一元一次方程的解法练习题

合集下载

初中数学练习题解一元一次方程

初中数学练习题解一元一次方程

初中数学练习题解一元一次方程一、题目:解一下方程:5x + 3 = 2x + 13二、解题步骤:要解一元一次方程,我们需要将方程中的未知数(x)与常数项(数字)分开。

以下是解决这个方程的步骤:1. 将方程中的常数项移到等号的另一边。

5x + 3 = 2x + 135x - 2x = 13 - 32. 合并同类项。

3x = 103. 求解未知数,计算x的值。

x = 10 ÷ 3三、解题过程:根据上面的步骤,我们可以进行具体计算:1. 将方程中的常数项移到等号的另一边。

5x + 3 = 2x + 135x - 2x = 13 - 32. 合并同类项。

3x = 103. 求解未知数,计算x的值。

x = 10 ÷ 3所以,这个方程的解为 x = 10 ÷ 3。

四、验证:为了验证我们得出的解是否正确,我们可以将x的值代入原方程进行计算。

将x = 10 ÷ 3代入方程5x + 3 = 2x + 13:左边:5(10 ÷ 3) + 3 = 50 ÷ 3 + 3 = 16 2/3 + 3 = 16 2/3 + 3 * 3/3 = 16 2/3 + 9/3 = 51/3 = 17右边:2(10 ÷ 3) + 13 = 20 ÷ 3 + 13 = 6 2/3 + 13 = 6 2/3 + 13 * 3/3 = 6 2/3 + 39/3 = 45/3 = 15左边等于右边,验证成功。

所以,解x = 10 ÷ 3是方程5x + 3 = 2x + 13的正确解。

五、总结:通过本题目的解答过程,我们了解了如何解一元一次方程的基本步骤。

首先,我们通过合并同类项,将未知数与常数项分开;然后,求解未知数,得出方程的解;最后,我们通过验证步骤来验证解是否正确。

只有在解过程正确的情况下,我们才能确信解是正确的。

在数学学习中,解题是非常重要的一环。

七年级数学一元一次方程解法及应用练习题(附答案)

七年级数学一元一次方程解法及应用练习题(附答案)

七年级数学一元一次方程解法及应用练习题一、解答题1.两个容器内共有48 kg的水,乙容器给甲容器加水一倍,然后甲容器又给乙容器加乙容器剩余水的一倍,则两容器的水量相等,最初两容器各有多少千克水?2..甲、乙两列火车的长分别为144m和180m,甲车比乙车每秒多行驶4m.(1)两列车相向行驶,从相遇到全部错开(从两车头相遇到两车尾离开)需9s,问两车速度各是多少?(2)在(1)的条件下若同向行驶,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需多长时间?3.一架飞机在,A B两城市之间飞行,风速为20千米/时,顺风飞行需要8小时,逆风飞行需要8.5小时.求无风时飞机的飞行速度和,A B两城市之间的航程.4.为增强市民的节水意识,某市对居民用水实行“阶梯收费”.规定每户每月不超过月用水标准量部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元,该市规定的每户月用水标准量是多少吨?二、计算题5.解方程:3(x-5)=7x-16.解方程:32x-64=16x+327.解方程-2(x-2)=128.解方程3(x﹣2)=x﹣49.解下列方程:﹣2(x﹣2)=1210、解方程:参考答案1.答案:解:设最初甲容器有水x kg,则乙容器有水()48x -kg.依题意得()()24822482x x x -=--.解得18,4830x x =-=.答:最初甲、乙两容器分别有水18 kg,30 kg.解析:2.答案:(1)甲车每秒行驶20m,乙车每秒行驶16m.(2)81s解析:(1)设乙车每秒行驶m x ,则甲车每秒行驶()4m x +,根据题意,得()94144180x x ++=+. 去括号、移项、合并同类项,得232x =.解得16x =.答:甲车每秒行驶20m,乙车每秒行驶16m.(2)由题意,得()1441804324481+÷=÷=(s).答:需要81s.3.答案:解:设飞机的速度是x(20)8(20)8.5x x +=-660x =解析:4.答案:解:因为1.5121820⨯=<,所以5月份用水量已超标,设该市规定的每户月用水标准量为x 吨,则超标部分为()12x -吨,依题意得()1.5 2.51220x x ++=,解得10x =.答:该市规定的每户月用水标准量为10吨.解析:5.答案:72x =- 解析:6.答案:x=6解析:7.答案:x=-4解析:8.答案:x=1解析:9.答案:x=﹣4解析:。

