【易错题】八年级数学下期末试卷(及答案)
八年级下册数学期末试卷易错题(Word版含答案)
八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题1.若分式12x x -+有意义,则实数x 的取值范围是( ) A .1x ≤且2x ≠-B .1x >且2x ≠-C .1x >D .1≥x 2.下列各比值中,是直角三角形的三边之比的是( ) A .1:2:3 B .2:3:4 C .3:4:5 D .1:3:1 3.下列各组条件中,不能判断一个四边形是平行四边形的是( )A .两组对边分别平行的四边形B .两组对角分别相等的四边形C .一组对边平行另一组对边相等的四边形D .两条对角线互相平分的四边形 4.一组数据为2,3,4,4,4,则这一组数据的众数是( )A .2B .3C .4D .6 5.如图,在平面直角坐标系中有一矩形OABC .O 为坐标原点,()10,0A 、()0,4C ,D 为OA 的中点,P 为BC 边上一点,若POD 为等腰三角形,则所有满足条件的点P 有几个( )A .1个B .2个C .3个D .4个6.如图,在菱形ABCD 中,∠A =110°,则∠CBD 的度数是( )A .90°B .70°C .55°D .35°7.如图,已知四边形ABCD 是边长为4的正方形,以对角线BD 为边作正三角形BDE ,过点E 作EF DA ⊥,交DA 的延长线于点F ,则AF 的长是( )A .232-B .222-C .31-D .438.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y (米)与乙出发的时间t (秒)之间的关系如图所示给出以下结论:①8a =;②72b =;③98c =.其中正确的是( )A .②③B .①②③C .①②D .①③二、填空题9.要使代数式1x x+有意义,则x 的取值范围是___________. 10.如图,菱形ABCD 中,DB 为对角线,5AB =,6DB =,点E 为边AB 上一点,则阴影部分的面积为______.11.一条直角边3,斜边长为5的直角三角的面积为_________.12.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F .则OE EF +的值为______.13.若直线y =kx +b (k ≠0)经过点A (0,3),且与直线y =mx ﹣m (m ≠0)始终交于同一点(1,0),则k 的值为________.14.如图,四边形ABCD 对角线AC ,BD 交于点O . AC BD ⊥,OB OD =,请你添加一个适当的条件 ______ ,使四边形ABCD 是菱形(只填一种情况即可).15.已知直线333y x =+与x 轴,y 轴分别交于点A ,B ,点C 是射线AB 上的动点,点D 在第一象限,四边形OACD 是平行四边形.若点D 关于直线OC 的对称点D 恰好落在y 轴上,则点C 的坐标为______.16.如图, ABCD 中,AB //x 轴,12AB =.点A 的坐标为()2,8-,点D 的坐标为()6,8-,点B 在第四象限,点G 是AD 与y 轴的交点,点P 是CD 边上不与点C ,D 重合的一个动点,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,点P 的坐标为______.三、解答题17.计算:(1)80205-+;(2)(53)(53)+-.18.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米? 19.如图,正方形网格中的△ABC ,若小方格边长为1(1)判断△ABC 是什么形状?并说明理由.(2)求AC 边上的高.20.如图,平行四边形ABCD 的对角线AC 、BD 相较于点O ,且AB AD =,//BE AC ,//CE DB .求证:四边形OBEC 是矩形.21.2m n ±a ,b ,使a b m +=,ab n =,即22(()a b m +=a b n =22()0)m n a b a b a b ±±=>>. 743+743+7212+这里7m =,12n =,由于437+=,4312⨯=, 所以22(4)(3)4312+== 27437212(43)23+=++=(14+23(213242-(3415-22.某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数关系式;(2)当每千克干果降价3元时,超市获利多少元?23.已知在平行四边形ABCD中,,将ABC沿直线AC翻折,点B落在点尽处,AD与CE相交于点O,联结DE.AC DE;(1)如图1,求证://(2)如图2,如果,,,求的面积;(3)如果,,当是直角三角形时,求BC的长.24.如图所示,在平面直角坐标系中,点B的坐标为(4,8),过点B分别作BA⊥y轴,BC⊥x轴,得到一个长方形OABC,D为y轴上的一点,将长方形OABC沿着直线DM折叠,使得点A与点C重合,点B落在点F处,直线DM交BC于点E.(1)直接写出点D的坐标;(2)若点P为x轴上一点,是否存在点P使△PDE的周长最小?若存在,请求出△PDE 的最小周长;若不存在,请说明理由.(3)在(2)的条件下,若Q点是线段DE上一点(不含端点),连接PQ.有一动点H 从P点出发,沿线段PQ以每秒1个单位的速度运动到点Q,再沿着线段QE5单位长度的速度运动到点E后停止.请直接写出点H在整个运动过程中所用的最少时间t ,以及此时点Q 的坐标.25.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据分式有意义,分母不为0,二次根式的被开方数是非负数列式解答即可.【详解】解:由题意得,10x -≥,且20x +≠,∴实数x 的取值范围是1≥x ,故选:D .【点睛】本题考查的是分式有意义和二次根式有意义的条件,掌握分式有意义,分母不为0,二次根式的被开方数是非负数是解题的关键.2.C解析:C【分析】先分别设三角形的三边,依据勾股定理的逆定理列式计算即可判断.【详解】解:A 、设三边分别为x 、2x 、3x ,∵222(2)(3)x x x +≠,∴三边比为1:2:3的三角形不是直角三角形;B、设三边分别为2x、3x、4x,∵222x x x+≠,(2)(3)(4)∴三边比为2:3:4的三角形不是直角三角形;C、设三边分别为3x、4x、5x,∵222x x x+=,(3)(4)(5)∴三边比为3:4:5的三角形是直角三角形;D、设三边分别为x、3x、x,∵222+≠,x x x(3)∴三边比为1:3:1的三角形不是直角三角形;故选:C.【点睛】此题考查应用勾股定理的逆定理判断三角形是否是直角三角形,熟记定理并应用解决问题是解题的关键.3.C解析:C【解析】【分析】根据平行四边形的判定方法逐一分析解题.【详解】解:A、B、D均可为判定四边形为平行四边形,故A、B、D不符合题意;C.一组对边平行另一组对边相等的四边形,不能判断它是平行四边形,如下图,是等腰梯形,故C符合题意,故选:C.【点睛】本题考查平行四边形的判定,是重要考点,难度较易,掌握相关知识是解题关键.4.C解析:C【解析】【分析】根据众数的定义求解即可,众数为一组数据中出现次数最多的数.【详解】解:这组数中4出现了3次,出现次数最多,众数为4故选C.【点睛】此题考查了众数的有关定义,熟练掌握众数的定义是解题的关键.5.D解析:D【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【详解】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,22PC=-53∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,22DE=-=;543分两种情况:当E在D的左侧时,如图2所示:OE=5-3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故选:D【点睛】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.6.D解析:D【解析】【分析】根据菱形的性质得到∠ABD=∠CBD,AD∥BC,根据平行线的性质求出∠ABC的度数,可进而求出∠CBD的度数.【详解】解:∵四边形ABCD是菱形,∴∠ABD=∠CBD,AD∥BC,∠ABC,∴∠A+∠ABC=180°,∠CBD=12∵∠A=110°,∴∠ABC=180°﹣∠A=180°﹣110°=70°,∴∠CBD=1×70°=35°,2故选:D.【点睛】本题考查了菱形的性质、平行线的性质,解题的关键是熟练掌握菱形的对边互相平行,对角线平分一组对角.7.A解析:A【解析】【分析】连接EA并延长BD于点O,根据正方形和等边三角形的性质,可求出EA是BD垂直平分线,求出∠DEB,求出∠EDA,从而求出∠EAF=∠FEA=45°,可得到EF=AF,然后设AF=EF=x,则DF=x+4,在Rt△EFD中,由勾股定理得出方程求出即可.【详解】解:如图,连接EA并延长BD于点O,∵四边形ABCD 是正方形,∴∠ADB =45°,AB =AD ,∴A 在BD 垂直平分线上,∵三角形BDE 是等边三角形,∴∠BED =∠EDB =∠EBD =60°,ED =EB ,∴E 在BD 的垂直平分线上,∴AE 是BD 的垂直平分线,∴∠DEO =12 ∠DEB =30°,∵∠EDB =60°,∠ADB =45°,∴∠EDA =60°-45°=15°,∴∠EAF =15°+30°=45°,∵EF DA ⊥,∴∠EF A =90°,∴∠FEA =∠EAF =45°,∴EF =AF ,∵四边形ABCD 是正方形,∴AB =AD =4,∠BAD =90°,由勾股定理得:BD 2242AB AD +=ED =BD =2,设AF =EF =x ,则DF =x +4,在Rt △EFD 中,由勾股定理得:ED 2=EF 2+FD 2, ∴(()222424x x =++, 解得:12232,232x x ==- (是负数,不符合题意舍去),即AF =232 .故选:A .【点睛】本题考查了线段垂直平分线性质,等边三角形性质,等腰三角形性质,正方形性质,勾股定理的应用,熟练掌握相关知识是解题的关键.8.B解析:B【分析】易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s 跑完总路程400可得乙的速度,进而求得80s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c 的值.【详解】由函数图象可知,甲的速度为824÷=(米/秒),乙的速度为400805÷=(米/秒),8(54)8∴÷-=(秒),8a ∴=,故①正确;5804(802)400328b =⨯-⨯+=-72=(米)故②正确;4004298c =÷-=(秒)故③正确;∴正确的是①②③.故选B .【点睛】本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键.二、填空题9.x ≥﹣1且x ≠0【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【详解】根据题意,得100x x +≥⎧⎨≠⎩, 解得x ≥﹣1且x ≠0.故答案为:x ≥﹣1且x ≠0.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.理解分式与二次根式的意义是关键.10.A解析:12【解析】【分析】取对角线的交点为O ,根据菱形的性质及三角形面积的计算公式可知阴影部分的面积为Rt AOB 面积的两倍.【详解】解:取对角线的交点为O ,过点O 作AB 的垂线,交,AB DC 分别于点,N M ,如图所示:根据菱形的性质及三角形面积的计算知, 阴影部分的面积为122AOB AB MN S ⋅=,∠AOB =90°,5,6AB DB ==,3OB ∴=,224AO AB OB ∴=-,1134622AOB SAO OB ∴=⋅=⨯⨯=, 即1226122AOB AB MN S ⋅==⨯=,故阴影部分的面积为12,故答案是:12.【点睛】本题考查了菱形的性质、勾股定理、三角形面积求法,解题的关键是:利用转换的思想来解答.11.6【解析】【分析】根据勾股定理可以求得另一条直角边的长,然后即可求得此直角三角形的面积.【详解】解:∵直角三角形一直角边的长是3,斜边长是5,∴2253-,∴此直角三角形的面积为:342⨯=6, 故答案为:6.【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和三角形的面积公式解答. 12.A 解析:245【分析】依据矩形的性质即可得到AOD ∆的面积为12,再根AOD AOE DOE SS S =+,即可到OE EF+的值.【详解】解:∵AB =6,BC =8,∴矩形ABCD 的面积为48,10AC == ,∴AO =DO =12AC =5, ∵对角线AC ,BD 交于点O , ∴1116812222∆==⨯⨯⨯=AOD ABC S S , ∵EO AO ⊥ ,EF DO ⊥, ∴AOD AOE DOE S S S=+ ,即12=1122⨯+⨯AO OE DO EF , ∴12115522=⨯⨯+⨯⨯OE EF , ∴()524+=OE EF , ∴245OE EF +=故答案:245. 【点睛】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角,矩形的对角线相等且互相平分.13.A解析:-3【分析】根据题意直线y =kx +b (k ≠0)经过点A (0,3)和点(1,0),然后根据待定系数法即可求得k 的值.【详解】解:∵直线y =kx +b (k ≠0)经过点A (0,3)和点(1,0),∴30b k b =⎧⎨+=⎩, 解得k =﹣3,故答案为:-3.【点睛】本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键. 14.OA OC =(答案不唯一)【分析】由条件AC BD ⊥,OB OD =,根据对角线互相垂直平分的四边形是菱形进行判定即可.【详解】解:添加OA OC =即可判断四边形ABCD 是菱形,∵AC BD ⊥,OB OD =,当OA OC =时,四边形ABCD 对角线AC ,BD 互相垂直平分,∴四边形ABCD 是菱形,故答案为:OA OC =(答案不唯一).【点睛】此题主要考查了菱形的判定,掌握一组对角线互相垂直平分的四边形是菱形是解题的关键.15.或.【分析】先根据题意求得,,,分点在第二象限和第一象限两种情况讨论,根据点关于直线的对称点恰好落在轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明是等边三角形,在第二象限时候证明是解析:32⎛ ⎝⎭或32⎛- ⎝⎭. 【分析】先根据题意求得30BAO ∠=︒,60ABO ∠=︒,12OB AB =,分C 点在第二象限和第一象限两种情况讨论,根据点D 关于直线OC 的对称点D 恰好落在y 轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明BCO 是等边三角形,在第二象限时候证明ODD '是等边三角形,利用等边三角形的性质,分别求得C 点的坐标.【详解】y =与x 轴,y 轴分别交于点A ,B , 令0y =,3x =-,∴(3,0)A -,令0x =,y =B ∴,3,OA OB ∴==90AOB ∠=︒,AB ∴=30BAO ∴∠=︒,60ABO ∠=︒,12OB AB ∴=, ①如图,当C 点在第二象限时,设DD '交x 轴于点E ,交AO 于点F ,CD 交y 轴于点G ,四边形OACD 是平行四边形,//AC OD ∴,//CD AO ,AC OD OD '==,30CAO ∠=︒,30DOE CAO ∴∠=∠=︒,30ODG DOE ∴∠=∠=︒,//CD AO ,AO OB ⊥,90DGD '∴∠=︒,9060DOG DOE ∴∠=︒-∠=︒,OD OD '=,30ODD OD D ''∴∠=∠=︒,点D 关于直线OC 的对称点为D 点,CO DD '∴⊥,60COB FOD '∴∠=∠=︒,60ABO ∠=︒,BCO ∴△是等边三角形,BO CO BC ∴==, 12BO AB =, 12BC AB =∴, C ∴点为AB 的中点,(3,0)A -,3)B ,33(2C ∴-, ②如图,当C 点在第二象限时,延长DC 交y 轴于点H ,则CH OD '⊥,点D 关于直线OC 的对称点为D 点,CD CD OD OD ''∴==,DOC D OC '∠=∠,60ABO BOD ∠=∠=︒,ODD '∴△是等边三角形,60DOD '∴∠=︒,30DOC D OC '∴∠=∠=︒,12CH OC ∴=, 30BAO ∠=︒,90AOB ∠=︒,3CO AO ∴==, ∴32CH =, 222233(2)3OH OC CH CH CH CH ∴=-=-=333()2C ∴. 综合①②可知C 的坐标为3332⎛ ⎝⎭或332⎛- ⎝⎭. 故答案为: 3332⎛ ⎝⎭或332⎛- ⎝⎭. 【点睛】本题考查了一次函数图像的性质,平行四边形的性质,等边三角形的性质,含30度角的直角三角形的性质,勾股定理,轴对称的性质,此题方法比较多,利用等边三角形的性质是解题的关键.16.,或,【分析】先求出直线的解析式为,则可求,设,则,可求,,分两种情况讨论:当在轴负半轴时,由折叠可知,在△中,由勾股定理可求,在△中,,,可求,所以,解得,则,;当在轴正半轴时,同理可得,,解 解析:85(5,8)或12(55-,8) 【分析】先求出直线AD 的解析式为24y x =--,则可求(0,4)G -,设(,8)P m ,则(,4)M m -,可求12PM =,8PN =,分两种情况讨论:当M '在x 轴负半轴时,由折叠可知12PM '=,在Rt △M NP '中,由勾股定理可求45M N '=,在Rt △M OG '中,M G x '=,4OG =,可求216M O x '=-,所以21645x x -+=,解得855x,则85(5P ,8);当M '在x 轴正半轴时,同理可得,21645x x -+-=,解得1255x =-,求得12(55P -,8). 【详解】解:设AD 的直线解析式为y kx b =+,将(2,8)A -,(6,8)D -代入可得,2868k b k b +=-⎧⎨-+=⎩, 解得24k b =-⎧⎨=-⎩, 24y x ∴=--,(0,4)G ∴-,点P 是CD 边上,//CD x 轴,设(,8)P m ,//GM y 轴,(,4)M m ∴-,12PM ∴=,8PN =,当M '在x 轴负半轴时,如图,由折叠可知GM GM '=,PM PM '=,12PM '∴=,在Rt △M NP '中,2245M N M P PN ''=-在Rt △M OG '中,M G x '=,4OG =, 216M O x '∴=-, ∴21645x x -+=, 解得855x, 85(5P ∴,8); 当M '在x 轴正半轴时,如图,同理可得,21645x x --解得1255x = 12(55P ∴8); 综上所述:P 点坐标为85(8)或12(558), 故答案为85(8)或12(558). 【点睛】 本题考查折叠的性质,熟练掌握平行四边形的性质、平面上点的坐标特点、并灵活应用勾股定理是解题的关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了.【分析】(1)根据勾股定理即可求解;(2)先求出BD ,再根据勾股定理即可求解.【详解】解:(1)由题意可知:,;,在中,解析:(1)这个梯子的顶端A 距地面有24m 高;(2)梯子的底部在水平方向滑动了8m .【分析】(1)根据勾股定理即可求解;(2)先求出BD ,再根据勾股定理即可求解.【详解】解:(1)由题意可知:90B ∠=︒,25m AC DE ==;7m BC =,在Rt ABC 中,由勾股定理得:222AB BC AC +=, ∴AB ==24=,因此,这个梯子的顶端A 距地面有24m 高.(2)由图可知:AD =4m ,24420BD AB AD =-=-=,在Rt DBE 中,由勾股定理得:222BE BD DE +=, ∴BE ==15=,∴1578CE BE BC =-=-=.答:梯子的底部在水平方向滑动了8m .【点睛】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解.19.(1)△ABC 是直角三角形.理由见解析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC 是直角三角形.理解析:(1)△ABC 是直角三角形.理由见解析;(2【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC 是直角三角形.理由如下:由题意可得,AB BCAC =∴AB 2+BC 2=AC 2,∴∠B =90°,∴△ABC 是直角三角形;(2)设AC 边上的高为h .∵S △ABC =12AC •h =12AB •BC ,∴h =13AB BC AC == 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20.见解析【分析】先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形.【详解】证明:∵四边形是平行四边形且 ∴平行四边形是菱形解析:见解析 【分析】先根据四边形ABCD 是平行四边形且AB AD =得到平行四边形ABCD 是菱形,即可得到90BOC ∠=,再根据//BE AC ,//CE DB ,证明四边形OBEC 是平行四边形,即可得到平行四边形OBEC 是矩形. 【详解】证明:∵四边形ABCD 是平行四边形且AB AD = ∴平行四边形ABCD 是菱形 ∴BD AC ⊥,即90BOC ∠= 又∵//BE AC ,//CE DB . ∴四边形OBEC 是平行四边形, ∴平行四边形OBEC 是矩形.【点睛】本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2);(3) 【解析】 【分析】根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可. 【详解】 解:(1)∵, ∴,, ∵,, ∴,, ∴; (2)∵, ∴,, ∵,, ∴,,解析:(11;(23【解析】 【分析】【详解】解:(1)∵∴4m =,3n =, ∵314+=,313⨯=, ∴224+=∴1;(2)∵∴13m =,42n =, ∵7613+=,7642⨯=, ∴2213+==∴(3)∵ ∴8m =,15n =, ∵358+=,3515⨯=, ∴228+==∴==【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.22.(1)y=10x+100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元 【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据解析:(1)y =10x +100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元 【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x =3代入求出销售量,再根据每千克利润×销售量=总利润列式求解即可.【详解】解:(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140k bk b+=⎧⎨+=⎩,解得:10100kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100(0<x<20);(2)根据题意得,销售量y=10×3+100=130,(60-3-40)×130=2210(元),答:当每千克干果降价3元时,超市获利2210元.【点睛】本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识.23.(1)见解析;(2);(3)4或6【分析】(1)由折叠的性质得,,由平行四边形的性质得,.则,,得,证出,则,由等腰三角形的性质得,证出,即可得出结论;(2)证四边形是矩形,则,,,设,则,在解析:(1)见解析;(2);(3)4或6【分析】(1)由折叠的性质得,,由平行四边形的性质得,//AD BC.则,,得,证出OA OC=,则,由等腰三角形的性质得,证出,即可得出结论;(2)证四边形ABCD是矩形,则,,,设,则,在中,由勾股定理得出方程,求出,由三角形面积公式即可得出答案;(3)分两种情况:或,需要画出图形分类讨论,根据含30角的直角三角形的性质,即可得到BC的长.【详解】解:(1)证明:由折叠的性质得:△,,,四边形ABCD是平行四边形,,//AD BC.,,,,,,,,;(2)平行四边形ABCD中,,∴四边形ABCD是矩形,,,,=,由(1)得:OA OC设,则,在中,由勾股定理得:,解得:,,的面积;(3)分两种情况:①如图3,当时,延长交BC于G,,,,,,,,,,,是BC的中点,在中,,;②如图4,当时,,,由折叠的性质得:,,在和中,,,,,,,,,,,又,,A,E在同一直线上,,中,,,,;综上所述,当是直角三角形时,BC的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.24.(1)D(0,3);(2)存在,6;(3)5秒,Q(,)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解解析:(1)D(0,3);(2)存在,3)5秒,Q(32,154)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解即可;(2)如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,运用勾股定理可得CE=5,BE=3,作EG⊥OA,在Rt△DEG中,可得DE=Rt△D′EG中,可得'D E(3)运用待定系数法求得直线D′E的解析式为y=2x﹣3,进而求得P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P交DE于点Q′,利用待定系数法可得直线DE的解析式为y=12x+3,设Q(t,12t+3),则H(t,5),再运用勾股定理即可求出答案.【详解】解:(1)设D(0,m),且m>0,∴OD=m,∵四边形OABC是矩形,∴OA=BC=8,AB=OC=4,∠AOC=90°,∵将长方形OABC沿着直线DM折叠,使得点A与点C重合,∴CD=AD=OA﹣OD=8﹣m,在Rt△CDO中,OD2+OC2=CD2,∴m2+42=(8﹣m)2,解得:m=3,∴点D的坐标为(0,3);(2)存在.如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,在Rt△CEF中,BE=EF=BC﹣CE,EF2+CF2=CE2,BC=8,CF=4,∴CE=5,BE=3,作EG⊥OA,∵OD=AG=BE=3,OA=8,∴DG=2,在Rt△DEG中,EG2+DG2=DE2,EG=4,∴DE=25在Rt△D′EG中,EG2+D′G2=D′E2,EG=4,D′G=8,∴D′E=45∴△PDE周长的最小值为DE+D′E=5(3)由(2)得,E(4,5),D′(0,﹣3),设直线D′E的解析式为y=kx+b,则453k bb+=⎧⎨=-⎩,解得:23kb=⎧⎨=-⎩,∴直线D′E的解析式为y=2x﹣3,令y=0,得2x﹣3=0,解得:x=32,∴P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P 交DE于点Q′,设直线DE 的解析式为y =k ′x +b ′,则345b k b =⎧⎨+='''⎩,解得:123k b ⎧=⎪⎨⎪='⎩', ∴直线DE 的解析式为y =12x +3, 设Q (t ,12t +3),则H (t ,5), ∴QH =5﹣(12t +3)=2﹣12t ,EH =4﹣t ,由勾股定理得:DE 22221(2)(4)2QH EH t t +-+-52﹣12t 5,∴点H 在整个运动过程中所用时间=15PQ PQ +QH , 当P 、Q 、H 在一条直线上时,PQ +QH 最小,即为PH ′=5,点Q 坐标(32,154),故:点H 在整个运动过程中所用最少时间为5秒,此时点Q 的坐标(32,154).【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,一次函数的性质,线段的动点问题,以及最短路径问题,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行分析.25.(1)见解析;(2)AE =;(3)(3),理由见解析. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明. (解析:(1)见解析;(2)AE =23;(3)(3)122AG AF =,理由见解析. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x GE=3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM F G =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形, ∴AM=AN ∠AMC=∠N=90° ∴△AMC,△AND 是Rt △ ∵△ABC 是等边三角形 ∴AB=AC ∵旋转后AB=AD ∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x 则AE=2x 3x易得△GBE 是等腰直角三角形 ∴BG=EG 3x ∴AB=BC=(31)x 易得∠DHF=30° ∴HD=2DF=23,HF=3 ∴BF=BH+HF=233 ∵Rt △AMC ≌Rt △AND(HL)∴易得CF=DF=3∴BC=BF-CF=233333+-=+ ∴(31)33x +=+ ∴3x = ∴AE =223x = (3)122AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM F G =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GF N ∠=, ∴BM ∥1F N , ∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠ ∴1ABM ADF ∠=∠, ∵AB AD =∴ABM ∆≌1ADF ∆(SAS ) ∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形 ∴1AG MF ⊥ 1AG GF = ∴12AF AG = ∴12AG AF =【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.。
八年级下册数学期末试卷易错题(Word版含答案)
八年级下册数学期末试卷易错题(Word版含答案)一、选择题1.要使式子﹣3x 有意义,则x的值可以为()A.﹣6 B.0 C.2 D.π2.下列各组数中,不能构成直角三角形的是()A.9、12、15 B.12、18、22 C.8、15、17 D.5、12、133.如图四边形ABCD的对角线AC,BD交于点O,则不能..判断四边形ABCD是平行四边形的是()A.AB∥CD,∠DAC=∠BCA B.AB=CD,∠ABO=∠CDOC.AC=2AO,BD=2BO D.AO=BO,CO=DO4.甲、乙、丙、丁四人进行射击测试,记录每人10次射击成绩,得到各人的射击成绩平均数和方差如表中所示,则成绩最稳定的是()统计量甲乙丙丁平均数9.29.29.29.2方差0.600.620.500.44A.甲B.乙C.丙D.丁5.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.25B5C.35D.26.如图,在平面直角坐标系上,直线y=34x﹣3分别与x轴、y轴相交于A、B两点,将△AOB沿x轴翻折得到△AOC,使点B刚好落在y轴正半轴的点C处,过点C作CD⊥AB 交AB于D,则CD的长为()A .185B .245C .4D .57.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.如图,等腰直角三角形△OAB 的边OA 和矩形OCDE 的边OC 在x 轴上,OA =4,OC =1,OE =2.将矩形OCDE 沿x 轴正方向平移t (t >0)个单位,所得矩形与△OAB 公共部分的面积记为S (t ).将S (t )看作t 的函数,当自变量t 在下列哪个范围取值时,S (t )是t 的一次函数( )A .1<t <2B .2<t <3C .3<t <4D .1<t <2或4<t <5二、填空题9.若a ,b 都是实数,且338b a a --,则ab +1的平方根为 _____.10.已知菱形的周长等于8,一条对角线长为2,则此菱形的面积为___.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.如图,在矩形ABCD 中,6BC =,3CD =,将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,则线段DE 的长为____________.13.正比例函数(0)y kx k =≠经过点(1,3),则k =__________.14.在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是菱形.你添加的条件是_______.(写出一种即可)15.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB //x轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么AB 的长为___.16.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是________小时.三、解答题17.计算:(1)(520+|25(﹣1)2021;(26363147.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米.(假设绳子是直的)19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A ,B 两点均在格点上,在给定的网格中,按下列要求画图:(1)在图①中,画出以AB 为底边的等腰△ABC ,并且点C 为格点.(2)在图②中,画出以AB 为腰的等腰△ABD ,并且点D 为格点.(3)在图③中,画出以AB 为腰的等腰△ABE ,并且点E 为格点,所画的△ABE 与图②中所画的△ABD 不全等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.21+21(21)(21)-+-221(2)1--21-21 (132+ ; (21n n ++= ; (321+32+43+10099+. 22.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤).如表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 8y(斤)0.75 1.00 1.50 2.5(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?23.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M落在BC边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线).24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0).(1)求直线AB的函数表达式;(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F 的坐标;(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由.25.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 53吗?如果能,求此时x 的值;如果不能,请说明理由. 【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得:x ﹣3≥0,解得:x ≥3,各个选项中,π符合题意,故选:D .【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、92+122=152,能构成直角三角形;B 、122+182≠222,不能构成直角三角形;C 、82+152=172,能构成直角三角形;D 、52+122=132,能构成直角三角形.故选:B .【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】A.证明//AD BC ,即可根据两组对边分别平行的四边形是平行四边形判断;B.证明AB ∥CD ,即可根据有一组对边平行且相等的四边形是平行四边形判断;C. 可根据对角线互相平分的四边形是平行四边形判断;D. 条件不足无法判断;【详解】∠DAC =∠BCA∴//AD BC ,∴四边形ABCD 是平行四边形,故A 选项正确,不符合题意;∠ABO =∠CDO//AB CD ∴ 又 AB =CD ,∴四边形ABCD 是平行四边形,故B 选项正确,不符合题意;AC =2AO ,BD =2BO,AO CO BO DO ∴==∴四边形ABCD 是平行四边形,故C 选项正确,不符合题意;D. 条件不足无法判断,符合题意;故选D【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.4.D解析:D【解析】【分析】根据方差的性质:方差越小,表示数据波动越小,也就是越稳定,据此进行判断即可.【详解】解:∵甲、乙、丙、丁的方差分别为0.60,0.62,0.50,0.44,又∵0.44<0.50<0.60<0.62,∴丁的方差最小即丁的成绩最稳定,故选D .【点睛】此题主要考查方差的应用,解题的关键是熟知方差的性质.5.B解析:B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+, ∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.B解析:B【解析】【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长.【详解】解:当x =0时,y =34×0﹣3=﹣3, ∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4, ∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB =由折叠可知:OC =OB =3,∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B .【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.A解析:A【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长.【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =, 22AB CF ∴==,112DE AB ==.故选A .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.D解析:D【分析】分12t <<,,24t <<,45t <<,5t >讨论即可得出结果.【详解】解:4=OA ,1OC =,2OE =,∴当矩形OCDE 在12t <<范围内移动时,()S t 由0变为2,()S t 随t 的增大而增大, 当矩形OCDE 在24t <<范围内移动时,()S t 为定值2,当矩形OCDE 在45t <<范围内移动时,()S t 由2变为0,()S t 随t 的增大而减小, 当矩形OCDE 在5t >时,()S t 为0,综上所述,矩形OCDE 在12t <<或45t <<范围内移动时,()S t 是t 的一次函数, 故选:D .【点睛】本题考查了图形的平移、一次函数的定义,抓住一次函数的定义分类讨论是解决本题的关键.二、填空题9.±5【解析】【分析】根据二次根式有意义的条件可得: 3030a a -≥⎧⎨-≥⎩,再解可得a 的值,然后可得b 的值,进而可得ab +1的平方根.【详解】解:由题意得:3030a a -≥⎧⎨-≥⎩, 解得:a =3,则b =8,∴ab +1=25,25的平方根为±5,故答案为:±5.【点睛】本题主要考查了二次根式的概念,平方根的运算,熟悉掌握二次根式的非负性是解题的关键.10.A解析:2.【解析】【分析】根据周长先求出边长,由菱形的对角线平分且垂直求出它的另一条对角线的长,再根据面积公式求得面积.【详解】解:如图:∵菱形ABCD 的周长等于8cm ,∴AB =8÷4=2cm ,AC ⊥BD ,AO =CO ,BO =DO ,∵AC=2,∴AO =1,∴BO 3∴菱形的面积为332. 