有理数数轴练习题
人教版七年级上册数学 第一章 有理数 数轴动点类压轴综合练习
人教版七年级上册数学第一章有理数数轴动点类压轴综合练习1.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.2.如图所示,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1.设点A,B,C所对应的数之和是m,点A,B,C所对应的数之积是n.(1)若以B为原点,写出点A,C所对应的数,并计算m的值;若以C为原点,m又是多少?(2)若原点O在图中数轴上点C的右边,且CO=4,求n的值.3.如图,点A、B、C为数轴上的点,请回答下列问题:(1)将点A向右平移3个单位长度后,点A,B,C表示的数中,哪个数最小?(2)将点C向左平移6个单位长度后,点A表示的数比点C表示的数小多少?(3)将点B向左平移2个单位长度后,点B与点C的距离是多少?4.如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.5.有A、B两点,在数轴上分别表示实数a、b,若a的绝对值是b的绝对值的4倍,且A、B两点的距离是15,求a、b的值.(1)若A、B两点在原点的同侧:A、B两点都在原点的左侧时,a=,b=,A、B两点都在原点的右侧时,a=,b=.(2)若A、B两点在原点的两侧:A在原点的左侧、B在原点的右侧时,a=,b=,A 在原点的右侧、B在原点的左侧时,a=,b=.6.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t 的值.7.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.8.把一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端点与数轴上的A点重合,右端点与数轴上的点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端移动到点B处时,它的右端点在数轴上对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为cm.(2)图中点A表示的数为,点B表示的数为;(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,东东问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在的年龄.9.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和1的两点之间的距离是,一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣2与5之间,则|a+2|+|a﹣5|的值为;(3)若x表示一个有理数,且|x﹣1|+|x+3|>4,则有理数x的取值范围;(4)若将数轴折叠,使得1表示的点与﹣3表示的点重合,此时M、N两点也互相重合.若数轴上M、N 两点之间的距离为2020(M在N的左侧),则M、N两点表示的数分别是M:;N:.10.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.11.已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+24|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁丙从A点出发以4个单位/秒的速度向右爬行,问多少秒后蚂蚁丙到A,B,C的距离和为40个单位?12.数轴上点A表示数a,点B表示数b,点C表示数c,若规定m=||c﹣a|﹣|c﹣b||,n=|c﹣a|+|c ﹣b|(1)当a=﹣3,b=4,c=2时,则m=,n=.(2)当a=﹣3,b=4,m=3,n=7时,则c=.(3)当a=﹣3,b=4,且n=2m,求c的值.(4)若点A、B、C为数轴上任意三点,p=|a﹣b|,化简:|m﹣p|﹣|p﹣n|+2|m﹣n|13.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.14.如图,点A、B是数轴上的两个点,它们分别表示的数是﹣2和1.点A与点B之间的距离表示为AB.(1)AB=.(2)点P是数轴上A点右侧的一个动点,它表示的数是x,满足|x+2|+|x﹣1|=7,求x的值.(3)点C为6.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值.15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:①如果点A表示数﹣2,将点A向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是;②如果点A表示数5,将A点先向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;③一般地,如果A点表示的数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么终点B表示的数是,A、B两点间的距离是;④若点A表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.。
人教版七年级数学上册第一章有理数1.2.2数轴同步练习题含答案
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( ) A .-4 B .-6 C .2或-4 D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x ,那么x 的值为( )A .8B .7C .6D .517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm ,木棒的左端点与数轴上的点A 重合,右端点与点B 重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B 处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A 处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A 表示的数是________,点B 表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题: 一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A 表示-3,点B 表示-1,点C 表示4. 4.A 5.B . 6.D 7.D 8.-2 9.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C .15.3 .16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B表示爷爷的年龄,A表示小红的年龄,把小红与爷爷的年龄差看作木棒AB.当爷爷的年龄是小红现在的年龄时,即将B向左移与A重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A向右移与B重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
人教版七年级上册数学 第1章 有理数 数轴动点问题 专题提升训练
