我们希望知道其进、出口截面处的诸流动参数的分布等等。

在处理流体力学问题时,采用欧拉观点更为方便,与此相应,必须引进控制体的概念。

相对于某个坐标系来说,被流体流过的的固定不变的任何体积称之为控制体。

控制体的边界面称之为控制面,其总是封闭表面。

占据控制体的流体质点是随着时间而改变的。

控制体是与欧拉观点相联系的。

控制面有如下特点:控制体的边界(控制面)相对于坐标系是固定的。

在控制面上可以有质量交换。

在控制面上受到控制体以外物体加在控制体之内物体上的力。

在控制面上可以有能量交换,即可以有能量(内能、动能、热或功)跑进或跑出控制面。

对应的方程叫欧拉型方程.V )(t S System Control Volume S )(t V Control Surface)(t F。

流体力学第三章总结.ppt

流体力学第三章总结.ppt

§3-1 描述流体运动的方法
• 拉格朗日方法与欧拉方法 • 流动的分类 • 流线和流管 • 系统与控制体
拉格朗日法与欧拉法
拉格朗日法
欧拉法
基本思想:跟踪各质点的 基本思想:通过综合流场
运动历程, 综合所有质点 中各空间点各瞬时的质点
的运动情况获得整个流体 运动变化规律,获得整个
的运动规律
流场的运动特性
• 均匀管流的动量方程:
QV2 V1 F
理想流体沿流线法向的压强和速度分布
当流线曲率半径很大,近似为平行直线时:
z1

p1
g

z2

p2
g
当流线为平行直线,且忽略重 力影响时,沿流线法向压强梯 度为零。平直管内流体在管截 面上压强相等。
§3-4 伯努利方程
z1

p1
g
1
1
u
2
h
u
2g

'
1
h

4.34m
/
s
z1
油沿管线流动,A断面流速为2m/s,不计损失, 求开口C管中的液面高度 。
1.2 p1 V12 p2 V22
ρg 2g g 2g
p1

p2

g

V2
2 V12 2g
1.2
p1 p2 1.2g hC g
4070N
Fbolt F 4070N
思考题
• 流线与迹线的区别是什么?二者何时重合? • 欧拉法与拉格朗日法的观察点各自是什么? • 圆管层流的流速与压强分布特征是什么? • 定常流动的特点是什么?
t
F=ma

流体力学第三章

流体力学第三章

第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。

水力学 第三章 流体运动学

水力学 第三章  流体运动学
§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。

流体力学第3章精品文档

流体力学第3章精品文档

2019/10/4
32
2.测压管测量原理图
在压强作用下,液体在玻璃管中上升高度,设被测液体的密
度为ρ,大气压强为ppa,可pa得M点g的h绝对压强为
M点的计示压强为
peppagh
测压管只适用于测量较小的压强,一般不超过9800Pa,相当 于1mH2O。如果被测压强较高,则需加长测压管的长度, 使用就很不方便。此外,测压管中的工作介质就是被测容器 中的流体,所以测压管只能用于测量液体的压强。
处于静止状态下的微元平行六面体的流体微团的平衡
条件是:作用在其上的外力在三个坐标轴上的分力之和都
等与零。对于x轴,则为
p 1 2 p x d x d y d z p 1 2 p x d x d y d z fxd x d y d z 0
工程大气压
1 a tm 1 k g f/c m 2 9 8 k g f/m 2
(3)用液柱高度来表示
h p/
2019/10/4
mm2O H ,mH 2O或 mmHg
31
第四节 液柱式测压计
一、测压管
一根玻璃管,一端连 接在需要测定的器壁孔 口上,另一端和大气相 通。与大气相接触的液 面相对压强为零。这就 可以根据管中水面到所 测点的高度测得压强。
流体平衡的条件:只有在有势的质量力作用下,不可压缩均质 流体才能处于平衡状态。
有势的力:有势函数存在的力。
2019/10/4
14
3.等压面:dp=0 压强差公式可写为:
Xd YxdZ yd 0 z ——广义平衡下的等压面方程 fd l 0 f d l
等压面性质: • 等压面就是等势面 • 等压面与质量力垂直
(3)在静止液体中,位于同一深度(h=常数)的各点的静压强相等,即任一水