故答案为:232.【点睛】本题考查了菱形的四条边相等的性质,以及对角线互相垂直平分的性质,还考查了菱形面积的计算,对角线乘积的一半.11.B 433【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒, 2,AB x ∴=2AC =,222(2)2,x x ∴=+122323x x ∴==(舍去), 42 3.3AB x ∴==4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.D 解析:154【分析】根据将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,可得到∠DBE =∠BDE ,在Rt ABE △ 中,利用勾股定理即可解答.【详解】∵在矩形ABCD 中,6BC =,3CD =,∴AB =CD =3,AD =BC =6,AD //CB ,∠BAD =90︒ ,∴∠EDB =∠DBC ,∵将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,∴∠EBD =∠DBC ,∴∠DBE =∠BDE ,∴BE =DE ,设DE =x ,则BE =x ,AE =6-x ,在Rt ABE △ 中,222AB AE BE += ,∴2223(6)x x +-= ,解得:154x =故答案为:154【点睛】本题主要考查了矩形的折叠问题,解题的关键是灵活运用矩形的折叠结合勾股定理解答问题. 13.3【分析】把(1,3)代入(0)y kx k =≠,利用待定系数法求解k 即可得到答案.【详解】解:把(1,3)代入(0)y kx k =≠,3,k ∴=故答案为:3.【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,掌握待定系数法是解题的关键. 14.A解析:AB =BC 或BC =CD 或CD =AD 或AB =AD 或AC ⊥BD【分析】由在四边形ABCD 中,AB =DC ,AD =BC ,可判定四边形ABCD 是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD 是菱形,则可求得答案.【详解】解:∵在四边形ABCD 中,AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∴当AB =BC 或BC =CD 或CD =AD 或AB =AD 时,四边形ABCD 是菱形;当AC ⊥BD 时,四边形ABCD 是菱形.故答案为:AB =BC 或BC =CD 或CD =AD 或AB =AD 或AC ⊥B D .【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.15.4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB=AE+EB ,即求得AB .【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB =AE +EB ,即求得AB .【详解】如图1,当直线在DE 的左下方时,由图2得:AE =7-4=3;由图1,当直线在DE 和BF 之间时,由图2可得:EB=8-7=1,所以AB =AE +EB =3+1=4.故答案为:4.【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想.16.8【分析】通过分析题意和图象可以求出调进物资的速度,调出物资的速度,即可求出结果.【详解】解:调进物资的速度是:(吨/小时),当在第4个小时时,库存物资有60吨,在第8个小时时,库存物资是 解析:8【分析】通过分析题意和图象可以求出调进物资的速度,调出物资的速度,即可求出结果.【详解】解:调进物资的速度是:60415÷=(吨/小时),当在第4个小时时,库存物资有60吨,在第8个小时时,库存物资是20吨,∴调出速度是:()6020154425-+⨯÷=(吨/小时),∴剩余的20吨完全调出需要:20250.8÷=(小时),∴这批物资从开始调进到全部调出所需要的时间是:80.88.8+=(小时).故答案是:8.8.【点睛】本题考查一次函数图象的实际应用,解题的关键是将函数图象与实际意义相联系,分析出关键信息进行求解.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a+b)(a﹣b)=a2﹣b2的结构是解题关键.18.船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中解析:船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17-1×7=10(米),∴AD(米),∴BD=AB-AD=15-6=9(米),答:船向岸边移动了9米.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB 为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)解析:(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB =10,以AB 为底等腰直角三角形,两直角边为x , 根据勾股定理求出5x =,找横1竖2个格,或横2竖1个格画线即可;(2)以AB =10为腰的等腰△ABD ,AB =AD ,以点A 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD ; AB =BD ,以点B 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD .(3)以AB =10为腰的等腰△ABD ,AB =BE ,以点B 为起点找横1竖3个格,或横3竖1个格;如图△ABE .AB =AE ,以点A 为起点找横1竖3个格,或横3竖1个格;所画的△ABE 与图②中所画的△ABD 不同即可.【详解】解:(1)∵根据勾股定理AB =221310+=,以AB 为底等腰直角三角形,两直角边为x , 根据勾股定理()22210x x +=,解得5x =,横1竖2,或横2竖1个画线;如图△ABC ;(2)以AB =221310+=为腰的等腰△ABD ,AB =AD ,以点A 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD ;AB =BD ,以点B 为起点找横1竖3个格画线,或横3竖1个格;如图△ABD ;(3)以AB=22+=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或1310横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等.【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB=BC,证明:连接BD交AC于=,见解析解析:AB BC【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB=BC,证明:连接BD交AC于点O,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.(1);(2)(3)9【解析】【详解】试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点解析:(13221n n +3)9【解析】【详解】试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解; (2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.试题解析:(1)原式=32(32)(32)-+-=3232--=32-; (2)原式=1(1)(1)n n n n n n +-+++-=1n n +-; 故答案为1n n +-(3)由(2)可知:原式=2﹣1+32-+4﹣3+…+100﹣99=﹣1+100=9.22.(1)y =x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13【分析】(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;(2)解析:(1)y =14x +12,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y ≤13【分析】(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;(2)把把x =50代入解析式,求出最大物重即可确定范围.【详解】解:(1)描点如图所示,这些点在一条直线上,故x ,y 的函数关系是一次函数,设x ,y 的函数关系式:y =kx +b ,∵当x =2时,y =1;x =4时,y =1.5;∴214 1.5k b k b +=⎧⎨+=⎩,解得k=14,b=12,∴x,y的函数关系式:y=14x+12,把x=16代入:y=14x+12,得y=4.5,∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)把x=50代入y=14x+12,得y=13,∴0≤y≤13,∴这杆秤的可称物重范围是0≤y≤13.【点睛】本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H是AB的中点时,;②当点Q与点E重合时,;③当时,三种情况,分别求解即可得.【详解】(1)由题意得:,点Q为AP的中点,,四边形ABCD是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1);(2);(3)或或【解析】【分析】(1)直接利用待定系数法,即可得出结论;(2)先求出AD =3,AB =5,进而求出点D 的坐标,再构造出△BMF ≌△FND ,得出BM =FN ,FM =DN ,解析:(1)334y x =+;(2)197(,)55F -;(3)5(,3)2E -或3312(,)105-或73(,)105- 【解析】 【分析】(1)直接利用待定系数法,即可得出结论;(2)先求出AD =3,AB =5,进而求出点D 的坐标,再构造出△BMF ≌△FND ,得出BM =FN ,FM =DN ,设F (m ,n ),进而建立方程组求解,即可得出结论;(3)分两种情况,①当ABC ABE '≌时,利用中点坐标公式求解,即可得出结论;②当ABC BAE ≌时,当点E 在AB 上方时,根据AE ∥BC ,AE BC =即可得出结论;③当点E在AB 下方时,过点E ''作E Q y ''⊥轴于Q ,过点B 作BP x ⊥轴,过点E '作E P BP '⊥,证明QAE PBE '''△≌△,即可得出结论.【详解】(1)设直线AB 的函数表达式为y kx b =+,直线AB 交y 轴于点A (0,3),交x 轴于点B (﹣4,0),403k b b -+=⎧∴⎨=⎩ 343k b ⎧=⎪∴⎨⎪=⎩ ∴直线AB 的函数表达式为334y x =+;(2)如图,过点D 分别引,x y 轴的垂线,交,x y 轴于,G H 两点,∵点A (0,3),点B (-4,0),∴OA =3,OB =4, ∴AB=5, 由折叠知,AD =OA =3, 532DB ∴=-=设(,)D a b -(0,0)a b >>,DG b DH a ∴==,4,3BG a AH b =-=- 222222,AD DH AH DB BG DG =+=+∴()()2222223342a b a b ⎧+-=⎪⎨-+=⎪⎩ 解得:436a b -=D 在334y x =+上,334b a ∴=-+4363412a b a b -=⎧∴⎨+=⎩解得12565a b ⎧=⎪⎪⎨⎪=⎪⎩,126(,)55D ∴-, 过点F 作FM ⊥x 轴于M ,延长HD 交FM 于N , ∴∠BMF =∠FND =90°, ∴∠BFM +∠FBM =90°, ∵△BFD 是等腰直角三角形, ∴BF =DF ,∠BFD =90°, ∴∠BFM +∠DFN =90°, ∴∠FBM =∠DFN , ∴△BMF ≌△FND (AAS ), ∴BM =FN ,FM =DN , 设F (m ,n ), 则125645n m n m ⎧=--⎪⎪⎨⎪-=+⎪⎩19575m n ⎧=-⎪⎪∴⎨⎪=⎪⎩197(,)55F ∴-; (3)设OC =a ,则BC =4-a ,由折叠知,∠BDC =∠ADC =∠AOC =90°,CD =OC =a , 在Rt △BDC 中,222BC CD BD =+, ∴()2244a a -=+,∴a =32,335(,0),,222C OC BC ∴-==,∵点A ,B ,E 为顶点的三角形与△ABC 全等, ①当△ABC ≌△ABE '时, ∴BE '=BC ,∠ABC =∠ABE ', 连接CE '交AB 于D ,则CD =E 'D ,CD ⊥AB ,由(1)知, 126(,)55D - 设E '(b ,c ), ∴131216(),(0)22525b c -=-+= ∴3312,105b c =-=, ∴3312(,)105E '-; ②当△ABC ≌BAE 时,当点E 在AB 上方时, ∴AC =BE ,BC =AE ,EAB CBA =∠∠, ∴AE ∥BC ,∴5(,3)2E -;③当点E 在AB 下方时,AC =BE '',BC =AE '',ABC ABE '△≌△,∴BC BE '=,当ABC BAE ''△≌△时, ABE BAE '''∴△≌△,AE BE '''∴=,BAE ABE '''∠=∠,过点E ''作E Q y ''⊥轴于Q ,过点B 作BP x ⊥轴,过点E '作E P BP '⊥,//PB AQ ∴,90P AQE ''∠=∠=︒,PBA QAB ∴∠=∠,PBA ABE QAB BAE '''∴∠-∠=∠-, 即PBE QAE '''∠=∠,90P AQE ''∠=∠=︒, QAE PBE '''∴△≌△,,PE QE AQ PE ''''∴==, 点3312(,)105E '-,(4,0)B -, ∴AQ PB ==125,PE QE '''==33741010-+=,123355OQ ∴=-=, ∴73(,)105E ''-, ∴满足条件的点E 的坐标为5(,3)2E -或3312(,)105-或73(,)105-. 【点睛】本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键.25.(1)见解析;(2)不变,见解析;(3)能,或 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论; (2)由解析:(1)见解析;(2)不变,见解析;(3)能,1x =1【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCDAEFCHG 时,得到S △BEF +S △DGH GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论.【详解】解:()1折叠后B 落在BD 上, ,BE EP ∴=BF PF =BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴ ∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE = 四边形BEPF 为菱形, ,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠= 30,ABD ∴∠=1,AO ∴=3,BO 12332ABCS∴=⨯23ABCD S ∴=四边形当六边形AEFCHG 53453233344DEFDGH SS +=由()1得BE AG =AE DG ∴= DG x =2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,3DM = 23DHGSx ∴= 同理)2233233BEFS x x =-= 223333334x x +化简得22410,x x -+= 解得121x =221x = ∴当21x =21AEPCHG 534 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目.。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案) 一、选择题 1.函数2y x =-中自变量x 的取值范围是( )A .2x ≥B .2x >C .2x ≤D .2x < 2.下列说法错误的是( )A .△ABC 中,若有∠A +∠B =∠C ,则△ABC 是直角三角形B .△ABC 中,若有∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 是直角三角形C .△ABC 的三边长分别为:a ,b ,c ,且a 2﹣b 2=c 2,则△ABC 是直角三角形D .在一个直角三角形中,有两边的长度分别是3和5,则第三边的长度是43.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④4.一次数学测试后,随机抽取八年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是( )A .极差是15B .中位数是86C .众数是88D .平均数是87 5.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .202C .203D .256.如图,在△AB C 中,点D 为BC 边的中点,点E 为AC 上一点.将∠C 沿DE 所在直线翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为( )A .30°B .45°C .55 °D .65°7.如图,ABCD 的对角线AC 、BD 相交于点O ,//OE AB 交AD 于点E ,若1OA =,AOE △的周长等于5,则ABCD 的周长等于( )A .16B .12C .10D .88.如图所示,已知点C (1,0),直线7y x =-+与两坐标轴分别交于A ,B 两点,D ,E 分别是线段AB ,OA 上的动点,则△CDE 的周长的最小值是( )A .42B .10C .424+D .12二、填空题9.已知|a +1|+2b -=0,则ab =_____.10.如图,菱形ABCD 的对角线AC 、BD 的长分别为3cm 和4cm ,则其面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________.14.如图,已知四边形ABCD 是平行四边形,请你添加一个条件使它成为菱形.这个条件为_____.15.如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,3),(3,3),若直线y =kx 与线段AB 有公共点,则k 的取值范围为___.16.如图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在点C '的位置上,BC '交AD 于点E ,若3AB =,6BC =,则DE 的长为______.三、解答题17.计算(1)321224843274⎛⎫÷+- ⎪ ⎪⎝⎭(2)()()()()0221123223431+-+++--- 18.我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km /h .如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A 正前方30m 的C 处,2秒后又行驶到与车速检测点A 相距50m 的B 处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?19.如图,正方形网格的每个小方格都是边长为1的正方形,每个小正方形的顶点叫格点.某数学探究小组进行了如下探究活动:以格点为顶点分别按下列要求画图形.(1)画一个三角形、使三边长为3,8,5在网格1中完成;(2)画一个平行四边形,使其有一锐角为45°,且面积为6,在网格2中完成;(3)线段AB 的端点都在格点上,将线段AB 平移得到线段CD ,并保证点C 和点D 也在格点上.①平移后使形成的四边形ABDC 为正方形,画出符合条件的所有图形,在网格3中完成; ②平移后使形成的四边形ABDC 为菱形(正方形除外),画出符合条件的所有图形,在网格4中完成.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD .(1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.阅读,并回答下列问题:公元322r a r a a+≈+2的近似值. (12211+1321212≈+=⨯2看23124⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭2≈___________≈______________;依次算法,所得2的近似值会越来越精确.(22取近似值577408时,求近似公式中的a 和r 的值. 22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.如图,在▱ABCD 中,连接BD ,AB BD ⊥,且AB BD =,E 为线段BC 上一点,连接AE 交BD 于F .(1)如图1,若22AB =,BE =1,求AE 的长度;(2)如图2,过D 作DH ⊥AE 于H ,过H 作HG ⊥AD 交AD 于G ,交BD 于M ,过M 作MN ∥AD 交AE 于N ,连接BN ,证明:2NH BN =;(3)如图3,点E 在线段BC 上运动时,过D 作DH ⊥AE 于H ,延长DH 至Q ,使得12QH AH =,M 为AD 的中点,连接QM ,若42AD =,当QM 取最大值时,请直接写出△ADH 的面积.24.如图,在平面直角坐标系中,点A 的坐标为()5,0,点B 在y 轴正半轴上(OB OA <),把线段AB 绕点A 顺时针旋转90︒得到线段AC ,过点C 分别向x 轴,y 轴作垂线,垂足为D ,E .(1)求四边形ABEC 的面积;(2)若4CE BE =,求直线AC 的表达式;(3)在(2)的条件下,点P 为OE 延长线上一点,连接PC ,作PCD ∠的平分线,交x 轴于点F ,若PCF 为等腰三角形,求点F 的坐标.25.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.(1)如图1,连接BE,求证:AD=BE.(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,①求证:FD=FB;②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当S=OF2+BF2的最小值.52FMN【参考答案】一、选择题1.A解析:A【分析】根据二次根式有意义的条件:被开方数大于或等于0,即可求解.【详解】解:由二次根式有意义的条件可得:x-≥,20x≥,解得:2故选A.【点睛】本题主要考查函数自变量取值范围和二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件.2.D解析:D【分析】根据勾股定理的逆定理和三角形内角和定理判断即可.【详解】解:A、△ABC中,若有∠A+∠B=∠C,则∠C=90°,∴△ABC是直角三角形,说法正确;B、△ABC中,若有∠A∶∠B∶∠C=1∶2∶3,则∠C=90°,∴△ABC是直角三角形,说法正确;C、△ABC的三边长分别为:a,b,c,且a2﹣b2=c2,则a2=b2+c2,∴△ABC是直角三角形,说法正确;D、在一个直角三角形中,有两边的长度分别是3和5,则第三边的长度是4错误;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.4.B解析:B【解析】【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【详解】解:A、极差是95-80=15,故A正确;B、中位数是86882+=87,故B错误;C、88出现了2次,则众数是88,故C正确;D、平均数是8085868888956+++++=87,故D正确.故选:B.【点睛】本题重点考查平均数,中位数,众数及极差的概念及求法.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=5cm,同理EF=5cm,∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H 、E 是AD 与AB 的中点,∴EH 是△ABD 的中位线,∴EH=12BD=5cm ,同理FG=5cm ,∴四边形EFGH 的周长为20cm .故选A .【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.D解析:D【解析】【分析】由点D 为BC 边的中点,得到BD CD =,根据折叠的性质得到DF CD =,EFD C ∠=∠,得到DF BD =,根据等腰三角形的性质得到BFD B ∠=∠,由三角形的内角和和平角的定义得到A AFE ∠=∠,于是得到结论.【详解】解:点D 为BC 边的中点,BD CD ∴=,将C ∠沿DE 翻折,使点C 落在AB 上的点F 处,DF CD ∴=,EFD C ∠=∠,DF BD ∴=,BFD B ∴∠=∠,180A C B ∠=︒-∠-∠,180AFE EFD DFB ∠=︒-∠-∠,A AFE ∴∠=∠,50AEF ∠=︒,1(18050)652A ∴∠=︒-︒=︒. 故选:D .【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.7.A解析:A【解析】【分析】因为AOE △的周长是5,1OA =,所以可以推出+=4OE AE ,又根据中位线性质,可以得到2,2AB OE AD AE ==,由此即可推导出平行四边形ABCD 的周长.【详解】解:∵ AOE △的周长是5,且1OA =∴+=514OE AE -=又∵对角线AC 、BD 相交于点O∴O 是BD 的中点∵//OE AB ∴12OE AB =,点E 为AD 的中点 ∵四边形ABCD 是平行四边形∴,AB DC AD BC ==∴4,4AD BC AE AB DC OE +=+=∴+444()16AD BC AB DC AE OE AE OE ++=+=+=故选:A【点睛】本题考查平行四边形的性质,三角形中位线的性质,根据相关内容解题是关键. 8.B解析:B【解析】【分析】点C 关于OA 的对称点C ′(-1,0),点C 关于直线AB 的对称点C ″(7,6),连接C ′C ″与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,可以证明这个最小值就是线段C ′C ″.【详解】解:如图,点C (1,0)关于y 轴的对称点C ′(-1,0),点C 关于直线AB 的对称点C ″,∵直线AB 的解析式为y =-x +7,∴直线CC ″的解析式为y =x -1,由71y x y x -+⎧⎨-⎩==解得43xy==⎧⎨⎩,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴14232mn+⎧=⎪⎪⎨+⎪=⎪⎩,解得:76mn=⎧⎨=⎩∴C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C10故答案为10.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.二、填空题9.-2【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,ab=﹣1×2=﹣2.故答案为:﹣2.【解答】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.A解析:6【解析】【分析】直接根据菱形的面积等于其对角线积的一半,即可求得面积.【详解】解:∵菱形ABCD的对角线AC、BD的长分别为3cm和4cm∴ABCD 11346 22S AC BD==⨯⨯=菱形(cm)故答案为:6.【点睛】此题主要考查菱形的性质,熟练掌握性质是解题关键.11.c a b>>;【解析】【分析】观察图形根据勾股定理分别计算出a、b、c,根据二次根式的性质即可比较a、b、c的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c∵>>∴c a b>>,故答案为:c a b>>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a、b、c的值是解题的关键.12.A解析:8【分析】由勾股定理可得AC=5,根据角平分线的性质可证∠H=∠CAH=∠DAH,即AC=CH=5,则可求S△ABH的值,由P是中点,可得S△ABP的值.【详解】解:∵四边形ABCD是矩形,∴AD//BC,∠ABC=90°,∵AB=4,BC=3,∴AC5,∵AH平分∠DAC,∴∠DAH=∠CAH,∵AD//BC,∴∠DAH=∠H,∴∠H=∠CAH,∴AC=CH=5,∵BH=BC+CH,∴BH=8,∵S△ABH=12AB×BH=12×4×8=16,∵P是AH的中点∴S △ABP =12S △ABH =8;故答案为:8.【点睛】此题主要考查矩形的性质与判定综合,解题的关键是矩形的性质及勾股定理的应用. 13.2 4.y x =+【分析】由平移的性质可设平移后的解析式为:2y x b =+,再利用待定系数法求解即可得到答案.【详解】解:设平移后的解析式为:2y x b =+,把()1,2-代入2y x b =+得:()212,b ⨯-+=4,b ∴=所以平移后的解析式为:2 4.y x =+故答案为:2 4.y x =+【点睛】本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键.14.A解析:AB =BC (答案不唯一)【分析】因为四边形ABCD 是平行四边形,所以可添加条件为:邻边相等;对角线互相垂直.【详解】添加AB =BC ,根据“有一组邻边相等的平行四边形是菱形”可使它成为菱形.故填:AB=BC .【点睛】本题考查菱形的判定,以平行四边形为基础,按照菱形判定定理解题即可.15.1≤k≤3【分析】把点A 、B 的坐标分别代入一次函数解析式,求得k 的最大值和最小值,易得k 的取值范围.【详解】解:把(1,3)代入y=kx ,得k=3.把(3,3)代入y=kx ,得3k=3,解解析:1≤k ≤3【分析】把点A 、B 的坐标分别代入一次函数解析式,求得k 的最大值和最小值,易得k 的取值范围.【详解】解:把(1,3)代入y=kx,得k=3.把(3,3)代入y=kx,得3k=3,解得k=1.故k的取值范围为1≤k≤3.故答案是:1≤k≤3.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的最值是解题的关键.16.【分析】根据折叠和矩形的性质,可以得出三角形BDE是等腰三角形,在直角三角形DEC′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC=DC′=3,∠CBD=∠C′BD,∵ABCD是矩解析:15 4【分析】根据折叠和矩形的性质,可以得出三角形BDE是等腰三角形,在直角三角形DEC′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC=DC′=3,∠CBD=∠C′BD,∵ABCD是矩形,∴AD=BC=6,AD∥BC,∴∠CBD=∠ADB=∠C′BD,∴ED=EB,设BE=ED=x,则EC′=6﹣x,在Rt△DEC′中,由勾股定理得,32+(6﹣x)2=x2,解得,x=154,即BE=154,故答案为:154.【点睛】本题考查了矩形的性质、直角三角形的勾股定理等知识,根据折叠轴对称,得出DE=BE 是解决问题的关键.三、解答题17.(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);【点睛】解析:(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)⎛ ⎝=(4==;(2))())0211241++- ()1312140=-++-=-; 【点睛】本题主要考查了二次根式的混合运算,结合平方差公式,零指数幂,绝对值的性质,完全平方公式计算是解题的关键.18.超速了,超速了12km/h【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.【详解】.解:由已知得∴在直角三角形ABC 中AB2=AC2解析:超速了,超速了12km /h【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.【详解】.解:由已知得50m,30m AB AC ==∴在直角三角形ABC 中AB 2=AC 2+BC 2∴BC 2=AB 2-AC 2=222503040-=,40m BC ∴= 又4020m /s 22BC ===>20m/s72km/h60km/h∵72-60=12km/h∴这辆小汽车超速了,超速了12km/h.【点睛】本题考查了勾股定理,其中1 米/秒=3.6 千米/时的速度换算是易错点.19.(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;解析:(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;②根据菱形的性质画出图形即可.【详解】解:(1)根据勾股定理可得如图所示:(2)如图所示:(3)①如图所示:②如图所示:【点睛】本题主要考查勾股定理、正方形的性质、菱形的性质及平移,熟练掌握勾股定理、正方形的性质、菱形的性质及平移是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1);(2)或 ;或【解析】【分析】根据近似公式计算出近似值的过程和方法计算的近似值和确定a 和r 的值.【详解】(1)根据近似公式可知:≈故答案为;(2)∵∴∴∴整理,解析:(1)1343222-+⨯;1712(2)1712a =或2417;1144r =-或2289 【解析】【分析】的近似值和确定a 和r 的值.【详解】(1≈1343222-+⨯≈1712故答案为1343222-+⨯;1712(2)∵2r a a≈≈+ ∴225772408a r r a a ⎧+=⎪⎨+=⎪⎩∴5772()408r a a =⨯- ∴25772()2408a a a +⨯-= 整理,22045774080a a -+=解得:1712a =或2417a = ∴1144r =-或2289r = 故答案为1712a =或2417 ;1144r =-或2289 【点睛】本题考查二次根式的估算,审清题意,根据题目所给的近似公式计算是解题关键. 22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1)见解析;(2)见解析;(3).【分析】(1)分别过点作,垂足分别为,勾股定理解即可;(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到解析:(1)见解析;(2)见解析;(3)1655. 【分析】(1)分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S R ,勾股定理解Rt ARE △即可; (2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=,经过角度的变换得出BAN HDB ∠=∠,再证明ATN △≌HGD △,得出,AN HD =,结合已知条件,继而证BAN ≌BDH △,得出ABN DBH ∠=∠,NB HB =,进而得到NBH △是等腰直角三角形,从而得证;(3)分别作,AD AQ 的中垂线,交于点O ,根据作图,先判断MQ 最大的时候的位置, 进而由12QH AH =,42AD =,构造直角三角形,勾股定理求得,AH HD ,从而求得△ADH 的面积 . 【详解】(1)如图,分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S RAB BD ⊥,AB BD =,22AB =ABD ∴是等腰直角三角形,ASB △是等腰直角三角形224AD AB BD ∴=+∴122AS SD AD ===,2BS AS == 四边形ABCD 是平行四边形//AD BC ∴,BS AD ER AD ⊥⊥,1BE =∴四边形SBER 是矩形∴SR BE =1=,2RE SB ==3AR AS SR ∴=+=在Rt ARE △中22223213AE AR RE =++(2)连接BH ,过点N 作NT AD ⊥于点T ,设BANα∠=BAD是等腰直角三角形45BAD BDA∴∠=∠=︒45 HAD BAD BANα∴∠=∠-∠=︒-DH AE⊥,9045ADH HADα∴∠=︒-∠=︒+4545HDB ADH ADBαα∴∠=∠-∠=︒+-︒= BAN HDB∴∠=∠NT AD⊥9090(45)45 ANT HADαα∴∠=︒-∠=︒-︒-=︒+,90ATN∠=︒ANT ADH HDG∴∠=∠=∠HG AD⊥90HGD∴∠=︒ATN HGD∴∠=∠又45BDA∠=︒9045DMG MDG∴∠=︒-∠=︒GD GM∴=//MN AD,HG AD⊥,NT AD⊥∴四边形TNMG是矩形GM TN∴=TN GD∴=在ATN△和HGD△中ANT HDGTN GDATN HGD∠=∠⎧⎪=⎨⎪∠=∠⎩∴ATN△≌HGD△(ASA)AN HD∴=在BAN和BDH△中AB BDBAN HDBAN HD=⎧⎪∠=∠⎨⎪=⎩∴BAN ≌BDH △(SAS )ABN DBH ∴∠=∠,NB HB =ABN NBD DBH NBD ∠+∠=∠+∠即ABD NBH ∠=∠AB BD ⊥90ABD ∴∠=︒90NBH ∴∠=︒NBH ∴△是等腰直角三角形 ∴222NH BN BH BN =+=即2NH BN =(3)分别作,AD AQ 的中垂线,交于点O ,由题意,当点E 在线段BC 上运动时,AQD ∠不变,AD 的长度不变,则,,A D Q 三点共圆,则点Q 在以O 为圆心OQ 为半径的圆上运动,DH AE ⊥,12QH AH =tan 2AH AQD QH∴∠== 在OMQ 中MQ MO OQ ≤+∴当,,M O Q 三点共线时,MQ 取得最大值,此时情形如图:,AB BD BM AD =⊥∴AM MD =,,M O Q 三点共线,∴点Q 在AB 的垂直平分线上QA QD ∴=DH AE ⊥,tan 2AH AQDQH∠== 设QH x =,则AH 2x =5AQ x ∴=QD = 5DH x x ∴=-42AD =222AH DH AD ∴+= 即222(2)(5)(42)x x x +-= 得:255x =-△ADH 的面积12AH DH =⋅ 12(5)2x x x =⨯⋅-2(51)x =165=(51)555=- ∴当QM 取最大值时,△ADH 165 【点睛】本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.24.(1);(2);(3)或或.【解析】【分析】(1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解;(2)设,即可表示出、的长度,根据求解析:(1)25;(2)52533y x =-;(3)()0,0或()2,0-或4,03⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)连接AE ,作90EAG ∠=︒,AG 交EC 的延长线于点G ,可知90BAC EAG ∠=∠=︒,CAG BAE ∠=∠,再根据180CEO BAC ∠+∠=︒,可得180ABE ACE ∠+∠=︒,又因为180ACG ACE ∠+∠=︒,得到ABE ACG ∠=∠,即可证明ABE ACG ≌,所以可得AEG ABEC S S =四边形,再计算AE 的长度即可求解; (2)设OB a =,即可表示出CE 、BE 的长度,根据4CE BE =求出a 的值,即可得到C 点的坐标,再设直线AC 的解析式为y kx b =+,将A 、C 两点的坐标代入即可;(3)设点F 坐标为()0m ,,因为CF 平分PCD ∠,所以PCF DCF ∠=∠,最后分三种情况进行讨论即可.【详解】(1)∵()5,0A ,∴5OA =,连接AE ,作90EAG ∠=︒,AG 交EC 的延长线于点G ,如图,∴90BAC EAG ∠=∠=︒,∴CAG BAE ∠=∠,∵180CEO BAC ∠+∠=︒,即180AEB AEC BAE CAE ∠+∠+∠+∠=︒,在ACE 中,180AEC CAE ACE ∠+∠+∠=︒,∵ 180AEB BAE ABE ∠+∠=︒-∠,∴180ABE ACE ∠+∠=︒,又∵180ACG ACE ∠+∠=︒,∴ABE ACG ∠=∠,∵AB AC =,∴ABE ACG ≌,∵AE AG =,∴45AEG AGE ∠=∠=°,∴45AEO EAO ∠=∠=︒,∴5OE OA ==,∴AE =∴1252AEG ABEC S S ==⨯=四边形; (2) 设OB a =,由(1)可知,OA OE =,∵OE CD =,∴OA CD =,∵AOB 与CDA 都是直角三角形,且AB AC =,∴AOB CDA △≌△,∴AD OB a ==,∴5CE OD a ==+,5BE a =-,∵4CE BE =,∴()545a a +=-,解得3a =,∴()8,5C ,又∵()5,0A ,设直线AC 的解析式为y kx b =+,则5085k b k b +=⎧⎨+=⎩,解得53253k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AC 的解析式为52533y x =-; (3)设点F 坐标为()0m ,, ∵CF 平分PCD ∠,∴PCF DCF ∠=∠,①当PF PC =时,则PFC PCF DCF ∠=∠=∠,∴//PF CD ,∴F 与O 重合,∴()0,0F ;②当PF CF =时,过点F 作FM CP ⊥,垂足为M ,则PM CM =,90CMF CDF ∠=∠=︒,又∵PCF DCF ∠=∠,CF CF =,∴CMF CDF ≌△△,∴5CM CD ==,∴10PC =,在Rt PCE △中,由勾股定理可求得6PE =,∴11OP =,在Rt POF △中,222PF OF OP =+,在Rt CDF 中,222=CF CD DF +,∴2222=OF OP CD DF ++,∴()()22221158m m -+=+-, 解得2m =-,∴()2,0F -;③当CP CF =时,延长CF 交y 轴于点N ,∵//CD PN ,且PCF DCF ∠=∠∴CNP PCF DCF ∠=∠=∠,∴PN PC =,过点P 作PQ CF ⊥,垂足为Q ,则CQ QN =,90PQC CDF ∠=∠=︒,∴PCQ FCD ≌,∴5CQ CD ==,∴10CN =,在Rt CEN 中,由勾股定理可求得6EN =,∴1ON =,∴()0,1N -,∵()8,5C ,设直线CN 的解析式为y kx b =+,则851k b b +=⎧⎨=-⎩,解得341k b ⎧=⎪⎨⎪=-⎩, ∴直线CN 解析式为314y x =-, 当0y =时,解得43x =, ∴4,03F ⎛⎫ ⎪⎝⎭.综上所述,当PCF 为等腰三角形时,F 点坐标为()0,0或()2,0-或4,03⎛⎫ ⎪⎝⎭. 【点睛】本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)见解析;(2)①见解析;②【分析】(1)利用SAS 证明△ACD ≌△BCE ,从而利用全等三角形的性质即可得出结论;(2)①过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,首 解析:(1)见解析;(2)①见解析;②202 【分析】(1)利用SAS 证明△ACD ≌△BCE ,从而利用全等三角形的性质即可得出结论; (2)①过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,首先证明△ACT ≌△BCG 及△DCH ≌△ECT ,得到CT =BG ,CT =DH ,通过等量代换得出DH =BG ,再证明△DHF ≌△BGF ,则可证明结论;②首先利用等腰三角形的性质和ASA 证明△AOM ≌△COF ,则有OM =OF ,然后利用等腰直角三角形的性质得出FK =22BF ,然后利用三角形的面积得出OF×BF =102,最后利用平方的非负性和完全平方公式求解即可.【详解】证明:(1)∵△ABC 是等腰直角三角形,AC =BC ,∴∠ACB =90°,∵CD ⊥CE ,∴∠ACB =∠DCE =90°,∴∠ACD +∠BCD =∠BCE +∠BCD ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴AD =BE ;(2)①如图2,过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,∵CF ⊥AE ,∴∠ATC =∠ATF =90°,∴∠ACT +∠CAT =90°,又∵∠ACT +∠BCG =90°,∴∠CAT =∠BCG ,在△ACT 和△CBG 中,90CAT BCG ATC CGB AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ACT ≌△CBG (AAS ),∴CT =BG ,同理可证△DCH ≌△ECT ,∴CT =DH ,∴DH =BG ,在△DHF 和△BGF 中,90DFH BFG DHF BGF DH BG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△DHF ≌△BGF (AAS ),∴DF =BF ;②如图3,过点F 作FK ⊥BC 于K , ∵等腰Rt △ABC ,CA =CB ,点O 是AB 的中点, ∴AO =CO =BO ,CO ⊥AB ,∠ABC =45°, ∴∠OCF +∠OFC =90°,∵AT ⊥CF ,∴∠ATF =90°,∴∠OFC +∠FAT =90°, ∴∠FAT =∠OCF , 在△AOM 和△COF 中, 90MAO FCO OA OCAOM COF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△AOM ≌△COF (ASA ), ∴OM =OF , 又∵CO ⊥AO , ∴∠OFM =∠OMF =45°,222MF OF OM =+, ∴∠OFM =∠ABC ,MF =2OF , ∴MF //BC ,∴∠MFK =∠BKF =90°, ∵∠ABC =45°,FK ⊥BC , ∴∠ABC =∠BFK =45°, ∴FK =BK , ∵222BF FK BK =+, ∴FK =22BF , ∵S △FMN =52, ∴12×MF ×FK =52, ∴2OF ×22BF =102, ∴OF ×BF =102, ∵(BF ﹣OF )2≥0, ∴BF 2+OF 2﹣2BF ×OF ≥0,∴BF2+OF2=,∴BF2+OF2的最小值为【点睛】本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.。