一元一次方程练习题及答案

一元一次方程练习题及答案

一元一次方程练习题及答案1.判断题:1)判断下列方程是否是一元一次方程:①-3x-6x^2=7.(不是)②x+1=3.(是)③5x+1-2x=3x-2.(是)④3y-4=2y+1.(不是)2)判断下列方程的解法是否正确:①解方程3y-4=y+3,解:3y-y=3+4,2y=7,y=7/2.(错误,应为2y-4=1,y=5/2)②解方程:0.4x-3=0.1x+2,解:0.4x-0.1x=2+3,0.3x=5,x=50/3.(正确)③解方程-(x+3)/(x-1)=1,解:-x-3=x-1,2x=4,x=2.(错误,应为-2x-6=x-1,-3x=5,x=-5/3)④解方程(x+2)/2=1-x,解:x+2=2-2x,3x=-1,x=-1/3.(正确)2.填空题:1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠3.2)关于x的方程ax=3的解是自然数,则整数a的值为:1或3.3)方程5x-2(x-1)=17的解是4.4)x=2是方程2x-3=m-x的解,则m=7.5)若-2x+1=0是关于x的一元一次方程,则m=1/2.6)当y=2时,代数式5y+6与3y-2互为相反数.7)当m=0时,方程-m=0的解为0.8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为3b/a.3.选择题:1)方程ax=b的解是().A.有一个解x=b/aB.有无数个解C.没有解D.当a≠0时,x=b/a2)解方程(x-1)/4=3,下列变形中,较简捷的是()A.方程两边都乘以4,得(x-1)=12B.去括号,得4(x-1)=12C.两边同乘以4,得(x-1)=12D.整理,得x=13/43)方程2/(x-3)=-3/6的去分母得(x-3)/2=1/2,解得x=4. 4)若代数式(4x-3)/(x+15)比1大1,则x的值是-18.5)x=1是方程5x+1/(x-0.5)=9-4x/(1.3-3x)的解.1.解方程:1) 7(2x-1)-3(4x-1)=4(3x+2)-1;2) (5y+1)+(1-y)=(9y+1)+(1-3y);3) [(x-1)-4]=x+2;4) x-1=-x;5) 3-(2.5x+1.5)+2x-5=1;6) -2x-3=-2x;7) 6/(3y-4)+3y=1;8) 20%+(1-20%)(320-x)=320×40%.改写:1) 解方程:14x-10=-8x+7;2) 解方程:5y=2y;3) 解方程:x=-1;4) 解方程:x=-1/2;5) 化简方程:-0.5x+0.5=0;6) 解方程:无解;7) 化简方程:6y^2-13y+4=0;8) 解方程:x=80.2.解答下列各题:1) 当x等于1时,代数式的值相等;2) 当y等于4时,代数式的值少3;3) 当m等于4时,代数式2m-的值与代数式-3的值的和等于5;4) 解方程:(3m+1)x=m(x-4)^3;① ax+b=bx+a;(a≠b)时,解得x=(a-b)/(a-b)=1;②解方程:x^2+mx-m=0,得x=1或x=-m;5) 填空:1) x=3;2) 1/6;3) y=-2;4) a=8;5) -1;6) x=1;7) 10;8) a=2;9) 1/2;10) a+b=0.3.选择题:1) 解得h=4cm;2) 由题意得a/b=3/(x-1),化简得3x-a=b,为一元一次方程,故选C;3) 解方程得x=-2;4) 解方程得x=2/7;5) 解得x=2,故选B.4)下列方程共有几个一元一次方程:2x+3x/12x+63x-1=2(x+1)+3=3(2x+5)-2(x-1)=4x+6.答案:共有4个。

