(完整版)系统动力学模型案例分析

合集下载

系统动力学课件与案例分析可编辑全文

系统动力学课件与案例分析可编辑全文

能改善公司的成长,使得
以指数方式增长。
1企业成长与投资不足案例
❖ 系统边界的确定:划定系统边界应根据建模目的,把那些 与所研究的问题关系密切的重要变量划入系统边界内。在 此案例中,我们主要关注企业成长问题,研究影响企业营 业收入的因素。根据案例介绍因此我们将仅仅研究企业的 生产、市场、销售部门。不涉及其他部门,竞争对手等等。
(16)供应商生产率=DELAY3(供应商生产需求率,生产延迟) 单位:箱/周
2供应链中牛鞭效应
计算机仿真:
使用Vensim软件建立系统流图和填入方程式, 就可以对系统进行仿真。建立仿真模型可以与现 实对照,可以寻求削弱牛鞭效应的策略,可以预 测系统未来的行为趋势。
仿真结果
2供应链中牛鞭效应
2供应链中牛鞭效应
2供应链中牛鞭效应
问题识别:本案例主要研究供应链中牛鞭效应,各个供应链 节点库存积压,库存波动幅度比较大,不够稳定,导致供 应链的成本居高不下,失去了竞争优势。因此急需采取措 施来削弱牛鞭效应,从而能够降低整条供应链的成本,建 立稳定的竞争优势。因此本案例通过啤酒游戏来对供应链 进行仿真,从而为寻找较优的供应链结构来削弱牛鞭效应, 降低成本。
2供应链中牛鞭效应
2供应链中牛鞭效应
❖ 建立仿真方程式: (1)市场销售率=1000+IF THEN ELSE(TIME>4,RANDOM
NORMAL(-200,200,0,100,4),0) 单位:箱/周 (2)零售商销售预测=SMOOTH(市场销售率,移动平均时间)
单位:箱/周 (3)零售商期望库存=期望库存持续时间×零售商销售预测
1企业成长与投资不足案例
1企业成长与投资不足案例
❖ 3.那么从上图可以看出正反馈回路使得营业收入增长,但

系统动力学案例素材

系统动力学案例素材

系统动力学案例素材
1. 疫情传播模型
该模型将人群划分为易感染、已感染、康复和死亡四类人群,并考虑了传染率、治愈率和死亡率等因素。

可以分析不同的防疫措施对疫情传播的影响,帮助决策者更好地制定防疫策略。

2. 市场营销模型
该模型考虑市场需求、市场规模、市场份额、产品价格和广告投入等因素。

可以预测产品销售量、市场占有率以及收入和利润等经济指标,有助于企业确定营销策略,提高市场竞争力。

3. 环境污染模型
该模型考虑了环境污染源、废气排放量、污染物浓度和环境容量等因素。

可以模拟环境污染的扩散和影响,帮助政策制定者评估不同的环保政策和措施,减轻环境污染问题。

4. 经济增长模型
该模型将经济生产要素划分为资本和劳动力,考虑了技术进步和资本投资等因素,可以预测经济增长率和产出规模等宏观经济指标,帮助政策制定者决策和管理。

5. 人力资源模型
该模型考虑企业人力资源的组成、流动和培养等因素,可以预测人力资源投入和产出,对企业的人力资源战略决策和管理提供支持。

(完整版)系统动力学模型SD3

(完整版)系统动力学模型SD3
(18) rabbit birth rate = 2 Units: 1/Year
(19) rabbit births = Rabbit Population * rabbit birth rate Units: Rabbit/Year
(20) rabbit crowding = Rabbit Population/carrying capacity Units: Dmnl
建立表函数的原则
1. 建立表函数时大致要考虑:曲线的斜率和形状,一个或一个以上的特 殊点和参考曲线。
2. 设置曲线的斜率。使之与其表示的影响的性质吻合,负值斜率代表负 反馈,正值斜率代表正反馈。
3. 选择曲线的形状。小心确定在极端条件下和曲线中部的斜率与曲线的 值。
4. 尽可能在表函数上把x,y的特殊点标出,如:x,y分别取0和1时,极端 条件下的x,y值和某些研究问题所要求的特殊点。
LEVEL.K*CONST
LEVEL.K/LIFE
(GOAL.K-LEVEL.K)/ADJTM
LEVEL.K*AUX.K与LEVEL.K/AUX.K EFFECT.K+NORM.K(某些因素的影响作用+额定速率)
EFFECT.K*NORM.K(额定速率与某个(或几个)因子的乘积)
LEVEL.K*CONST
建立方程的目的:在于使模型能用计算机模拟(或得到解析 解),以研究模型假设中隐含的动力学特性,并确定解决问题 的方法与对策。
状态变量与Level方程 速率(变化率)方程 辅助方程 SD模型举例
5.1.1 状态变量与Level方程
状态变量是随时间而变化的积累量,是物质、能量与信息的储存环节。 如:人口、企业雇员人数、库存、生产能力、银行存款等。