【易错题】初二数学下期末试卷含答案
【易错题】初二数学下期末试卷含答案一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >3.若代数式11x x +-有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1C .x≠1D .x≥﹣1且x≠14.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .5.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 6.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大8.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵9.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B89C.8D4110.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A .6B .12C .24D .不能确定11.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .12.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④二、填空题13.在函数4x y -=x 的取值范围是______. 14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.已知13y x =-+,234y x =-,当x 时,12y y <.16.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.17.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 18.已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________19.如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是_____.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由 参赛者 推荐语 读书心得 读书讲座 甲 87 85 95 乙94888822.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?23.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;24.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调x m之间的函数关系如图所示,乙种花卉查,甲种花卉的种植费用y(元)与种植面积()2的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?25.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩; (2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,(a-2), |a-1|=a-1,(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.D解析:D 【解析】 【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数. 【详解】 依题意,得 x+1≥0且x-1≠0, 解得 x≥-1且x≠1. 故选A . 【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,∴->,<,k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.5.B解析:B【解析】【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.7.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 8.D解析:D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.9.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.10.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.11.A解析:A【解析】【分析】先分析题意,把各个时间段内y 与x 之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大,火车完全进入后一段时间内y 不变,当火车开始出来时y 逐渐变小,反映到图象上应选A .故选:A .【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y 与x 之间的函数关系.12.C解析:C【解析】【分析】易证Rt ABE Rt ADF V V ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF n 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE V 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF V 与ABE V 的面积比.【详解】∵四边形ABCD 是正方形,AEF V 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE V 和Rt ADF V 中, AB AD AE AF ⎧⎨⎩==∴()Rt ABE Rt ADF HL V V ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF n 中,∵tan tan 60AG AG AFG GF GC∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,.在Rt ABE V 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S V :ABE S V 11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =V V ,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键. 二、填空题13.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式 解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010x x -≥⎧⎨+≠⎩, 解得:x ≥4,故答案为x ≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y =2x +13中的x .②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 15.【解析】【分析】根据题意列出不等式求出解集即可确定出x 的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x >7解得:x 故答案为: 解析:74>. 【解析】【分析】 根据题意列出不等式,求出解集即可确定出x 的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x >7,解得:x 74>. 故答案为:74>16.【解析】在Rt △ABC 中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC 中,AB=5米,BC=3米,∠ACB=90°,4=∴AC+BC=3+4=7米.故答案是:7.17.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+9 10=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.18.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在解析:0【解析】【分析】根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.【详解】解:由图可知:a<0,b>0, b-a>0,()0a b b a a b b a-+--=-+-+=故填:0【点睛】本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.19.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x <﹣2时y <0即可求出答案【详解】解:∵直线y =kx+b (k >0)与x 轴的交点为(﹣20)∴y 随x 的增大而增大当x <﹣2时y <0即解析:x <﹣2【解析】【分析】根据一次函数的性质得出y 随x 的增大而增大,当x <﹣2时,y <0,即可求出答案.【详解】解:∵直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),∴y 随x 的增大而增大,当x <﹣2时,y <0,即kx +b <0.故答案为:x <﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.20.y=6+03x 【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x 考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分), 乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】 此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[(x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.23.(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;(2)班级人数乘以C等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人),∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C 级的人数为10×(1-20%-70%)=1(人), 故答案为:1.(3)m=110×(100×3+90×5+80×2)=91(分), n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49, ∵8(1)班的优秀率为3510+ ×100%=80%,8(2)班的优秀率为20%+70%=90%, ∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.24.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -.()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.25.(1)80;(2)①80;②85.【解析】【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x⨯+⨯+++…,解得84.2x…,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.。
【易错题】八年级数学下期末试卷(含答案)
【易错题】八年级数学下期末试卷(含答案)一、选择题1.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形 2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C4.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.55.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元 6.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒ 7.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个 B .3个 C .2个 D .1个8.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 9.若正比例函数的图象经过点(,2),则这个图象必经过点( ).A .(1,2)B .(,)C .(2,)D .(1,) 10.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( )A .甲B .乙C .丙D .丁 11.()23- ) A .﹣3 B .3或﹣3 C .9 D .312.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.14.如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.15.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.16.已知0,0a b <>,化简2()a b -=________17.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲83 79 90 乙85 80 75 丙 80 90 73该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.18.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.19.若m =+5,则m n =___.20.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________三、解答题21.A 、B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B 城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.22.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.23.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.24.已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.25.观察下列一组等式,然后解答后面的问题(21)(21)1+-=, (32)(32)1+-=,(43)(43)1+-=,(54)(54)1+-=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数).(2)利用上面的规律,计算:21324310099+++⋯+++++(3)请利用上面的规律,比较1817-与1918-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC , 四边形是平行四边形, ,, ,, 四边形是正方形,故选:C .【点睛】 本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.2.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.3.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.4.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE ,∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF ,∴S △AOB =S 四边形DEOF ,所以(4)正确.故选B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.8.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.9.D解析:D【解析】设正比例函数的解析式为y=kx (k≠0),因为正比例函数y=kx 的图象经过点(-1,2),所以2=-k ,解得:k=-2,所以y=-2x ,把这四个选项中的点的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个图象必经过点(1,-2).故选D .10.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.11.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a a a a ⎧=⎨-<⎩…. 【详解】|3|3=-=.故选D .【点睛】本题考查了根据二次根式的意义化简.a ≥0a ;当a ≤0a .12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题13.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 14.>1【解析】∵直线l1:y =x +n -2与直线l2:y =mx +n 相交于点P(12)∴关于x 的不等式mx +n <x +n -2的解集为x>1故答案为x>1解析:x >1【解析】∵直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P(1,2),∴关于x 的不等式mx +n <x +n -2的解集为x>1,故答案为x>1.15.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a ,8的平均数是x ,另一组数据11,13,15,x +10,18的平均数是x +10, ∵22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.16.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式解析:b a-【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,=|a−b|=b−a.故答案为:b a-.【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.17.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙解析:乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.18.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得解析:32y x =+【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b .把(0,2)代入直线解析式得2=b ,解得 b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.19.【解析】【分析】直接利用二次根式有意义的条件得出mn 的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m =5故mn =25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn 的解析:【解析】【分析】直接利用二次根式有意义的条件得出m ,n 的值进而得出答案.【详解】∵m =+5,∴n =2,则m =5,故m n =25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m ,n 的值是解题关键. 20.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】解:由于直线过点A (0,2),P (1,m ),则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,三、解答题21.(1)y=-90x+300;(2)s=300-150x ;(3)a=108(千米/时),作图见解析.【解析】【分析】(1)由图知y 是x 的一次函数,设y=kx+b .把图象经过的坐标代入求出k 与b 的值. (2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+300.设y=0时,求出x 的值可知乙车到达终点所用的时间.【详解】(1)由图知y 是x 的一次函数,设y=kx+b∵图象经过点(0,300),(2,120),∴300{2120b k b =+= 解得90{300k b =-= ∴y=-90x+300.即y 关于x 的表达式为y=-90x+300.(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=-150x+300,2<x≤103时,s=150x-300 103<x≤5时,s=60x ; (3)在s=-150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚20分钟到达,20分钟=13小时, 所以在y=-90x+300中,当y=0,x=103.所以,相遇后乙车到达终点所用的时间为103+13-2=53(小时). 乙车与甲车相遇后的速度a=(300-2×60)÷53=108(千米/时). ∴a=108(千米/时).乙车离开B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的函数图象如图所示.考点:一次函数的应用.22.见解析;【解析】试题分析:(1)直接利用三角形中位线定理得出DE BC ,进而得出DE=FC ; (2)利用平行四边形的判定与性质得出DC=EF ,进而利用等边三角形的性质以及勾股定理得出EF 的长 试题解析:(1)证明:∵D 、E 分别为AB 、AC 的中点, ∴DEBC , ∵延长BC 至点F ,使CF=BC , ∴DEFC , 即DE=CF ; (2)解:∵DE FC , ∴四边形DEFC 是平行四边形, ∴DC=EF ,∵D 为AB 的中点,等边△ABC 的边长是2, ∴AD=BD=1,CD ⊥AB ,BC=2, ∴DC=EF=.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质23.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)m =3;(2)1<m <3.【解析】【分析】根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴1030m m -≠⎧⎨-=⎩, 解得:m =3(2)∵一次函数的图象经过第二、三、四象限,∴1030m m -<⎧⎨-<⎩, ∴1<m <3.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键.25.(1)(1)(1)1n n n n +++=;(2)9;(318171918【解析】【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为:1=;(2)原式111019 ==-=;-==,(3Q<∴【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.已知二次根式21x +,则x 的最小值是( )A .0B .-1C .12D .12- 2.以下列各数为边长,能构成直角三角形的是( )A .5,11,12B .9,15,17C .1,3,2D .3,4,5 3.如图,下列条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC = B .AB CD =,AD BC =C .A B ∠=∠,CD ∠=∠D .AB AD =,B D ∠=∠ 4.某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按3:3:4的比例计入总评成绩,则该生数学科总评成绩为( )A .86分B .86.8分C .88.6分D .89分 5.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( )A .北偏西15︒B .南偏西75°C .南偏东15︒或北偏西15︒D .南偏西15︒或北偏东15︒ 6.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 处,BF 交AD 于点E .若∠BDC =62°,则∠DEF 的度数为( )A .31°B .28°C .62°D .56°7.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM 的周长为( )A .18B .20C .21D .248.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9二、填空题9.若二次根式2m-有意义,且关于x的分式方程1mx-+2=31x-有正数解,则符合条件的整数m的和是 _____.10.菱形的周长是20,一条对角线的长为6,则它的面积为_____.11.如图,小正方形边长为1,连接小正方形的三个顶点,可得ABC. 则AC边上的高长度为___________.12.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为____.13.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长12cm,写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式并标明x的取值范围___________.14.矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,若AB=5cm,则BD=___.15.如图,已知直线1:1l y x =+与x 轴交于点,A 与直线21:22l y x =+交于点B ,点C 为x 轴上的一点,若ABC ∆为直角三角形,则点C 的坐标为__________.16.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FN 的长为______.三、解答题17.计算:(1)()263227-⨯--+(2)()()161821212÷-+- 18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.如图,每个小正方形的边长都为1.(1)求ABC的周长;(2)判断ABC的形状.20.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论.21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)5+3=_____________(2)1+315+37+599+97 +22.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y元,乙商场实际付费为2y元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.23.如图①,C 为线段BD 上的一点,BC≠CD ,分别以BC ,BD 为边在BD 的上方作等边△ABC 和等边△CDE ,连接AE ,F ,G ,H 分别是BC ,AE ,CD 的中点,连接FG ,GH ,FH . (1)△FGH 的形状是 ;(2)将图①中的△CDE 绕点C 顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC =,CD =4,将△CDE 绕点C 旋转一周,当A ,E ,D 三点共线时,直接写出△FGH 的周长.24.如图,直线1与直线m 交于点Q 89,55⎛⎫ ⎪⎝⎭,直线m 与坐标轴分别交于A 、B 两点,直线l 与y 轴交与点C ,已知B 、C 两点关于x 轴对称且BC =6.(1)求直线l 和直线m 的解析式;(2)若P 为直线l 上一动点,S △P AB =32S △OAB ,求点P 的坐标; (3)M 为直线l 上一动点,N 为平面内一点,直接写出所有使得以A 、B 、M 、N 为顶点的四边形为菱形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.25.如图,在Rt ABC 中,90ABC ∠=︒,4AB =,3BC =,动点D 从点C 出发,沿边CA AB -向点B 运动,到点B 时停止,若设点D 运动的时间为()0t t >秒.点D 运动的速度为每秒1个单位长度.(1)当6t =时,AD = ,BD = ;(2)用含t 的代数式表示()0AD AD >的长;(3)当点D 在边CA 上运动时,求t 为何值,CBD 是以BD 或CD 为底的等腰三角形?并说明理由;(4)直接写出当CBD 是直角三角形时,t 的取值范围 .【参考答案】一、选择题1.D解析:D【分析】直接利用二次根式得定义得出x 的取值范围,进而得出答案.【详解】解:∵21x +∴210x +≥, 解得:21x ≥-, 故x 的最小值为12-, 故选:D .【点睛】本题主要考查二次根式的定义,正确得出x 的取值范围是解题的关键.2.C解析:C【分析】以两个较小数为两个直角边的边长,较大数为斜边的边长,验证四个选项是否满足勾股定理的逆定理即可.【详解】解:A 选项,22251112+≠,故A 选项不符合题意;B 选项,22291517+≠ ,故B 选项不符合题意;C 选项, 22212+=,故C 选项符合题意;D 选项, 222+≠,故D 选项不符合题意. 故选C .【点睛】本题考查了勾股定理的逆定理,熟练掌握以上知识点是解题关键.3.B解析:B【解析】【分析】根据平行四边形的判定定理进行分析即可.【详解】解:根据两组对边分别相等的四边形为平行四边形,则B 选项正确,故选:B .【点睛】本题考查平行四边形的判定,熟记基本的判定方法是解题关键.4.C解析:C【解析】【分析】根据加权平均数的定义,将三项成绩分别乘以其所占权重,即可计算出加权平均数.【详解】解:生数学科总评成绩=390+392+485=88.63+3+4⨯⨯⨯(分); 故选:C【点睛】本题考查了加权平均数的求法,重在理解“权”不同,各数所起的作用也会不同,会对计算结果造成不同影响. 5.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.6.D解析:D【解析】【分析】先利用互余计算出∠BDE =28°,再根据平行线的性质得∠CBD =∠BDE =28°,接着根据折叠的性质得∠FBD =∠CBD =28°,然后利用三角形外角性质计算∠DEF 的度数,于是得到结论.【详解】解:∵四边形ABCD 为矩形,∴AD ∥BC ,∠ADC =90°,∵90906228BDE BDC ∠︒-∠︒-︒︒===,∵AD ∥BC ,∴∠CBD =∠BDE =28°,∵矩形ABCD 沿对角线BD 折叠,∴∠FBD =∠CBD =28°,∴∠DEF =∠FBD +∠BDE =28°+28°=56°.故选:D .【点睛】本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键. 7.B解析:B【解析】【分析】根据中位线的性质求得OM ,再根据直角三角形的性质求得OB ,即可求解.【详解】解:在矩形ABCD 中,5AB CD ==,90ABC ∠=︒由勾股定理得13AC∵O 是AC 的中点,M 是AD 的中点∴OM 为ACD △的中位线,162AM AD ==,11322BO AC == ∴1522OM CD == 四边形ABOM 的周长为135562022AB BO OM AM =+++=+++=故选B【点睛】此题考查矩形的性质,勾股定理,中位线的性质以及直角三角形的性质,熟练掌握相关基本性质是解题的关键.8.D解析:D【分析】先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.【详解】解:把A(m,﹣3)代入y=13x得13m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>13 x,即kx﹣13x>﹣b的解集为x>﹣9.故选D.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题9.-4【解析】【分析】m≤2,解出关于x的分式方程1mx-+2=31x-的解为x=5+2m,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.【详解】解:1mx-+2=31x-,去分母得,﹣m+2(x﹣1)=3,解得,x=5+2m,∵关于x的分式方程1mx-+2=31x-有正数解,∴5+2m>0,∴m>﹣5,又∵x =1是增根,当x =1时,5+2m =1,即m =﹣3, ∴m ≠﹣3, ∵2m -有意义, ∴2﹣m ≥0,∴m ≤2,因此﹣5<m ≤2且m ≠﹣3,∵m 为整数,∴m 可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故答案为:﹣4.【点睛】考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,整数m 的意义是正确解答的关键.10.D解析:【解析】【分析】先画出图形,根据菱形的性质可得5AD =,DO =3,根据勾股定理可求得AO 的长,从而得到AC 的长,再根据菱形的面积公式即可求得结果.【详解】由题意得2045AD =÷=,6BD =∵菱形ABCD∴3DO =,AC ⊥BD∴224AO AD DO =-=∴28AC AO ==∴1242S AC BD =⋅=考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.11.A65 【解析】【分析】求出三角形ABC 的面积,再根据三角形的面积公式即可求得AC 边上的高.【详解】解:∵三角形的面积等于正方形的面积减去三个直角三角形的面积,即ABC S =11144222424222⨯-⨯⨯-⨯⨯-⨯⨯=6, 设AC 上的高为h ,则S △ABC =12AC•h=6,∵AC∴AC 边上的高,. 【点睛】本题考查三角形的面积公式、勾股定理,首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC 的长,最后根据三角形的面积公式计算. 