小学一元一次方程练习题

小学一元一次方程练习题

小学一元一次方程练习题小学一元一次方程练习题一元一次方程是小学数学中的一个重要概念,它是解决实际问题的基础。

通过解一元一次方程,我们可以找到未知数的值,从而得出问题的答案。

下面,我将给大家提供一些小学一元一次方程的练习题,希望能够帮助大家更好地理解和掌握这个概念。

题目一:小明买了一些苹果,每个苹果的价格是3元。

他总共花了15元,请问他买了多少个苹果?解答:设小明买了x个苹果,根据题意可得方程3x=15。

我们可以通过解这个方程来求解x的值。

首先,我们将方程3x=15化简为x=15/3,得到x=5。

所以,小明买了5个苹果。

题目二:小华和小李一起去超市买水果。

小华买了一些苹果,每个苹果的价格是2元;小李买了一些橙子,每个橙子的价格是3元。

他们总共花了17元,请问小华买了多少个苹果,小李买了多少个橙子?解答:设小华买了x个苹果,小李买了y个橙子。

根据题意可得方程2x+3y=17。

我们可以通过解这个方程来求解x和y的值。

首先,我们将方程2x+3y=17化简为2x=17-3y,得到x=(17-3y)/2。

由于x和y都是整数,我们可以通过试探的方法来求解。

当y=1时,x=(17-3)/2=7。

当y=2时,x=(17-6)/2=5。

当y=3时,x=(17-9)/2=4.5,不符合题意。

所以,小华买了5个苹果,小李买了2个橙子。

题目三:小明和小红一起去商场买书包。

小明买了一个书包,价格是50元;小红买了一个书包,价格是x元。

他们总共花了90元,请问小红买书包花了多少钱?解答:设小红买书包花了y元。

根据题意可得方程50+y=90。

我们可以通过解这个方程来求解y的值。

首先,我们将方程50+y=90化简为y=90-50,得到y=40。

所以,小红买书包花了40元。

通过以上的练习题,我们可以看到一元一次方程在解决实际问题中的应用。

通过设定未知数和列方程,我们可以通过解方程来求解未知数的值,从而得到问题的答案。

掌握一元一次方程的解法对于小学生来说是非常重要的,它不仅可以帮助他们提高数学解题的能力,还可以培养他们的逻辑思维和问题解决能力。

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

【巩固练习】一、选择题1.(2015秋•榆阳区校级期末)关于x 的方程3x+5=0与3x+3k=1的解相同,则k=( )A.-2B.C.2D. 4343-2.下列说法正确的是 ( ) .A .由7x =4x -3移项得7x -4x =-3B .由去分母得2(2x -1)=1+3(x -3)213132x x --=+C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=4D .由2(x -1)=x+7移项合并同类项得x =53.将方程去分母得到方程6x -3-2x -2=6,其错误的原因是( ) .211123x x ---=A .分母的最小公倍数找错B .去分母时,漏乘了分母为1的项C .去分母时,分子部分的多项式未添括号,造成符号错误D .去分母时,分子未乘相应的数4.解方程,较简便的是( ).4530754x ⎛⎫-= ⎪⎝⎭A .先去分母B .先去括号C .先两边都除以D .先两边都乘以45455.小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是,11222y y -=+53y =于是小明很快补上了这个常数,并迅速完成了作业.同学们,你们能补出这个常数吗?它应是( ).A .1B .2C .3D .46. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏7. “△”表示一种运算符号,其意义是,若,则等于 ( 2a b a b ∆=-(13)2x ∆∆=x ).A .1 B . C . D .2 12328.关于的方程无解,则是 ( ).x (38)70m n x ++=mn A .正数 B .非正数 C .负数 D .非负数 二、填空题9.(福建泉州)已知方程||x 2=,那么方程的解是 . 10. 当x= _____ 时,x -的值等于2..31x +11.已知关于x 的方程的解是4,则________.3322x a x -=+2()2a a --=12.若关于x 的方程ax+3=4x+1的解为正整数,则整数a 的值是 .13.(2014秋•高新区校级期末)如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是 .14.a 、b 、c 、d 为有理数,现规定一种新的运算:,那么当a b ad bc c d=-时,则x =______.241815x =-三、解答题15.解下列方程:(1) ;521042345102y y y --+-=-+(2) ;111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭(3).0.150.1330200.30.110.07300.2x x x +++-=+16. 解关于的方程:x ;(2) (3)()148x b ax +=-(1)(1)(2)m x m m -=--(1)(2)1m m x m --=-17. (2015•裕华区模拟)定义一种新运算“⊕”:a ⊕b=a ﹣2b ,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x ﹣3)⊕(x+1)=1,求x 的值.【答案与解析】一、选择题1.【答案】C .【解析】解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2.2. 【答案】A【解析】由7x =4x -3移项得7x -4x =-3;B .去分母得2(2x -1)=213132x x --=+6+3(x -3);C .把2(2x -1)-3(x -3)=1去括号得4x -2-3x+9=1;D .2(x -1)=x+7,2x -2=x+7,2x -x =7+2,x =93.【答案】C 【解析】把方程去分母,得3(2x -1)-2(x -1)=6,6x -3-2x+2=6与6x -211123x x ---=3-2x -2=6相比较,很显然是符号上的错误.4.【答案】B【解析】因为与互为倒数,所以去括号它们的积为1.45545.【答案】B【解析】设被污染的方程的常数为k ,则方程为,把代入方程得11222y y k -=+53y =,移项得,合并同类项得-k =-2,系数化为1得k =2,故1015326k -=+5110623k -=+-选B .6.【答案】B【解析】设有盏,则有个灯距,由题意可得:,解x (1)x -36(1061)70(1)x -=-得:55x =7.【答案】B【解析】由题意可得:“△”表示2倍的第一个数减去第二个数,由此可得:,132131∆=⨯-=-而,解得:(13)(1)212x x x ∆∆=∆-=+=12x =8.【答案】B【解析】原方程可化为:,将“”看作整体,只有(38)7m n x +=-38m n +时原方程才无解,由此可得均为零或一正一负,所以的值应为非正380m n +=,m n mn 数.二、填空9.【答案】1222x x ==-,10.【答案】213=x 11.【答案】24【解析】把x =4代入方程,得,解得a =6,从而(-a )2-2a =24.344322a -=+12.【答案】2或3【解析】由题意,求出方程的解为:314-=-x ax , ,因为解为正整数,所以,即或2)4(-=-x a 42--=a x 214a --=-或2a =3.13.【答案】-6.【解析】由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4,∴x ﹣2=﹣6.14.【答案】3【解析】由题意,得2×5-4(1-x )=18,解得x =3.三、解答题15. 【解析】解:(1)原方程可化为:212y +-=解得:4y =-(2)原方程可化为: 11233234322x x x x ⎡⎤⎛⎫----=+ ⎪⎢⎥⎝⎭⎣⎦移项,合并得: 123943x x x ⎛⎫--=-- ⎪⎝⎭解得:229x =-(3)原方程可化为:151332311732x x x +++-=+去分母,化简得:1513x -=解得: 1315x =-16. 【解析】解:(1)原方程可化为:(4)8a xb -=+ 当时,方程有唯一解:;4a ≠84b x a +=-当,时,方程无解;4a =8b ≠-当,时,原方程的解为任意有理数,即有无穷多解.4a =8b =-(2)(1)(1)(2)m x m m -=-- 当,即时,方程有唯一的解:.10m -≠1m ≠2x m =-当,即时,原方程变为.原方程的解为任意有理数,即有无10m -=1m =00x ⋅=穷多解.(3) (1)(2)1m m x m --=-当时,原方程有唯一解:;1,2m m ≠≠12x m =-当时,原方程的解为任意有理数,即有无穷多解;1m =当时,原方程无解.2m =17.【解析】解:(1)根据题中的新定义得:原式=﹣3﹣4=﹣7;(2)已知等式变形得:x﹣3﹣2(x+1)=1,去括号得:x﹣3﹣2x﹣2=1,移项合并得:﹣x=6,解得:x=﹣6.。