《企业安全评价的系统动力学模型研究与应用》范文

《企业安全评价的系统动力学模型研究与应用》范文

《企业安全评价的系统动力学模型研究与应用》篇一一、引言企业安全评价是一个涉及风险预测、安全性能和经营效益的综合性工作。

它要求对企业的安全管理体系进行全面的、系统的、动态的评估,从而为企业的安全运营提供科学的决策依据。

然而,传统的安全评价方法往往忽视了系统的动态性和复杂性,无法准确反映企业安全状况的实时变化。

因此,本文将研究并应用系统动力学模型,以解决这一问题。

二、系统动力学模型概述系统动力学模型是一种基于系统思考和计算机模拟的技术,用于研究复杂系统的动态行为和结构关系。

该模型通过建立系统的因果关系图和存量流量图,分析系统的内部结构和动态变化,从而预测系统的未来行为。

在企业安全评价中,系统动力学模型可以有效地描述企业安全系统的动态过程,揭示各种因素之间的相互关系和影响机制。

三、企业安全评价的系统动力学模型构建(一)模型假设与变量设定在构建企业安全评价的系统动力学模型时,我们首先需要设定一些假设和变量。

假设企业安全系统是一个复杂的、动态的系统,包含多个相互关联的子系统(如人员管理、设备管理、环境管理等)。

变量包括各子系统的状态变量、输入变量和输出变量等。

(二)因果关系图和存量流量图的建立根据企业安全系统的特点和实际需求,我们建立了因果关系图和存量流量图。

因果关系图描述了各因素之间的因果关系和影响路径,存量流量图则描述了各子系统的存量和流量变化情况。

通过这两张图,我们可以清晰地了解企业安全系统的内部结构和动态变化。

(三)模型方程的建立与求解根据因果关系图和存量流量图,我们建立了相应的微分方程和其他数学方程,形成了企业安全评价的系统动力学模型。

然后,我们利用计算机软件对模型进行求解,得到各子系统的动态变化情况和整体安全评价结果。

四、企业安全评价的系统动力学模型应用(一)应用场景企业安全评价的系统动力学模型可以应用于企业的日常安全管理、安全风险预测、安全政策制定等多个场景。

通过模拟不同场景下的企业安全状况,我们可以为企业的安全决策提供科学的依据。

(完整版)系统动力学模型案例分析

(完整版)系统动力学模型案例分析

系统动力学模型介绍1.系统动力学的思想、方法系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。

系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。

而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。

所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。

系统动力学方法从构造系统最基本的微观结构入手构造系统模型。

其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。

因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。

2.建模原理与步骤(1)建模原理用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。

系统动力学认为系统具有整体性、相关性、等级性和相似性。

系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。

系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。

系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。

与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。

系统动力学与案例分析

系统动力学与案例分析

系统动力学与案例分析一、系统动力学发展历程(一)产生背景第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。

这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。

许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。

许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。

这就给问题的处理带来很大的困难。

新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。

于是系统动力学便应运而生。

(二)J.W.Forrester等教授在系统动力学的主要成果:1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。

1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。

1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。

1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。

1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。

1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。

这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。

两个世界模型在国际上引起强烈的反响。

1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。

系统动力学模型案例分析

系统动力学模型案例分析

系统动力学模型介绍1.系统动力学的思想、方法系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。

系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。

而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。

所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。

系统动力学方法从构造系统最基本的微观结构入手构造系统模型。

其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。

因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。

2.建模原理与步骤(1)建模原理用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。

系统动力学认为系统具有整体性、相关性、等级性和相似性。

系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。

系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。

系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。

与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。

系统动力学模型案例分析

系统动力学模型案例分析

--- 时Sr“卅…系统动力学模型介绍1•系统动力学的思想、方法系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。

系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。

而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在一定条件下互相转化。

所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。

系统动力学方法从构造系统最基本的微观结构入手构造系统模型。

其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。

因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。

2.建模原理与步骤任务)调研*问气定义划定界限政策分析与模空便用系统分析*结构分析*建官方程*修改模型----------------------- 时磊5说--------- - ------ ---------(1)建模原理用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。