12.A解析:2【分析】利用矩形的性质即可得到AC 的长,再根据含30°角的直角三角形的性质,即可得到AB 的长.【详解】解:∵矩形ABCD 中,对角线AC 、BD 相交于点O ,∴AC =2BO =4,又∵∠ACB =30°,∠ABC =90°, ∴114222AB AC ==⨯=. 故答案为:2.【点睛】本题考查了矩形的性质及含30︒角的直角三角形的性质,掌握矩形四个角都是直角,对角线相等且互相平分是解题的关键.13.1122y x =+(015)x【分析】 根据函数的概念:函数中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,解答即可.【详解】解:设挂重为x ,则弹簧伸长为12x , 挂重后弹簧长度()y cm 与挂重()x kg 之间的函数关系式是:1122y x =+(015)x .故答案为:1122y x =+(015)x . 【点睛】 本题考查了根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式.14.A解析:10cm【详解】试题分析:根据矩形性质得出AO=BO ,BD=2BO ,得出等边三角形AOB ,推出AB=BO=5cm ,即可得出答案.解:∵四边形ABCD 是矩形,∴AC=BD ,AC=2AO ,BD=2BO ,∴OA=OB ,∵∠AOB=60°,∴△AOB 是等边三角形,∴BO=OA=AB=5cm ,∴BD=2BO=10cm ,故答案为10cm .点评:本题考查了矩形的性质和等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分.15.(2,0)或(5,0)【分析】先求出A ,再求出,解得,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】与轴交解析:(2,0)或(5,0)【分析】先求出A ,再求出1122y x y x =+⎧⎪⎨=+⎪⎩,解得=23x y ⎧⎨=⎩,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】1:1l y x =+与x 轴交于点A ,∴y=0,x=-1,∴A(-1,0),直线1:1l y x =+与直线21:22l y x =+交于点B ,1122y x y x =+⎧⎪⎨=+⎪⎩, 解得=23x y ⎧⎨=⎩, ∴B (2,3),当点C 为直角顶点时,∴BC ⊥AC ,∴BC ∥y 轴,B 、C 横坐标相同,C (2,0),当点B 为直角顶点时,∴BC ⊥AB ,1:1l y x =+,k=1,∴∠BAC=45°,∴△ABC 为等腰直角三角形,∴AB=()222+1+3=32,AC=2AB =6,AO=1,CO=AC-AO=5,C (5,0),C 点坐标为(2,0)或(5,0).故答案为:(2,0)或(5,0).【点睛】本题考查等腰直角三角形的性质,掌握直角三角形的顶点分两种情况讨论解决问题是关键.16.【分析】由正方形纸片沿对边中点所在的直线对折后展开,折痕为,可得到AN 且;再由过点折叠纸片,使点落在上的点处,可得到AB ;在通过勾股定理计算的FM ,从而得到答案.【详解】∵正方形纸片沿对边中解析:2【分析】由正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,可得到AN 且90BMN ∠=;再由过点B 折叠纸片,使点A 落在MN 上的点F 处,可得到AB ;在通过勾股定理计算的FM ,从而得到答案.【详解】∵正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ∴112122AN BM AB ===⨯=,90BMN ∠= ∵过点B 折叠纸片,使点A 落在MN 上的点F 处∴2AB FB == ∴FM =又∵正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN∴2MN AB == ∴2FN MN FM =-=故答案为:2.【点睛】本题考查了勾股定理、轴对称、正方形的知识;求解的关键是熟练掌握勾股定理、轴对称、正方形的性质,从而完成求解.三、解答题17.(1);(2)0【分析】(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可;(2)利用二次根式的四则运算法则求解即可.【详解】(1)原式,,;(2)原式,,.解析:(1)2;(2)0【分析】(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可; (2)利用二次根式的四则运算法则求解即可.【详解】=+,(1)原式(2=-2=;2(2)原式6(21)=-,=,1=.【点睛】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关运算法则进行求解.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1);(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定的形状.【详解】(1),,,的周长;(2),解析:(1)5;(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定ABC的形状.【详解】(1)5AB==,BC=AC=∴的周长55ABC==;(2)225AC==22AB==,5252220BC==,222∴+=AC BC AB∴是直角三角形.ABC【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟悉掌握勾股定理是解题的关键.20.(1)见解析;(2)四边形ADCF是菱形,理由见解析.【分析】(1)由“AAS”可证△AEF≌△DEB;(2)先证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可得结论.【详解析:(1)见解析;(2)四边形ADCF是菱形,理由见解析.【分析】(1)由“AAS”可证△AEF≌△DEB;(2)先证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可得结论.【详解】证明:(1)∵AD是BC边上的中线,∴BD=CD,∵点E是AD的中点,∴AE =ED ,∵AF ∥BC ,∴∠AFE =∠EBD ,在△AEF 和△DEB 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEB (AAS ),(2)四边形ADCF 是菱形,理由如下:∵△AEF ≌△DEB ,∴AF =BD ,又∵BD =CD ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,AD 是BC 边上的中线,∴AD =CD ,∴四边形ADCF 是菱形.【点睛】本题考查了全等三角形的判定和性质,菱形的判定和性质.证明四边形ADCF 是平行四边形是解题的关键.21.见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;解析:见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题. 22.(1),;(2)当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠.【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:解析:(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+ ,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.23.(1)等边三角形;(2)成立,理由见解析;(3)或.【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.解析:(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.即证明为等边三角形.(2)先判断出PF ,PG 是△ABC 和△CDE 的中位线,再判断出∠FPG =∠FCH ,进而证明△FPG ≌△FCH ,得出结论FG =FH ,∠PFG =∠CFH ,最后证明出∠GFH=,即证明△FGH 为等边三角形.(3)①当点E 在AE 上时,先求出CM ,进而求出AM ,即可求出AD ,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN 、EN ,进而求出BD ,最后即可求出FH ,即可得出结果;②当点D 在AE 的延长线上时同①的方法即可得出结果.【详解】(1)∵ABC 和都为等边三角形,且边长不相等. ∴,. ∴四边形ABCE 和四边形ACDE 都是梯形.又∵F 、G 、H 分别是BC 、AE 、CD 中点,∴FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.∴,. ∴,.∴为等边三角形. 故答案为:等边三角形.(2)取AC 的中点P ,连接PF ,PG ,∵△ABC 和△CDE 都是等边三角形,∴AB =BC ,CE =CD , ∠BAC = ∠ACB = ∠ECD = ∠B =60°.又F ,G ,H 分别是BC ,AE ,CD 的中点,∴FP =12AB ,FC =12BC ,CH =12CD ,PG =12CE ,PG ∥CE ,PF ∥AB .∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°.∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE.∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC.∴∠FPG=∠FCH.∴△FPG≌△FCH(SAS).∴FG=FH,∠PFG=∠CFH.∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°.∴△FGH为等边三角形.所以成立.(3)①当点D在AE上时,如图,∵ABC是等边三角形,∴,.∵是等边三角形,∴,,过点C作于M,∴,在中,根据勾股定理得,,在中,根据勾股定理得,,∴,∵,∴,∴,连接BE,在和中,,∴(SAS),∴BE=AD=2, ,∵,∴,∴,过点B作于N,∴,在中,,∴,∴,DN=DE-EN=3,连接BD,根据勾股定理得:,∵点H是CD中点,点F是BC中点,∴FH是的中位线,∴,由(2)可知,△FGH为等边三角形.∴△FGH的周长.②当点D在AE的延长线上时,如图,同理可求,所以△FGH的周长.即满足条件的△FGH的周长位或.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含30角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难.24.(1)直线l 的解析式为,直线m 的解析式为;(2)P (,)或P (,);(3)N1(,)或N2(,)或N3(,)或N4(,)或N5(,)【解析】【分析】(1)根据B 、C 两点关于x 轴对称且BC =6,解析:(1)直线l 的解析式为33y x =-,直线m 的解析式为334y x =-+;(2)P (25,95-)或P (145,275);(3)N 1(2910,2710)或N 2(295,35-+)或N 3(295,35-N 4(4-,0)或N 5(75-,395) 【解析】【分析】(1)根据B 、C 两点关于x 轴对称且BC =6,得出B 、C 两点的坐标,然后用待定系数法求解函数解析式即可;(2)先求出A 点和B 点的坐标,从而求出三角形AOB 的面积,即可得到三角形P AB 的面积,过点P 作PD ∥y 轴,交直线m 于D ,根据三角形P AB 的面积可以得到PD 的长度,即可求解;(3)利用菱形的对角线互相平分和邻边相等的性质进行分类讨论求解即可.【详解】解:(1)∵B 、C 两点关于x 轴对称且BC =6,∴B (0,3),C (0,-3),设直线l 的解析式为11y k x b =+,直线m 的解析式为22y k x b =+,∵直线l 经过Q (85,95),C (0,-3), ∴11138955b k b =-⎧⎪⎨+=⎪⎩,22238955b k b =⎧⎪⎨+=⎪⎩ 解得:1133b k =-⎧⎨=⎩,22334b k =⎧⎪⎨=-⎪⎩∴直线l 的解析式为33y x =-,直线m 的解析式为334y x =-+;(2)过点P 作PD ∥y 轴,交直线m 于D ,∵直线m 的解析式为334y x =-+与x 轴交于A 点,∴A (4,0),∴OA =4, ∴1=62AOB S OA OB =△,∵32PAB AOB S S =, ∴=9PAB S , ∵111=2222PAB PDB PDA P B A P A B S S S PD x x PD x x PD x x PD +=⨯-+-=⨯-=, ∴29PD =,∴92PD =, 设P (a ,3a -3),则D (a ,334x -+), ∴3933342PD a a =-+-+=, ∴159642a -= ∴解得145a =或25a = ∴P (25,95-)或P (145,275);(3)设M (m ,3m -3),N (p ,q ),A (4,0),B (0,3),①如图,以AB 为对角线时,AM =AN ,由菱形的对角线互相平分得403033m p m q+=+⎧⎨+=-+⎩,解得463p m q m =-⎧⎨=-⎩, ∵AM =AN ,∴()()()()22224334463m m m m -+-=-++-, 解得1110m =, ∴N 1(2910,2710);②如图,当以AM 为对角线时,AN =AB ,由菱形的对角线互相平分得4333m p m q +=⎧⎨-=+⎩,解得436p m q m =+⎧⎨=-⎩, ∵AN =AB ,∴()()22224344036m m +=--+-+, 解得:9214510m =+或9214510m =-, ∴N 2(29214510+,33214510-+),N 3(29214510-,33214510--);③当以AN 为对角线时,AM =AB ,由菱形的对角线互相平分得4333p m q m +=⎧⎨=-+⎩,解得43p m q m =-⎧⎨=⎩, ∵AM =AB ,∴()()222243433m m +=-+-, 解得:0m =或135=m , ∴N 4(4-,0),N 5(75-,395);∴综上所述,存在N 1(2910,2710)或N 2(295+,35-N 3(295,35-N 4(4-,0)或N 5(75-,395)使得以A 、B 、M 、Q 为顶点的四边形是菱形.【点睛】本题考查了待定系数 法求一次函数解析式,三角形的面积,菱形的性质,中点坐标公式,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形;(4)或秒.【分析】(1)由勾股定理先求出的长度,则时,点D 在线段AB 上,即可求出答案; 解析:(1)1;3;(2)当05t ≤<时,5AD t =-;当59<≤t 时,5AD t =-;(3)t =3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形;(4) 1.8t =或59t ≤≤秒.【分析】(1)由勾股定理先求出CA 的长度,则6t =时,点D 在线段AB 上,即可求出答案; (2)由题意,可分为:05t ≤<,59<≤t 两种情况,分别表示出AD 的长度即可;(3)分①CD =BC 时,CD =3;②BD =BC 时,过点B 作BF ⊥AC 于F ,根据等腰三角形三线合一的性质可得CD =2CF ,即可得到答案.(4)分①∠CDB =90°时,利用△ABC 的面积列式计算即可求出BD ,然后利用勾股定理列式求解得到CD ,再根据时间=路程÷速度计算;②∠CBD =90°时,点D 在线段AB 上运动,然后即可得解;【详解】解:(1)在Rt ABC 中,90ABC ∠=︒,4AB =,3BC =, ∴5CA =,∵点D 运动的速度为每秒1个单位长度,∴当05t ≤<,点D 在线段CA 上;当59t ≤≤,点D 在线段AB 上;∴当6t =时,点D 在线段AB 上,∴1AD =,413BD =-=;故答案为:1;3;(2)根据题意,当05t ≤<时,点D 在线段CA 上,且0AD >,∴5AD t =-;当59<≤t 时,点D 在线段AB 上,∴5AD t =-;(3)①CD =BC 时,CD =3,t =3÷1=3;②BD =BC 时,如图,过点B 作BF ⊥AC 于F ,设CF x =,则5AF x =-,∴222234(5)x x -=--,∴ 1.8CF x ==,∴CD =2CF =1.8×2=3.6,∴t =3.6÷1=3.6,综上所述,t =3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形. (4)①∠CDB =90°时,S △ABC =12AC •BD =12AB •BC , 即1102BD ⨯⨯=12×4×3,解得BD =2.4,∴CD 223 2.4 1.8-=,∴t =1.8÷1=1.8秒;②∠CBD =90°时,点D 在线段AB 上运动,∴59t ≤≤综上所述,t =1.8或59t ≤≤秒;故答案为: 1.8t =或59t ≤≤秒;【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观.。
【易错题】八年级数学下期末试卷(附答案)
【易错题】八年级数学下期末试卷(附答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A .7B .6C .5D .43.已知函数y =11x x +-,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠14.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒5.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .6.若正比例函数的图象经过点(,2),则这个图象必经过点( ). A .(1,2)B .(,)C .(2,)D .(1,)7.如图1,四边形ABCD 中,AB ∥CD ,∠B =90°,AC =AD .动点P 从点B 出发沿折线B →A →D →C 方向以1单位/秒的速度运动,在整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( )A .10B .89C .8D .418.二次根式()23-的值是( ) A .﹣3 B .3或﹣3C .9D .39.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷=11.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .4812.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时. 14.已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.15.在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=o ,则CFH ∠=________.16.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.17.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.18.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.19.如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.20.(多选)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系,下列说法正确的是( )A .甲乙两车出发2小时后相遇B .甲车速度是40千米/小时C .相遇时乙车距离B 地100千米D .乙车到A 地比甲车到B 地早53小时 三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由 参赛者 推荐语 读书心得 读书讲座 甲 87 85 95 乙94888822.如图,在ABCD Y 中,E ,F 分别是边AD ,BC 上的点,且AE CF .求证:四边形BEDF 为平行四边形.23.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC . (1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.24.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.25.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.C解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5.故选C.3.B解析:B 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解. 【详解】 解:根据题意得:1010x x +≥⎧⎨-≠⎩,解得:x≥-1且x≠1. 故选B .点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.4.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.D解析:D 【解析】 【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断. 【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D .【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.7.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.8.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.9.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C.10.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题13.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+即该船行驶的速度为404033+海里/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.14.【解析】【分析】作点A关于y轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P的坐标【详解】如图作点A关于y轴对称的对称点∵点A关于y轴对称的对称点∴设直线的解析式为将点和点解析:()0,5【解析】【分析】作点A关于y轴对称的对称点A',求出点A'的坐标,再求出直线BA'的解析式,将0x=代入直线解析式中,即可求出点P的坐标.【详解】如图,作点A 关于y 轴对称的对称点A ' ∵()1,3A ,点A 关于y 轴对称的对称点A ' ∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k bk b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+ 将0x =代入25y x =+中 解得5y = ∴()0,5P 故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.15.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF 最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直解析:80° 【解析】 【分析】先由中位线定理推出50EDB FCH ∠=∠=o ,再由平行线的性质推出CFH ∠,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF ,最后由三角形内角和定理求出3AQ AP PQ =-=【详解】∵点,,D E F 分别是,,BC AB AC 的中点∴//,//EF BC DE AC (中位线的性质) 又∵//EF BC∴50DEF EDB o ∠=∠=(两直线平行,内错角相等) ∵//DE AC∴50EDB FCH ∠=∠=o (两直线平行,同位角相等) 又∵AH BC ⊥∴三角形AHC 是Rt 三角形 ∵HF 是斜边上的中线 ∴12HF AC FC == ∴50FHC FCH o ∠=∠=(等边对等角) ∴18050280CFH ∠=-⨯=o o o 【点睛】本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.16.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得 解析:32y x =+【解析】 【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式. 【详解】解:设平移后直线的解析式为y=3x+b . 把(0,2)代入直线解析式得2=b , 解得 b=2.所以平移后直线的解析式为y=3x+2. 故答案为:y=3x+2. 【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.17.【解析】【分析】直接利用一次函数图象结合式kx+b >0时则y 的值>0时对应x 的取值范围进而得出答案【详解】如图所示:关于x 的不等式kx+b >0的解集是:x <2故答案为:x <2【点睛】此题主要考查了一 解析:2x <【解析】 【分析】直接利用一次函数图象,结合式kx+b >0时,则y 的值>0时对应x 的取值范围,进而得出答案. 【详解】 如图所示:关于x 的不等式kx+b >0的解集是:x <2. 故答案为:x <2. 【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.18.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3, 32. 【解析】 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差. 【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.19.30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的因为△ABO ≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边解析:30°【解析】【分析】根据题意先通过△ADP求出∠DAP的,因为△ABO≌△APO,即可求出∠OAB的度数.【详解】解:∵ P是CD的中点,沿AO折叠使得顶点B落在CD边上的点P∴DP=PC=12CD, △ABO≌△APO∵四边形ABCD为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP ∴∠DAP=30°∵△ABO≌△APO∴∠PAO=∠OAP=12∠BAP∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30°故答案为:30°【点睛】此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.20.ABD【解析】【分析】根据图象的信息依次进行解答即可【详解】A出发2h 后其距离为零即两车相遇故正确;B甲的速度是千米/小时故正确;C相遇时甲行驶的路程为2×40=80km故乙车行驶路程为120千米故解析:ABD【解析】【分析】根据图象的信息依次进行解答即可.【详解】A、出发2h后,其距离为零,即两车相遇,故正确;B、甲的速度是200405=千米/小时,故正确;C、相遇时,甲行驶的路程为2×40=80km,故乙车行驶路程为120千米,故离B地80千米,故错误;D、乙车2小时行驶路程120千米,故乙的速度是120602=千米/小时,故乙车到达A地时间为20060=103小时,故乙车到A 地比甲车到B 地早5-103=53小时,D 正确; 故选:ABD. 【点睛】本题考查了行程问题的数量关系速度=路程÷时间的运用,速度和的运用,解答时正确理解函数图象的数据的意义是关键.三、解答题21.甲获胜;理由见解析. 【解析】 【分析】根据加权平均数的计算公式列出算式,进行计算即可. 【详解】 甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分),乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分),∵90.489.2>, ∴甲获胜. 【点睛】此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式. 22.证明见解析. 【解析】 【分析】由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论. 【详解】证明:四边形ABCD 是平行四边形, ∴AD BC ∥,AD BC =. ∵AE CF =,∴AD AE BC CF -=-. ∴ED BF =,∵//ED BF ,ED BF =, ∴四边形BEDF 是平行四边形. 【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【详解】详解:证明:,,在和中,,≌;解:如图所示:由知≌,,,,四边形ABDF是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.24.证明见解析.【解析】【分析】先连接BD,交AC于O,由于AB=CD,AD=CB,根据两组对边相等的四边形是平行四边形,可知四边形ABBCD是平行四边形,于是OA=OC,OB=OD,而AF=CF,根据等式性质易得OE=OF,再根据对角线互相平分的四边形是平行四边形可证四边形DEBF是平行四边形,于是∠EBF=∠FDE.【详解】解:连结BD,交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,∴∠EBF=∠EDF.25.(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.。
八年级数学下册期末试卷易错题(Word版含答案)
10.菱形 的对角线 与 相交于点O,若 ,则菱形 的面积是___________.
11.在 中, , , ,则线段AC的长为________.
12.如图,矩形 的对角线 , 相交于点 , 交 于点 ,连接 .若矩形 的周长为 ,则 的周长为__________ .
13.将直线 平移后经过原点,则平移后的解析式为___________.
14.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,要使四边形EFGH为菱形,则四边形ABCD的对角线应满足的条件是__
15.正方形 , , ,…按如下图所示的方式放置.点 , , ,…和点 , , ,…分别在直线 和 轴上,已知正方形 的边长为 ,正方形 边长为 ,则 的坐标是______.
(3)在图3中,当 , , 时,求 之长.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据二次根式和分式有意义的条件列出不等式,求解不等式即可.
【详解】
根据题意得:x﹣3≥0且x﹣5≠0,
解得x≥3且x≠5.
∴自变量x的取值范围是x≥3且x≠5.
(2)请直接写出当四边形ABCD的边AB与BD满足什么关系时,四边形 分别是菱形、矩形、正方形.
21.阅读下列解题过程:
= = = =
= = =
请回答下列问题:
(1)观察上面的解题过程,请直接写出结果.
=.
(2)利用上面提供的信息请化简:
的值.
22.某网校规定:普通网上学习费用每小时4元.暑假为了促销,新推出两种优惠卡:
A. B. C. D.
6.如图,在△ABC中,点D为BC边的中点,点E为AC上一点.将∠C沿DE所在直线翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为()
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.函数y =123x x -+-中自变量x 的取值范围是( ) A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 2.下列各组数中,能构成直角三角形的是( ) A .4,5,6 B .1,1,2 C .6,8,11 D .5,12,23 3.已知四边形ABCD 中,对角线AC 、BD 交于O ,则下列选项中不能证明四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AB =CDB .AB =CD ,BC =AD C .AB ∥CD ,AC =BD D .OA =OC ,OB =OD4.在期末体育测试中,某校初二1班、2班、3班、4班四个班级学生成绩的平均分相等,方差分别为s 1班2=6.2,s 2班2=5.8,s 3班2=12.6,s 4班2=9.8,则这四个班级中学生体育成绩最整齐的是( )A .1班B .2班C .3班D .4班 5.ABC ∆的周长为60,三条边之比为13:12:5,则这个三角形的面积为( )A .30B .90C .60D .120 6.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则DAE =∠( )A .20︒B .30C .40︒D .50︒7.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC 的三条边为边长向外作正方形ACHI ,正方形ABED ,正方形BCGF ,连接BI ,CD ,过点C 作CJ ⊥DE 于点J ,交AB 于点K .设正方形ACHI 的面积为S 1,正方形BCGF 的面积为S 2,长方形AKJD 的面积为S 3,长方形KJEB 的面积为S 4,下列结论:①BI =CD ;②2S △ACD =S 1;③S 1+S 4=S 2+S 3;1S 2S 34S S + )A .1个B .2个C .3个D .4个8.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线3333y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+二、填空题9.若使163x-在实数范围内有意义,则x 的取值范围为______. 10.如图,菱形ABCD 的周长为45,对角线AC 和BD 相交于点O ,AC ∶BD=1∶2,则AO ∶BO=____,菱形ABCD 的面积S=____.11.若一个直角三角形的两边长分别是3和4,那么以斜边为边长的正方形的面积为______.12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;13.一次函数2y x m =+的图象与y 轴的交点是()0,3,则m =______.14.如图中,四边形 ABCD 是对角线互相垂直的四边形,且 OB =OD ,若使四边形 ABCD 为菱形,则需添加的条件是______.(只需添加一个条件即可)15.将正方形111A B C O ,2221A B C C ,3332A B C C 按如图所示方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点4B 的坐标是______,2021B 的纵坐标是______.16.已知矩形ABCD ,点E 在AD 边上,DE AE >,连接BE ,将ABE △沿着BE 翻折得到BFE △,射线EF 交BC 于G ,若点G 为BC 的中点,1FG =,6DE =,则BE 长为________.三、解答题17.计算(118232+ (2)13273 (3)(57)(57)2+(4)0214(37)8(12)2+ 18.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.19.在所给的9×9方格中,每个小正方形的边长都是1,按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数.(2)在图乙中画一个平行四边形,使它的周长是无理数.20.如图,在平行四边形ABCD 中,点E 是边AB 的中点,连接CE 并延长CE 交DA 的延长线于点F ,连接AC ,BF .(1)求证:四边形AFBC 是平行四边形(2)当AEC ∠的度数为______度时,四边形AFBC 是菱形;(3)若52D ∠=︒,则当AEC ∠的度数为______度时,四边形AFBC 是矩形. 21.先阅读下列的解答过程,然后再解答: 2m n ±a 、b ,使a +b =m ,ab =n ,使得22()()a b m +=a b n =22=()m n a b a b ±±=a >b ) 7+437+437+212m =7,n =12,由于4+3=7,4×3=12 即22(4)(3)7+=3412=∴7+43=27+212=(43)23+=+(1)填空:423-= ,9+45= ;(2)化简:19415-.22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.已知如图,在ABCD 中,点E 是AD 边上一点,连接BE 、CE ,BE CE =,BE CE ⊥,点F 是EC 上一动点,连接BF .(1)如图1,若点F 是EC 的中点,10BF =,求ABCD 的面积;(2)如图2,当BF AB ⊥时,连接DF ,求证:AB DF BF +=;(3)如图3,以BF 为直角边作等腰Rt FBG ,90FBG ∠=︒,连接GE ,若2DE =,5CD =,当点F 在运动过程中,请直接写出BEG 周长的最小值.24.如图所示,在平面直角坐标系中,点B 的坐标为(4,8),过点B 分别作BA ⊥y 轴,BC ⊥x 轴,得到一个长方形OABC ,D 为y 轴上的一点,将长方形OABC 沿着直线DM 折叠,使得点A 与点C 重合,点B 落在点F 处,直线DM 交BC 于点E .(1)直接写出点D 的坐标 ;(2)若点P 为x 轴上一点,是否存在点P 使△PDE 的周长最小?若存在,请求出△PDE的最小周长;若不存在,请说明理由.(3)在(2)的条件下,若Q 点是线段DE 上一点(不含端点),连接PQ .有一动点H 从P 点出发,沿线段PQ 以每秒1个单位的速度运动到点Q ,再沿着线段QE 以每秒5个单位长度的速度运动到点E 后停止.请直接写出点H 在整个运动过程中所用的最少时间t ,以及此时点Q 的坐标.25.如图,在平面直角坐标系中,点A 的坐标为(0,6),点B 在x 轴的正半轴上.若点P 、Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P 、Q 的“涵矩形”。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.式子3x -在实数范围内有意义,则x 的取值范围是( ) A .x <3 B .x ≥3 C .x ≤3 D .x >32.已知ABC 的三边长分别为a ,b ,c ,由下列条件不能判断ABC 是直角三角形的是( )A .23ABC ∠=∠=∠B .AC B ∠=∠-∠C .()2512130a b c -+-+-= D .()()2a b c b c =+-3.下列命题中,为假命题是( ) A .两组对边分别平行的四边形是平行四边形 B .两组对边分别相等的四边形是早行四边形 C .两组对角分别相等的四边形是平行四边形 D .对角线相等的四边形是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在▱ABCD 中,∠ADC =60°,点F 在CD 的延长线上,连结BF ,G 为BF 的中点,连结AG .若AB =2,BC =6,DF =3,则AG 的长为( )A .3B .72C .432D .136.如图所示,BDC '是将长方形纸片ABCD 沿BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对A .2B .3C .4D .57.如图,在正方形ABCD 中,E 为AB 中点,连结DE ,过点D 作DF ⊥DE 交BC 的延长线于点F ,连结EF .若AE =2,则EF 的值为( )A .6B .210C .23D .58.如图1,在矩形ABCD 的边AD 上取一点E ,连接BE .