人教版七年级上册数学第1章有理数数轴动点问题专题提升训练1.写出符合下列条件的数:(1)大于﹣3且小于2的所有整数;(2)绝对值大于2且小于5的所有负整数;(3)在数轴上,与表示﹣1的点的距离为2的数;2.我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地研究,数轴上两个点A,B,分别表示数a,b,那么A,B两点之间的距离AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示3和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上表示数x和﹣1的两点A,B之间的距离是,如果|AB|=3,那么x的值为.(3)根据绝对值的几何意义:求|x﹣1|+|x+2|+|x﹣2020|的最小值.(4)试求|x﹣2|+|x﹣4|+|x﹣6|+…|x﹣98|+|x﹣100|的最小值.3.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.4.如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示、、;(2)将点B向左移动3个单位长度后,点B所表示的数是;(3)将点A向右移动4个单位长度后,点A所表示的数是.5.已知:c是最小的正整数,且a、b、c满足(b﹣5)2+|a+c|=0.(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上A、B、C三点对应的数分别为a、b、c,点P对应的数为x.请借助数轴解决下列问题:①将数轴折叠,若点A与点B重合,则与点C重合的点对应的数为;②当正整数x为时,|x+1|+|x﹣5|的值最小;③当x为时,|x+1|+|x﹣1|+|x﹣5|的值最小;④若a表示一个有理数,且|a﹣1|+|a+3|>4,则a的取值范围是.(利用数轴)6.根据如图所示的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.(2)观察数轴,与点A的距离为4的点表示的数是.(3)若将数轴折叠,使得点A与表示数﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2018(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,求M,N两点表示的数.7.已知点A,B,C都在数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动.(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)若线段BC位于点A的左侧,且在数轴上沿射线AO方向移动,当AC﹣OB=AB时,求b的值.8.如图,已知数轴上A、B两点所表示的数分别为﹣2和6.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一个动点,且M为PA的中点,N为PB的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.9.如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣3的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣3的点与表示的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为.10.已知数轴上有A、B两个点对应的数分别是a、b,且满足|a+3|+(b﹣9)2=0;(1)求a、b的值;(2)点M是数轴上A、B之间的一个点,使得MA=2MB,求出点M所对应的数;(3)点P,点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,设运动时间为t秒,若AP+BQ=2PQ,求时间t的值.11.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点,写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=1,求p的值.12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表.(1)根据题意,填写下列表格;时间(秒)0 5 7A点位置19 ﹣1B点位置17 27(2)A、B两点能否相遇,如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距9个单位长度?如果能,求相距9个单位长度的时刻;如不能,请说明理由.13.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?14.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).15.【新知理解】如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.。
人教版七年级上册数学 第一章 有理数 数轴 综合练习题
人教版七年级上册数学第一章有理数数轴综合练习题1.如图,在数轴上有A、B两点(点B在点A的右边),点C是数轴上不与A、B两点重合的一个动点,点M、N分别是线段AC、BC的中点.(1)如果点A表示﹣2,点B表示8,则线段AB=;(2)如果点A表示数a,点B表示数b:①点C在线段AB上运动时,求线段MN的长度(用含a和b的代数式表示);②点C在直线AB上运动时,请你猜想线段MN的长度与a和b的数量关系并说明理由.2.如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC BD;(填“=”或“≠”)如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.3.已知数轴上A,B,C三点分别表示有理数6,﹣8,x.(1)求线段AB的长.(2)求线段AB的中点D在数轴上表示的数.(3)在(2)的条件下,已知CD=8,求x的值.4.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?5.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P 到B的距离的3倍时,我们就称点P是关于A→B的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P 关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.7.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.6.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师傅营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,﹣3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?8.在数轴上有两点A,B,并且A,B表示的数a,b分别是﹣6,18.现在P,Q都从A点出发往B点停止,已知P点速度是4个单位长度/秒,Q点速度6个单位长度/秒,已知P出发1秒后,Q才出发.(1)若M点与Q点同时从A点出发,且M点速度是8个单位长度/秒,M出发追上P后再返回与Q相遇就停止,它一共走了多远?(2)在整个过程中,P,Q两点在Q点出发后多久相距一个单位长度?9.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=(AB+CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是﹣3,﹣1,3,5,则线段EF,OT的相对离散度是,线段FG,EH的相对离散度是;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.10.定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的,则称该点是其他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=BC,此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.(1)A,B,C三点中,点是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有个,分别是;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.11.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?12.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.13.出租车司机刘师傅某天上午从A地出发,在东西方向的公路上行驶营运,下表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).次数 1 2 3 4 5 6 7 8里程﹣3 ﹣15 +19 ﹣1 +5 ﹣12 ﹣6 +12载客×〇〇×〇〇〇〇(1)刘师傅走完第8次里程后,他在A地的什么方向?离A地有多少千米?