一元一次方程专题训练

一元一次方程专题训练

专题一:一元一次方程的解法1.解方程:(1)5x+5=9-3x;解:移项、合并同类项得8x=4,解得x=1 2 .(2)5x=3(2+x);解:去括号得5x=6+3x.移项、合并同类项得2x=6,解得x=3.(3)7-2x=3-4(x-2);解:去括号得7-2x=3-4x+8,移项、合并同类项得2x=4,解得x=2.(4)3(2x+1)=9-2(x-1);解:去括号得6x+3=9-2x+2,移项、合并同类项得8x=8,解得x=1.(5)753 48x-=;解:去分母得14x-10=3,移项、合并同类项得14x=13,解得x=13 14.(6)2154 36x x-+=;解:去分母得2(2x-1)=5x+4,去括号得4x-2=5x+4,移项、合并同类项得-x=6,解得x=-6.(7)4353146x x-+-=;解:去分母得12-3(4-3x)=2(5x+3),去括号得12-12+9x=10x+6,移项、合并同类项得-x=6,解得x=-6.(8)34=1.6 0.50.2x x-+-;解:方程整理得10305x--10402x+=1.6,去分母得2(10x-30)-5(10x+40)=16,去括号得20x-60-50x-200=16,移项、合并同类项得-30x=276,解得x=-9.2.(9)1+2=224x xx---;解:去分母得4x-2(x-1)=8-(x+2),去括号得4x-2x+2=8-x-2,移项、合并同类项得3x=4,解得x=4 3 .(10)(x-4)-(4)12x--=3-(4)23x-+.解:方法一:令x-4=y,则原方程可变形为y-12y-=3-23y+.去分母得6y-3(y-1)=18-2(y+2),去括号得6y-3y+3=18-2y-4,移项、合并同类项得5y=11,解得y=115,则x-4=115,解得x=315.方法二:方程整理得x-52x-=7-23x-,去分母得6x-3(x-5)=42-2(x-2),去括号得6x-3x+15=42-2x+4,移项、合并同类项得5x =31,解得x =315. 2.方程2(x -1)-3(x +1)=0的解与关于x 的方程2k x +-3k -2=2x 的解互为相反数,求k 的值.解:方程2(x -1)-3(x +1)=0,去括号得2x -2-3x -3=0,移项、合并同类项得-x =5,解得x =-5. 由题意得2k x +-3k -2=2x 的解为x =5. 把x =5代入得52k +-3k -2=10, 去分母得k +5-6k -4=20,移项、合并同类项得-5k =19,解得k =-195. 3.已知关于x 的一元一次方程4x +2m =3x -1.(1)求这个方程的解;解:(1)移项,得4x -3x =-1-2m .所以x =-1-2m .(2)若这个方程的解与关于x 的方程3(x +m )=-(x -1)的解相同,求m 的值.(2)去括号,得3x +3m =-x +1.移项、合并同类项,得4x =1-3m .解得x =134m -. 由于两个方程的解相同, 所以-1-2m =134m -. 去分母、去括号得-4-8m =1-3m ,移项、合并同类项,得-5m =5.解得m =-1.4.已知m 为整数,且满足关于x 的方程(2m +1)x =3mx -1.(1)当m =2时,求方程的解;解:(1)当m =2时,原方程为5x =6x -1,解得x =1.(2)该方程的解能否为3,请说明理由;(2)方程的解不能为3.理由如下:将x=3代入原方程,得3(2m+1)=9m-1,解得m=4 3 .∵m为整数,∵方程的解不可能为3.(3)当x为正整数时,请求出m的值.(3)(2m+1)x=3mx-1,移项、合并同类项,得(m-1)x=1.∵x为正整数,∵m-1为正数且为1的约数.∵m为整数,∵m-1=1.∵m=2.5.小王在解关于x的方程2-243x-=3a-2x时,误将-2x看作+2x,得方程的解为x=1. (1)求a的值;解:(1)把x=1代入2-243x-=3a+2x,得2+23=3a+2,解得a=29.(2)求此方程正确的解.(2)把a=29代入原方程得2-243x-=23-2x.去分母得6-(2x-4)=2-6x.去括号得6-2x+4=2-6x.移项得-2x+6x=-10+2.合并同类项得4x=-8.解得x=-2.6.定义:若关于x的一元一次方程ax=b的解为x=b+a,则称该方程为“和解方程”.例如:2x=-4的解为x=-2,且-2=-4+2,则方程2x=-4是“和解方程”.(1)判断-3x=94是否是“和解方程”,说明理由;解:(1)∵-3x=94,∵x=-3 4 .∵94-3=-34,∵-3x=94是“和解方程”.(2)若关于x的一元一次方程5x=m-2是“和解方程”,求m的值.(2)∵关于x的一元一次方程5x=m-2是“和解方程”,∵m-2+5=25m. 解得m=-174.故m的值为-174.专题二:方程中与的字母问题1.已知关于x的方程(m+2)x|m+1|-3=0是一元一次方程,则m的值是( B)A.-2B.0C.1D.0或-22.若(|m|-1)x2-(m-1)x-8=0是关于x的一元一次方程,则m的值为( A)A.-1B.1C.±1D.不能确定3.已知关于x的方程ax-1=x为一元一次方程,则|a-1|的值一定为( A)A.正数B.非负数C.零D.不能确定4.若(m-4)x2|m|-7-4m=0是关于x的一元一次方程,求m2-2m+1996的值.