点M ,N 同时以1cm/s 的速度从点B 出发,分别沿折线B -E -D -C 和线段BC 向点C 匀速运动.连接MN ,DN ,设点M 运动的时间为t s ,△BMN 的面积为S cm 2,两点运动过程中,S 与t 的函数关系如图2所示,则当点M 在线段ED 上,且ND 平分∠MNC 时,t 的值等于( )A .2+25B .4+25C .14﹣25D .12﹣25二、填空题9.若y =21123x x -+-+,则x +y 的值为 ____.10.菱形ABCD 的对角线AC 与BD 相交于点O ,若13,24AB AC ==,则菱形ABCD 的面积是___________.11.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.12.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.13.定义:对于一次函数y=kx+b,我们把点(b,k)称为这个一次函数的伴随点.已知一次函数y=﹣2x+m的伴随点在它的图象上,则m=_____.14.如图,在矩形ABCD中,对角线AC, BD交于点O,已知∠AOD=120°, AB=1,则BC 的长为______15.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,点P 是线段AB的三等分点(AP>BP),点C是x轴上的一个动点,连接BC,以BC为直角边,点B为直角顶点作等腰直角△BCD,连接DP.则DP长度的最小值是___.16.如图,长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于点E,若1AB=,2AD=,则△BED的周长为_____.三、解答题17.计算:(1)545842(2)2(32)(12)(12);(3)解方程组23405x yx y+=⎧⎨-=-⎩;(4)解方程组743832x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩. 18.如图,在O 处的某海防哨所发现在它的北偏东60°方向相距1000米的A 处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B 处,发现B 在O 的南偏东45°的方向上.问:此时快艇航行了多少米(即AB 的长)?19.如图,网格中的ABC ,若小方格边长为1,请你根据所学的知识, (1)判断ABC 是什么形状?并说明理由; (2)求ABC 的面积.20.已知:如图,在ABC 中,AD 是BAC ∠的平分线,//,//DE AC DF AB . 求证:四边形AEDF 是菱形.21.如果记()1xy f x x==+,并且1f 表示当1x 时y 的值,即121111f+;(2f表示当2x y 的值,即2221f+12f 表示当12x =y 的值,即1=112=211212f ⎛⎫ ⎪ ⎪+⎝⎭+;… (1)计算下列各式的值: ()12=2ff ⎛⎫+ ⎪ ⎪⎝⎭__________.()1111111=ff ⎛⎫+ ⎪ ⎪⎝⎭__________.(2)当n 为正整数时,猜想()1fn f n ⎛⎫+ ⎪ ⎪⎝⎭的结果并说明理由;(3)求()()()()11112233100100fffff f f ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.22.某水果批发商以4元斤的价格对外销售芒果,为了减少库存,尽快回笼资金,推出两种批发方案方案一:每斤打9.5折;方案二:不超过200斤的部分按原价销售,超过200斤的部分打7.5折.某超市计划从该水果批发商处购进x 斤芒果,按方案一购买需支付费用1y 元,按方案购买需支付费用2y 元,则该超市选择哪种方案(只能选择一种方案)更合算,请说明理由.23.在菱形ABCD 中,点E 为边BC 的中点,,垂足为点, 垂足为点G .(1)如图①,求证:;(2)如图②,如图③,请分别写出线段之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若菱形ABCD 的面积为,菱形ABCD 的周长为,四边形的面积为 ,线段DF 的长为 .24.如图,直线12y x =-+与x 轴交于点(12,0)A ,与直线OB 交于点(,8,4)B x 轴上一点P 从O 点出发以每秒2个单位的速度向终点A 运动,作PE x ⊥轴交OB 于E ,过E 作//EF x 轴且12EF PE =,以PE EF 、为边作矩形PEFG ,设运动时间为t .()1当点F 落在直线AB 上时,求t 的值; ()2在运动过程中,设矩形PEFG 与ABO 的重叠部分面积为S ,求S 与t 的关系式,并写出相应的t 的取值范围;()3矩形PEFG 的对角线交于点Q ,直接写出PQ AQ +的最小值为_ .25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】3x -在实数范围内有意义,故x ﹣3≥0, 则x 的取值范围是:x ≥3.故选:B . 【点睛】考核知识点:二次根式的意义.理解二次根式被开方数是非负数.2.A解析:A 【分析】根据三角形的内角和定理求出∠A 的度数,即可判断选项A ;根据三角形内角和定理求出∠C 的度数,即可判断选项B ;根据勾股定理的逆定理判定选项C 和选项D 即可. 【详解】 设△ABC 中,∠A 的对边是a ,∠B 的对边是b ,∠C 的对边是c , A. ∠A = 2∠B = 3∠C ,∴11,,23B AC A ∠=∠∠=∠ ∠A +∠B + ∠C = 180°,∴1118023A A A ∠+∠+∠=︒, 解得: 108011A ⎛⎫∠=︒ ⎪⎝⎭,∴△ABC 不是直角三角形,故本选项符合题意;B. ∠A = ∠C -∠B ,∴∠A +∠B = ∠C ,∠A +∠B + ∠C = 180°,∴2∠C = 180°, ∴∠C = 90°,∴△ABC 是直角三角形,故本选项不符合题意;C.()25120a b -+-=,∴a - 5 = 0,b - 12 = 0, c - 13 = 0, ∴a = 5,b = 12,c = 13, ∴222+=a b c , ∴∠C = 90°,∴△ABC 是直角三角形,故本选项不符合题意;D.()()2a b c b c =+-,∴222a b c =-,即222a c b +=,∴∠B = 90°,∴△ABC 是直角三角形,故本选项不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理和三角形内角和定理,能熟记勾股定理的逆定理和三角形内角和定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形,三角形的内角和等于180°.3.D解析:D【解析】【分析】根据平行四边形的判定判断即可.【详解】解:A、两组对边分别平行的四边形是平行四边形,是真命题,不符合题意;B、两组对边分别相等的四边形是平行四边形,是真命题,不符合题意;C、两组对角分别相等的四边形是平行四边形,是真命题,不符合题意;D、对角线互相平分的四边形是平行四边形,原命题是假命题,符合题意;故选:D.【点睛】本题考查的是平行四边形的判定定理,解题关键是熟练运用平行四边形的判定定理.4.B解析:B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.C解析:C【分析】过点A作AN⊥CD交DC延长线于点N,延长AG交DF于点M,利用含30度角的直角三角形的性质和勾股定理求得DN和AN的长,证明△AGB △MGF,求得DM的长,再利用勾股定理即可求解.【详解】解:过点A作AN⊥CD交DC延长线于点N,延长AG交DF于点M,如图,∵四边形ABCD是平行四边形,∴BC=AD=6,CD∥AB,∠ADC=60°,则∠DAN=30°,∴DN=12AD=3,AN22226333AD DN--=∵CD∥AB,G为BF的中点,∴∠ABG=∠F,∠AGB=∠MGF,BG=GF,∴△AGB≅△MGF,∴AB= MF=2,AG= GM,∴DM=DF-MF=1,∴MN=DN+DM=4,∵222AN MN AM+=,∴AM43∴AG43故选:C.【点睛】本题考查了平行四边形的性质,含30度角的直角三角形的性质,勾股定理,作出辅助线,构建全等三角形的解题的关键.6.C解析:C【解析】【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CD B.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【详解】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SS A 、HL .注意:AA A 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.7.B解析:B 【解析】 【分析】根据“ASA ”判定△ADE ≌△CDF ,可证DE =DF ,在Rt △ADE 中,运用勾股定理求出DE 的长度,再在Rt △DEF 中,运用勾股定理即可求出EF 的长. 【详解】解:∵四边形ABCD 是正方形,∴AD =AB =BC =CD ,∠A =∠ADC =∠DCB =∠B =90°, ∵DF ⊥DE ,∴∠ADE +∠EDC =∠CDF +∠EDC =90°, 即∠ADE =∠CDF , 在△ADE 和△CDF 中, ADE CDF AD CDA DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ), ∴DE =DF ,∵E 为AB 的中点,AE =2, ∴AD =AB =4,在Rt △ADE 中,DE =, 在Rt △DEF 中,EF = 故选:B . 【点睛】本题主要考查了正方形的性质和勾股定理的应用,求线段的长度常常是把线段转化到直角三角形中,运用勾股定理进行计算求值.8.D解析:D 【分析】分析图像得出BE 和BC ,求出AB ,作EH ⊥BC 于H ,作EF ∥MN ,M 1N 2∥EF ,作DG ⊥M 1N 2于点G ,求出EF 和M 1N 2,在△DM 1N 2中,利用面积法列出方程,求出t 值即可. 【详解】解:由题意可得:点M 与点E 重合时,t =5,则BE =5, 当t =10时,点N 与点C 重合,则BC =10,∵当t =5时,S =10, ∴5102AB ⨯=,解得:AB =4, 作EH ⊥BC 于H ,作EF ∥MN ,M 1N 2∥EF ,作DG ⊥M 1N 2于点G ,则EH =AB =4,BE =BF =5, ∵∠EHB =90°,∴BH 2254-,∴HF =2,∴EF 222425+∴M 1N 2=25设当点M 运动到M 1时,N 2D 平分∠M 1N 2C ,则DG =DC =4,M 1D =10-AE -EM 1=10-3-(t -5)=12-t ,在△DM 1N 2中,1121122DM AB M N DG ⨯⨯=⨯⨯,即()1112425422t ⨯-⨯=⨯,解得:1225t =-故选D . 【点睛】本题考查了动点问题的函数图像,矩形的性质,勾股定理,面积法,解题的关键是读懂图象,了解图象中每个点的实际含义. 二、填空题9.72【解析】 【分析】根据二次根式有意义的条件列出不等式,解不等式求出x ,进而求出y ,计算即可.【详解】解:由题意得:2x -1≥0,1-2x ≥0,解得:x =12, ∴y =3,∴x +y =12+3=72,故答案为:72.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.A解析:120【解析】【分析】在Rt△AOB中,AO2+BO2=AB2,从而求出BO,继而得出BD,根据菱形的面积等于对角线乘积的一半可得出答案.【详解】解:∵四边形ABCD是菱形,∴AO=OC,BO=DO,AC⊥BD∵AC=24,AO=12AC=12,在Rt△AOB中,AO2+BO2=AB2,又AB=13,∴BO=221312=5,∴BD=10,∴S菱形ABCD=12AC•BD=12×10×24=120,∴菱形ABCD的面积为120.故答案为:120.【点睛】本题考查菱形的性质,属于中等难度的题目,解答本题关键是掌握①菱形的对角线互相垂直且平分,②菱形的面积等于底乘以底边上的高,还等于对角线乘积的一半.11.A解析:【解析】【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A所代表的正方形的面积A=36+64=100.【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.故答案为:100.【点睛】本题考查了正方形的面积公式以及勾股定理.12.A解析:8【分析】由勾股定理可得AC=5,根据角平分线的性质可证∠H=∠CAH=∠DAH,即AC=CH=5,则可求S△ABH的值,由P是中点,可得S△ABP的值.【详解】解:∵四边形ABCD是矩形,∴AD//BC,∠ABC=90°,∵AB=4,BC=3,∴AC5,∵AH平分∠DAC,∴∠DAH=∠CAH,∵AD//BC,∴∠DAH=∠H,∴∠H=∠CAH,∴AC=CH=5,∵BH=BC+CH,∴BH=8,∵S△ABH=12AB×BH=12×4×8=16,∵P是AH的中点∴S△ABP=12S△ABH=8;故答案为:8.【点睛】此题主要考查矩形的性质与判定综合,解题的关键是矩形的性质及勾股定理的应用.13.2【分析】根据题意可以求得一次函数y=﹣2x+m的伴随点,然后根据一次函数y=﹣2x+m的伴随点在它的图象上,从而可以求得m的值.【详解】解:由题意可得,y=﹣2x+m的伴随点是(m,﹣2),∵一次函数y=﹣2x+m的伴随点在它的图象上,∴﹣2=﹣2m+m,解得,m=2,故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.14.A解析:3【分析】根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度.【详解】解:由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中,AC=2AB=2,由勾股定理得,BC=2222213AC AB-=-=,故答案为:3【点睛】本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数.15.【分析】过点B作BM⊥轴于点B,使BM=OB,利用SAS证得△BOC△BMD,再证明M、D、A三点共线,推出四边形AMBO是正方形,当且仅当PD⊥AM时,线段DP的长度取得最小值,利用勾股定理即解析:4 3【分析】过点B作BM⊥y轴于点B,使BM=OB,利用SAS证得△BOC≅△BMD,再证明M、D、A 三点共线,推出四边形AMBO是正方形,当且仅当PD⊥AM时,线段DP的长度取得最小值,利用勾股定理即可求解.【详解】解:过点B作BM⊥y轴于点B,使BM=OB,连接DM,AD,∵直线y=﹣x+2与x轴交于点A,与y轴交于点B,∴令0y=,则2x=;令0x=,则2y=;∴点A的坐标为(2,0),点B的坐标为(0,2),∴OA=OB=BM=2,∵BM⊥y轴,∴∠OBM=90°,∴点M 的坐标为(2,2),∵△BCD 是等腰直角三角形,∴BC =BD ,∠CBD =90°,∴∠CBD =∠OBM =90°,∴∠CBD -∠OBD =∠OBM -∠OBD ,∴∠CBO =∠DBM ,在△BOC 和△BMD ,BC BD CBO DBM OB MB =⎧⎪∠=∠⎨⎪=⎩, ∴△BOC ≅△BMD (SAS ),∴∠BOC =∠BMD =90°,∴BM ⊥DM ,∴DM ∥OB ,∵M 、D 、A 三点的横坐标相同,都为2,∴M 、D 、A 三点共线,∴四边形AMBO 是正方形,∴∠BAM =45°,∵AB=点P 是线段AB 的三等分点(AP >BP ),∴AP =23AB当且当PD ⊥AM 时,线段DP 的长度取得最小值,此时,△PAD 为等腰直角三角形,∴PD=43, ∴线段DP 长度最小值为43, 故答案为:43. 【点睛】本题考查了一次函数的的图象与坐标轴的交点问题,正方形的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识点,证得四边形AMBO 是正方形,以及当PD ⊥AM 时,线段DP 的长度取得最小值是解题的关键.16.+【分析】先推出BE=DE ,设BE=DE=x ,则AE=2-x ,利用勾股定理列出关于x 的方程,求出BD 的长,进而求解.【详解】∵AD ∥BC ,∴∠ADB=∠CBD ,∵长方形ABCD 沿对角线B解析:52【分析】先推出BE=DE ,设BE=DE=x ,则AE=2-x ,利用勾股定理列出关于x 的方程,求出BD 的长,进而求解.【详解】∵AD ∥BC ,∴∠ADB=∠CBD ,∵长方形ABCD 沿对角线BD 折叠,∴∠EBD=∠CBD ,∴∠ADB=∠EBD ,∴BE=DE ,设BE=DE=x ,则AE=2-x ,在Rt∆ABE 中,(2-x)2+12=x 2,解得:x=54,在Rt∆ABD 中,∴△BED 的周长=54+5452 【点睛】本题主要考查矩形的性质,等腰三角形的判定定理,折叠的性质以及勾股定理,熟练掌握勾股定理是解题的关键.三、解答题17.(1);(2);(3);(4)【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利解析:(1)2)11--3)510x y =⎧⎨=⎩;(4)6024x y =⎧⎨=-⎩ 【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利用加减消元法求解即可.【详解】解:(1)原式==;(2)原式()22921⎡⎤=+⨯-⎢⎥⎣⎦(()111=+⨯-11=-- (3)23405x y x y +=⎧⎨-=-⎩①②由②可得:5x y =-,将5x y =-代入①得:()25340y y -+=,解得:10y =,∴1055x =-=,∴原方程组解为:510x y =⎧⎨=⎩; (4)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② 由①×4-②×3可得:43748332y y -=⨯-⨯, 解得:24y =-, 将24y =-代入①可得:24743x -+=, 解得:60x =,∴原方程组解为:6024x y =⎧⎨=-⎩. 【点睛】本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键.18.快艇航行了(500+500)米.【分析】先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.【详解析:快艇航行了(【分析】先根据题意得到∠AOE =60°,∠BOF =45°,从而得到∠AOC =30°,∠BOC =45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.【详解】解:如图:在直角△AOC中,∠AOC=30°,OA=1000米,∴AC=1OA=500米,2∴225003=-=米,OC OA AC∵∠FOB=45°,∴∠COB=45°,∴OC=BC=5003米∴AB=500+5003(米).答:快艇航行了(500+5003)米.【点睛】本题主要考查了勾股定理,方位角,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.19.(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状;(2)判断出AB和AC解析:(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出222+=,再根据AB AC BC勾股定理的逆定理判断出三角形ABC的形状;(2)判断出AB和AC分别为底和高,利用公式直接计算出面积.【详解】解:(1)∵222AB=+=,125222AC=+=,2420222BC=+=,3425222AB AC BC ∴+=,ABC ∴为直角三角形;(2)由(1)可知:AB AC ==12ABC SAB AC = 12= 5=;ABC ∴的面积为5.【点睛】本题考查了勾股定理,勾股定理逆定理,三角形的面积,充分利用网格是解题关键. 20.见解析.【分析】根据四边形是平行四边形,再证明有一组邻边相等即可.【详解】解:∵,∴四边形是平行四边形,∵平分,∴,∵,∴,∴,∴,∴平行四边形是菱形.【点睛】本题考查了解析:见解析.【分析】根据//,//DE AC DF AB 四边形AEDF 是平行四边形,再证明有一组邻边相等即可.【详解】解:∵//,//DE AC DF AB ,∴四边形AEDF 是平行四边形,∵AD 平分BAC ∠,∴12∠=∠,∵//DE AC ,∴23∠∠=,∴13∠=∠,∴AE DE=,∴平行四边形AEDF是菱形.【点睛】本题考查了平行线的性质,菱形的判定,等腰三角形的判定,解题关键是熟练运用相关性质,准确进行推理证明.21.(1)1;1(2)结果为1,证明过程见详解(3)【解析】【分析】(1)根据题目定义的运算方式代数计算即可.(2)根据第(1)题的计算结果总结规律,并加以证明.(3)运用第(2)题的运算规律解析:(1)1;1(2)结果为1,证明过程见详解(3)1 992【解析】【分析】(1)根据题目定义的运算方式代数计算即可.(2)根据第(1)题的计算结果总结规律,并加以证明.(3)运用第(2)题的运算规律和加法结合律进行将式子中每一项适当分组,再进行计算.【详解】解:(1)1 f f+===;1 f f+==.(2)猜想f f+的结果为1.证明:f f+===1=(3)fff f f f f +++++⋅⋅⋅++f f f f f f f ⎡⎤⎡⎤⎡⎤=+++++⋅⋅⋅++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦919=⨯1992= 【点睛】本题以定义新运算的形式考查了二次根式的综合计算,遵循新运算的方式,熟练掌握二次根式的计算是解答关键.22.当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算解析:当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算【分析】先根据方案分别求出1y 和2y ,再分三种情况分别计算即可得到答案.【详解】 解:根据题意得:19.54 3.810y x x =⨯=; 27.52004(200)4320010y x x =⨯+-⨯⨯=+, 当12y y >时,3.83200x x >+,解得x>250;当12y y =时,3.83200x x =+,解得x=250;当12y y <时,3.83200x x <+,解得x<250;答:当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算.【点睛】此题考查方案选择问题,解一元一次方程及一元一次不等式,正确求出1y 和2y 是解题的关键.23.(1)见解析;(2),理由见解析;(3)78,或【分析】(1)如图①中,如图1中,过点作于.证明可得结论.(2)如图②中,结论:.如图③中,结论:.利用全等三角形的性质解决问题即可.(3)根解析:(1)见解析;(2),理由见解析;(3)78,或【分析】(1)如图①中,如图1中,过点D作于.证明可得结论.(2)如图②中,结论:.如图③中,结论:.利用全等三角形的性质解决问题即可.(3)根据菱形的周长求出菱形的边长,利用菱形的面积公式求出菱形的高EF,再利用勾股定理求出,利用(2)中结论解决问题即可.【详解】解:(1)如图①中,如图1中,过点D作于.四边形ABCD是菱形,,//AD BC,,,,,,,∴四边形是平行四边形,,=,,,AB AC,,,,,.(2)如图②中,结论:.理由:过点D作于.同法可证,,,.如图③中,结论:.理由:过点D作于.同法可证,,,.(3)菱形ABCD的周长为52,,菱形ABCD的面积,,,,,四边形的面积.,,,如图②中,,如图③,故答案为78,或.【点睛】本题属于四边形综合题,考查了菱形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(1);(2);(3)【解析】【分析】(1)先求直线的解析式,再用含的代数式表示点、点的坐标,将点的坐标代入,解关于的方程即可求出点落在直线上时的值;(2)先确定矩形与的重叠部分的图形为矩形解析:(1)247;(2)2222124(0)2745244272(4)879246(4)852422472(6)5t t t t t S t t t t t t ⎧<≤⎪⎪⎪-+-<≤⎪=⎨⎪-+<≤⎪⎪⎪-+<≤⎩;(3)1255 【解析】【分析】(1)先求直线OB 的解析式,再用含t 的代数式表示点E 、点F 的坐标,将点F 的坐标代入12y x =-+,解关于t 的方程即可求出点F 落在直线AB 上时t 的值;(2)先确定矩形PEFG 与ABO ∆的重叠部分的图形为矩形、五边形、梯形、三角形时t 的取值范围,再按这几种不同的情况分别求出S 与t 的关系式;(3)连接AE 、GE ,则点Q 在GE 上,且PQ EQ =,先确定PQ AQ EQ AQ AE +=+≥,再证明当点G 与点A 重合时AE 的值最小,且此时PQ AQ AE +=,求出AE 的值即可得到PQ AQ +的最小值.【详解】解:(1)如图1,设直线OB 的解析式为y kx =,点(8,4)B 在直线y kx =上,84k ∴=,解得,12k =, 12y x ∴=, 2OP t =,(2,0)P t ∴,(2,)E t t ,1122EF PE t ==, 5(2F t ∴,)t ,5(2G t ,0), 当点F 落在直线AB 上时,则5122t t -+=,解得24.7t = (2)当点E 与点B 重合时,则28t =,解得4t =;当点G 与点A 重合时,则5122t =,解得245t =; 当点P 与点A 重合时,则212t =,解得6t =,当2407t <≤时,如图1,PE t =,12EF t =, 21122S t t t ∴=⋅=; 当2447t <≤时,如图2,设直线12y x =-+交y 轴于点C ,则(0,12)C ,12OA OC ∴==,90AOC ∠=︒,45OAC OCA ∴∠=∠=︒,设EF 、FG 分别交AB 于点J 、点K ,则45FKJ OCA ∠=∠=︒,45FJK OAC ∠=∠=︒, JF FK ∴=;对于12y x =-+,当52x t =时,5122y t =-+,5(2K t ∴,512)2t -+, 57(12)1222FK t t t ∴=--+=-,22211745(12)42722228S t t t t ∴=--=-+-; 当2445t <≤时,如图3,45GKA PJA OAC ∠=∠=∠=︒,122PA PJ t ∴==-,5122GA GK t ==-, 2221159(122)(12)62228S t t t t ∴=---=-+; 当2465t <≤时,如图4,221(122)224722S t t t =-=-+,综上所述,2222124(0)2745244272(4)879246(4)852422472(6)5t t t t t S t t t t t t ⎧<≤⎪⎪⎪-+-<≤⎪=⎨⎪-+<≤⎪⎪⎪-+<≤⎩. (3)如图4,连接AE 、GE ,由矩形的性质可知,点Q 在GE 上,且PQ EQ =, PQ AQ EQ AQ AE ∴+=+≥,∴当点Q 落在AE 上,且AE 最小时,PQ AQ +的值最小;如图5,点G 与点A 重合,则AE 与GE 重合,∴点Q 在AE 上,PQ AQ AE ∴+=, 此时245t =, 24482255OP t ∴==⨯=, 48121255AP ∴=-=, 1224255PE ∴=⨯=, 221224125()()55AE ∴+= 作BD x ⊥轴于点D ,作AE OB '⊥于点E ',则228445OB + 由1122OAB S OB AE OA BD ∆=⨯⋅'=⋅,得114512422AE ⨯'=⨯⨯,解得125AE ', AE AE ∴=',AE ∴的长就是点A 到直线OB 的距离,AE OB ∴⊥,AE ∴的值最小,此时PQ AQ +125 125 【点睛】 此题重点考查一次函数的图象与性质、等腰直角三角形的性质、勾股定理、用待定系数法求函数关系式及动点问题的求解等知识与方法,还涉及数形结合、分类讨论等数学思想的运用,此时难度较大,属于考试压轴题.25.(1);(2)t=s 时,四边形ABMN 是平行四边形;(3)存在,点Q 坐标为:或或或.【分析】(1)如图1中,作BH ⊥x 轴于H .证明△COA ≌△AHB (AAS ),可得BH=OA=1,AH=OC=2解析:(1)123y x =-+;(2)t=23s 时,四边形ABMN 是平行四边形;(3)存在,点Q 坐标为:618,55⎛⎫ ⎪⎝⎭或(3, 1)-或( 3,1)-或155,88⎛⎫- ⎪⎝⎭. 【分析】(1)如图1中,作BH ⊥x 轴于H .证明△COA ≌△AHB (AAS ),可得BH=OA=1,AH=OC=2,求出点B 坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N 的坐标,再求出AN ,BM ,CM 即可解决问题. (3)如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3,当OB 为菱形的对角线时,可得菱形OP 2BQ 2,点Q 2在线段OB 的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH ⊥x 轴于H .∵A (1,0)、C (0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH ,∵AC=AB ,∴△COA ≌△AHB (AAS ),∴BH=OA=1,AH=OC=2,∴OH=3,∴B (3,1),设直线BC 的解析式为y=kx+b ,则有231b k b =⎧⎨+=⎩, 解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE ⊥BC ,∴直线OE 的解析式为y=3x ,由3123y x y x =⎧⎪⎨=-+⎪⎩,解得:3595x y ⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
八年级下册数学期末试卷易错题(Word版含答案)
八年级下册数学期末试卷易错题(Word 版含答案)一、选择题1.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x ≥ B .0x <C .2x ≤D .2x ≥2.下列条件中,不能判断ABC (a 、b 、c 为三边,A ∠、B 、C ∠为三内角)为直角三角形的是( ) A .2221,2,3a b c === B .::3:4:5a b c = C .A B C ∠+∠=∠D .::3:4:5A B C ∠∠∠=3.下列条件不能判定四边形ABCD 是平行四边形的是( ) A .,AD BC AB CD == B .,A C B D ∠=∠∠=∠ C .//,AB CD BC AD= D .//,AD BC B D ∠=∠ 4.一组数据:1,2,3,2,1,0.这组数据的中位数是( )A .1B .2C .3D .1.55.如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,点D 在边AC 上,AD AB =,AE BD ⊥,垂足为点F ,交BC 于点E ,则BE 的长为( )A .2B .32C .34D .236.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CFD 等于( )A .50°B .60°C .70°D .80°7.如图,矩形ABCD 中,对角线AC 与BD 相交于点O ,DE AC ⊥,垂足为点E ,若:3:2AO OE =,25DE =,则CE 长为( )A .1B .2C 5D 28.对于实数,a b ,定义符号{},min a b 其意义为:当a b ≥时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( ) A .1B .43C .53D .2二、填空题9.若121xx -+有意义,则x 的取值范围为_______________. 10.菱形ABCD 的对角线AC 与BD 相交于点O ,若13,24AB AC ==,则菱形ABCD 的面积是___________.11.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.12.如图,在矩形ABCD 中,E ,F 分别是边AB ,BC 上的点.将∠A ,∠B ,∠C 按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.13.已知一次函数y =kx ﹣b ,当自变量x 的取值范围是1≤x ≤3时,对应的因变量y 的取值范围是5≤y ≤10,那么k ﹣b 的值为_______.14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.正方形111A B C O ,2221A B C C ,3332A B C C ,…按如下图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线()0y kx b k =+>和x 轴上,已知正方形111A B C O 的边长为1,正方形2221A B C C 边长为2,则7A 的坐标是______.16.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FN的长为______.三、解答题17.计算:(1)8182;(2)(13+3)(13﹣3).18.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC中,∠ACB=90°,AC+AB=10,BC=4,求AC的长.19.如图,在正方形网格中,点A,B,C都在格点上,若小方格边长为1.(1)试判断ABC是什么形状,并说明理由;(2)若D为BC边的中点,连接AD,求AD的长.20.如图,在平行四边形ABCD 中,点E 、F 分别为边AB ,CD 的中点,连接DE ,BF ,BD .(1)求证:ADE CBF ≌;(2)若90ADB ∠=︒,求证:四边形BFDE 为菱形.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某公司分别在A ,B 两城生产同种产品,共100件.A 生产的产品总成本y (万元)与产品数量x (件)之间具有函数关系y =kx +b .当x =10时,y =130;当x =20时,y =230.B 城生产的产品每件成本为60万元,若B 城生产的产品数量至少比A 城生产的产品数量多40件. (1)求k ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件? (3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 23.如图①,C 为线段BD 上的一点,BC≠CD ,分别以BC ,BD 为边在BD 的上方作等边△ABC 和等边△CDE ,连接AE ,F ,G ,H 分别是BC ,AE ,CD 的中点,连接FG ,GH ,FH . (1)△FGH 的形状是 ;(2)将图①中的△CDE 绕点C 顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由; (3)若BC =,CD =4,将△CDE 绕点C 旋转一周,当A ,E ,D 三点共线时,直接写出△FGH 的周长.=+经过,两点,且a、b 24.如图,在平面直角坐标系中,直线1l:1y kx b满足,过点B作轴,交直线2l:于点P,连接.(1)求直线AB的函数表达式;(2)在直线2l上是否存在一点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.(3)点是x轴上的一个动点,点D是y轴上的一个动点,过点C作x轴的垂线交直线1l、2l于点M、N,若是等腰直角三角形,请直接写出符合条件的的值.25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD 的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.【参考答案】一、选择题 1.D 解析:D 【分析】由二次根式的性质可以得到x -2≥0,由此即可求解. 【详解】解:依题意得:x -2≥0, ∴x ≥2. 故选D . 【点睛】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.D解析:D 【分析】综合勾股定理以及直角三角形的性质逐项分析即可. 【详解】A 、∵2221,2,3a b c ===,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意; B 、∵::3:4:5a b c =,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意; C 、∵A B C ∠+∠=∠,180A B C ∠+∠+∠=︒,∴90C ∠=︒,ABC 是以C ∠为直角的直角三角形,不符合题意; D 、∵::3:4:5A B C ∠∠∠=,180A B C ∠+∠+∠=︒,∴45A ∠=︒,60B ∠=︒,75C ∠=︒,ABC 不是直角三角形,符合题意; 故选:D . 【点睛】本题考查直角三角形的性质,熟练掌握勾股定理以及直角三角形的基本性质是解题关键.3.C解析:C 【解析】 【分析】根据平行四边形的判定逐一判断即可. 【详解】解:A .由AD =BC ,AB =CD 可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B .由∠A =∠C ,∠B =∠D 可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C .由AB ∥CD ,BC =AD 不能判定四边形ABCD 是平行四边形,此选项符合题意; D .由AD ∥BC 知∠A +∠B =180°,结合∠B =∠D 知∠A +∠D =180°, 所以AB ∥CD ,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意; 故选:C . 【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.4.D解析:D 【解析】 【分析】根据中位数的定义求解即可. 【详解】解:将这组数据重新排列为0、1、1、2、2、3,∴这组数据的中位数为51+22 1.=,故选:D . 【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.B解析:B 【分析】连接DE ,首先利用等腰三角形的性质,证明AE 垂直平分BD ,得出,BE DE = 再证明(),ABE ADE SSS ≅得出90,EDA EDC ∠=∠=︒设,BE x =则4,CE BC BE x =-=-在Rt CDE △中利用勾股定理列方程即可求得BE 的长. 【详解】解:连接DE ,如图,∵,,AD AB AE BD =⊥ ∴AE 垂直平分BD , ∴,BE DE =在ABE △和ADE 中,∵AB AD AE AE BE DE =⎧⎪=⎨⎪=⎩ ∴(),ABE ADE SSS ≅∴90,,ABE ADE BE DE ∠=∠=︒= 在Rt ABC 中,2222345,AC AB BC =++=∴532,CD AC AD =-=-= 设,BE x =则4,CE BC BE x =-=- 在Rt CDE △中, ∵222,CD DE CE += ∴2222(4),x x +=- 解得,32x =, 故选:B . 【点睛】本题考查的是等腰三角形的性质,线段的垂直平分线的性质、勾股定理、全等三角形的判定SSS ,利用线段的垂直平分线的性质确定相等的线段,再根据勾股定理列方程是解决本题的关键.线段垂直平分线的性质:线段垂直平分线上的点,到线段两个端点的距离相等.6.D解析:D 【解析】 【分析】连接BF ,根据菱形的性质得出△ADF ≌△ABF ,从而得到∠ABF =∠ADF ,然后结合垂直平分线的性质推出∠ABF =∠BAC ,即可得出结论. 【详解】解:如图,连接BF ,∵四边形ABCD 是菱形,∠BAD =80°,∴AD =AB ,∠DAC =∠BAC =12∠BAD =40°, 在△ADF 和△ABF 中, AD AB DAF BAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABF (SAS ), ∴∠ABF =∠ADF ,∵AB 的垂直平分线交对角线AC 于点F ,E 为垂足, ∴AF =BF ,∴∠ABF =∠BAC =40°, ∴∠DAF =∠ADF =40°, ∴∠CFD =∠ADF +∠DAF =80°. 故选:D .