(2)已知出租车每千米耗油约0.06升,刘师傅开始营运前油箱里有7升油,若少于2升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油.(3)已知载客时2千米以内收费10元,超过2千米后每千米收费1.6元,问刘师傅这天上午走完8次里程后的营业额为多少元?14.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.15.数轴上点A,B,M分别对应数a,b,m,其中a<0,b>0.(1)若a=﹣3,b=7,则线段AB的中点对应的数是;(直接填结果)(2)若m=3,b>3,且AM=2BM,请在数轴上画出点A,B,M,并求a+2b+2011的值.16.2020年初以来,新冠病毒突发,为了将新鲜蔬菜运送到疫情最为严重的武汉,货车司机分工协作,组成货运车队,每一辆货车负责一条道路沿线的蔬菜投放,若以出发点为原点,向东为正,向西为负,下面是其中一辆车一天的行驶情况(单位:千米):+12,﹣4,+6,﹣10,+9,﹣8,+7,﹣15,+5,﹣9.(1)他送到最后一个投放点时,相对出发的地方,他在什么位置?(2)若大货车耗油量为0.12升/千米.这天上午,大货车共耗油多少升?17.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.18.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,油箱中有10升油摩托车能否最后返回岗亭?19.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B 是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.20.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC的长=;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为多少?。
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题1、已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.2、如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.3、如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.4、如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.5、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6、如图,点A,O,B在数轴上表示的数分别为﹣6,0,10,A,B两点间的距离可记为AB.(1)点C在数轴上的A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上的A,B两点之间,且BC=3AC,则点C对应的数是;(3)点C在数轴上,且AC+BC=20,求点C对应的数.7、操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.9、已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?10、如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.11、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.12、如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?13、对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.14、如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为15、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
《数轴》练习题和答案
《数轴》同步练习及答案一 夯实基础1、 画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1--- 23、 在数轴上表示-4的点位于原点的 边,与原点的距离是 个单位长度。
4、 比较大小,在横线上填入“>”、“<”或“=”。
1 0;0 -1;-1 -2; -5 -3; . 二、拓展提高1、 数轴上与原点距离是5的点有 个,表示的数是 。
2、 >3、 已知x 是整数,并且-3<x <4,那么在数轴上表示x 的所有可能的数值有 。
4、 在数轴上,点A 、B 分别表示-5和2,则线段AB 的长度是 。
5、 从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动两个单位长度到达点C,则点C 表示的数是 。
6、 数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度。
7、 在数轴上P 点表示2,现在将P 点向右移动两个单位长度后再向左移动5个单位长度,这时P 点必须向 移动 个单位到达表示-3的点。
三、体验中考 1、(太原)在数轴上表示-2的点离开原点的距离等于( )A 、2B 、-2C 、±2 D、4 /2、(广州)有理数a 、b 在数轴上的位置如图所示,则a 、b 的大小关系是( ) A 、a <b B 、a C 、a=b D —(原题是实数a ,b ,现改为有理数a ,b)`0 1D参考答案一、夯实基础(本节练习需要画数轴帮助分析)1、画数轴时,数轴的三要素要包括完整。
图略。
2、C,考察数轴的三要素。
3、左,44、)5、>>><<二、拓展提高1、两个,±52、-2,-1,0,1,2,33、74、-3,-15、16、左,2·三、体验中考1、A2、B《数轴》同步练习一、基础巩固题:1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
有理数数轴练习题
有理数数轴练习题一、选择题(每题2分,共20分)1. 在数轴上,-3和5之间的距离是:A. 8B. 2C. -8D. 无法确定2. 如果数轴上的点A表示-2,点B表示3,那么AB之间的距离是:A. 5B. 1C. -5D. 43. 以下哪个数不在数轴上:A. 0B. -1C. 1.5D. π4. 如果数轴上点P表示-4,点Q表示6,那么PQ之间的距离是:A. 10B. 2C. 8D. 45. 将数轴上的点A向左平移7个单位,得到点B,如果A表示-3,那么B表示:A. -10B. 4C. -6D. 无法确定6. 在数轴上,-7和-3的中点表示的数是:A. -5B. -4C. -2D. 27. 如果数轴上点M表示-1,点N表示2,那么MN之间的距离是:A. 3B. 1C. 2D. 48. 将数轴上的点A向右平移5个单位,得到点B,如果A表示2,那么B表示:A. 7B. 1C. 3D. 69. 在数轴上,-2和4的中点表示的数是:A. 1B. 0C. 2D. 310. 如果数轴上点P表示-5,点Q表示7,那么PQ之间的距离是:A. 12B. 10C. 8D. 6二、填空题(每题2分,共20分)11. 在数轴上,如果点A表示-8,点B表示4,那么AB之间的距离是________。
12. 如果数轴上点C表示-3,点D表示3,那么CD之间的距离是________。
13. 在数轴上,如果点E表示-1,点F表示1,那么EF之间的中点表示的数是________。
14. 如果数轴上点G表示-2,并且向右平移6个单位,那么G表示的数是________。
15. 在数轴上,如果点H表示5,并且向左平移3个单位,那么H表示的数是________。
16. 如果数轴上点I表示-4,并且向右平移8个单位,那么I表示的数是________。
17. 在数轴上,如果点J表示2,并且向左平移5个单位,那么J表示的数是________。
18. 如果数轴上点K表示-6,并且向右平移10个单位,那么K表示的数是________。
人教版七年级上册数学 第1章 有理数 数轴与绝对值 综合培优练习题