系统动力学认为系统具有整体性、相关性、等级性和相似性。

系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。

系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。

系统工程学-第5讲系统动力学可编辑全文

系统工程学-第5讲系统动力学可编辑全文

② 速率变量
R1
③ 水准变量
L1
④ 辅助变量
() 。

A1
⑤ 参数(量) ⑥ 源与汇 ⑦ 信息的取出
(常量) L。1
④ 辅助变量
。 A1
(初值) 。
(3)流图--流图举例
R1(利息1) L1
C1(利率)
R1(订货量) 库存量 I
(库存差额) D
Y(期望库存)
(出生人口) (人口总量) (死亡人口)
(1) K和KL的含义是什么?
(2) RM是什么变量?
(3) MHM、P、RM的量纲是什么?
(4) P的实际意义是什么?
9、已知如下的部分DYNAMO方程:
MT·K=MT·J+DT*(MH·JK-MCT·JK),
MCT·KL=MT·K/TT·K,
非线性
1. 原因与结果非线性 2. 时空分离性—滞后 3. 随机性
2、系统动力学
2.3、建模流程
明确目的
认识系统的结构、预测系统行为、 设计最佳参数、合理进行决策
确定系统边界
封闭的社会系统
因果关系分析
系统结构
建立SD模型
流程图、方程式
仿真实验
结果分析
模型修正
三、SD结构模型化原理
1 因果关系
因果箭 A
招聘成功
+ 论资排辈导致
发展受阻的压力
年轻人才渴望 明星位置的压力
+
-
+
明星位置空缺数量
+ 明星位置总数
现在明星数量
4、讨论
毕业在即,同学们都在积极的寻找中意的单位 ,由于背负着上学期间的贷款,大家都希望能把自 己卖个好价钱。

系统动力学模型案例分析

系统动力学模型案例分析

糸统动力学模型介绍1.糸统动力学的思想.方法糸统动力学对实际糸统的构栈和栈拟是从糸统的结构和功能两方面同肘进行的。

糸统的结构是指糸统所包含的各单元以及各单元之间的和互作用与和互关糸。

而糸统的功能是指糸统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了糸统的纽织和糸统的行%,它们是相对独立的,又可以定条件下互和转化。

所以A糸统栈拟肘阮要考虑到糸统结构方面的要素又要考虑到糸统功能方面的因素,才能比较准确地反映出卖际糸统的基本规律。

糸统动力学方去从构凌糸统最基本的微观结构入手构凌糸统栈型。

其中不仅要从功能方面考疼栈型的行为特性与实际糸统中测量到的糸统变量的各数据、图表的吻合程度,而且还要从结构方面考案棋型中各单元相互联糸和相互作用关糸与实际糸统结构的一致程度。

槻拟过程中所需的糸统功能方面的信息,可以通过收集,分析糸统的0史数据资料来荻得,是属定量方面的信息,而所需的糸统结构方面的信息则依赖于栈型构凌者对实际糸统运动机制的认识和理解程度,其中也包含着丸量的实际工作经脸,是厲走性方面的信息。

因此,糸统动力学对糸统的结构和功能同肘栈拟的方比,实质上就是充分利用了卖际糸统定性和定量两方面的信息,并将•£们有机地融合衣一起.,合理有效地构凌岀能较好地反映实际糸统的栈空。

2.建核原理与步骤任务调研问平义划定界限反馈气伴分析变誓义修改模型建%模型政策分析与模型便用⑴建棋原理用糸统动力学方出进行建棋最根本的指导脛想就是糸统动力学的糸统观和方法怡。

糸统动力学认为糸统具有整体性、和关性、等级性和和彼性。

糸统部的反馈结构和机制决定了糸统的行为特性,任何复杂的丸糸统都可以由多个糸统最基本的信息反馈回路按芷种方无联结而成。

糸统动力学栈型的糸统目标就是针对实际应用情况,从支化和发畏的角盛去解决糸统问題。

糸统动力学构栈和栈拟的一个最主要的特点,就是卖现结构和功能的双栈拟,因此糸统分解与糸统综合原则的正确贯彻必须贯穿于糸统构栈、棋拟与测试的整个过程中。

系统动力学简单模型例子

系统动力学简单模型例子

系统动力学简单模型例子
1. 库存与销售模型啊,就像你开了个小商店,进的货就是库存,卖出去的就是销售呀!想想看,要是你进的货太多,卖不出去,那不就积压啦,资金不就卡住了嘛!
2. 人口增长模型呢,这就好比一个家庭呀,新生命不断出生,人口就增加啦,但要是出现一些特殊情况,比如疾病啥的,人口不就会受到影响嘛!
3. 生态系统模型呀,就如同一片森林,各种动植物相互依存,要是其中一个环节出了问题,那不就像多米诺骨牌一样影响一大片嘛!
4. 交通流量模型,哎呀,那不就像马路上的车嘛,有时候车多就堵得要命,这就是模型里说的流量过大呀!
5. 市场竞争模型呢,就好像几个商家在抢生意呀,都想多吸引点顾客,这竞争可激烈了呢!
6. 传染病传播模型,跟那病毒传播多像啊,一个人传给另一个人,然后迅速蔓延开,多吓人呀!
7. 经济波动模型呀,这不就和股票市场一样嘛,一会儿涨一会儿跌,让人的心也跟着七上八下的呢!
总之,这些系统动力学简单模型就在我们的生活中无处不在呀,对我们理解和应对各种现象都有着重要的作用呢!。