解:∵(m -4)x 2|m |-7-4m =0是关于x 的一元一次方程,∵m -4≠0且2|m |-7=1.解得m =-4.∵原式=16+8+1996=2020.5.已知关于x 的方程2x -93a -=0的解是x =-2,则a 的值为( C ) A.-21 B.21 C.-3 D.38.已知关于x 的方程x -46ax -=43x +-1的解是正整数,则符合条件的所有整数a 的积是 . 9.在做解方程练习时,学习卷中有一个方程“2y -13=13y +W ”中的W 没印清晰,小聪问老师,老师只是说:“W 是个有理数,该方程的解与方程3(x -1)-2(x -2)=3的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗? 解:解方程3(x -1)-2(x -2)=3得x =2.由题意知y =x =2.将y =2代入2y -13=13y +W 中, 得2×2-13=13×2+W , 解得W =3.10.如果a ,b 为常数,且不论k 取何值时,关于x 的方程2kx a --1=24x bk -的解总是x =-1,求a b 的值. 解:把x =-1代入2kx a --1=24x bk -, 得2k a ---1=24bk --. 整理,得(b -2)k -2a -2=0.∵无论k 取何值时,关于x 的方程的解总是x =-1,∵b -2=0,-2a -2=0.解得b =2,a =-1.∵a b =(-1)2=1.11.若a ,b 互为相反数(a ≠0),则关于x 的方程ax +b =0的解是( A )A.x=1B.x=-1C.x=1,或x=-1D.不能确定12.已知|n+2|+(5m-3)2=0,求关于x的方程10mx+4=3x+n的解.解:因为|n+2|+(5m-3)2=0,所以n+2=0,5m-3=0.解得m=35,n=-2.将m=35,n=-2代入方程10mx+4=3x+n,得6x+4=3x-2.移项、合并同类项得3x=-6.解得x=-2.专题三:一元一次方程的应用1.我国一航空母舰始终以60千米/时的速度由西向东航行,飞机以500千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞几小时后就必须返航,才能安全停在舰上?解:设飞机在起飞x小时后就必须返航,才能安全停在舰上.根据题意得500(3-x)-500x=60×3,解得x=1.32.答:飞机在起飞1.32小时后就必须返航,才能安全停在舰上.2.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解:设有x 位客人,则2x +3x +4x =65, 解得x =60.答:有60位客人.3.如图,一块长4厘米、宽1厘米的长方形纸板∵,一块长5厘米、宽2厘米的长方形纸板∵与一块正方形纸板∵以及另两块长方形纸板∵和∵,恰好拼成一个大正方形,求大正方形的面积.解:设小正方形∵的边长为x 厘米.依题意得1+x +2=4+5-x ,解得x =3.则1+x +2=6.∵大正方形的边长为6厘米.∵大正方形的面积是6×6=36(平方厘米).4.一鞋店老板以每件60元的价格购进了一种品牌的布鞋360双,并以每双100元的价格销售了240双.冬季来临,老板为了清库存,决定促销.请你帮老板算一下,每双鞋降价多少元时,销售完这批鞋正好能达到盈利50%的目标.解:设每双鞋降价x 元.依题意有(100-60)×240+(100-x -60)×(360-240)=360×60×50%,解得x =30.答:每双鞋降价30元时,销售完这批鞋正好能达到盈利50%的目标.5.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量为每小时x辆.由题意得5x-(x+400)=2000×2,解得x=1100.则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是每小时1100辆、1500辆. 6.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表:(1)A、B两种商品分别购进多少件?解:(1)设购进A种商品a件,则购进B种商品(100-a)件.由题意得25a+35(100-a)=3100,解得a=40.则100-a=60.答:A、B两种商品分别购进40件、60件.(2)两种商品售完后共获取利润多少元?(2)(30-25)×40+(45-35)×60=800(元).答:两种商品售完后共获取利润800元.7.为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过a度,那么每度按0.55元缴纳;超过部分则按每度0.85元缴纳.(1)某户5月份用电200度,共交电费125元,求a的值;解:(1)因为200×0.55=110<125,所以该用户用电量超过a度.由题意可知0.55a+0.85(200-a)=125,解得a=150.(2)在(1)的条件下,若该户6月份的电费平均每度0.6元,则6月份共用电多少度?应交电费多少元?(2)设6月份共用电x度.由题意得150×0.55+0.85×(x-150)=0.6x,解得x=180.∵应交电费0.6x=108(元).答:6月份共用电180度,应交电费108元.8.完成一项工作,如果由两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?