人教版七年级上册数学第1章有理数数轴与绝对值综合培优练习题一.数轴动点综合1.已知快递公司坐落在一条东西走向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1千米到达A店,继续向东骑行2千米到达B店,然后向西骑行5千米到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1厘米表示1千米,画出数轴,并在数轴上表示出A,B,C三个店的位置.(2)C店离A店有多远?(3)快递员一共骑行了多少千米?2.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P 到B的距离的3倍时,我们就称点P是关于A→B的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P 关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,琪琪去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?5.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.二.绝对值与最值问题6.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.7.我们知道,在数轴上,|a|表示数a到原点的距离.进一步地,点A,B在数轴上分别表示有理数a,b,那么A,B两点之间的距离就表示为|a﹣b|;反过来,|a﹣b|也就表示A,B两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题.例,若|x+5|=2,那么x为:①|x+5|=2,即|x﹣(﹣5)|=2.文字语言:数轴上什么数到﹣5的距离等于2.②图形语言:③答案:x为﹣7和﹣3.请你模仿上题的①②③,完成下列各题:(1)若|x+4|=|x﹣2|,求x的值;①文字语言:②图形语言:③答案:(2)|x﹣3|﹣|x|=2时,求x的值:①文字语言:②图形语言:③答案:(3)|x﹣1|+|x﹣3|>4.求x的取值范围:①文字语言:②图形语言:③答案:(4)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.①文字语言:②图形语言:③答案:8.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.9.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.10.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB =|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.三.有理数大小比较与化简问题11.已知有理数a、b、c在数轴上的对应点如图所示.(1)用“<”号把a,b,c连接起来;(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|.12.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a 0,b 0,c 0.(2)用“>、<、=”填空:﹣a 0,a﹣b 0,c﹣a 0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.13.已知a、b、c在数轴上的位置如图所示,(1)用“>”或“<”填空:c+b 0,ac 0,abc 0,ab+c 0.(2)=.14.已知有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a+b 0,a﹣b 0,a+b+c 0;(2)化简:|a+c|﹣|a+b+c|+|a﹣b|.15.(1)在数轴上分别画出表示下列3个数的点:﹣(﹣4),﹣|﹣3.5|,+(﹣).(2)有理数x,y在数轴上对应点如图所示:①在数轴上表示﹣x,|y|;②试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接.③化简:|x+y|﹣|y﹣x|+|y|.。
【最新】北师大版七年级数学上册第二章有理数数轴测试题
新北师大版七年级数学上册第二章有理数数轴测试题一、有理数、数轴、相反数及绝对值1.把各数填入相应的数集里:-14、2.8、45、-3.3、41、0、43-、-(-232)、-5-、-)12(-、312- 正整数集:{ };负分数集:{ };负数集:{ };非负数集:{ }2.在数轴上与-3距离4个单位的点表示的数是3.已知点P 是数轴上一个点,把点P 向左移动三个单位长度后,此时点P 到原点的距离是四个单位,则移动前点P 表示的数是 。
4.甲、乙两人分别位于数轴上表示25-和65的位置上,甲的速度是乙的速度的4倍,两人相向而行,则两人相距______个单位.相遇位置的点表示的数是_____5.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上任意画出一条长2011cm 的线段AB ,则线段AB 盖住的整点的个数是_______.6.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数之和是_________.7.-∣(-5)∣的相反数是 ,132的倒数是 。
8.已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为_____9.绝对值不大于5的所有整数的和是_________;10.绝对值等于其相反数的数一定是( )A.正数 B.负数 C.正数和零 D.负数和零11、比-3大,但不大于2的所有整数的和为________,12.在CCTV “开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是_______。
”A .-1 B .0C .1D .213、下列说法不正确的是( )A 、0既不是正数,也不是负数 B 、1是绝对值最小的数C 、一个有理数不是整数就是分数D 、0的绝对值是014.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a15.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.a >bB.a >-bC.a <bD.-a <-b11965.-<-A 11965.-<-B 11965.->-C )119()65(.--<--D 18.下列各式中,不成立的是( )A. |-3| = 3B. -|-3| = -3C. |-3| = |3|D. -|-3| = 319.小明经常在一条南北方向的公路上散步。
有理数数轴培优题
有理数数轴培优题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2七年级数学培优(1)——数轴知识点精析:利用数形结合思想解题的关键是建立数与形之间的联系,现阶段,数轴是联系数与形的桥梁,主要体现在:1. 运用数轴直观地表示有理数2. 运用数轴形象地解释相反数3. 运用数轴比较有理数的大小4. 运用数轴恰当地解决与绝对值有关联的问题例题精讲:例1.(1)数轴上有A 、B 两点,如果点A 对应的数是-2,且A 、B 两点之间的距离为3,那么点B 对应的数是 .(2)点A 、B 分别是数-3,21在数轴上对应的点,使线段AB 沿数轴向右移动到A ’B ’,且线段A ’B ’的中点对应的数是3,则点A ’对应的数是 ,点A 移动的距离是 .例2.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则与点C 所表示的数最接近的整数是 .例3.如图,已知数轴上点A 、B 、C 对应的数是a 、b 、c ,都不为0,且C 是AB 的中点,如果|a+b|- |a-2c|+|b-2c|-|a+b-2c|=0,试确定原点O 的大致位置。
ABCDEF -511ABCba c3例4.(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时, ① 如图2,点A 、B 都在原点的右边,b a a b a b OA OB AB -=-=-=-=;②如图3,点A 、B 都在原点的左边,()b a a b a b OA OB AB -=---=-=-=;③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=。
综上,数轴上A 、B 两点之间的距离b a AB -=。
(完整版)有理数数轴基础巩固练习题附答案
有理数 数轴 同步练习基础牢固题:1.在数轴上表示的两个数中, 的数总比 的数大。
2.在数轴上,表示- 5 的数在原点的 侧,它到原点的距离是 个单位长度。