系统动力学案例素材

系统动力学案例素材

系统动力学案例素材
某公司生产无人机,销售市场主要分布在军事及民用领域。

近几年,随着无人机技术的快速发展和市场需求的增加,公司决定扩大生
产规模并进军国际市场。

在扩大生产规模之前,公司进行了市场调研和资源评估,以确定
生产计划和投资规划。

基于市场需求和资金储备,公司决定扩大生产
规模并引进新的生产设备。

同时,公司需要加强运营管理和财务管控,以确保生产和销售能够顺利进行,并实现盈利和可持续发展。

系统动力学模型将公司的运营过程和要素纳入模型,通过对模型
进行多次模拟和分析,为公司提供决策支持。

模型主要包括市场需求、生产规模、生产效率、成本控制、销售收入、现金流等关键要素,以
及各要素之间的动态关系和反馈循环。

模型分析结果显示,在当前市场需求下,公司的生产规模和销售
收入可以实现持续增长,并且在一定程度上可以满足国际市场需求。

但同时,成本控制和现金流管理也成为了重要的管理挑战。

售价和成
本之间的平衡关系以及资金回收周期对公司的盈利和投资能力有着重
要的影响。

基于模型分析结果,公司制定了一系列管理策略和决策方案,包
括加强管理控制、调整生产和销售策略、优化成本结构和现金流管理等,以实现公司的良性发展和可持续发展目标。

【免费下载】vensim案例

【免费下载】vensim案例

第四章 系统动力学仿真模型由于上海地区的汽车市场只是全国市场的一部分,其供应系统除了上海本地汽车生产企业之外,还有全国各地的汽车企业。

随着加入WTO ,汽车产业逐步放开,将使我国的汽车市场成为国际市场的一部分,而价格也将与国际市场接轨。

另外世界汽车市场上潜在的生产能力极大,总体上已经形成生产过剩的卖方市场。

因此上海地区的汽车市场主要是需求问题。

研究上海市私车发展的主要问题也将是需求问题。

本文建立上海地区私车变化的系统动力学模型,从需求方面来研究上海市的私车发展。

图4-1 上海市私家车系统组成结构图§4.1 系统分析§4.1.1 系统边界的确定系统动力学分析的系统行为是基于系统内部要素相互作用而产生的,并假定系统外部环境的变化不给系统行为产生本质的影响,也不受系统内部因素的控制。

因此系统边界应规定哪一部分要划入模型,哪一部分不应划入模型,在边界内部凡涉及与所研究的动态问题有重要关系的概念模型与变量均应考虑进模型;反之,在界限外部的那些概念与变量应排除在模型之外。

根据系统论原理,一个完整的城市居民私家车消费系统不仅包括汽车的流通、交换和消费等环节,而且还包括城市人口、经济、社会环境和消费政策、公交等其他指系统,它是一个复杂的社会经济大系统(图4-1)。

只有建立一个适合于该系统的动态分析模型,才可能全面准确地研究系统中各因素间的相互作用关系和它们对系统行为的影响。

根据系统建模的目的,本文研究系统的界限大体包括以下内容:私车的需求量私车的报废量私车的市场保有量私车的价格私车的使用费用私车发展系统城市公交系统城市市政系统汽车市场系统人口经济系统私车的上牌费用牌照限额居民人均可支配收入上海市人口数量上海市总户数政策因素公交汽车、出租车数量停车车位道路面积此外,还有其他许多内容,如摩托车的数量、汽车的质量、品牌种类等,均不划入系统的界限内。