水力学第三讲

水力学第三讲
dx(t ) dy(t ) dz(t ) 迹线方程: dt ux uy uz
§3-1 流动描述 • 2 迹线与流线 • 流线:某一时刻各点的切线方向与通过这些点的 流体质点的流速方向重合的空间曲线称为流线。
dx(t 0 ) ds dy(t 0 ) 用欧拉法描述, t 确定,由定义 u y u y ( x, y, z, t 0 ) u ,u 是合成流速 ds dz(t 0 ) u z u z ( x, y, z, t 0 ) u ds u x u x ( x, y , z , t 0 ) u
dz
u y dy ( u y )dxdydt y 2
u x dx ( u x )dydzdt x 2
( u z
u z dz )dxdydt z 2
dxdydzdt t
( u x
u x dx )dydzdt x 2
( u z
u z dz )dxdydt z 2
z (


§3-4流体微团运动分析(简介) • 2无旋流与有旋流:基本概念、无旋流满足的条件
有旋流:流体微团绕自身轴旋转,
x 2 y 2 z 2 0
无旋流:流体微团不绕自身轴旋转,
x y z 0
u z u y y z u x u z 无旋流满足的条件 z x u y u x x y
严格讲流体运动都属于三元流动,质点运动都具有一元流性质。
§3-2 描述流体运动的一些基本概念
• 4 均匀流与非均匀流、渐变流与急变流
• 均匀流:运动要素(沿流线)不随空间位置变化的流动; • 非均匀流:运动要素(沿流线)随空间位置变化的流动; • 渐变流:运动要素(沿流线)随空 • 间位置缓慢变化的流动;

流体力学课件第三章

流体力学课件第三章

§3.2 欧拉法的基本概念
【解】(1)加速度
∂u x ∂u x ∂u x + ux + uy ax = ∂t ∂x ∂y = (4 y − 6 x) + (4 y − 6 x)t (−6t ) + (6 y − 9 x)t (4t ) = (4 y − 6 x)(1 − 6t 2 + 6t 2 )
§3.1 流体运动的描述
∂u x =0 当地加速度 ∂t ∂u x 迁移加速度 u x 为正值 ∂x ∂u x 加速度 ax = u x ∂x
∂u x =0 当地加速度 ∂t ∂u x =0 迁移加速度 u x ∂x
加速度
ax = 0
§3.1 流体运动的描述
欧拉法描述流体运动,质点的物理量,不论矢量还是 标量,对时间的变化率称为该物理量的随体导数或质点导 数。如物理量A =A(x,y,z,t)的随体导数
(3-9)
(3 - 10)
§3.1 流体运动的描述
v ∂u 式中 ——当地加速度(时变加速度,不稳定性引起) ∂t
v v (u ⋅ ∇)u ——迁移加速度(位变加速度,不均匀性引起)
∂u x 当地加速度 为负值 ∂t
迁移加速度 u x 加速度
∂u x 为正值 ∂x
∂u x ∂u x ax = + ux ∂t ∂x
同理,y、z方向的净流出质量 ∂ ( ρu y )
∆M y = ∂y
dxdydzdt
∂ ( ρuz ) ∆M z = dxdydzdt ∂z
dt时间控制体的总净流出质量
∂ ( ρu x ) ∂ ( ρu y ) ∂ ( ρuz ) + ∆M x + ∆M y + ∆M z = [ + ]dxdydzdt ∂y ∂z ∂x