3.在数轴上,表示 +2 的点在原点的 侧,距原点 个单位;表示- 7 的点在原点的侧,距原点 个单位;两点之间的距离为 个单位长度。
4.在数轴上,把表示 3 的点沿着数轴向负方向搬动 5 个单位,则与此地址相对应的数 是 。
5.与原点距离为 个单位长度的点有 个,它们表示的有理数是 。
6.到原点的距离不大于 3 的整数有 个,它们是: 。
7.以下说法错误的选项是( )A. 没有最大的正数,却有最大的负数B. 数轴上离原点越远,表示数越大大于所有非负数 D. 在原点左边离原点越远,数就越小8.以下结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是 0 ③ 正数,负数 和零统称有理数 ④ 数轴上的点都表示有理数9.在数轴上, A 点和 B 点所表示的数分别为- 2 和 1,若使 A 点表示的数是 B 点表示的数 的 3 倍,应把 A 点 ( )A. 向左搬动 5 个单位B. 向右搬动 5 个单位C.向右搬动 4 个单位D. 向左搬动 1 个单位或向右搬动 5 个单位10. 在数轴上画出以下各点,它们分别表示: +3,0 , -31 4 , 1 1 2, -3,- 并把它们用“<”连接起来。
应用与提高11.小明的家(记为 A )与他上学的学校(记为 B ),书店(记为 C )依次座落在一条东西走 向的大街上,小明家位于学校西边 30 米处,书店位于学校东边 100 米处,小明从学校沿 这条街向东走 40 米,接着又向西走了 70 米到达 D 处,试用数轴表示上述 A 、、B 、C 、D回澜阁 青岛标志性旅游建筑的地址。
12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,以下列图,试依照图中标出的数值判断被墨水遮住的整数,并把它写出来。
人教版七年级上册数学 第1章 有理数 数轴动点问题 专题提升练习
人教版七年级上册数学第1章有理数数轴动点问题专题提升练习1.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?2.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A: B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N:.3.如图,数轴上点A,B所表示的数分别是4,8.(1)请用尺规作图的方法确定原点O的位置;(不写作法,保留作图痕迹)(2)已知点M在线段OA上,点N在射线AB上,且AN=2AM.①当点M所表示的数为1时,AM=,AN=;当点M所表示的数为x时,AM=,AN=;②若线段BN=2,求点M所表示的数.4.阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示﹣2和5的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为.(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.5.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?6.思考下列问题并在横线上填上答案.(1)数轴上表示﹣3的点与表示4的点相距个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是.(4)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(5)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过秒三个点聚于一点,这一点表示的数是,点C在整个运动过程中,移动了个单位.7.已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO﹣AM的值是否变化?若不变求其值.8.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简|2m|(请写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.10.点A、B在数轴上分别表示数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示数x和﹣2的两点之间的距离表示为.(2)若﹣3<x<1,则|x﹣1|+|x+3|=;若|x﹣1|+|x+3|>4,则数x的取值范围是.(3)当两点A,B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为y.①若点P在线段AB上,且将线段AB分成1:3的两部分,求点P对应的数;②数轴上是否存在点P,使点P到点A的距离与到点B的距离之比为1:2?若存在,求出y的值;若不存在,说明理由.11.如图1,已知数轴上的点A对应的数是a,点B对应的数是b,且满足(a+5)2+|b﹣1|=0.(1)求数轴上到点A、点B距离相等的点C对应的数(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由(3)如图2在数轴上的点M和点N处各竖立一个挡板(点M在原点左侧,点N在原点右侧),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向左运动,乙弹珠以1个单位/秒的速度沿数轴向右运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M和点N的距离相等.试探究点M对应的数与点N对应的数是否满足某种数量关系,请写出它们的关系式,并说明理由.12.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,利用数轴找出所有符合条件的整数x,使点P到点A和点C的距离之和为6.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.13.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.14.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2017,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?(请在答题卡写出解答过程)15.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B 在原点的右边.(Ⅰ)求点A,点B对应的数;(Ⅱ)数轴上点A以每秒1个单位长度出发向左移动,同时点B以每秒3个单位长度的速度向左移动,在点C 处追上了点A,求点C对应的数.(Ⅲ)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中,线段的值是否变化?若不变,请说明理由并求其值;若变化,请说明理由.16.利用数轴解决下面的问题:(1)式子|x+1|+|x﹣2|的最小值是;(2)式子|x﹣2|+|2x﹣6|+|x﹣4|的最小值是;(3)当式子|x﹣1|+|x﹣2|+|x﹣3|+……+|x﹣2019|取最小值时,相应的x的取值范围或值是,最小值是.17.我们知道,|a|的几何意义是数轴上表示数a的点与原点的距离,一般地,点A,B在数轴上分别表示数a,b,那么A,B之间的距离可表示为|a﹣b|,请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上的数x与1所对应的点的距离为,数x与﹣1所对应的点的距离为;(2)求|x+1|﹣|x﹣1|的最大值;(3)直接写出|x+1|+|x+2|+|x+3|+|x+4|﹣|x﹣1|﹣|x﹣2|﹣|x﹣3|﹣|x﹣4|的最大值为.18.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离;同理|x﹣4|也可理解为x与4两数在数轴上所对应的两点之间的距离.试探索:(1)若|x﹣2|=5,则x的值是.(2)同理|x﹣5|+|x+3|=8表示数轴上有理数x所对应的点到5和﹣3所对应的两点距离之和为8,则所有符合条件的整数x是.(3)由以上探索猜想,若点P表示的数为x,当点P在数轴上什么位置时,|x﹣3|+|x﹣6|有最小值?如果有,直接写出最小值是多少?19.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.20.如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.。