§4.1.2 因果关系分析系统动力学的研究重点在于自反馈机制的系统动力学问题。

(完整版)第五章系统动力学模型

(完整版)第五章系统动力学模型
10
5.1 系统动力学学科简述
5.1.2 系统动力学发展历史
第三阶段:广泛应用与传播(20世纪90年代至今)
系统动力学所涉及到的研究领域: • 项目管理 • 物流与供应链 • 宏观经济 • 公司战略 • 管理复杂性与复杂性科学 研究的主要问题: • 对信息的利用问题 • 模型简化、分割与复杂系统的建模技巧问题 • SD模型中的优化问题
13
5.1 系统动力学学科简述
5.1.4 系统动力学 计算技术
14
5.1 系统动力学学科简述
5.1.4 系统动力学 计算技术
15
5.1 系统动力学学科简述
5.1.4 系统动力学 计算技术
Vensim Vensim是由美国Ventana Systems, Inc.所开发,为一可观念化、文
件化、模拟、分析、与最佳化动态系统模型之图形接口软件。Vensim PLE即Vensim系统动力学模拟环境个人学习版,是Vensim软件的一种,是 为了更便于学习系统动力学而设计的。
11
5.1 系统动力学学科简述
5.1.2 系统动力学发展历史
第三阶段:广泛应用与传播(20世纪90年代至今)
近五年国内的研究(博士论文): 农业供应链金融系统动力学仿真研究——以乳制品供应链为例 煤矿安全影响因子的系统分析及其系统动力学仿真研究 基于系统动力学方法的医疗费用过快增长问题建模与控制研究 生猪规模养殖与户用生物质资源合作开发系统反馈仿真研究 安全生产标准化系统动力建模及策略分析研究 深水平台锚泊定位系统动力特性与响应分析 区域经济发展的动力系统研究
24
5.2 系统反馈结构
5.2.1 因果关系分析
梳理反馈回路
海藻系统与贝类子系统类似于人口增长系统,由于贝类靠吃海藻生存,又生成 了沟通两个子系统的负反馈回路,这条负回路是生态系统的主回路,一方面控制着 各子系统并通过各子系统内部的回路产生各自的生态现象,另一方面协调两个子系 统之间的生态关系,导致海藻与贝类生态系统的动态平衡。

系统动力学课件与案例分析系统仿真PPT

系统动力学课件与案例分析系统仿真PPT
系统动力学采用定性和定量相结合的 方法,通过对系统的结构和行为进行 深入分析,揭示系统的内在规律和动 态行为。
系统动力学的发展历程
20世纪60年代
系统动力学开始应用于城市规划、环境科 学、交通工程等领域。
A 20世纪50年代
美国麻省理工学院的福瑞斯特教授 创立了系统动力学,最初应用于企
业管理领域。
系统动力学课件与案例分析系统仿 真
contents
目录
• 系统动力学概述 • 系统动力学模型 • 系统仿真 • 案例分析 • 结论与展望
01 系统动力学概述
系统动力学的定义
系统动力学:是一门研究系统动态行 为的学科,它通过建立动态模型来模 拟系统的行为和性能,并利用这些模 型进行系统分析和优化。
预测与优化
系统动力学和系统仿真能够预测 系统的未来状态,并通过优化模 型参数和结构来改善系统性能, 提高资源利用效率和系统运行效 果。
系统动力学与系统仿真的未来发展
智能化技术
随着人工智能和机器学习技术的发展,系统动力学和系统仿真将进一步智能化,能够自动学习和优化模型参数,提高 模拟的准确性和效率。
详细描述
系统方程式通常采用微分方程或差分方程的形式,描述系统中各变量之间的动态 变化关系。通过建立系统方程式,可以模拟系统的动态行为,并预测未来系统的 状态变化。
03 系统仿真
系统仿真的定义与目的
定义
系统仿真是一种通过建立数学模型和计算机程序来模拟真实系统行为的方法。
目的
系统仿真的目的是为了理解系统的动态行为,预测系统未来的发展趋势,优化系统性能,以及解决复杂系统的问 题。
因果关系图
总结词
因果关系图是系统动力学模型中的另一种可视化工具,用于描述系统中各变量 之间的因果关系。