流体力学第三章

流体力学第三章

第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。

流体力学第三章讲义

流体力学第三章讲义

Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。

§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。

系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。

控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。

控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。

物质体元即流体微团。

物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。

物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。

时间线就是物质线。

(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。

t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。

(3-1)此I 也是t 时刻控制体内的总f 。

设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。

(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。

(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。

水力学 第3章 流体力学基本方程PPT课件

水力学 第3章 流体力学基本方程PPT课件

积分得:
p u2 gzppρt精选版 2 cons. t
19
例1:已知:u = x+t,v = -y+t, w = 0。
求t=0时,经过点A(-1,-1)的流线方程。
解:t=0时,u=x, v=-y, w=0;代入流线微分方程, 有:
dx dy x y
ln xln yC 1
xyc
流线过点(-1,-1) ∴ C =1
流线方p程 pt精选为 版 x: y 1
这里:
Vuivjwk
aaxiay jazk
2.欧拉法:
以流场作为研究对象,研究各流场空间点上流体质 点的各运动要素随时间与空间的变化的分布规律。
流场:运动流体所占据的空间。
在欧拉法中,是以速度场来描述流体运动的,流体质点的运
动速度(即速度函数)是定义ppt在精选空版 间点上的,它们是空间点坐
标(x, y, z)的函数:
因为: V // ds
因此,两矢量的分量对应成比例:
ppt精选版
dx dy dz
u vw 15
四.流管、流束、元流、总流:
1.流管:
在流场中任意绘一条非流线的封 闭曲线,在该曲线上的每一点作流 线,这些流线所围成的管状面称为 流管。
由于流管的“管壁”是由流线构成的,因而流体质点的 速度总是与“管壁”相切,不会有流体质点穿过“管壁”流 入或者流出流管。流管内的流体就像是在一个真实的管子里 流动一样:从一端流入,从另一端流出。
二.恒定流与非恒定流:
1.恒定流(定常流动):
流场中各点处的所有流动参数均不随时间而变化的流动。
特征 u : v w 0 , p0 等。
t t t
t
2.非恒定流(非定常流动):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
将上述两项进行比较可得:
2 U U 2 O V V / O V / 2 Re L L



(3-31)
即物理意义为: Re=特征惯性力/特征粘性力 按Re数的大小,可将流体运动划分为:大Re数流动,
(3-32)
即粘性微弱的流动;Re数接近于1的流动,即一般粘
(3-37)
物理意义为: Fr=特征惯性力/特征重力
如果按Fr数来划分,一般经典流体力学
中独立分出以下两个分支,即:小Fr数流动,
例如地球物理流体力学;大Fr数流动,例如
航空工程中的空气动力学。
三、其他特征无量纲数
1.欧拉数Eu
定义:
Eu p / 0 U
2

p
0L
/
U
2
L
或Eu=特征压力梯度/特征惯性力
w t
u

U L /U
Uu
w t
U w L x
w x
v
w y
Uv
U w L y
w
w x
Uw
1
U w L z
1 0U L
2
1 p
z

p z
0
g g
2 2 2 2w 2w 2w U w w w x 2 x 2 x 2 L2 x 2 y 2 z 2
(特征偏向力)2/(特征粘性力)2 (3-46)
10.Gr数又称格拉晓夫数 某流体块跟周围流体具有温度差,其温度的特征值为, 则该流体块在重力场中将会受到重力浮力ga的作用(如 0,则为沉力),其中a为流体的热膨胀系数。考察具有温
差热效应的流体运动方程,可引入:
G ga / U L
场的相似准则。
第3-4 特征无量纲数 一、雷诺数 它的定义:
Re UL
(3-28)

根据定义可分析其物理意义:
对于 V V
的惯性项(或称惯性力)的量纲分析,可得: (3-29)
2 U V V V V L
对于 V 的粘性项(又称粘性力) 的量纲分析,可得: U 2 2 V V (3-30) L
式(3-27)是由无量纲量
u , v , w , , x , y , z
所构成的 z分量运动方程,由于由物理量特征量所组成的Re 和Fr也是无量纲的,因此该方程称作无量纲z向分量的运动方 程。或z分量运动方程的无量纲形式,简称无量纲方程。另外,
由于无量纲方程跟选用的单位制无关,还可以由此推出两流
流体力学教案
(第三章相似原理与量纲分析)
第3-3 无量纲方程
上节推导的相似判据,从理论上讲要求在两个流场的所有 对应点进行比较是否相等后,才能断定这两个流场是否相似, 这在实际使用时很不方便,故一般均不采用。本节将引入特 征量的概念,导出无量纲方程以及具有一定实用价值的相似判
据—特征无量纲数。
例如,在粘性流体力学中引入速度U为特征流速,密度 0 为特征密度,长度L为特征长度后,构建无量纲量:
2
特征浮力/特征粘性力
(3-47)
再把上式所示G和Re一起考虑,即有:
Gr G Re ga L /
2
(3-48)
Gr是热(自由)对流中的一个特征参数。
11.Pr数又称普朗特数 流体中的粘性和热传导,均属分子传输现象,对此可有:
Pr / K T 分子粘性/热传导
(3-49)
该特征数主要针对水平流体层热对流问题。
14.Pe数又称贝克来数 在热流量方程中,将温度水平平流和湍流热量垂直输送
进行量顽比较,即得:
Pe UL KT U T L / KT T L
2
=温度平流/湍流垂直热输送
(3-52)
然后再考虑到普朗特数(Pr)和贝克来数(Pe)的表达式, (3-52)式还可改写为:
DE
反映了旋转流体中应该考虑
粘性的范围大小,对此引入埃克曼数:
Ek K / fH
2
~ DE / H =埃克曼厚度/流体特征厚度
2
2
(3-45)
H 2 sin
9.Ta泰劳数又称旋转雷诺数
在旋转流体中,还可引入一个Ta数,即
Ta
4 H
2
4