七年级上册数学第一章有理数1.2.2数轴同步练习题
1.2.2数轴课堂同步练习题基础题1.关于数轴,下列说法最准确的是( )A.一条直线 B.有原点、正方向的一条直线C.有单位长度的一条直线 D.规定了原点、正方向、单位长度的直线2.如图,数轴上表示-2.75的点是( )A.E点 B.F点 C.G点D.H点3.数轴上原点及原点左边的点表示( )A.正数 B.负数 C.非正数 D.非负数4.下列说法中,正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上两个不同的点可以表示同一个有理数C.有的有理数不能表示在数轴上,如-0.000 05D.任何一个有理数都可在数轴上找到和它对应的唯一的一个点5.如图所示,在数轴上有A、B、C三点.请回答:(1)将点A向右移动2个单位长度后,表示的有理数是_________;(2)将点B向左移动3个单位长度后,表示的有理数是_________;(3)将点C向左移动5个单位长度后,表示的有理数是_________.6.画一条数轴,并在数轴上标出下列各数.−3,21,−1.5,0,+3.5,427.如图所示,在数轴上,点A、B、C、D依次表示数1.5、-2,2、-2.5,说出各点与原点的位置关系,以及与原点的距离.中档题8.如图,在数轴上,注明了四段的范围,若某段上有两个整数,则这段是()A. 段①B. 段②C. 段③D. 段④9.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为( )A.2 B.-6 C.2或-6 D.不同于以上答案10.(1)数轴上点A表示的数是−2.5,点B与点A相距3.5个单位,则点B表示的数是;(2)若−a是正数,且数轴上表示数a的点到原点的距离是5个单位长度,则a=;(3)在−7.5和1.5之间的整数有个.11.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴并标出A,B,C三点在数轴上的位置;(2)写出A,B,C三点表示的数;(3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?12.亮亮在做作业时,不小心将墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断被墨迹盖住的整数共有多少个?13.数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果一条数轴的单位长度是1cm,有一条长为2m的线段放在该数轴上,探究它可以盖住的整数点的个数问题.(1)如果长为2m的线段的两端点恰好与两个整数点重合,那么它可以盖住的整数点有个;(2)如果长为2m的线段的两端点不与两个整数点重合,那么它可以盖住的整数点有个.综合题1.如图,圆的周长为4个单位长度,在该圆的四等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数−1的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数−2019的点与圆周上重合的点表示的数字为()A. 0B. 1C. 2D. 3。
有理数、数轴练习题
【知识点1:有理数例题1 一袋水泥的标准质量为50千克,若比标准质量少2千克 ,记作-2千克,则比标准质量多1千克应记为 千克;若一袋水泥记为-1千克,则它的实际质量为 千克. 例题2 把下列各数分类:-,-,-31,,,7,0,.7,65-例题3 下列各数.3.0,5.0,0,,227⋅π中,有理数的个数是( ).A 2 .B 3 .C 4 .D 5 同步练习1.有理数+2,-1,215,7,0中,不属于正数集合的是( ) .A -1 .B -1和215 .C -1和0 .D 215和0 :2.下面是关于0的一些说法,其中正确说法的个数是[ ]①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. .1 C3.几个小球沿东西方向运动,规定向东为正,若A 球走了-7千米,那么表示在A 球西边的小球所对应的位置应该是下列中的( ).A -3千米 .B +2千米 .C 0千米 .D -9千米4.下列语句:①不带“-”号的数都是正数;②带“-”号的数 一定是负数;③不存在既不是正数也不是负数的数;④0℃表示没有温度.其中正确的有( ).A 0个 .B 1个 .C 2个 .D 3个5.下列说法正确的是( ).A 一个有理数不是正数就是负数 .B 不是整数,也不是分数,所以它不是有理数C 一个有理数不是整数就是分数 .D 有理数是指正有理数、零、 负有理数、整数、 分数这五类6.如果规定前进、收入为正,亏损、公元前为负,那么下列语句错误的是 ( )A .盈利的相反意义是亏损B .公元-100年的意义是公元后100年…C .前进-10m 的意义是后退10mD .收入-5万元的意义是亏损5万元7.如果向东走4千米记作+4千米,那么-2千米表示 .8.数学考试成绩85分以上为优秀,以85分为标准,老师将某一组5名同学的成绩简记为+9,-4,+11,-7,0,这五名同学实际数学考试成绩最高分是 分.9.在有理数中,最小的正整数 ,最大的负整数是 .10.现给出如下有理数:-,-1,0,,313,5.其中为非负有理数的是 . 11.有一组数列:2,-3,2,-3,2,-3,2,-3,……,根据这个规律,那么第2010个数是________.12.在下表适当的空格里面画上“√”号.( D )( C )( B )( A )-4-3-2-10432112340-1-2-3-40-4-3-2-104321、13.教室高m 3,教室里课桌的高,8.0m 如果把课桌面高度记为m 0,那么教室顶部和地面分别记作什么如果把天花板高度记作m 0那么桌面高度和地面高度分别记作什么知识点2:数轴例题1.下列表示数轴的图形中正确的是 ( )/(A ) (B ) (C ) (D ) 例题2.指出数轴上A 、B 、C 、D 、E 各点分别表示什么数:解:A 点表示______,B 点表示______,C 点表示______,D 点表示______,E 点表示______;例题3.数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____ ;例题4.数轴上B 点表示1-,那么距离B 点2个单位的数是___ _ _;例题5.数a 、b 在数轴上对应点的位置如图所示.则a _______b (填“>”、“<”或“=”).例题6.写出大于1.4-小于5.2的所有整数,并把它们在数轴上表示出来.同步练习1.下图中正确表示数轴的是 ( )2.在数轴上原点以及原点右边的点表示的数是 ( )$A .正数B .负数C .零和正数D .零和负数3.从数轴上看,0是 ( ) A .最小的整数 B .最大的负数 C .最小的有理数 D .最小的非负数4.如图所示,数轴上所标出的点中,相邻两点间的距离相等,则点A 表示的数为 ( )A .30B .50C .60D .805.数轴上的点A 到原点的距离是6,则点A 表示的数为 ( )A .6或-6B .-6C .-6D .3或-36.在数轴上-3与0之间的有理数有( ).个 个 个 D.无数个7.在数轴上表示3+的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示3+的点位于表示–5的点的_____侧,根据_____ ,可得35<-; 》 8.比较大于(填写“>”或“<”号)(1)- ;(2)-- ;(3)-21_____-31 ;(4)-41 _____0 ; 9.在0与-之间的负整数是_______. 10.给出下列各数:2,-3,-213,,0,-,其中最小的有理数为_______;最大的有理数为_______.11.两个负数较大的数所对应的点离原点较____ _。
1.2正负数、有理数、数轴练习
B、整数集合中去掉正整数和零
C、整说法,正确的有 ( B )
①0是最小的正整数 ②0是最小的有理数 ③0不是负数
√
④0既是非正数也是非负数
√
A、1个
C、3个
B、2 个
D、4个
5、下列说法错误的是: A、规定了原点、正方向和长度的直线叫数轴; B、所有有理数都可以用数轴上的点表示; C、数轴上的原点表示数0; D、数轴上表示—3.33的点在表示—3的点的左边。
• • • •
7、用—a表示的数一定是: A、负数;B、正数; C、正数或负数; D、以上都不对
【自主检测】 1.如果全班某次数学测试的平均成绩为83分,某 同学考了85分,记作+2分,得分90分和80分应分别 记作_________________________.