【点睛】本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键.7.B解析:B 【解析】 【分析】由矩形的性质得到∠ADC =90°,BD =AC ,OD =12BD ,OC =12AC ,求得OC =OD ,设OA =3x ,OE =2x ,得到OD =OA =3x ,根据勾股定理即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AC =BD ,OD =12BD ,OC =12AC ,∠ADC =90°, ∴OC =OD ,∵AO :OE =3:2,DE ⊥AC , 设OA =3x ,OE =2x ,在Rt △DOE 中,222OD OE DE =+, 即()()(2223225x x =+ , 解得:x =2或x =−2(舍去), ∴OC =OA =6,OE =4,∴EC =OC −OE =6−4=2, 故选:B . 【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.8.C解析:C 【分析】根据定义先列不等式:213x x --+和213x x --+,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值. 【详解】解:由题意得:213y x y x =-⎧⎨=-+⎩,解得:4353x y ⎧=⎪⎪⎨⎪=⎪⎩,当213x x --+时,43x, ∴当43x时,{21y min x =-,3}3x x -+=-+, 由图象可知:此时该函数的最大值为53;当213x x --+时,43x, ∴当43x时,{21y min x =-,3}21x x -+=-, 由图象可知:此时该函数的最大值为53;综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值, 如图所示,当43x =时,53y =,故选:C 【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.二、填空题9.12x ≤且1x ≠- 【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:由题意得:120x -≥,且10x +≠解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键.10.A解析:120【解析】【分析】在Rt △AOB 中,AO 2+BO 2=AB 2,从而求出BO ,继而得出BD ,根据菱形的面积等于对角线乘积的一半可得出答案.【详解】解:∵四边形ABCD 是菱形,∴AO =OC ,BO =DO ,AC ⊥BD∵AC =24,AO =12AC =12,在Rt △AOB 中,AO 2+BO 2=AB 2,又AB =13,∴BO =221312-=5,∴BD =10,∴S 菱形ABCD =12AC •BD =12×10×24=120,∴菱形ABCD 的面积为120.故答案为:120.【点睛】本题考查菱形的性质,属于中等难度的题目,解答本题关键是掌握①菱形的对角线互相垂直且平分,②菱形的面积等于底乘以底边上的高,还等于对角线乘积的一半. 11.A解析:【解析】【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100.【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.故答案为:100.【点睛】本题考查了正方形的面积公式以及勾股定理.12.A解析:3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.13.5或10【分析】本题分情况讨论①k>0时,x=1时对应y=5;②k>0时,x=1时对应y=10.【详解】解:①k>0时,由题意得:x=1时,y=5,∴k-b=5;②k<0时,由题意得:x=1时,y=10,∴k-b=10;综上,k-b的值为5或10.故答案为:5或10.【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解.14.A解析:AC BD【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC,GF=AE=12BD,再根据菱形四条边相等的性质,可得出AC与BD的关系.【详解】如下图,点E、F、G、H分别是AB、BC、CD、DA的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12BD . 15.(63,64)【分析】由题意易得,然后把点的坐标代入直线求解,进而可得点,,…..;由此可得规律为,最后问题可求解.【详解】解:∵四边形,是正方形,且正方形的边长为,正方形边长为,∴,∴解析:(63,64)【分析】由题意易得()()()()21110,1,1,1,1,0,1,2A A B C ,然后把点12,A A 的坐标代入直线()0y kx b k =+>求解,进而可得点()33,4A ,()47,8A ,…..;由此可得规律为()1121,2n n n A ---,最后问题可求解.【详解】解:∵四边形111A B C O ,2221A B C C 是正方形,且正方形111A B C O 的边长为1,正方形2221A B C C 边长为2,∴211111*********,2C O A B A O C C C B C A A B C B ========,∴()()()()21110,1,1,1,1,0,1,2A A B C ,12123O C C O C C =+=,∵点123,,A A A ….在直线()0y kx b k =+>上,∴把点12,A A 的坐标代入得:21k b b +=⎧⎨=⎩,解得:11k b =⎧⎨=⎩, ∴直线1y x =+,当x =3时,则有314y =+=,∴()33,4A ,同理可得()47,8A ,∵11213141210,211,213,217-----=-=-=-=,…..;∴()1121,2n n n A ---, ∴()763,64A ;故答案为()63,64.【点睛】本题主要考查正方形的性质及一次函数的应用,熟练掌握正方形的性质及一次函数的图象与性质是解题的关键.16.【分析】由正方形纸片沿对边中点所在的直线对折后展开,折痕为,可得到AN 且;再由过点折叠纸片,使点落在上的点处,可得到AB ;在通过勾股定理计算的FM ,从而得到答案.【详解】∵正方形纸片沿对边中解析:2【分析】由正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,可得到AN 且90BMN ∠=;再由过点B 折叠纸片,使点A 落在MN 上的点F 处,可得到AB ;在通过勾股定理计算的FM ,从而得到答案.【详解】∵正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ∴112122AN BM AB ===⨯=,90BMN ∠= ∵过点B 折叠纸片,使点A 落在MN 上的点F 处∴2AB FB == ∴FM =又∵正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN∴2MN AB == ∴2FN MN FM =-=故答案为:2.【点睛】本题考查了勾股定理、轴对称、正方形的知识;求解的关键是熟练掌握勾股定理、轴对称、正方形的性质,从而完成求解.三、解答题17.(1)5;(2)4【分析】(1)先利用二次根式的性质化简,然后利用二次根式的除法计算法则求解即可;(2)利用平方差公式进行求解即可.【详解】解:(1);(2).【点睛】本解析:(1)5;(2)4【分析】(1)先利用二次根式的性质化简,然后利用二次根式的除法计算法则求解即可;(2)利用平方差公式进行求解即可.【详解】解:(1=5=;(2))33223=-139=-4=.【点睛】本题主要考查了二次根式的化简,二次根式的除法,二次根式的混合计算,平方差公式,解题的关键在于能够熟练掌握相关计算法则.18.【分析】直接利用勾股定理进而得出AC的长.【详解】解:∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+AB=10,BC=4,设AC=x,则AB=10﹣x,∴x2+解析:21 5【分析】直接利用勾股定理进而得出AC的长.【详解】解:∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+AB=10,BC=4,设AC=x,则AB=10﹣x,∴x2+42=(10﹣x)2,解得:x =215, 答:AC 的长为215. 【点睛】此题主要考查了勾股定理的应用,正确得出等式方程是解题关键.19.(1)三角形ABC 是直角三角形,理由见解析;(2)【解析】 【分析】(1)先利用勾股定理分别求出AB ,BC ,AC 的长,然后利用勾股定理的逆定理求解即可;(2)根据直角三角形斜边上的中线等于斜边解析:(1)三角形ABC 是直角三角形,理由见解析;(2)52【解析】【分析】(1)先利用勾股定理分别求出AB ,BC ,AC 的长,然后利用勾股定理的逆定理求解即可;(2)根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:(1)三角形ABC 是直角三角形,理由如下:由题意得:22125AB =+=,222425AC =+=,22345BC =+=,∴()()2222252525AB AC BC +=+==,∴三角形ABC 是直角三角形;(2)∵D 为BC 边的中点,三角形ABC 是直角三角形,∠BAC =90°,∴1522AD BC ==. 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,直角三角形斜边上的中线等于斜边的一半,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的对边相等的性质可以得到AD=BC ,AB=CD ,又点E 、F 是AB 、CD 中点,所以AE=CF ,然后利用边角边即可证明两三角形全等; (2)先证解析:(1)见解析;(2)见解析【分析】(1)根据平行四边形的对边相等的性质可以得到AD =BC ,AB =CD ,又点E 、F 是AB 、CD 中点,所以AE =CF ,然后利用边角边即可证明两三角形全等;(2)先证明BE 与DF 平行且相等,然后根据一组对边平行且相等的四边形是平行四边形可得四边形BEDF 是平行四边形;再根据直角三角形斜边上的中线等于斜边的一半可得DE =EB =12AB ,从而可得四边形BFDE 为菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴A C ∠=∠,AD BC =,AB CD =.∵E 、F 分别为AB 、CD 的中点, ∴12AE BE AB ==,12DF CF CD ==, ∴AE CF =,DF BE =,在△ADE 和△CBF 中,AD BC A CAE CF ⎧⎪∠∠⎨⎪⎩===∴ADE CBF ≌.(2)∵AB =CD ,AE =CF ,∴BE =DF ,又AB ∥CD ,∴BE ∥DF ,∴四边形BEDF 是平行四边形,∵∠ADB =90°,∴点E 为边AB 的中点, ∴1=2DE BE AB =, ∴平行四边形BFDE 为菱形.【点睛】此题主要考查了菱形的判定,以及全等三角形的判定,关键是掌握一组邻边相等的平行四边形是菱形,直角三角形斜边上的中线等于斜边的一半.21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)k 的值为10,b 的值为30;(2)A 城生产了30件产品,B 城生产了70件产品;(3)当0<m≤2时,A ,B 两城总运费的和为(30m+80)万元;当m >2时,A ,B 两城总运费的和为(20m+10解析:(1)k 的值为10,b 的值为30;(2)A 城生产了30件产品,B 城生产了70件产品;(3)当0<m ≤2时,A ,B 两城总运费的和为(30m +80)万元;当m >2时,A ,B 两城总运费的和为(20m +100)万元【分析】(1)由题意用待定系数法求k ,b 的值即可;(2)设A ,B 两城生产这批产品的总成本的和为W 万元,根据题意列出函数关系式,然后由函数的性质求费用最小时x 的值;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D地的产品数量为()30n ﹣件,从B 城运往C 地的产品数量为()90n ﹣件,从B 城运往D 地的产品数量为()1030n +﹣件,从而可得关于n 的不等式组,解得n 的范围,然后根据运费信息可得P 关于n 的一次函数,最后根据一次函数的性质可得答案.【详解】解:(1)由题意,得:1013020230k b k b +=⎧⎨+=⎩, 解得:1030k b =⎧⎨=⎩; (2)设A ,B 两城生产这批产品的总成本的和为W 万元,则()103060100506030W x x x ++⨯+=﹣=﹣, 由B 城生产的产品数量至少比A 城生产的产品数量多40件,得:100﹣x ≥x +40,解得:x ≤30,∵﹣50<0,∴W 随x 的增大而减小,∴当x =30时,W 最小,即A ,B 两城生产这批产品的总成本的和为最少,∴A 城生产了30件产品,B 城生产了100﹣30=70件产品,答:当A ,B 两城生产这批产品的总成本的和最少时,A 城生产了30件产品,B 城生产了70件产品;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为()30n ﹣件,从B 城运往C 地的产品数量为()90n ﹣件,从B 城运往D 地的产品数量为()1030n +﹣件, 由题意得:30010300n n -≥⎧⎨-+≥⎩, 解得:20≤n ≤30,∴()()()3309021030P mn n n n +⨯++⨯+=﹣﹣﹣, 整理得:()2140P mn +=﹣, 根据一次函数的性质分以下两种情况:①当02m ≤<,2030n ≤≤时,P 随n 的增大而减小,则n =30时,P 取最小值,最小值为()3021403080mm ++﹣=; ②当2m >,2030n ≤≤时,P 随n 的增大而增大,则20n =时,P 取最小值,最小值为()20214020100mm ++﹣=. 答:当02m ≤<时,A ,B 两城总运费的和为()3080m +万元;当2m >时,A ,B 两城总运费的和为()20100m +万元. 【点睛】本题考查了待定系数法求一次函数的解析式及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数的相关性质是解题的关键.23.(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.解析:(1)等边三角形;(2)成立,理由见解析;(3)或.【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.即证明为等边三角形.(2)先判断出PF ,PG 是△ABC 和△CDE 的中位线,再判断出∠FPG =∠FCH ,进而证明△FPG ≌△FCH ,得出结论FG =FH ,∠PFG =∠CFH ,最后证明出∠GFH=,即证明△FGH为等边三角形.(3)①当点E 在AE 上时,先求出CM ,进而求出AM ,即可求出AD ,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN 、EN ,进而求出BD ,最后即可求出FH ,即可得出结果;②当点D 在AE 的延长线上时同①的方法即可得出结果. 【详解】 (1)∵ABC 和都为等边三角形,且边长不相等. ∴,.∴四边形ABCE 和四边形ACDE 都是梯形. 又∵F 、G 、H 分别是BC 、AE 、CD 中点,∴FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线. ∴,.∴,.∴为等边三角形.故答案为:等边三角形.(2)取AC 的中点P ,连接PF ,PG , ∵△ABC 和△CDE 都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°.又F,G,H分别是BC,AE,CD的中点,∴FP=12AB,FC=12BC,CH=12CD,PG=12CE,PG∥CE,PF∥AB.∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°.∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE.∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC.∴∠FPG=∠FCH.∴△FPG≌△FCH(SAS).∴FG=FH,∠PFG=∠CFH.∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°.∴△FGH为等边三角形.所以成立.(3)①当点D在AE上时,如图,∵ABC是等边三角形,∴,.∵是等边三角形,∴,,过点C作于M,∴,在中,根据勾股定理得,,在中,根据勾股定理得,,∴,∵,∴,∴,连接BE,在和中,,∴(SAS),∴BE=AD=2, ,∵,∴,∴,过点B作于N,∴,在中,,∴,∴,DN=DE-EN=3,连接BD,根据勾股定理得:,∵点H是CD中点,点F是BC中点,∴FH是的中位线,∴,由(2)可知,△FGH为等边三角形.∴△FGH的周长.②当点D在AE的延长线上时,如图,同理可求,所以△FGH的周长.即满足条件的△FGH 的周长位或.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含30角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难. 24.(1);(2)存在点,点的纵坐标为0或4;(3)4或或47或. 【解析】 【分析】(1)根据非负性求出a 、b 的值,然后运用待定系数法解答即可; (2)根据平行和坐标以及SΔBPQ=SΔBPA 确定Q 解析:(1)122y x =-+;(2)存在点Q ,Q 点的纵坐标为0或4;(3)4或45或或4-.【解析】 【分析】(1)根据非负性求出a 、b 的值,然后运用待定系数法解答即可; (2)根据平行和坐标以及确定Q 坐标即可;(3)连接DM 、DN ,由题意可得M 、N 的坐标分别为(n ,),(n ,n ),MN=|32n-2|,然后再分MN=DM,MN=DN,DM=DN 三种情况解答即可.【详解】 解:(1)∵∴∴()4,0A ()0,2B把()4,0A 、()0,2B 代入1y kx b =+中,得:解得:∴122y x =-+ (2)存在点Q ,使.∵()0,2B ∴∴∵∴Q 点的纵坐标为0或4∴(3) ①当DM=MN或DM=DN时,如图:过M做DM∥x轴交y轴于D点,连接DN∵C点坐标为(n,n),∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|32n-2|,∴|32n-2|=|n|,解得:n=4或n=45②当DM=DN或DM=DN时,如图∵C点坐标为(n,n),∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|32n-2|,又∵是等腰直角三角形∴D在MN的垂直平分线上,DF=12MN ∴,D(0, +1)F(n,|)∴|n| =12|32n-2|,解得:或4-综上,n的取值为4或45或或4-时,是等腰直角三角形.【点睛】本题属于一次函数综合题,考查了一次函数图像上点的坐标特点、一次函数的解析式、一次函数的动点问题以及等腰三角形等知识,考查知识点较多难度较大,解答的关键在于对所学知识的灵活应用以及较强的计算能力.25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.【分析】(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS)解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.【分析】(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题.(2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1).(3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1).【详解】解:(1)探究问题:结论:AD=AB+DC.理由:如图①中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.故答案为AD=AB+DC.(2)方法迁移:结论:AB=AF+CF.证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF.(3)联想拓展:结论;AB=DF+CF.证明:如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB ∥CF , ∴∠BAE =∠G , 在△AEB 和△GEC 中,BAE G AEB GEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEB ≌△GEC , ∴AB =GC , ∵∠EDF =∠BAE , ∴∠FDG =∠G , ∴FD =FG , ∴AB =DF+CF . 【点睛】本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
数学八年级下册数学期末试卷易错题(Word版含答案)
数学八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题1.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x ≥B .0x <C .2x ≤D .2x ≥ 2.下列几组数中,能作为直角三角形三边长的是( )A .2,4,5B .3,4,5C .4,4,5D .5,4,5 3.如图,下列四组条件中.不能判定四边形ABCD 是平行四边形的是( )A .AB =DC ,AD =BCB .AB ∥DC ,AD ∥BC C .AB ∥DC ,AD =BC D .AB ∥DC ,AB =DC4.为迎接建党一百周年,某班开展“我最想看的红色电影”投票活动,参选的五部电影的得票数分别是9,10,11,11,8,则这组得票数据的中位数,众数分别是( ) A .10,11 B .11,10 C .11,11 D .10.5,11 5.如图,在矩形纸片ABCD 中,AB =6,AD =8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,则线段EF 的长为( )A .3B .4C .5D .66.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°7.如图,矩形ABCD 中,AB =7,BC =6,点F 是BC 的中点,点E 在AB 上,且AE =2,连接DF ,CE ,点G 、H 分别是DF ,CE 的中点,连接GH ,则线段GH 的长为( )A .10B 13C 10.D 138.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.已知332y x x =-+--,则x y =____________.10.如图,菱形ABCD 中,DB 为对角线,5AB =,6DB =,点E 为边AB 上一点,则阴影部分的面积为______.11.如图,以Rt ABC 的两条直角边和斜边为边长分别作正方形,其中正方形ABFG 、正方形ACDE 的面积分别为25、144,则阴影部分的面积为______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是CD 中点,且∠COD =60°.如果AB =2,那么矩形ABCD 的面积是____.13.请你写出一个一次函数的解析式,使其满足以下要求:①图象经过()0,2;②y 随x 增大而减小.该解析式可以是_______.14.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,要使四边形EFGH 为菱形,则四边形ABCD 的对角线应满足的条件是__15.甲从A 地出发以某一速度向B 地走去,同时乙从B 地出发以另一速度向A 地而行,如图中的线段1y 、2y 分别表示甲、乙离B 地的距离(km )与所用时间()h x 的关系.则A 、B 两地之间的距离为______km ,甲、乙两人相距4km 时出发的时间为______h .16.如图是一次函数y kx b =+的图象,则关于x 的方程:0kx b +=的解是___________.三、解答题17.计算:(18182+ (213133).18.如图,将长为2.5米的梯子AB 斜靠在墙AO 上,BO 长0.7米.如果将梯子的顶端A 沿墙下滑0.4米,即AM 等于0.4米,则梯脚B 外移(即BN 长)多少米?19.如图1,图2,图3,图4一个每个小正方形的边长为1正方形网格,借用网格就能计算出一些三角形的面积的面积.(1)请你利用正方形网格,计算出如图1所示的△ABC 的面积为 . (2)请你利用正方形网格,在图2中比较10+1与13的大小.(3)已知x 是正数,请利用正方形网格,在图3中求出229(5)1x x ++-+的最小值. (4)若△ABC 三边的长分别为224m n +,2249m n +,22164m n +(其中m >0,n >0且m ≠n ),请利用正方形网格,在图4中求出这个三角形的面积.20.如图,在平行四边形ABCD 中,点E 是边AB 的中点,连接CE 并延长CE 交DA 的延长线于点F ,连接AC ,BF .(1)求证:四边形AFBC 是平行四边形(2)当AEC ∠的度数为______度时,四边形AFBC 是菱形;(3)若52D ∠=︒,则当AEC ∠的度数为______度时,四边形AFBC 是矩形. 21.3535+-解:设x 3535+-222(35)(35)2(35)(35)x =++-++-,即235354x =++-+,x 2=10∴x =10. ∵3535++->0,∴3535++-=10.请利用上述方法,求4747++-的值.22.某农科所为定点帮扶村免费提供一种优质番茄苗及大棚栽培技术.这种番茄苗早期在温室中生长,长到大约20cm 时,移至大棚内,沿插杆继续向上生长.研究表明,30天内,这种番茄苗生长的高度()cm y 与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种番茄苗长到大约65cm 时,开始开花,试求这种番茄苗移至大棚后.继续生长大约多少天,开始开花?23.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则=(直接填结果).24.将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,8OC =.如图1在OC 边上取一点D ,将BCD △沿BD 折叠,使点C 恰好落在OA 边上,记作E 点:(1)求点E 的坐标及折痕DB 的长;(2)如图2,在OC 、CB 边上选取适当的点F 、G ,将△FCG 沿FG 折叠,使点C 落在OA 上,记为H 点,设OH x =,四边形OHGC 的面积为S .求:S 与x 之间的函数关系式; (3)在线段OA 上取两点M 、N (点M 在点N 的左侧),且 4.5MN ,求使四边形BDMN 的周长最短的点M 、点N 的坐标.25.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.下列式子中,一定属于二次根式的是( ) A .6-B .2x -C .39D .32.下列条件中,不能得出ABC 是直角三角形的是( ) A .13a =,5c =,12b = B .222a c b -=C .::3:3:4a b c =D .::2:5:3A B C ∠∠∠=3.下列图形都是由同样大小的平行四边形按一定的规律组成,其中第①个图形中一共有10个平行四边形,第②个图形中一共有14个平行四边形,第③个图形中一共有19个平行四边形,……按此规律排列下去,则第⑥个图形中平行四边形的个数为( )A .39B .40C .41D .424.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取( ) 应试者 计算机 语言 商品知识 甲 60 70 80 乙 80 70 60 丙708060A .甲B .乙C .丙D .任意一人都可5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则CDF ∠等于( )A .80︒B .70︒C .65︒D .60︒7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .94二、填空题9.4x +x 的取值范围为 ___. 10.若菱形的两条对角线长分别是8cm 和10cm ,则该菱形的面积是________2cm . 11.如图,一木杆在离地面1.5m 处折断,木杆顶端落在离木杆底端2m 处,则木杆折断之前的高___(m ).12.如图,在矩形ABCD 中,6BC =,3CD =,将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,则线段DE 的长为____________.13.若直线y =kx +b 与直线y =2x ﹣3平行且经过点A (1,﹣2),则kb =_____. 14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,分别过点C ,D 作BD ,AC 的平行线,相交于点E .若AD=6,则点E 到AB 的距离是________.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,在长方形纸片ABCD 中,6AB cm =,8BC cm =,点E 是BC 边上一点,连接AE 并将AEB ∆沿AE 折叠,得到AEB '∆,以C ,E ,B '为顶点的三角形是直角三角形时,BE 的长为____________cm .三、解答题17.计算:(1)12632⨯÷;(2)2055+;(3)2214524-;(4)11 12333-⎛⎫+-- ⎪⎝⎭.18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的ABC,请你根据所学的知识回答下列问题:(1)判断ABC的形状,并说明理由:(2)求ABC的面积.20.如图所示,ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F .求证:四边形AFCE 是菱形.21.小明在解决问题:已知23+2a2﹣8a+1的值,他是这样分析与解的: ∵23+23(23)(23-+-3 ∴a ﹣2=3∴(a ﹣2)2=3,a2﹣4a+4=3 ∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题: (121+32+43+10099+ (2)若21-,求4a2﹣8a+1的值. 22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案: 方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x 单(x 为正整数),方案一、方案二中骑手的日工资分别为y 1、y 2(单位:元).(1)分别写出y 1、y 2关于x 的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由. 23.图1,在正方形ABCD 中,,P 为线段BC 上一点,连接,过点B 作,交CD 于点Q .将沿所在直线对折得到,延长交于点N .(1)求证:.(2)若,求AN的长.(3)如图2,延长交BA的延长线于点,若,记的面积为,求与x之间的函数关系式.24.如图,函数483y x=-+的图像分别与 x轴、 y轴交于 A、 B两点,点 C在 y轴上, AC平分OAB∠.(1) 求点 A、 B的坐标;(2) 求ABC的面积;(3) 点 P在坐标平面内,且以A、 B、P为顶点的三角形是等腰直角三角形,请你直接写出点 P的坐标.25.(问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)请你判断AM,AD,MC三条线段的数量关系,并说明理由;(2)AM = DE + BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否仍然成立?请分别作出判断,不需要证明.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【详解】解:A、被开方数不是非负数,没有意义,所以A不合题意;B、x≥2时二次根式有意义,x<2时没意义,所以B不合题意;C39C不合题意;D3D符合题意;故选:D.【点睛】本题考查了二次根式的定义,解题的关键是掌握二次根式的定义.2.C解析:C 【分析】根据三角形内角和定理可分析出D 的正误;根据勾股定理逆定理可分析出A 、B 、C 的正误. 【详解】解:A 、∵22251213+= ,∴能构成直角三角形,故此选项不符合题意; B 、∵222a c b -=, ∴222a b c =+ ,∴能构成直角三角形,故此选项不符合题意; C 、∵()()()222334x x x +≠,∴不能构成直角三角形,故此选项符合题意; D 、设∠A =2x °,∠B =5x °,∠C =3x °, 3x +2x +5x =180, 解得:x =18, 则5x °=90°,△ABC 是直角三角形,故此选项不符合题意; 故选:C . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B 【解析】 【分析】观察图形的变化可得10+4=14,14+5=19,19+6=25,25+7=32,32+8=40,即可得结果. 【详解】解:观察图形的变化可知:第①个图形中一共有10个平行四边形, 第②个图形中一共有14个平行四边形, 第③个图形中一共有19个平行四边形, 第④个图形中一共有25个平行四边形, 第⑤个图形中一共有32个平行四边形, 则第⑥个图形中平行四边形的个数为40. 故选:B . 【点睛】本题考查的是平行四边形的认识,规律型:图形的变化类,本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.A解析:A 【解析】 【分析】分别按照2,3,5的赋权计算甲,乙,丙的平均数,再录取最高分即可. 【详解】解:根据题意,甲的最终成绩为60270380573235⨯+⨯+⨯=++(分),乙的最终成绩为80270360567235⨯+⨯+⨯=++(分),丙的最终成绩为70280360568235⨯+⨯+⨯=++(分),所以应该录取甲, 故选:A . 【点睛】本题考查的是加权平均数的含义与计算,理解赋权2,3,5的含义是解题的关键.5.A解析:A 【分析】设AB =2a ,根据四边形ABCD 为正方形,E 点为AD 的中点,可得EF 的长,进而可得结果. 【详解】 解:设AB =2a , ∵四边形ABCD 为正方形, ∴AD =2a , ∵E 点为AD 的中点, ∴AE =a ,∴BE==, ∴EF =,∴AF =EF ﹣AE 1)a ,∵四边形AFGH 为正方形, ∴AH =AF 1)a ,∴)12a AH ABa==. 故选:A . 【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.D解析:D 【解析】 【分析】连接BF ,根据菱形的对角线平分一组对角求出∠BAC ,∠BCF=∠DCF ,四条边都相等可得BC=DC ,再根据菱形的邻角互补求出∠ABC ,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF ,根据等边对等角求出∠ABF=∠BAC ,从而求出∠CBF ,再利用“边角边”证明△BCF 和△DCF 全等,根据全等三角形对应角相等可得∠CDF=∠CBF . 【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×80°=40°,∠BCF=∠DCF ,BC=DC , ∠ABC=180°-∠BAD=180°-80°=100°,∵EF 是线段AB 的垂直平分线, ∴AF=BF ,∠ABF=∠BAC=40°, ∴∠CBF=∠ABC-∠ABF=100°-40°=60°, ∵在△BCF 和△DCF 中,BC DC BCF DCF CF CF ⎧⎪∠∠⎨⎪⎩===, ∴△BCF ≌△DCF (SAS ), ∴∠CDF=∠CBF=60°, 故选:D . 【点睛】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==,112DE AB ==. 故选A .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.D解析:D【分析】作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,设2A 纵坐标为m ,再根据等腰直角三角形的性质,将坐标表示为()22,A m m +,代入直线解析式算出m ,再用同样的方法设()35,A n n +,代入解析式求出n .【详解】解:如图,作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,把()11,1A 代入15y x b =+,求出45b =,则直线解析式是1455y x =+, 已知()11,1A ,根据等腰直角三角形的性质,得到111111OC A C B C ===,设2A 纵坐标为m ,22A C m =,22OC m =+,得()22,A m m +,代入直线解析式,得()14255m m =++,解得32m =, 设3A 纵坐标为n ,33A C n =,35OC n =+,得()35,A n n +,代入直线解析式,得()14555n n =++,解得9n 4=. 故选:D .【点睛】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解.二、填空题9.4x ≥-且0x ≠【解析】【分析】根据二次根式及分式有意义的条件可直接进行求解.【详解】解:由题意得:40x +≥且0x ≠,解得:4x ≥-且0x ≠;故答案为4x ≥-且0x ≠.【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.10.40【解析】【分析】根据菱形的面积公式计算即可.【详解】解:这个菱形的面积为: 12×8×10=40cm 2,故答案为:40【点睛】本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键. 11.4【解析】【分析】由题意得,在直角三角形中,知道两直角边,运用勾股定理即可求出斜边,从而得出这根木杆折断之前的高度.【详解】解:∵一木杆在离地面1.5m 处折断,木杆顶端落在离木杆底端2m 处,∴折断的部分长为,∴折断前高度为2.5+1.5=4(m ).故答案为4.【点睛】本题考查勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力. 12.D 解析:154【分析】根据将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,可得到∠DBE =∠BDE ,在Rt ABE △ 中,利用勾股定理即可解答.【详解】∵在矩形ABCD 中,6BC =,3CD =,∴AB =CD =3,AD =BC =6,AD //CB ,∠BAD =90︒ ,∴∠EDB =∠DBC ,∵将BCD ∆沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,∴∠EBD =∠DBC ,∴∠DBE =∠BDE ,∴BE =DE ,设DE =x ,则BE =x ,AE =6-x ,在Rt ABE △ 中,222AB AE BE += ,∴2223(6)x x +-= ,解得:154x =故答案为:154【点睛】本题主要考查了矩形的折叠问题,解题的关键是灵活运用矩形的折叠结合勾股定理解答问题. 13.A解析:-8【分析】由平行线的关系得出k =2,再把点A (1,﹣2)代入直线y =2x +b ,求出b ,即可得出结果.【详解】解:∵直线y =kx +b 与直线y =2x ﹣3平行,∴k =2,∴直线y =2x +b ,把点A (1,﹣2)代入得:2+b =﹣2,∴b =﹣4,∴kb =﹣8.故答案为:﹣8.【点睛】本题主要考查了一次函数图像的性质,求一次函数的解析式,解题的关键在于能够熟练掌握相关知识进行求解.14.E解析:9【详解】试题解析:连接EO ,延长EO 交AB 于H .∵DE ∥OC ,CE ∥OD ,∴四边形ODEC 是平行四边形,∵四边形ABCD 是矩形,∴OD =OC ,∴四边形ODEC 是菱形,∴OE ⊥CD ,∵AB ∥CD ,AD ⊥CD ,∴EH ⊥AB ,AD ∥OE ,∵OA ∥DE ,∴四边形ADEO 是平行四边形,∴AD =OE =6,∵OH ∥AD ,OB =OD ,∴BH =AH , 132OH AD ∴==, ∴EH =OH +OE =3+6=9,故答案为:9.点睛:平行四边形的判定:两组对边分别平行的四边形是平行四边形.