系统动力学的物理模型分析

系统动力学的物理模型分析

机械振动的系统动力学分析知识储备:1,机械振动(1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动,简称振动.(2)产生振动的条件:①物体受到的阻力足够小②物体受到的回复力的作用手施力使水平弹簧振子偏离平衡位置,感到振子受到一指向平衡位置的力,它总要使振子返回平衡位置,所以叫做回复力.回复力是根据力的作用效果命名的.回复力可以是弹力,也可以是其它的力,或几个力的合力,或某个力的分力.(3)机械振动是一种普遍的运动形式,大至地壳振动,小至分子,原子的振动.2,简谐运动(1)定义:物体在跟位移的大小成正比,并且总指向平衡位置的回复力作用下的运动,叫简谐运动(2)条件:物体做简谐运动的条件是F=-kx,即物体受到的回复力F跟位移大小成正比,方向跟位移方向相反.(3)对F=-kx的理解:对一般的简谐运动,k是一个比例常数,不同的简谐运动,K值不同,k是由振动系统本身结构决定的物理量,在弹簧振子中,k是弹簧的劲度系数.3,简谐运动的特点(1)回复力:物体在往复运动期间,回复力的大小和方向均做周期性的变化,物体处在最大位移处时的回复力最大,物体处于平衡位置时的回复力最小(为零),物体经过平衡位置时,回复力的方向发生改变.(2)加速度:由力与加速度的瞬时对应关系可知,回复力产生的加速度也是周期性变化的,且与回复力的变化步调相同.(3)位移:物体做简谐运动时,它的位移(大小和方向)也是周期性变化的,为研究问题方便,选取平衡位置位移的起点,物体经平衡位置时位移的方向改变.(4)速度:简谐运动是变加速运动,速度的变化也具有周期性(包括大小和方向),物体经平衡位置时的速度最大,物体在最大位移处的速度为零,且物体的速度方向改变.4,振幅(A)(1)定义:振动物体离开平衡位置的最大距离,单位:m(2)作用:描述振动的强弱.(3)振幅和位移的区别:对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是向量,振幅是标量,它等于最大位移的大小.5,周期和频率(1)周期(T):振动物体完成一次全振动所需要的时间,单位:s(2)频率(f):单位时间内完成全振动的次数,单位:Hz(3)一次全振动(往返一次):振动物体经过一段时间的运动,位移,加速度,速度都恢复为原来的状态,即完成一次全振动.如振子从O→B→O→C→O或从B→O→C→O→B等.(4)周期与频率的关系:f=1/T 1Hz=1/s=s-1(5)作用:描述振动的快慢(6)测量仪器:秒表,节拍器6,固有周期和固有频率(1)弹簧振子的周期由振动系统中振子的质量与劲度系数决定,而与振幅无关.(2)公式:(3)简谐运动的周期和频率由振动系数本身的性质决定,因此叫做固有周期和固有频率. STELLA建模1.加速度,速度模型加速度在时间上的积累得到速度而速度在时间上的积累是位移。

anylogic系统动力学建模案例

anylogic系统动力学建模案例

anylogic系统动力学建模案例AnyLogic系统动力学建模是一种基于系统动力学原理的建模方法,通过对系统内部结构和变化规律的分析,模拟系统中各种因素之间的相互作用,从而帮助决策者更好地理解系统的运行机制,预测系统的未来发展趋势,优化决策方案。