• 8、 下列说法正确的是( ) • A. 有原点、正方向的直线是数轴 • B. 数轴上两个不同的点可以表示同一个有理数 • C. 有些有理数不能在数轴上表示出来 • D. 任何一个有理数都可以用数轴上的点表示
《正、负数、有理数、数轴》练习题
知识点复习: 1:正数? 2:负数? 3:特例、基准 ?
1、如图所示的图形为四位同学画的数轴,其中正确的是 ( )
有理数可以分为:
有理数
整数 ______
分数 ______
正整数 ______
______ 0 负整数 ______
正分数 ______
负分数 ______
有理数还可以分为:
有理数
正有理数 ______
______ 0
负有理数 ______
正整数 ______
正分数 ______
最全面有理数数轴相反数练习题(精华版)
2.2 有 2.2.1有 理 理 数数学习要求:进一步理解正、负数的概念,会对有理数进行分类,在此基础上清楚的认识有理数的意义. 做一做:1.用正、负数表示下列相反意义的量,并指出它们的分界点.(1)高于海平面 100m ,低于海平面 (2)胜 6 局,负 5 局; (3)午夜前两小时,午夜后两小时. 选择题: 150m ; 2.下面说法正确的是 ((A) 整数一定是正数).(B) 有这样的有理数,它既不是正数,也不是负数 (C) 有这样的有理数,它既是正数,又是负数 (D) 零是最小的整数3.对- 3.728,下面说法正确的是 (A) 是负数,不是分数 (C) 是负数,也是分数4.关于数“ 0”有下面几种说法:).((B) 不是分数,是有理数 (D) 是分数,不是有理数①是整数,也是有理数;②不是正数,也不是负数;③不是整数,是有理数;④是整数,不是自然数,其中正 确的个数是 (A)4解答题:).( (B)3(C)2(D)127 15 7,0, , 30.1, , 3.6,8 5.把以下各数 填入相应的集合中:整数集合: 分数集合: 正数集合: 负数集合: } ; } ;} ;} .2.2.2 数 { { { { , , , , 轴学习要求:要明白数轴的三要素及画法,会在数轴上画出表示有理数的点并会比较数的大小. 做一做: 填空题:1.数轴的三要素是____,数轴上离开原点三个单位的数是____. 1 5 ____ 21 20 2.比较下列各组数的大小:5.8; ____- 20; 0.001____- 10000;3 80.375001 .选择题:3.下列说法正确的是 ).((A) 有最小的正数,没有最小的负数(B) 有最大的负数,没有最小的负数 (C) 有最小的正数,也有最大的负数 (D) 既没最大的负数,也没有最小的正数 4.下面各式错误的是 ).(135.335 (B) -4<- 3<- 2 (A)(C) - π>- 0.3(D) -(+ 2)<- (- 3)解答题:1 21,0,1 ,2.23, 5.画出一个数轴,并在数轴上画出表示下列各数的点:6.将下列各数按从小到大的顺序排列,并用“<”号连接起来:1 21314,(1)9,-2,0,3,-9;,,4,3,π.(2)7.在数轴上点 A 表示数3,那么在同一数轴上与点 A 相距 3 个单位长度的点表示的数是多少?相反数 数轴一、填空题1. 的两个数,叫做互为相反数;零的相反数是 .2. 0. 4 与互为相反数,与- (- 7)互为相反数, a 的相反数是.3.规定了 、和的叫数轴. 4.所有的有理数都能用数轴上的来表示.5.数轴上,表示- 3 的点到原点的距离是 个单位长,与原点距离为3 个单位长的点表示的数是 A 表示的数是- 10,则点。
人教版七年级数学上册第一章 有理数-数轴压轴题专项训练试题(无答案)
人教版七年级数学上册第一章有理数-数轴压轴题专项训练试题1、已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.2、如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.3、如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.4、如图,已知数轴上两点A、B表示的数分别为﹣2、3.点P为数轴上一动点,其表示的数为x.(1)若点P是线段AB的中点,求x;(2)若点P到点A、点B的距离之和为8,求x.5、如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6、如图,点A,O,B在数轴上表示的数分别为﹣6,0,10,A,B两点间的距离可记为AB.(1)点C在数轴上的A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上的A,B两点之间,且BC=3AC,则点C对应的数是;(3)点C在数轴上,且AC+BC=20,求点C对应的数.7、操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.8、如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.9、已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?10、如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.11、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是P.(1)若以B为原点,写出点A,C所对应的数,并计算P的值;若以C为原点,P又是多少?(2)若原点O在图中数轴上点C的右边,且CO=38,求P.12、如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B 落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?13、对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M 表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.14、如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为15、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
第一章 有理数 数轴 综合培优练习题(一)2021-2022学年七年级数学人教版上册