解:(1)设开始安排了x名工人.根据题意,得24(1)11621622x x++=⨯⨯,解得x=2.答:开始安排了2名工人.(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?(2)设还需再增加y名工人.根据题意,得314322y+⨯=. 解得y=1.答:还需再增加1名工人.9.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?解:(1)设一个暖瓶x元,则一个水杯(38-x)元.根据题意得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶的售价是30元,一个水杯的售价是8元.(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.(2)这个单位在甲商场购买更合算.理由:在甲商场购买所需费用为(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为4×30+(16-4)×8=216(元).因为210.8<216,所以这个单位在甲商场购买更合算.综合训练四:一元一次方程的解法一、选择题(每小题3分,共24分)1.方程x-14x-=-1去分母正确的是( C)A.x-1-x=-1B.4x-1-x=-4C.4x-1+x=-4D.4x-1+x=-12.方程2-3x=4-2x的解是( B)A.x=1B.x=-2C.x=2D.x=-13.如果3ab2m-1与9ab m+1是同类项,那么m等于( A)A.2B.1C.-1D.04.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( A)A.x=0B.x=3C.x=-3D.x=25.将一根长为12 cm的铁丝围成一个长与宽之比为2∵1的长方形,则此长方形的面积为( C)A.2 cm2B.4.5 cm2C.8 cm2D.32 cm26.若关于x的一元一次方程23x k--32x k-=1的解是x=-1,则k的值是( B)A.27B.1C.-37D.07.若a、b表示非零常数,整式ax+b的值随x的取值而发生变化,如下表:则关于x的一元一次方程-ax-b=-3的解为( C)A.x=-3B.x=-1C.x=0D.x=38.已知关于x的方程52x-a=3x-14,若a为正整数,方程的解也为正整数,则a的最大值是( B)A.12B.13C.14D.15二、填空题(每小题4分,共24分)9.方程3x=5x-14的解是x=.10.当x=时,式子x-1与式子214x的值相等.11.若关于x的方程x+k=1与2x-3=1的解相同,则k的值为.12.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.13.在有理数范围内定义一种新运算“∵”,其运算规则为:a∵b=-2a+3b,如1∵5=-2×1+3×5=13,则方程2x∵4=0的解为.14.若关于x的方程12019x+2019=2x+m的解是x=2019,则关于y的方程12019y+2019+12019=2y+m+2的解是y=.解析:12019y+2019+12019=2y+m+2可整理为12019(y+1)+2019=2(y+1)+m,则由题可得y+1=2019,∵y=2018.三、解答题(共52分)15.(16分)解下列方程:(1)9x+6=6x-2;解:x=-83.(4分)(2)13x-14=23x+34;解:x=-3.(8分)(3)6(2x-5)+15=4(1-2x)-5;解:x=710.(12分)(4)1241 262x x x+---=-.解:x=15.(16分)16.(8分)当x为何值时,整式(2x-1)的值比(x+3)的值的3倍少5?解:由题意得2x-1=3(x+3)-5,(2分)解得x=-5,(6分)即当x=-5时,整式(2x-1)的值比(x+3)的值的3倍少5.(8分)17.(8分)聪聪在对方程315362x mx x+---=∵去分母时,错误地得到了方程2(x+3)-mx-1=3(5-x)∵,因而求得的解是x=52,试求m的值,并求方程的正确解.解:把x=52代入方程∵得25+32⎛⎫⎪⎝⎭-52m-1=3552⎛⎫-⎪⎝⎭,解得m=1.(4分)把m=1代入方程∵得315362x x x+---=,解得x=2,则方程的正确解为x=2.(8分)18.(10分)(1)解关于x的方程:2(-2x+a)=3x;解:(1)去括号得-4x+2a=3x,移项、合并同类项得7x=2a,解得x=27a.(4分)(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.(2)由题意知方程x-13x-=6x a+的解为x=-27a.解方程x-13x-=6x a+得x=27a+.(7分)则27a+=-27a,解得a=-23.(10分)19.(10分)阅读以下例题.解方程:|3x|=1.解:∵当3x>0时,原方程可化为3x=1,它的解为x=13;∵当3x<0时,原方程可化为-3x=1,它的解为x=-1 3 .所以原方程的解为x1=13,x2=-13.仿照例题解方程:|2x+1|=5.解:当2x+1>0时,原方程可化为2x+1=5,(3分)解得x=2.(5分)当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.(9分)∵原方程的解为x1=2,x2=-3.(10分)。