下面将列举一些基于AnyLogic 系统动力学建模的案例。

1. 疾病传播模型利用AnyLogic系统动力学建模,可以模拟疾病在人群中的传播过程。

通过设定各种参数,如感染率、治愈率、接触率等,可以模拟不同传染病在不同人群中的传播情况,帮助卫生部门制定防控策略,减少疫情的蔓延。

2. 环境污染模型利用AnyLogic系统动力学建模,可以模拟工厂排放的污染物在大气中的扩散过程。

通过设定风向、风速、排放量等参数,可以评估不同排放源对周围环境的影响程度,为环保部门提供科学依据,制定减排措施。

3. 市场竞争模型利用AnyLogic系统动力学建模,可以模拟不同企业在市场中的竞争关系。

通过设定市场需求、价格弹性、广告投入等参数,可以模拟企业之间的价格竞争、产品创新等策略,帮助企业制定市场营销策略,提升市场竞争力。

4. 交通拥堵模型利用AnyLogic系统动力学建模,可以模拟城市交通系统中车辆的流动情况。

通过设定道路容量、信号灯时长、车辆速度等参数,可以评估不同交通管理政策对交通拥堵的影响,为交通部门提供优化交通流量的建议。

5. 供应链模型利用AnyLogic系统动力学建模,可以模拟供应链中各个环节的运作情况。

通过设定生产周期、库存水平、订单量等参数,可以评估不同供应链管理策略对供应链效率的影响,帮助企业优化供应链设计,降低成本。

6. 金融风险模型利用AnyLogic系统动力学建模,可以模拟金融市场中不同资产的价格波动情况。

通过设定利率、市场情绪、政策变化等参数,可以评估不同投资组合的风险水平,帮助投资者制定风险管理策略,保护资产安全。

7. 人力资源规划模型利用AnyLogic系统动力学建模,可以模拟企业人力资源的供需关系。

系统动力学与案例分析

系统动力学与案例分析
❖ 新得问题迫切需要有新得方法来处理;另一方面,在技术 上由于电子计算机技术得突破使得新得方法有了产生得可 能。于就是系统动力学便应运而生。
1、系统动力学发展历程
❖System dynamics was created during the mid-1950s by Professor Jay W、 Forrester of the Massachusetts Institute of Technology、
2、系统动力学得原理
系统动力学就是一门分析研究信息反馈系统得学科。 她就是系统科学中得一个分支,就是跨越自然科学和社会 科学得横向学科。
系统动力学基于系统论,吸收控制论、信息论得精髓,就 是一门认识系统问题和解决系统问题交叉、综合性得新学 科。
从系统方法论来说,系统动力学得方法就是结构方法、 功能方法和历史方法得统一。
3、系统动力学基本概念
而且,主回路并非固定不变,她们往在在诸回路之间随时间 而转移,结果导致变化多端得系统动态行为。
非线性:线性指量与量之间按比例、成直线得关系,在空间和 时间上代表规则和光滑得运动;而非线性则指不按比例、 不成直线得关系,代表不规则得运动和突变。线性关系就 是互不相干得独立关系,而非线性则就是相互作用,而正就 是这种相互作用,使得整体不再就是简单地等于部分之和, 而可能出现不同于“线性叠加”得增益或亏损。实际生活 中得过程与系统几乎毫无例外地带有非线性得特征。正就 是这些非线性关系得耦合导致主回路转移,系统表现出多 变得动态行为。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
1、系统动力学发展历程
2、系统动力学发展成熟—20世纪70-80年代
这阶段主要得标准性成果就是系统动力学世界模型与 美国国家模型得研究成功。这两个模型得研究成功地解决 了困扰经济学界长波问题,因此吸引了世界范围内学者得 关注,促进她在世界范围内得传播与发展,确立了在社会经 济问题研究中得学科地位。

系统动力学优化方法案例研究

系统动力学优化方法案例研究

系统动力学优化方法案例研究1研究背景农业生态系统是由自然生态系统和社会经济系统组成的复杂系统,它的发展受人类、社会、经济、政策、科技和自然等因素综合作用,呈现高度非线性、多回路、复杂的动态特性。

农业生态系统的优化管理就是对农业生产进行合理的人为干预,通过政策实施和技术支撑,对系统结构和功能进行合理调控,使农业生态系统处于安全与健康状态,为人类提供持续的生态服务、满足人类生存和发展需求。

禹城农业生态系统为县级尺度的生态系统。

全市拥有耕地52927 hm2,全市总人口499755人,其中农业人口415913人。

土地平坦,水资源丰富,适合农业生产,经济以农业为主,农业长期以种植业为主,20世纪90年代,粮食单产稳定在12000kg/hm2以上,畜牧业有了较快发展,逐步呈现农牧结合的良好态势,到2000年种植业产值和畜牧业产值在农业生产总产值中分别占到65.0%和29.8%。

种植业以小麦、玉米为主,部分为棉花、蔬菜、瓜果等经济作物,养殖业以牛、猪、鸡为主。

目前,随着我国农业发展进入新阶段,面临新一轮农业结构调整,根据区域资源特点及我国优势农产品区划,禹城市既是粮食生产优势产区,同时也是畜牧业生产的优势产区,种植业子系统和养殖业子系统是禹城市农业生态系统两个最主要的子系统,种植业和养殖业的结合也是农业生产最基本的形式。

养殖业在农业生态系统中的重要作用,一方面主要表现为提供营养丰富的动物性食品和增加经济收入,另一方面则表现为充分利用种植业副产物,并为种植业提供大量有机肥从而可适当减少化肥用量。

种植业和养殖业的有机结合,有利于减少工业辅助能的投入,能够提高抵抗自然灾害和社会经济风险的能力,可以增加系统的稳定性。

运用系统动力学方法优化并调控种植业和养殖业内部组分结构比例,协调种植业和养殖业两个子系统之间的相互关系,探讨实现系统的整体高效和良性循环的途径。

2模型的建立与检验(1)建模思路应用系统动力学模型对禹城市农牧结合生态系统发展趋势进行动态模拟,并对其结构和功能进行优化。

系统动力学流图案例

系统动力学流图案例

系统动力学流图案例
系统动力学的思想、方法系统动力学对实质系统的构模和模拟是从系统的构造和功能两方面同时进行的。

系统的构造是指系统所包含的各单元以及各单元之间的互相作用与互相关系。

而系统的功能是指系统中各单元自己及各单元之间互相作用的次序、构造和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转变。

因此在系统模拟时既要考虑到系统构造方面的要素又要考虑到系统功能方面的要素,才能比较正确地反响出实质系统的基本规律。

系统动力学方法从构造系统最基本的微观构造下手构造系统模型。

其中不但要从功能方面察看模型的行为特点与实质系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从构造方面察看模型中各单元互相联系和互相作用关系与实质系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以经过收集,解析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统构造方面的信息则依赖于模型构造者对实质系统运动体系的认识和理解程度,其中也包含着大量的实质工作经验,是属定性方面的信息。