2
2 U
2
U / 2 H
u u / U , v v / U , w w / U L 2 / 0 , p p / 0U , t t / U x x / L, y y / L, z z / L
(2-23)
将式(3-23)代入不可压缩性流体的z分量方程(3-7),将会出现
其中KT为热传导扩散系数。
12.Le数又称为路易数
考虑热扩散跟质量扩散的相对重要性,可引入:
Le K T / D 热扩散/质量扩散
(3-50)
13.Ra数又称瑞利数
把格拉晓夫数(Gr)和普朗特数(Pr)综合考虑,则有:
Ra Gr Pr ga L / K T
3
(3-51)
将上式再代入(3-7)式,并在方程两边同除以
w t w x w y
2
U L
2
,得:
u
v
w
w z
UL

1 p
z
Fr
1 Re
2 w
(3-27)
其中:
Fr
U
, Re
gL

分别为特征值所组成的无量纲数,称作为特征无量纲数。
(3-40)
4.Sc数 讨论流体中分子扩散现象时,可有
Sc
D


D
运动学粘性系数/质量扩散系数
(3-41)
或Sc=动量扩散/质量扩散,它称为施密特数,D为质量 扩散系数。
5.We数 考虑流体表面张力的作用,则引入We(韦伯)数,即:
We
U 2 L
=流体动能/反抗表面张力做功
性流动;小Re数流动,即粘性较强的流动。
二、弗罗劳德数
它的定义: Fr
U
2
(3-35)
gL
V 不难看出, V 的惯性项(或称惯性力)与重力项的量级之比,即
2 U O V V / O g / g Fr L


(3-36)
Fr的含义就是流体运动方程中特征惯性力与特征重力之比,即
(3-38)
2.Ma数 利用伯努利方程和流管中连续性方程推求得,其定义为:
Ma
U c
=特征速度/声速
(3-39)
它反映了空气流动中压缩性的影响,当Ma1 的所谓亚声
速流动中,空气可近乎不可压流体。而对于Ma1的超声
速气体,则必须考虑压缩性的影响。
3.Kn数
连续性假设时,引入克努森数
Kn=l/L=分子自由程/宏观线尺度
其特征值为fU,于是从运动方程引入:
Ro
U fL
ቤተ መጻሕፍቲ ባይዱ
U L
2
/ fU =特征惯性力/特征偏向力
(3-44)
Ro称为罗斯贝数,它是大气动力学中的一个很重要的特征数。
8.Ek埃克曼数 在旋转坐标系中考察流体运动时,旋转流体经过固体边
界时,在固壁附近将会出现需要考虑粘性的流体薄层称埃 克曼层。该层的厚薄
(3-42)
6.Ri数
在湍流和大气动力学问题中,常引入Ri数,即
g T u Ri / T z z
2
(3-43)
它可用以反映湍流的消长,称作理查尔数,式中 为绝热直减热。

7.Ro数 在旋转坐标系中考察流体运动时,例如地球上的
大气运动,将会出现一种地转偏向力(科里奥利力),
Pe Pr Re
(3-52’)
15.Nu数又称为努塞尔数 在热对流问题中,常考虑到经过表面进出流体的热量传输,
如Q作为单位面积热传输率的特征值,则有:
Nu QL / K T Q / K T
L
=热传输/热扩散
(3-53)
相关文档
最新文档