一元一次方程计算题专练

一元一次方程计算题专练

一元一次方程计算题专练
一元一次方程是指形式为ax+b=0的方程,其中a和b是已知的实数,x是未知数。

解一元一次方程的方法有很多种,比如可以利用加减消元法、乘除消元法、代入法、等价方程变换法等。

下面我将从不同角度给出一些计算题的专练。

1. 加减消元法:
例题,2x+3=7。

解法,首先将方程改写为2x=7-3,然后进行加减消元得到2x=4,最后除以2得到x=2。

2. 乘除消元法:
例题,5x-8=12。

解法,首先将方程改写为5x=12+8,然后进行乘除消元得到5x=20,最后除以5得到x=4。

3. 代入法:
例题,3x+2=11。

解法,首先将方程改写为3x=11-2,然后进行代入法得到
x=3。

4. 等价方程变换法:
例题,4x-6=10。

解法,首先将方程改写为4x=10+6,然后进行等价方程变换
得到2x=8,最后除以2得到x=4。

通过以上例题的解答,我们可以看到解一元一次方程的方法多
种多样,灵活运用这些方法可以更快更准确地解决问题。

在专练时,建议多做一些练习题,加深对各种解法的理解和掌握,从而提高解
题的效率和准确性。

希望这些例题能够帮助你更好地专练一元一次
方程的计算题。

一元一次方程的解法及练习(含答案)

一元一次方程的解法及练习(含答案)