因此,系统动力学对系统的构造和功能同时模拟的方法,实质上就是充足利用了实质系统定性和定量两方面的信息,并将它们有机地交融在一起,合理有效地构造出能较好地反响实质系统的模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统动力学模型介绍
1.系统动力学的思想、方法
系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。

系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。

而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。

所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。

系统动力学方法从构造系统最基本的微观结构入手构造系统模型。

其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。

模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。

因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。

2.建模原理与步骤
(1)建模原理
用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。

系统动力学认为系统具有整体性、相关性、等级性和相似性。

系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。

系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。

系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。

与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。

因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。

系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。

因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。

(2)建模步骤
系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。

系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。

第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。

第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。

第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。

第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。

第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。

3.建模工具
系统动力学软件VENSIM PLE软件
4.建模方法
因果关系图法
在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。

因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

a.正向因果链A→+B:表示原因A的变化(增或减)引起结果B在同一方向上发生变化(增或减)。

b.负向因果链A→-B:表示原因A的变化(增或减)引起结果B在相反方向上发生变化(减或增)。

如图
流图法
流图法又叫结构图法,它采用一套独特的符号体系来分别描述系统中不同类型的变量以及各变量之间的相互作用关系。

①状态变量
状态变量又称作位,它是表征系统状态的内部变量,可以表示系统中的物
质、人员等的稳定或增减的状况。

状态变量的流图符号是一个方框,方框内填写状态变量的名字。

显然,能够对状态变量的变化产生影响的只是速率变量。

状态方程可根据有关基本定律来建立,如连续性原理、能量质量守恒原理等。

状态方程有三种最基本的表达方式:微分方程表达、差分方程表达和积分方程表达。

在一定的条件下,这三种表达方式可以互相转化。

如图
5.建模方程类型
以财政补贴为例
PT.K=PT.J+PTL*PT.J*Time
式中
PT.K—第K年财政补贴(万元);
PT.J—第J年年财政补贴(万元);
PTL—年财政补贴率
程序模块如图
方程建立好后,设置变量和时间步长,检查模型,运行得到模拟图像和预测数据。

下面用人口的出生率为例
影响出生率的因素我们可以认为有人口性别比例,人口年龄分布,政策系数等一般来说人口性别比例应该是1:1,但是考虑到统计的实际的数据有可能不是1:1,这个可以通过历年的不同性别的人口数量得到,人口年龄分布即为:婴儿,小孩,青年,中年,老年等。

影响出生率的当然就是达到生育年龄的青年和中年(一般16~45岁)。

政策系数即为计划生育政策执行的严格程度(政府部门可以得到)。

如果严格执行“一对夫妇一个孩”的人口政策,政策系数=1,随着执行程度的放松,其值增加。

例如,如果实施“一对夫妇两个孩”的人口政策,政策系数=2。

迁入迁出的人口数量可以通过统计数据得到。

下面主要看下这几个因素对出生率的影响,建模方程
d(出生率)/d(时间)=“青年和中年(一般16~45岁)”*出生率*(性别比)/(100+性别比)*政策系数+(迁入-迁出)*系数(函数);
(也有可能符合一定的非线性方程之类的,要继续深入的研究)
模型参数估计常用方法:
应用统计资料、调查资料确定参数;
一些常用的数学方法,如经济计量学方法,算法等;
从模型中部分变量关系中确定参数值;
根据模型的参考行为特征估计参数值
专家评估。

此处借用别人的图像解释效果。

GRAPH
2,000
4,000
2,000
6,000
0 1,000
4
4
4
4
4
4
44
4
4 3
3
3
3
3
3
3
3
3
33 2
2
2
2
2
222
2
2
2 1
1
1
1
1
1
1
1111
20102014201820222026203020342038204220462050
Time (Year)
0-14岁11111111111 15-64岁22222222222 65岁及以上3333333333
总人口4444444444
5.模型里还可以加入数学函数,逻辑函数,取大取小函数,阶跃函数,开关函数,延迟函数等,进而模型将会更复杂。

其他的小系统模块(投资收益,缴费金额等)的建模类似。

6.把每个小的系统模块的微分方程或者差分方程,输入系统,运行模块即可得到模拟曲线和一些模拟预测数据,通过改变变量,反复试验可以得到主要影响变量,每个小的系统模块再进行集成,一层一层的就可以得到目标的要求,同时还可以根据每次的实验结果给出相关的政策与对策。

相关文档
最新文档