第一章《有理数》数轴综合培优练习题(一)1.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?2.已知数轴上两点A,B对应的数分别为a,b,点M为数轴上一动点,其中a,b满足(a+2)2+|b﹣7|=0.(1)写出点A表示的数是;点B表示的数是.(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是[A,B]的好点.①若点M到运动到原点O时,此时点M[A,B]的好点(填是或者不是);②若点M以每秒1个单位的速度从原点O开始运动,当M是[A,B]的好点时,求点M所表示的数.3.数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC=l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为.4.数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是,最大值是;(3)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是;(4)关于x的式子|x﹣2|+|x+1|的取值范围是.5.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB =|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,探究下列问题.(1)式子|x+1|+|x﹣2|的最小值是.(2)式子|x+1|﹣|x﹣2|的最大值是.(3)式子|x﹣2|+|2x﹣6|+|3x﹣1|的最小值是.6.如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.7.阅读下列材料: 我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1,x 2对应点之间的距离,在解题中,我们会常常运用绝对值的几何意义:例1:已知|x |=2求x 的值.解:在数轴上与原点距离为2的点对应的数为±2,即x =±2.例2:已知|x ﹣1|=2,求x 的值.解:在数轴上与1的距离为2的点对应的数为﹣1,3,即x =﹣1或x =3.参考阅读材料,解答下列问题:(1)已知|x |=3,则x 的值为 .(2)已知|x +2|=4,则x 的值为 .(3)已知x 是有理数,当x 取不同数时,式子|x ﹣3|+|x +4|的值也会发生变化,问式子|x ﹣3|+|x +4|是否有最小值?若有写出最小值,若没有,请说出理由.8.如图,数轴的单位长度为1,点A ,B ,C ,D 都在数轴上,且点A ,B 表示的数互为相反数.(1)请在数轴上描出原点O 的位置,并写出点A ,C ,D 所表示的数.(2)点P 在数轴上,且PA +PB =PD .①小温说:点P 不可能在点A 左侧.小温说得对吗?请说明理由.②求所有满足条件的点P 所表示的数.9.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).10.甲、乙两辆汽车在东西走向的公路上行驶,规定向东为正,开始时甲车在西60千米的点A处,乙车在东10千米的点B处,(如图所示),甲车的速度为90千米/小时,乙车的速度为60千米/小时.(1)求甲、乙两车之间的距离(列式计算);(2)甲、乙两车同时向东行驶,甲车行驶270千米后进入服务区休息10分钟,然后继续向东行驶30千米,乙车一直向东行驶.①求此时乙车到达的位置点C所表示的数(列式计算);②甲车司机发现自己的手提包丢在服务区,立即调头来取,然后再追赶乙车,当甲车追上乙车时,求乙车到达的位置点D所表示的数(直接写出答案).11.数轴上,当点A在原点的左边,点B在原点的右边,点A,B之间的距离为28个单位长度,点A与原点的距离为8个单位长度,若点A,B对应的有理数分别是a,b.(1)求a,b;(2)若质点M从点A沿数轴以每秒1个单位长度向左运动,质点N从点B沿数轴以每秒3个单位长度向左运动,若质点N在点C处追上质点M,求点C对应的有理数c;(3)若质点P从点A沿数轴以每秒2单位长度向右运动,质点Q从点B沿数轴以每秒1个单位长度向右运动,t秒钟后质点P与质点Q之间的距离为18时,求t的值.12.点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,将点A向右移动8个单位得到点C,点D、点E是线段BC的两个三等分点.在所给的数轴(如图)上标出B、C、D、E各点,再写出它们各自对应的有理数.13.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?14.对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C所表示的数分别为1、3、4,则点B是点A、C的“至善点”.(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别C1、C2、C3、C4,其中是点A、B的“至善点”的有(填代号);(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M表示的数m.15.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.16.已知A,B两点在数轴上分别示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a﹣b|.已知数轴上A,B两点对应的数分别为﹣1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与﹣4表示的点之间的距离表示为若点P到A,B两点的距离相等,则点P对应的数为若点P到A,B两点的距离之和为8,则点P对应的数为现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A 与点B之间的距离为3个单位长度时,求点A所对应的数是多少?17.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行时间/秒0 1 5A点位置﹣12 ﹣9B点位置8 18 (1)请填写表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.19.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴
1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.
2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.
3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.
4.判断下列所画的数轴是否正确,如不正确,请指出.
-10
(1)
(2)
-1
(3)
1
0(4)
(5)
(6)
5.在所给的数轴上画出表示下列各数的点:2,-3,112 ,0,3
2
,5,123。
5
6.指出数轴上A ,B ,C ,D ,E ,F 各点所代表的数字.
F
D
A
7.在数轴上画出表示下列各数的点,并回答下列问题. -3,2,-1.5,-2,0,1.5,3.
(1)哪两个数的点与原点的距离相等?
(2)表示-2的点与表示3的点相差几个单位长度?
8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长
度后,得到的点对应的数是什么?。