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B ,解析:855【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小, 直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,AB ∴==当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△,OA OB OP AB ⨯∴===∴MN OP ==.. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.3或6【分析】分①∠B′EC =90°时,根据翻折变换的性质求出∠AEB =45°,然后判断出△ABE 是等腰直角三角形,从而求出BE =AB ;②∠EB′C =90°时,∠AB′E =90°,判断出A 、B′解析:3或6【分析】分①∠B′EC =90°时,根据翻折变换的性质求出∠AEB =45°,然后判断出△ABE 是等腰直角三角形,从而求出BE =AB ;②∠EB′C =90°时,∠AB′E =90°,判断出A 、B′、C 在同一直线上,利用勾股定理列式求出AC ,再根据翻折变换的性质可得AB′=AB ,BE =B′E ,然后求出B′C ,设BE =B′E =x ,表示出EC ,然后利用勾股定理列出方程求解即可.【详解】①∠B′EC =90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB =∠AEB′=12×90°=45°,∴△ABE 是等腰直角三角形,∴BE =AB =6cm ;②∠EB′C =90°时,如图2,由翻折的性质∠AB′E =∠B =90°,∴A 、B′、C 在同一直线上,AB′=AB ,BE =B′E ,由勾股定理得,AC =22AB BC +=2268+=10cm ,∴B′C =10−6=4cm ,设BE =B′E =x ,则EC =8−x ,在Rt △B′EC 中,B′E 2+B′C 2=EC 2,即x 2+42=(8−x )2,解得x =3,即BE =3cm ,综上所述,BE 的长为6或3cm .故答案为:6或3.【点睛】 本题考查了翻折变换,等腰直角三角形的判断与性质,勾股定理的应用,难点在于分情况讨论,作出图形更形象直观.三、解答题 17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(43【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1)126363=233222==, (22053551535555+⨯==⨯, (3()()22145241452414524-+-1691211311143=⨯⨯=,(4)1112332333333-⎛⎫+--=+--= ⎪⎝⎭ 【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键.18.6【分析】先根据勾股定理求得,进而求得,根据勾股定理即可求得范围. 【详解】由题意可知,则,即,解得,若下次大风将旗杆从D 处吹断,如图,,BD ,.则距离旗杆底部周围6米范围内解析:6【分析】先根据勾股定理求得AC ,进而求得AD ,根据勾股定理即可求得范围.【详解】由题意可知8,4AC BC AB +==,则222AC AB BC +=,即2224(8)AC AC +=-,解得3AC =,若下次大风将旗杆从D 处吹断,如图,1.253 1.25 1.75AD AC ∴=-=-=,∴BD 8 1.75 6.25AB AD =-=-=,22226.25 1.756AB BD AD --.∴则距离旗杆底部周围6米范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.19.(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解; (2)用正方形的面积减去3个三角形的面积即可求解.【详解】解:(1)是直解析:(1)直角三角形,理由见解析;(2)5【解析】【分析】(1)根据勾股定理得到222125AB =+=,2222420AC =+=,2223425BC =+=,再根据勾股定理的逆定理即可求解;(2)用正方形的面积减去3个三角形的面积即可求解.【详解】解:(1)ABC ∆是直角三角形,理由:正方形小方格边长为1,222125AB ∴=+=,2222420AC =+=,2223425BC =+=.222AB AC BC ∴+=,ABC ∆∴是直角三角形;(2)ABC 的面积11144124324161645222=⨯-⨯⨯-⨯⨯-⨯⨯=---=,故ABC ∆的面积为5.【点睛】本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及勾股定理的逆定理. 20.见解析【分析】根据题意先证明,即可证明四边形为平行四边形,根据可得结果.【详解】证明:∵四边形是平行四边形∴,,∴,∵是的垂直平分线,∴,在与中,∴,∴,∴四边形为平行四边形解析:见解析【分析】根据题意先证明()ASA AOE COF ≌△△,即可证明四边形AFCE 为平行四边形,根据EF AC ⊥可得结果.【详解】证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△, ∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.【点睛】本题主要考查了菱形的判定,平行四边形的判定与性质,熟知判定定理以及性质是解题的关键.21.(1)9;(2)5.【解析】【详解】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得与分母相乘后,为平方差公式结构,如.(2)先对a 值进行化简得解析:(1)9;(2)5.【解析】【详解】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1=. (2)先对a1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= ,∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+=解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.22.(1)y1=50+3x ;当0<x <30且n 为整数时,y2=80;当x≥30时且n 为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x 的函数解析式;(2)在0解析:(1)y 1=50+3x ;当0<x <30且n 为整数时,y 2=80;当x ≥30时且n 为整数时,y 2=5x -70;(2)见解析【分析】(1)根据题意,可以写出y 1,y 2关于x 的函数解析式;(2)在0<x <30范围内,令y 1=y 2,求x 的值,可得y 1>y 2时x 的取值范围,在x ≥30时,令y 1=y 2可得x 的值,即可得y 1>y 2时可得x 的取值范围.【详解】解:(1)由题意得:y 1=50+3x ,当0<x <30且x 为整数时,y 2=80,当x ≥30时且x 为整数时,y 2=80+5(x -30)=5x -70;(2)当0<x <30且x 为整数时,当50+3x =80时,解得x =10,即10<x <30时,y 1>y 2,0<x <10时,y 1<y 2,当x ≥30且x 为整数时,50+3x =5x -70时,解得x =60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)证明见解析;(2);(3).【分析】(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ解析:(1)证明见解析;(2);(3).【分析】(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ中用勾股定理列方程求解;(3)作QG⊥AB于G,先证MB=MQ并设其为y,再在RT△MGQ中用勾股定理列出关于x、y的方程,并用x表示y;用y表示出△MBQ的面积,用x表示出△的面积.最后据用x、y表示出S,并把其中的y用x代换即可.【详解】(1)在正方形ABCD中,,,,,,,.(2)在正方形ABCD中连接,如下图:由折叠知BC=,又AB=BC,∠BAN=90°∴,,,,,,,设,,,,,.(3)如下图,作,垂足为G,由(1)知∵∠MBQ=∠CQB=∠MQB∴BM=MQ设,则.,,,故.【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.24.(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(解析:(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【详解】解:(1)在483y x=-+中,令y=0可得0=-43x+8,解得x=6,令x=0,解得y=8,∴A(6,0),B(0,8);(2)如图,过点C作CD⊥AB于点D,∵AC平分∠OAB,∴CD=OC,由(1)可知OA=6,OB=8,∴AB=10,∵S△AOB=S△AOC+S△ABC,∴12×6×8=12×6×OC+12×10×OC,解得OC=3,∴S△ABC=12×10×3=15;(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x yx y x y⎧+-=⎨+-+=-+⎩,解得814xy=⎧⎨=⎩或82xy=-⎧⎨=⎩,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,即22222222(6)(8)(6)(8)100x y x yx y x y⎧-+=+-⎨-+++-=⎩,解得11xy=-⎧⎨=⎩或77xy=⎧⎨=⎩,此时P点坐标为(-1,1)或(7,7);综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC的长是解题的关键,在(3)中用P点坐标分别表示出PA、PB的长,由等腰直角三角形的性质得到关于P点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.25.(1)AM=AD+MC,见解析;(2)成立,见解析;(3)结论AM=AD+MC仍然成立,结论AM=DE+BM 不成立【分析】(1)从平行线和中点这两个条件出发,延长、交于点,如图1(1),易证,从解析:(1)AM =AD +MC ,见解析;(2)成立,见解析;(3)结论AM =AD +MC 仍然成立,结论AM =DE +BM 不成立【分析】(1)从平行线和中点这两个条件出发,延长AE 、BC 交于点N ,如图1(1),易证ADE NCE △≌△,从而有AD CN =,只需证明AM NM =即可;(2)作FA AE ⊥交CB 的延长线于点F ,易证AM FM =,只需证明FB DE =即可;要证FB DE =,只需证明它们所在的两个三角形全等即可;(3)在图2(1)中,仿照(1)中的证明思路即可证到AM AD MC =+仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM DE BM =+不成立.【详解】解:(1)AM =AD +MC .理由如下:如图1(1)所示,分别延长AE ,BC 交于点N ,∵四边形ABCD 是正方形,∴AD //BC ,∴∠DAE =∠ENC ,∵AE 平分∠DAM ,∴∠DAE =∠MAE ,∴∠ENC =∠MAE ,∴MA =MN ,∵E 是CD 的中点,∴DE =CE , 在ADE 与NCE 中,DAE ENC AED NEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE ≌NCE (AAS ),∴AD =NC ,∵MN =NC +MC ,∴AM =AD +MC ;(2)AM=DE+BM成立.理由如下:如图1(2)所示,将ADE绕点A顺时针旋转90°,得到ABF,∵四边形ABCD是正方形,∴AB//DC,∠D=∠ABM=90°,∴∠AED=∠BAE,∵旋转,∴∠F=∠AED,∠FAB=∠EAD,BF=ED,∠D=∠ABF=90°,∴∠ABM+∠ABF=180°,∴点F、B、M在同一直线上,∵AE平分∠DAM,∴∠DAE=∠MAE,∴∠BAF=∠MAE,∵∠BAE=∠BAM+∠MAE,∴∠AED=∠BAM+∠BAF=∠FAM,∴∠F=∠FAM,∴AM=FM,∵FM=BF+BM∴AM=DE+BM;(3)①结论AM=AD+MC仍然成立,理由如下:①如图2(1),延长AE、BC交于点P,四边形ABCD是矩形,∴.AD BC//∴∠=∠.DAE EPC∠,AE∵平分DAM∴∠=∠.DAE MAE∴∠=∠.EPC MAEMA MP∴=.在ADE与PCE中,DAE ENC AED PEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE ≌PCE (AAS ),AD PC ∴=.∵MP =PC +MC ,∴AM =AD +MC ;②结论AM DE BM =+不成立,理由如下:假设AM DE BM =+成立.过点A 作AQ AE ⊥,交CB 的延长线于点Q ,如图2(2)所示.四边形ABCD 是矩形,90BAD D ABC ∴∠=∠=∠=︒,//AB DC .AQ AE ⊥,90QAE ∴∠=︒.90QAB BAE DAE ∴∠=︒-∠=∠.9090Q QAB DAE AED ∴∠=︒-∠=︒-∠=∠.//AB DC ,AED BAE ∴∠=∠.QAB EAD EAM ∠=∠=∠,AED BAE BAM EAM ∴∠=∠=∠+∠BAM QAB =∠+∠,Q QAM ∴∠=∠.AM QM ∴=.AM QB BM ∴=+.AM DE BM =+,QB DE ∴=.()ABQ ADE AAS ∴△≌△,AB AD ∴=.与条件“AB AD ≠ “矛盾,故假设不成立.AM DE BM ∴=+不成立.【点睛】本题是四边形综合题,主要考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.。
数学八年级下册数学期末试卷易错题(Word版含答案)
数学八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式5x -中字母x 的取值可以是( ) A .x =0B .x =1C .x =2D .x =5 2.下列各组数中不能作为直角三角形的三边长的是( ) A .1.5,2,3 B .7,24,25 C .9,12,15 D .1,2,5 3.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD = 4.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( )A .9B .6.67C .9.1D .6.745.如图,在正方形ABCD 中,22CD =,若点P 为线段AD 上方一动点,且满足PD =2,∠BPD =90°,则点A 到直线BP 的距离为( )A 3B .3-C 31D 31 6.如图是两个全等的三角形纸片,其三边长之比为3: 4: 5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,A B S S ,已知15A B S S -=,则纸片的面积是( )A .102B .104C .106D .1087.如图,以Rt △ABC (AC ⊥BC )的三边为边,分别向外作正方形,它们的面积分别为S 1﹑S 2﹑S 3,若S 1+S 2+S 3=12,则S 1的值是( )A .4B .5C .6D .78.如图,菱形ABCD 的边长为4cm ,60ABC ∠=︒,且M 为BC 的中点,P 是对角线BD 上的一动点,则PM PC +的最小值为( )A .4cmB .3cmC .25cmD .23cm二、填空题9.若二次根式21x -在实数范围内有意义,则x 的取值范围是____.10.已知菱形的两条对角线长为6和8,菱形的周长是_______,面积是________. 11.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠AOD =60°,AD =4,则AB =___.12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE .若矩形ABCD 的周长为8cm ,则ABE △的周长为__________cm .13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,矩形ABCD 中,对角线AC 和BD 交于点O ,过O 的直线分别交AD 和BC 于点E 、F ,已知AD =4 cm ,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC 长为___cm.15.如图,在平面直角坐标系中,点A 1,A 2,A 3,…,都在x 轴正半轴上,点B 1,B 2,B 3,…,都在直线33y x =上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,都是等边三角形,且OA 1=1,则点B 6的纵坐标是______________.16.如图,Rt ,90,6,8ABC ACB AC BC ∠=︒==,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点,E F ,则线段CE 的长等于_________,线段BF 的长等于_________.三、解答题17.计算:(11213127(2)(232318.由于大风,山坡上的一颗甲树从A 点处被拦腰折断,其顶点恰好落在一棵树乙的底部C 处,如图所示,已知AB =4米,BC =13米,两棵树的水平距离是12米,求甲树原来的高度.19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A 固定在格点上.(1)若a 是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则a = ,b = ;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD ,你画出的菱形面积为 ; 20.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.21.[观察]请你观察下列式子的特点,并直接写出结果:221111111212++=+-= ; 221111112323++=+-= ; 221111113434++=+-= ; …… [发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:()221111n n ++=+ (n 为正整数); (2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:()222222221111111111111223341n n ++++++++++++=+ . 22.寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.设某学生健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .在平面直角坐标系中的函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求k 2的值;(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?23.如图,在平面直角坐标系中,矩形ABCO 的顶点O 与坐标原点重合,顶点A 、C 在坐标轴上,B (8,4),将矩形沿EF 折叠,使点A 与点C 重合.(1)求点E 的坐标;(2)点P 从O 出发,沿折线O -A -E 方向以每秒2个单位的速度匀速运动,到达终点E 时停止运动,设点P 的运动时间为t ,△PCE 的面积为S ,求S 与t 的关系式,井直接写出t 的取值范围.(3)在(2)的条件下.当PA =PE 时,在平面直角坐标系中是否存在点Q .使得以点P 、E 、 G 、 Q 为顶点的四边形为平行四边形? 若不存在,请说明理出, 若存在,请求出点Q 的坐标.24.如图1,直线y=kx+b 经过第一象限内的定点P(3,4).(1)若b=7,则k=_______;(2)如图2,直线y=kx+b 与y 轴交于点C ,已知点A(6,t),过点A 作AB//y 轴交第一象限内的直线y=kx+b 于点B ,连接OB ,若BP 平分∠OBA .①证明OBC 是等腰三角形;②求k 的值;(3)如图3,点M 是x 轴正半轴上的一个动点,连接PM ,把线段PM 绕点M 顺时针旋转90°至线段NM (∠PMN=90°且PM=MN ),连接OP ,ON ,PN ,当OPN 周长最小时,求点N 的坐标;25.在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的被开方数是非负数得到50x -,求解即可.【详解】解:由题意,得50x -,解得5x ≥,故x 可以取5,故选:D .【点睛】0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;B 、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;C 、92+122=152,符合勾股定理的逆定理,故本选项不符合题意;D 、12+22=2,符合勾股定理的逆定理,故本选项不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】根据平行四边形的判定定理逐项判断即可.【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D .【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:该班平均得分5889710587⨯+⨯+⨯++=9.1(分),故选:C.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.C解析:C【分析】由题意可得点P在以D为圆心,2为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解:作正方形ABCD的外接圆,另外以点D为圆心,2为半径作圆,两圆在线段AD上方的交点即为点P,连接AC、BD、PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE AP⊥,交BP于点E,如图,∵四边形ABCD是正方形,∴∠ADB=45°,∴2,90AB AD DC BC BAD︒====∠=,∴BD=4,∵DP=2,∴3BP=AE AP⊥,90EAD DAP∴∠+∠=,又90BAE EAD∠+∠=,DAP BAE∴∠=∠,,ADP ABE AD AB∠=∠=,ADP ABE∴∆≅∆,,BE DP AE AP∴==,AEP为等腰直角三角形,AH PE⊥,2PE AH∴=,2BP BE PE AH PD∴=+=+,即2322,AH+,31AH ∴=- 即点A 到BP 的距离为31-.故选C .【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰三角形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用这些知识.6.D解析:D【解析】【分析】设3AC FH x ==,则4BC GH x ==,5AB GF x ==,根据勾股定理即可求得CD 的长,利用x 表示出A S ,同理表示出B S ,根据15A B S S -=,即可求得x 的值,进而求得三角形的面积.【详解】解:设3AC FH x ==,则4BC GH x ==,5AB GF x ==.设CD y =,则4BD x y =-,DE CD y ==,在直角BDE ∆中,532BE x x x =-=,根据勾股定理可得:2224(4)x y x y +=-,解得:32y x =, 则2113322222A S BE DE xx x ==⨯=, 同理可得:223B S x =,15A B S S -=, ∴22321523x x -=, 解得:32x =,∴纸片的面积是:213461082x x x ⨯==, 故选:D ..【点睛】本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得CD 的长是解题的关键.7.C解析:C【解析】【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S3+S2=S1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.8.D解析:D【分析】根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PM+PC转化为AP+PM,再根据两点之间线段最短得知AM为PM+PC的最小值.【详解】∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.连接AC,∵四边形ABCD是菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=2222--,=42=23AB BM故选D.【点睛】本题考查了轴对称---最短路径问题,解答过程要利用菱形的性质及等腰三角形的性质,转化为两点之间线段最短的问题来解.二、填空题9.12x≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由二次根式21x-在实数范围内有意义可得:210x-≥,解得:12x≥;故答案为12x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:24【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=12AC=4,OB=12BD=3,AC⊥BD,∴AB222243OA OB+=+=5,∴C菱形的周长=5×4=20,S菱形ABCD=12×6×8=24,故菱形的周长是20,面积是24.故答案为:20;24.【点睛】本题考查了菱形的周长和性质得求法,勾股定理,属于简单题,熟悉菱形的性质和菱形求面积的特殊方法是解题关键.11.B解析:【解析】【分析】由矩形对角线的性质得到AO DO =,结合题意证明ADO △是等边三角形,解得BD 的长,在Rt ABD △中,理由勾股定理解题即可.【详解】解:矩形ABCD 中,AC=BD 且AO=OC ,BO=DOAO DO ∴=ADO ∴△是等腰三角形∠AOD =60°ADO ∴△是等边三角形AD DO AO ∴==AD =44DO ∴=28BD DO ∴==Rt ABD △中AB ==故答案为:【点睛】本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.12.B解析:4【分析】由矩形的性质可得OB =OD ,AB =CD ,AD =BC ,可证OE 是线段BD 的中垂线,可得BE =DE ,即可求解.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,AB =CD ,AD =BC ,∵矩形ABCD 的周长为8cm ,∴AB +AD =4cm ,∵OE ⊥BD ,∴OE 是线段BD 的中垂线,∴BE =DE ,∴△ABE 的周长=AB +AE +BE =AB +AE +DE =AB +AD =4cm ,故答案为4.【点睛】本题考查了矩形的性质,线段的中垂线的性质以及三角形周长等知识,解答本题的关键是判断出OE是线段BD的中垂线.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:5【解析】∵阴影部分的面积总和为6 cm 2,∴矩形面积为12 cm 2;∴AB×AD=12,∴AB=12÷4=3cm.22345AC cm∴=+=15.【分析】设△BnAnAn+1的边长为an,根据直线的解析式能的得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn=OAn,列出部分an的值解析:163【分析】设△B n A n A n+1的边长为a n,根据直线的解析式能的得出∠A n OB n=30°,再结合等边三角形的性质及外角的性质即可得出∠OB n A n=30°,从而得出A n B n=OA n,列出部分a n的值,发现规律 :a n+1=2a n,依此规律结合等边三角形的性质即可得出结论.【详解】设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y= 33x上的第一象限内的点,过A1作A1N⊥x轴交直线OB1于N点,∵OA1=1,∴点N的横坐标为1,将x=1代入, 得到∴点N 的坐标为(1∴A 1在Rt △NOA 1tan ∠A1ON=11A NA O∴∠A 1OB 1 = 30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1 = 60°,∴∠OB n A n = 30°,A nB n = OA n ,∵OA 1=1a 1 =1,a 2=1+1=2= 2a 1,a 3= 1++a 1 +a 2=4= 2a 2,a 4 = 1+a 1 +a 2十a 3 =8= 2a 3,a n+1 = 2a n ,a 5 =2a 4= 16, a 6 = 2a 5 = 32,a 7= 2a 6= 64,△A 6B 6A 7为等边三角形,点B 6的坐标为(a 7-12a 67- 12a 6)), ∴点B 6的坐标为(48,故答案为:【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,解题的关键是找出规律:a n+1=2a n 本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.16.【分析】先依据勾股定理求得AB 的长,然后在△ABC 中,利用面积法可求得CE 的长,然后依据勾股定理定理可求得AE 的长,证明△ECF 为等腰直角三角形可求得EF 的长,依据FB=AB-A 解析:245 85【分析】先依据勾股定理求得AB 的长,然后在△ABC 中,利用面积法可求得CE 的长,然后依据勾股定理定理可求得AE 的长,证明△ECF 为等腰直角三角形可求得EF 的长,依据FB =AB -AF 求得FB 的长即可.【详解】解:在Rt △ABC 中,AB ,∵S △ABC =12AC •BC =12AB •CE ,∴CE =6824105⨯=, 在△AEC 中,依据勾股定理得:AE =185, 由翻折的性质可知∠ECD =12∠ACD ,∠DCF =12∠DCB ,CE ⊥AD ,∴∠ECF =45°.∵CE ⊥AD ,∴CE =EF =245, ∴FB =AB -AE -EF =10-185-245=85, 故答案为:245,85. 【点睛】 本题主要考查的是翻折的性质、勾股定理的应用,利用面积法求得CE 的长,然后再利用勾股定理和等腰三角形的性质求得AE 和EF 的长是解答问题的关键.三、解答题17.(1) ;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可; (2)先变形为原式= ,然后利用平方差公式计算;【详解】解:(1)﹣+,,;(2)(3解析:(1;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可;(2))11 ,然后利用平方差公式计算; 【详解】解:(1,=,=;(2)())11= , ()61=- ,=.【点睛】本题考查了平方差公式、二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD=12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC+AB 的长.【详解】解:如图所解析:19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD =12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC +AB 的长.【详解】解:如图所示,过点C 作CD ⊥AB 交AB 延长线于D由题意得:CD =12,AB =4米,BC =13米在Rt △BCD 中5BD ==米∴9AD AB BD =+=米在Rt △ACD 中15AC ===米∴19AC AB +=米∴甲树原来的高度是19米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理. 19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图解析:(1)2,25;(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为5的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22a=+=,112∵b是图中能用网格线段表示的最大无理数,22b=+=;425(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC 1D 1的面积为12442⨯⨯= ; 菱形ABC 2D 2223110+=,故菱形ABC 2D 2的面积为1101052; 5ABCD 的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键. 20.(1)见解析;(2)AF=5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF=CF ,AE=CE ,再只需证明△AFO ≌△CEO即可得到答案;(2)根据四边形AECF 是菱形可以得到AE=EC解析:(1)见解析;(2)AF =5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF =CF ,AE =CE ,再只需证明△AFO ≌△CEO 即可得到答案;(2)根据四边形AECF 是菱形可以得到AE =EC =x ,则BE =8-x ,然后利用勾股定理求解即可.【详解】解:(1)∵EF 是AC 的垂直平分线,∴AF =CF ,AE =CE ,AO =CO∵四边形ABCD 是矩形,∴AF ∥EC∴∠FAO =∠ECO ,∠AFO =∠CEO ,在△AFO 和△CEO 中,AFO CEO AO COFAO ECO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△CEO (AAS ),∴AF =EC ,∴AF =FC =AE =EC ,∴四边形AECF 是菱形;(2)由(1)得AE =CE =AF ,设AE =CE =AF =x ,则BE =8-x ,∵四边形ABCD 是矩形,∴∠B =90°,在直角三角形ABE 中222AB BE AE +=,∴()22248x x +-=, 解得x =5,∴AF =5,21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运解析:[观察]32,76,1312;[发现](1)1111n n +-+或221n n n n+++;(2)证明见解析;[应用]1n n n ++或221n n n ++. 【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可.【详解】[观察]32,76,1312, [发现](1)1111n n +-+或221n n n n+++ (2)左()221111n n =+++()22221211n n n n n ++=-++()22121()1n n n n +=-++==∵n 为正整数, ∴()11111011n n n n +-=+>++ ∴左1111n n =+-=+右[应用11n +++111111111111223341n n =+-++-++-+++-+ (1111)n n =⨯+-+ 1n n n =++ 22=1n n n ++ ∴答案为:1n n n ++或221n n n ++. 【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22.(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【分析】(1)把点(0,30),(10,180)代入y1=k1x+b ,得到关于k解析:(1)11530k b =⎧⎨=⎩,实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【分析】(1)把点(0,30),(10,180)代入y 1=k 1x +b ,得到关于k 1和b 的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k 2的值;(3)将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩,解得:11530k b =⎧⎨=⎩, 115k =表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y 1=15x +30,y 2=20x .当健身8次时, 选择方案一所需费用:y 1=15×8+30=150(元),选择方案二所需费用:y 2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.(4)当1300y =时,1530300,x +=解得:18,x =即小琳选择方案一时,可以健身18次,当2300y =时,则20300,x =解得:15,x =即小琳选择方案二时,可以健身15次,1815,>所以小琳最多健身18次.【点睛】本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1);(2)或;(3)存在,点Q 坐标为:,,【分析】(1)设AE=x ,根据勾股定理列方程得:,解出可得结论;(2)分两种情况:P 在OA 或AE 上,分别根据三角形面积列式即可; (3)先根据分别解析:(1);(2)或;(3)存在,点Q 坐标为:,, 【分析】(1)设AE =x ,根据勾股定理列方程得:,解出可得结论; (2)分两种情况:P 在OA 或AE 上,分别根据三角形面积列式即可;(3)先根据分别计算PA 和PE 的长,分类讨论,当PE 为边时,如图4,过G 作GH⊥OC于H,设OF=y,根据勾股定理列方程可得y的值,利用面积法计算GH的长,得G 的坐标,根据平行四边形的性质和平移规律可得Q的坐标;当PE为对角线时,借助中点坐标法即可求得点Q的坐标,综上即可得出点Q所有可能性.【详解】解:(1)在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8-x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴解得:x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,由题意知:,,,,∴S=S矩形OABC-S△PAE-S△BEC-S△OPC,=8×4-12×5(4-2t)-12×3×4-12×8×2t,=-3t+16,②当P在AE上时,2<t≤4.5,如图3,由题意知:∴S=综上所述:(3)存在,由PA=PE可知:P在AE上当PE为边时,如图4所示,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=y,则FG=y,FC=8-y,由折叠得:∠CGF=∠AOF=,OA=CG,由勾股定理得:FC2=FG2+CG2,∴(8-y)2=y2+42,解得:y=3,∴FG=3,FC=8-3=5,∴,∴12×5×GH=12×3×4,解得:GH=2.4,由勾股定理得:FH,∴OH=3+1.8=4.8,∴G(4.8,-2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(4.8,-2.4)或(6.8,-2.4).当PE为对角线时,如图5所示:过点G作交CF于点H由上述可知:,,,设由中点坐标法可得:解得:∴点综上所述:点Q的坐标为:,,【点睛】此题考查四边形综合题,矩形的性质、翻折变换、勾股定理、中点坐标法求解、平行四边形的判定和性质,解题的关键是学会用分类讨论的思想思考问题.24.(1)-1;(2)①证明见详解;②;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角解析:(1)-1;(2)①证明见详解;②34-;(3)(7715,2815-)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角对等边得到OBC是等腰三角形②根据坐标证明P是BC的中点,由等腰三角形三线合一性质得OP⊥BC,求出OP函数关系式中k的值,根据两个一次函数图像互相垂直时k的关系,求解出直线BC的表达式中的k=3 4 -(3)根据动点M的运动情况分析出N的轨迹函数,然后证明△OHG是等腰直角三角形,根据中点坐标公式求得直线O’P的表达式,联立方程求出N点坐标【详解】(1)把P(3,4),b=7代入y=kx+b中,可得4=3k+7解得k=-1故答案为-1(2)①∵AB∥y轴∴∠ABC=∠OCB∵BP平分∠OBA∴∠OBC=∠ABC∴∠OCB=∠OBC∴OBC是等腰三角形②如图4所示,连接OP∵AB//y轴,A(6,t)∴B点横坐标是6∵P横坐标是3∴P是BC的中点∴OP⊥BC设直线OP的表达式为y=kx将P(3,4)代入得4=3k解得k= 43,则设直线BC的表达式中的k=3 4 -.故答案为3 4 -.(3)①如图5-1,当点M与O重合时,作PE⊥y轴于点E,作NF⊥y轴于点F∵PM ⊥NM∴∠PMN=90°∴∠PME+∠NMF=90°∵∠FMN+∠FNM=90°∴∠PME=∠MNF在△PEM △MFN 中=PME MNF PEM MFN PM MN ∠=∠⎧⎪∠∠⎨⎪=⎩∴△PEO ≌△OFN (AAS )∴MF=PE=3,FN=ME=4则N 点的坐标为(4,-3)②如图5-2所示,,当PM ⊥x 轴时,N 点在x 轴上,则MN=PM=3,ON=OM+MN=7,∴N 的坐标为(7,0)综上所述得点N 在直线y=x-7的直线上运动设直线y=x-7与坐标轴分别交于点G 、H ,作O 关于直线HG 的对称点O`,连接O`P 交直线HG 于点N ,此时ON+PN 有最小值,最小值为线段O`P 的长度.如图5-3所示.当直线y=x-7可得H(0,-7),G(7,0),OG=OH,△OHG是等腰直角三角形,当OQ⊥HG时,Q是HG的中点,由中点坐标公式可得Q(72,-72),∵O`与O对称∴Q是OO`的中点由中点坐标公式可得O’(7,-7),∴可得直线O’P的表达式为1149y x44=-+联立方程1149447x xy x⎧=+⎪⎨⎪=-⎩﹣,解得77152815 xy⎧=⎪⎪⎨⎪=-⎪⎩∴N点坐标为(7715,2815-)∴当△OPN周长最小时,点N的坐标为(7715,2815-)故答案为(7715,2815-)【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、角平分线的性质,平行的性质等,熟练掌握数形结合的解题方法是解决此题目的关键,综合性强,难度较大.25.(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P是线段OA和OB的“等距点解析:(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解; ②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解.【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF == ,6OD = ,3OE = ,3OF = ,∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ , 解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a +=, ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word版含答案)一、选择题1.若二次根式2x 有意义,则x的值不可以是()A.3 B.2 C.1 D.02.下列几组数中,能作为直角三角形三边长的是()A.2,4,5 B.3,4,5 C.4,4,5 D.5,4,53.下列说法中错误的是()A.两条对角线互相垂直且平分的四边形是菱形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直、平分且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形4.将80辆环保电动汽车一次充电后行驶里程记录数据,获得如图所示条形统计图,根据统计图所测数据的中位数、众数分别是()A.165,160 B.165,165 C.170,165 D.160,1655.如图,在▱ABCD中,∠ADC=60°,点F在CD的延长线上,连结BF,G为BF的中点,连结AG.若AB=2,BC=6,DF=3,则AG的长为()A.3 B.72C43D136.如图,在△ABC中,AC=2∠ABC=45°,∠BAC=15°,将△ABC沿直线AC翻折至△ABC所在的平面内,得△ADC.过点A作AE,使∠EAD=∠DAC,与CD的延长线交于点E,则线段ED的长为()A .23﹣6B .26﹣23C .26﹣2D .32﹣6 7.如图,在直角三角形ABC 中,∠ACB =90°,AC =6,BC =8,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则PF 的最小值是( )A .1.5B .2C .2.4D .2.58.如图,直线l :y =﹣3x +39+33与x 轴交于点A ,与经过点B (﹣2,0)的直线m 交于第一象限内一点C ,点E 为直线l 上一点,点D 为点B 关于y 轴的对称点,连接DC 、DE 、BE ,若∠DEC =2∠DCE ,∠DBE =∠DEB ,则CD 2的值为( )A .13B .13C .1344﹣13D .20﹣1313二、填空题9.21x +x 的取值范围是______.10.一个菱形的两条对角线长分别为3cm ,4cm ,这个菱形的面积S=______. 11.在Rt ABC △中,Rt C ∠=∠,3AB =,2BC =,则线段AC 的长为________.12.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=,35BF=,则AO的长为______.13.若直线y=kx+b(k≠0)经过点A(0,3),且与直线y=mx﹣m(m≠0)始终交于同一点(1,0),则k的值为________.14.如图,矩形ABCD中,AB=2,AD=2.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y(米)与小王出发的时间x(分钟)之间的函数图象,则学校到书店的距离为________米.16.在一次自行车越野赛中,出发m h后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,下列说法:①出发m h内小明的速度比小刚快;② a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,正确的有______________(把正确结论的序号填在横线上).三、解答题17.计算: (1)80205-+;(2)(53)(53)+-.18.如图,一架2.5m 长的梯子AB 斜靠在一面竖直的墙AC 上,这时梯子的底端B 到墙的底端C 的距离为0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子的底端将向外移多少米?19.如图,正方形网格中的△ABC ,若小方格边长为1(1)判断△ABC 是什么形状?并说明理由.(2)求AC 边上的高.20.如图,点D 为ABC 的边BC 的中点,过点A 作//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AD EC =;(2)若AB AC =,判断四边形ADCE 的形状,并说明理由;(3)若要使四边形ADCE 为正方形,则ABC 应满足什么条件?(直接写出条件即可,不必证明).21.观察下列等式: ①()()12121212121-==-++-; ②()()132********-==-++-; ③()()14343434343-==-++-; ······ 回答下列问题:(1)利用你观察到的规律,化简:165=+ . (2)11n n=++ .(n 为正整数) (3)利用上面所揭示的规律计算:11111 (1223342016201720172018)++++++++++ 22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问:(1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.问题发现:(1)如图1,点A 为线段BC 外一动点,且BC =a ,AB =b .填空:当点A 位于CB 延长线上时,线段AC 的长可取得最大值,则最大值为 (用含a ,b 的式子表示);尝试应用:(2)如图2所示,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,M 、N 分别为AB 、AD 的中点,连接MN 、CE .AD =5,AC =3.①请写出MN 与CE 的数量关系,并说明理由.②直接写出MN 的最大值.(3)如图3所示,△ABC 为等边三角形,DA =6,DB =10,∠ADB =60°,M 、N 分别为BC 、BD 的中点,求MN 长.(4)若在第(3)中将“∠ADB =60°”这个条件删除,其他条件不变,请直接写出MN 的取值范围.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.已知ABC ∆中,2,12AB AC BC ===.点P 从点B 出发沿线段BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D . (1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设BE CD λ+=,λ是否为常数?若是请求出λ的值,若不是请说明理由.(3)如图③,E 为BC 的中点,直线CH 垂直于直线AD ,垂足为点H ,交AE 的延长线于点M ;直线BF 垂直于直线AD ,垂足为F ;找出图中与BD 相等的线段,并证明.【参考答案】一、选择题1.A解析:A【分析】根据二次根式有意义的条件可得20x -≥,再解即可.【详解】解:由题意得:20x -≥,解得:2x ≤,四个选项中,只有A 选项不符合题意,故选A .【点睛】本题考查了二次根式有意义的条件,解题关键在于掌握其定义.2.B解析:B【分析】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.根据勾股定理的逆定理即可判断.【详解】解:A 、22+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意; B 、32+42=52,根据勾股定理的逆定理可知三角形是直角三角形,故符合题意; C 、42+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意; D 、42+52≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意; 故选:B .【点睛】此题考查了勾股定理的逆定理和直角三角形的性质,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形,菱形,矩形,正方形的判定定理逐项分析即可【详解】A. 两条对角线互相垂直且平分的四边形是菱形,故该选项正确,不符合题意;B. 两条对角线相等且平分的四边形是矩形,故该选项不正确,符合题意;C. 两条对角线互相垂直、平分且相等的四边形是正方形,故该选项正确,不符合题意;D. 两条对角线互相平分的四边形是平行四边形,故该选项正确,不符合题意;故选B【点睛】本题考查了平行四边形,菱形,矩形,正方形的判定定理,掌握以上定理是解题的关键.4.B解析:B【解析】【分析】由中位数和众数的定义结合条形统计图即可得出答案.【详解】根据题意有80辆电动汽车为偶数个,根据统计图可知最中间的两个数都为165,故中位数=1651651652+=,165出现了20次,为最多,即众数为165.故选:B.【点睛】本题考查中位数和众数的定义,从条形统计图中获取必要的信息是解答本题的关键.5.C解析:C【分析】过点A作AN⊥CD交DC延长线于点N,延长AG交DF于点M,利用含30度角的直角三角形的性质和勾股定理求得DN和AN的长,证明△AGB≅△MGF,求得DM的长,再利用勾股定理即可求解.【详解】解:过点A作AN⊥CD交DC延长线于点N,延长AG交DF于点M,如图,∵四边形ABCD是平行四边形,∴BC=AD=6,CD∥AB,∠ADC=60°,则∠DAN=30°,∴DN=12AD=3,AN22226333AD DN--=∵CD∥AB,G为BF的中点,∴∠ABG=∠F,∠AGB=∠MGF,BG=GF,∴△AGB≅△MGF,∴AB= MF=2,AG= GM,∴DM=DF-MF=1,∴MN=DN+DM=4,∵222AN MN AM+=,∴AM43∴AG43故选:C.【点睛】本题考查了平行四边形的性质,含30度角的直角三角形的性质,勾股定理,作出辅助线,构建全等三角形的解题的关键.6.D解析:D【解析】【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,再求得∠ABC=∠BAH=45°,AH=BH,利用等腰直角三角形的性质和直角三角形的性质可求解.【详解】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,CB=CD,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°-15°=30°,∴∠AED=∠EAC,∴AC=EC2∵∠ABC=45°,∠BAH=45°,∴∠BHA=90°,BH=AH,在Rt△A CH中,∠CAH=30°,AC2∴CH2BH=AH226AC CH-=∴CB=CD=BH-CH62∴ED=EC-CD=(2262326=故选:D.【点睛】本题考查了轴对称的性质,等腰直角三角形的性质和直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.7.C解析:C【解析】【分析】连接MC,根据矩形的性质可得MC=EF,则1122PF EF CM==,当CM AB⊥时,CM取得最小值,根据等面积法求解即可,进而可得PF的最小值.【详解】如图,连接MC ,∠ACB =90°,ME ⊥AC , MF ⊥BC ,∴四边形MECF 是矩形,MC EF ∴=,∠ACB =90°,AC =6,BC =8,2210AB AC BC ∴=+,点P 是EF 的中点,则1122PF EF CM ==, 当CM AB ⊥时,CM 取得最小值, 1122AB CM AC BC ⨯⨯=⨯⨯, 68 4.810AC BC CM AB ⨯⨯∴===. ∴1122PF EF CM == 2.4=. 故选:C【点睛】本题考查了矩形的性质与判定,勾股定理,垂线段最短,将PF 转化为12CM 是解题的关键.8.C解析:C【分析】过点D 作DF ⊥l 于点F ,延长FD 交y 轴于点G ,求出DF 的解析式,联立方程组2023k b b +=⎧⎪⎨=⎪⎩F 的坐标,分点E 在点F 的上方和下方两种情况结合勾股定理求出结论即可.【详解】解:过点D 作DF ⊥l 于点F ,延长FD 交y 轴于点G ,∵点B (﹣2,0),且点D 为点B 关于y 轴的对称点,∴D (2,0)∴BD =4又∠DBE =∠DEB ,∴DE =BD =4对于直线l :y 3393x =0时,y 393y =0时,x 13 ∴OH 393AO 13 ∴222136AH OH AO +=∴30AHO ∠=︒∴60,30OGD ODG ∠=︒∠=︒∴2DG OG =又222OD OG DG +=∴22224OG OG +=, ∴23OG =∴23(0,G 设直线DF 所在直线解析式为y kx b =+ 把23(0,G ,D (2,0)代入得,2023k b b +=⎧⎪⎨=⎪⎩解得,323k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线DF 所在直线解析式为323y =联立3233333933y x y x ⎧=-⎪⎨⎪=-++⎩, 解得,311134439344x y ⎧=+⎪⎪⎨⎪=+⎪⎩∴F (3111344+,39344+) ∴22221313()(311393134444)2DF +++==+ 在Rt △DFE 中,222EF DE DF =-∴1332EF -= ①当E 在F 下方时,如图1,在E 点下方直线l 上取一点M ,使EM =DE =4,连接DM , ∵EM =DE∴EDM EMD ∠=∠又∵CED EDM EMD ∠=∠+∠∴2CED EMD ∠=∠又∵2CED DCE ∠=∠∴DCE EMD ∠=∠∴DC =DM在Rt △DFM 中,222DM DF FM =+∴22222131321313135()()20413222DC DM EF EM +++==++=+=+ ②当点E 在F 的上方时,如图2,在E 点下方直线l 上取一点M ,使EM =DE =4,连接DM ,∵EM =DE∴EMD EDM ∠=∠又∵=2CED EDM EMD EMD ∠=∠+∠∠,2CED EMD ∠=∠∴DCE EMD ∠=∠∴DC =DM ∴1331113422FM EM EF --=-=-= 在Rt △DFM 中,2222213131113()4441322DM DF FM +-=+=+=- ∴244413DC =-综上所述,220413DC =+或44413-故选:C【点睛】本题是一次函数的综合题;灵活应用勾股定理,熟练掌握待定系数法求函数解析式是解题的关键.二、填空题9.21x ≥-【解析】【分析】根据二次根式有意义的条件,被开方数为非负数,即可求得的x 的取值范围.【详解】二次根式21x +有意义, 210x ∴+≥,解得21x ≥-, 故答案为:21x ≥-. 【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键. 10.62cm【解析】【详解】解:根据菱形的面积等于对角线乘积的一半,即115【解析】【分析】根据勾股定理即可得出答案【详解】解:∵Rt C ∠=∠,3AB =,2BC =,∴2222325AC AB BC --【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.12.B解析:【分析】首先根据矩形的性质得出//AD BC ,AD BC =,AB CD =,然后根据平行线的性质及等量代换得出AFE AEF ∠=∠,则5AE AF ==,然后根据折叠的性质得出FC AF =,OA OC =,进而求出BC ,然后利用勾股定理求出AB ,AC ,从而答案可求.【详解】∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,AB CD =,∴EFC AEF ∠=∠,由折叠得,EFC AFE ∠=∠,∴AFE AEF ∠=∠,∴5AE AF ==,由折叠得,FC AF =,OA OC =,∴358BC =+=,在Rt ABF 中,4AB =,在Rt ABC 中,AC ∴AO OC ==故答案为:【点睛】本题主要考查矩形的性质,折叠的性质和勾股定理,掌握折叠和矩形的性质及勾股定理是关键.13.A解析:-3【分析】根据题意直线y =kx +b (k ≠0)经过点A (0,3)和点(1,0),然后根据待定系数法即可求得k 的值.【详解】解:∵直线y =kx +b (k ≠0)经过点A (0,3)和点(1,0),∴30b k b =⎧⎨+=⎩, 解得k =﹣3,故答案为:-3.【点睛】本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键.14.C【分析】过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF∵DF⊥AE,AD=2,∴∠DAE=45°,则BE∴当BE△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB,BE=x,∴AEAF∵△ADF∽△EAB,∴AD AFAE EB=,x=,x2﹣4x+2=0,解得:x=∴当BE=2时,△CDF是等腰三角形.综上,当BE=12时,△CDF是等腰三角形.故答案为12.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象, 则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭,解得:x=840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键.16.①②④【解析】试题解析:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2k解析:①②④【解析】试题解析:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,()()()() 250.70.7 {25 2.5218a m m m bm m a m bbm++-+++-+===,解得,26 {360.5abm===,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故答案为①②④.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.米.【分析】先在中,利用勾股定理出的长,再根据线段的和差可得的长,然后在中,利用勾股定理求出的长,最后根据即可得出答案.【详解】解:由题意得:,在中,,则,在中,,则,答:梯子的底解析:0.8米.【分析】先在Rt ABC 中,利用勾股定理出AC 的长,再根据线段的和差可得1A C 的长,然后在11Rt A B C 中,利用勾股定理求出1B C 的长,最后根据11BB B C BC =-即可得出答案.【详解】解:由题意得:11112.5m,0.7m,0.4m,AB A B BC AA AC B C ====⊥,在Rt ABC 中, 2.4(m)AC ==,则11 2.40.42(m)AC AC AA =-=-=,在11Rt A B C 中,1 1.5(m)B C =, 则11 1.50.70.8(m)BB B C BC =-=-=,答:梯子的底端将向外移0.8米.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.19.(1)△ABC 是直角三角形.理由见解析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC 是直角三角形.理解析:(1)△ABC 是直角三角形.理由见解析;(2【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC 是直角三角形.理由如下:由题意可得,AB BCAC=∴AB 2+BC 2=AC 2,∴∠B =90°,∴△ABC 是直角三角形;(2)设AC 边上的高为h .∵S △ABC =12AC •h =12AB •BC ,∴h =13AB BC AC == 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)矩形,见解析;(3),且.【分析】(1)根据D 是BC 的中点,,可得,即可求证;(2)根据等腰三角形“三线合一”,可得到,即可求解;(3)根据,且,可得 , ,从而得到,即解析:(1)见解析;(2)矩形,见解析;(3)AB AC =,且90BAC ∠=︒.【分析】(1)根据D 是BC 的中点,12AE BC =,可得DC AE =,即可求证; (2)根据等腰三角形“三线合一”,可得到AD BC ⊥,即可求解;(3)根据AB AC =,且90BAC ∠=︒,可得90ADC ∠=︒ ,45CAD ∠=︒ ,从而得到ACD CAD ∠=∠,即可求解.【详解】(1)证明:因为D 是BC 的中点, 所以12CD BC =, 因为12AE BC =, 所以DC AE =,因为//AE BC ,所以四边形ADCE 是平行四边形,所以AD EC =;(2)若AB AC =,则四边形ADCE 是矩形,理由如下:因为AB AC =,且D 是BC 的中点,所以AD BC ⊥,所以90ADC ∠=︒,因为四边形ADCE 是平行四边形,所以四边形ADCE 是矩形;(3)AB AC =,且90BAC ∠=︒.理由如下:由(2)得:四边形ADCE 是矩形,∵AB AC =,且D 是BC 的中点, ∴12BAD CAD BAC ∠=∠=∠ ,90ADC ∠=︒ , ∵90BAC ∠=︒,∴45CAD ∠=︒ ,∴45ACD ∠=︒,∴ACD CAD ∠=∠,∴AD CD = ,∴四边形ADCE 为正方形.【点睛】本题主要考查了平行四边形,矩形,正方形的判定,等腰三角形的性质,熟练掌握相关知识点是解题的关键.21.(1);(2);(3)【解析】【分析】(1)根据平方差公式分母有理化即可;(2)根据平方差公式分母有理化即可;(3)对每一个式子分母有理化,再进行合并计算即可;【详解】(1);故答案解析:(1231【解析】【分析】(1)根据平方差公式分母有理化即可;(2)根据平方差公式分母有理化即可;(3)对每一个式子分母有理化,再进行合并计算即可;【详解】(1==(2==(3··,1?·=1=;【点睛】本题主要考查了二次根式分母有理化,平方差公式,准确计算是解题的关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可.【详解】解:(1)设y=kx+b,代入(20,10解析:(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg .【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y 的值即可求出x 的值.23.(1)a+b ;(2)①EC =2MN ,见解析;②MN 的最大值为4;(3)MN =7;(4)2≤MN≤8【分析】(1)当点在的延长线上时,的值最大.(2)①结论:.连接,再利用全等三角形的性质证明,解析:(1)a +b ;(2)①EC =2MN ,见解析;②MN 的最大值为4;(3)MN =7;(4)2≤MN ≤8【分析】(1)当点A 在CB 的延长线上时,AC 的值最大.(2)①结论:2EC MN =.连接BD ,再利用全等三角形的性质证明BD EC =,再利用三角形的中位线定理,可得结论.②根据MN AM AN +,求出AM ,AN ,可得结论. (3)如图3中,以AD 为边向左作等边ADT ∆,连接CD ,BT ,过点T 作TJ BD ⊥交BD的延长线于J .证明BT CD =,12MN CD =,求出BT 可得结论. (4)由(3)可知,12MN BT =,求出BT 的取值范围,可得结论.【详解】解:(1)BC a =,AB b =,AC a b ∴+,AC ∴的最大值为a b +, 故答案为:a b +.(2)①结论:2EC MN =.理由:连接BD .90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,()BAD CAE SAS ∴∆≅∆,BD CE ∴=,AM MB =,AN ND =,2BD MN ∴=,2EC MN ∴=.②5AD =,3AB AC ==, 32AM BM ∴==,52AN ND ==, MN AM AN ∴+,3522MN ∴+, 4MN ∴,MN ∴的最大值为4.(3)如图3中,以AD 为边向左作等边ADT ∆,连接CD ,BT ,过点T 作TJ BD ⊥交BD 的延长线于J .ABC ∆,ADT ∆都是等边三角形,60TAD BAC ∴∠=∠=︒,AT AD =,AB AC =,TAB DAC ∴∠=∠,在TAB ∆和DAC ∆中,AT AD TAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ()TAB DAC SAS ∴∆≅∆,BT CD ∴=,BM CM =,BN ND =,12MN CD ∴=, 12MN BT ∴=, 60ADB ADT ∠=∠=︒,18012060TDJ ∴∠=︒-︒=︒,30,DTJ ∴∠=︒6AD DT ==,132DJ TD ∴==,TD = 31013BJ DJ BD ∴=+=+=,14BT ∴,172MN BT ∴==. (4)由(3)可知,12MN BT =,106610BT -+,416BT ∴,28MN ∴.【点睛】本题属于三角形综合题,考查了等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••, ∴3AC AP =,∵AC ==∴133AP =⨯, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴4AP x ==-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =,∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-, 2211(24)157B C '++∴BM MN NC ++有最小值为:66157B C '+=+∵点N 的横坐标为:517622+=, ∴点N 的纵坐标为:6177411211y =⨯-=, ∴点N 的坐标为:(172,711). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)3;(2)6(3)BD=AM ,证明见解析【分析】(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角 解析:(1)3;(2)6(3)BD=AM ,证明见解析【分析】(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角形的性质,可以求出定值. (3)根据已知条件可以判断ABC ∆是等腰直角三角形,近而求出AED ∆≌CEM ∆,得出ED=EM,即可得出结论.【详解】(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF//AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF ,又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=6,∴CD=12CF=3;(2)6BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF//AC 交BC 于F ,则有(1)可知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF∵有(1)可知△PFD ≌△QCD∴CD=12CF ∴()111162222BE CD BF CF BF CF BC λ+==+=+== (3)BD=AM证明:∵62,12AB AC BC ===∴222144AB AC BC +==∴ABC ∆是等腰直角三角形∵E 为BC 的中点 ∴12CE BE BC ==∴12AE BC =,090AEC CEM ∠=∠= ∴AE CE BE ==,090∠+∠=EAD ADE ∵AH ⊥CM∴090ECM CDH ∠+∠=∵ADE CDH ∠=∠∴EAD ECM ∠=∠∴AED ∆≌CEM ∆ (ASA)∴DE ME =∴BE DE AE ME +=+即:BD AM =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题】八年级数学下期末试卷(及答案)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺3.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点 的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③4.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .55.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .726.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米7.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠ 8.若一个直角三角形的两边长为12、13,则第三边长为( )A .5B .17C .5或17D .5或9.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A.300m2B.150m2C.330m2D.450m210.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.7D.5或711.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定12.下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=二、填空题13.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.14.如图,在▱ABCD中,∠D=120°,∠DAB的平分线AE交DC于点E,连接BE.若AE =AB,则∠EBC的度数为_______.15.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是______.16.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.△的面积17.如图,如果正方形ABCD的面积为5,正方形BEFG的面积为7,则ACE_________.18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.x x的取值范围是_____.19.201920.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由参赛者推荐语读书心得读书讲座甲878595乙94888822.如图,ABCD Y 中,延长AD 到点F ,延长CB 到点E ,使DF BE =,连接AE 、CF .求证:四边形AECF 是平行四边形.23.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩; (2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀? 24.计算:()2483276-÷25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.2.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.3.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.4.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.5.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.6.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:2222=68BC AC++=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.8.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D . 【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.9.B解析:B 【解析】 【分析】 【详解】 解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b ,解得450{600k b ==- 故直线AB 的解析式为y=450x ﹣600, 当x=2时,y=450×2﹣600=300, 300÷2=150(m 2) 故选B .【点睛】本题考查一次函数的应用.10.D解析:D 【解析】 【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边. 【详解】当第三边为直角边时,4为斜边,第三边2243-7; 当第三边为斜边时,3和4为直角边,第三边2243+=5, 故选:D .本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.11.B解析:B【解析】【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题12.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误.故选:C .【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠=o o.AB AD AE ==150.BAE o ∴∠= ABE △是等腰三角形15.AEB ∴∠=o 故答案为15.o14.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC 的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC =∠D =108°,AB ∥CD ,得出∠BAD =180°﹣∠D =60°,由等腰三角形的性质和三角形内角和定理求出∠ABE =75°,即可得出∠EBC 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC =∠D =120°,AB ∥CD ,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.15.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x<1或x>2.【解析】【分析】观察图象和数据即可求出答案.【详解】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.16.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN 中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN的长【详解】设CN=x则DN=8-x由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.17.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE -BC=-∴S△ACE==故【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯g =52,故答案为:52. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.18.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙解析:乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5, 丙成绩=80×60%+90×30%+73×10%=82.3, 乙将被录取.故答案为:乙.本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.19.x >2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x 的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x >2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20.2【解析】【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分),乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】 此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.证明见解析【解析】【分析】 根据平行四边形性质得出AD//BC,AD=BC ,求出AF=EC,AF//EC,得出四边形DEBF 是平行四边形,根据平行四边形的性质推出即可【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥且AD BC =,又∵DF BE =,∴AF CE =,AF EC ∥,∴四边形AECF 是平行四边形.【点睛】此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理23.(1)80;(2)①80;②85.【解析】【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分); (2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分); ②设小王期末考试成绩为x 分,根据题意,得:601752780127x ⨯+⨯+++…,解得84.2x …, ∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.24.2- 【解析】【分析】根据根式的化简原则化简计算即可.【详解】解:原式=-=( ==2-【点睛】 本题主要考查根式的计算,是基本知识点,应当熟练的计算.25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。