一元一次方程的解法及练习(含答案)【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法.【知识梳理】技巧小结:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.技巧小结:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,bxa=;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0时,方程无解.【活学活用】类型一、解较简单的一元一次方程例1.(2015•广州)解方程:5x=3(x﹣4)【答案与解析】解:方程去括号得:5x=3x﹣12,移项合并得:2x=﹣12,解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax=b(a≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a,即得方程的解bxa =.举一反三:【变式】下列方程变形正确的是( ). A.由2x-3=-x-4,得2x+x=-4-3 B.由x+3=2-4x,得5x=5C.由2332x-=,得x=-1D.由3=x-2,得-x=-2-3【答案】D类型二、去括号解一元一次方程例2.解方程:()()1221107x x+=+()()()232123x x-+=-【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号.举一反三:【变式】解方程: 5(x-5)+2x =-4.【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3.类型三、解含分母的一元一次方程例3.(2016春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x 系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x ﹣1)﹣12=3(3x+2), 去括号得:4x ﹣2﹣12=9x+6, 移项合并得:5x=﹣20, 解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(2015•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程例4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.例5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程例6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】一、选择题1.方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x-6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x =4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=1 5.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=2 6.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x=3(3x+1)B .2(x ﹣1)+6x=3(3x+1)C .2(x ﹣1)+x=3(3x+1)D .(x ﹣1)+x=3(x+1)8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ). A .54盏 B .55盏 C .56盏 D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______. 11.如果|a+3|=1,那么a= . 12.(2016春•南江县校级月考)在解方程﹣=2时,去分母得 .13.在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s .三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x); (2)12323x xx---=-;(3)0.10.213 0.020.5x x-+-=.16.(2015春•宜阳县期中)当k取何值时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【参考答案】一、选择题1.【答案】C.【解析】由题意,2x﹣1=2,或2x﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A中移项未改变符号.3. 【答案】C【解析】系数化为1,两边同乘以4即可.4. 【答案】D【解析】A中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号. 5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2. 6.【答案】A 【解析】-3x-12与13-互为倒数,所以3x-12=-3,x =3. 7. 【答案】B【解析】解:方程两边同时乘以6得:2(x ﹣1)+6x=3(3x+1),故选B . 8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1,移项; (2)等式性质2,除以-3,53-10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-. 11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4. 12.【答案】3(x+1)﹣2(2x ﹣3)=24.【解析】解:方程两边都乘以12,去分母得,3(x+1)﹣2(2x ﹣3)=24.故答案为:3(x+1)﹣2(2x ﹣3)=24.13.【答案】x =3【解析】根据规则得:x-2-1=0,x =3. 14.【答案】50 【解析】6001505015+=(秒) .三、解答题 15.【解析】解:(1)8x-4-15x-6=6-3x 8x-15x+3x =6+4+6 -4x =16x =-4 (2)12323x x x ---=- 6x-3(1-x)=18-2(x-2)11x =25 2511x =(3)原方程可化为:10201010325x x -+-=,约分得:5x-10-(2x+2)=3,去括号得5x-10-2x-2=3,移项及合并,得3x =15,系数化为1,得x =5. 16.【解析】解2(2x ﹣3)=1﹣2x ,得 x=,把x=代入8﹣k=2(x+),得 8﹣k=2(+), 解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同. 17.【解析】解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=.所以被污染的数字为3.。

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)

一元一次方程练习(含经典解析)兰波儿广超一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x ﹣0.7=5.2﹣1.3(x ﹣1); (2)=﹣2.24.解方程:(1)﹣0.5+3x=10; (2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x ﹣1); (4).25.解方程:.26.解方程:(1)10x ﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7 (2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5 (II).30.解方程:.。

一元一次方程的解法典型例题

一元一次方程的解法典型例题

典型例题例1 判断下面的移项对不对,如果不对,应怎样改正?(1)从得到;(2)从得到;(3)从得到;(4)从得到;分析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变.解:(1)不对,等号左边的7移到等号右边应改变符号.正确应为:(2)对.(3)不对.等号左端的-2移到等号右边改变了符号,但等号右边的移到等号左边没有改变等号.正确应为:(4)不对.等号右边的移到等号左边,变为是对的,但等号右边的-2仍在等号的右边没有移项,不应变号.正确应为:选题角度:关于利用移项法则判断移项是否正确的题目例2 判断下列各式哪些是一元一次方程.(1);(2);(3);(4);(5);(6)分析:判断一个数学式子是不是一元一次方程,首先看它是不是方程,其次再看它含有几个未知数,并且未知数的最高次数是多少.解:(1)是,因为是方程,且方程只含有一个未知数,且含未知数的项最高次数是1.(2)不是.不是方程.(3)不是.因为虽然是方程但含有两个未知数、.(4)不是.因为不是方程.(5)不是.因为含有两个未知数.(6)不是.因为中未知数最高次数为2次.例3 解方程:(1);(2)(3);(4)分析:本题都是简单的方程,只要根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.解:(1)把的系数化为1,根据等式的性质2.在方程两边同时除以3得,检验左边,右边左边=右边.所以是原方程的解.(2)把的系数化为1,根据等式的性质2,在方程两边同时除以4得,.检验:左边,右边=2,左边=右边所以是原方程的解.(3)把的系数化为1.根据等式性质2,在方程的两边同时乘以得,检验,左边右边左边=-右边,所以是原方程的解;(4)把的系数化为1,根据等式的性质2,在方程两边同时乘以-2得:检验:左边,右边,左边=右边.所以是原方程的解.说明:①在应用等式的性质2把未知数的系数化为1时,什么情况适宜用“乘”,什么情况下适宜用“除”,要根据未知数的系数而定.一般情况来说.当未知数的系数是整数时,适宜用除;当未知数的系数是分数(或小数)适宜用乘.(乘以未知数系数的倒数).②要养成进行检验的习惯,但检验可不必书面写出.选题角度:关于判断方程是不是一元一次方程的题目例4 解方程分析:题给方程不是一元一次方程的标准形式,我们利用移项法则把含x的项全部移到等式左边,把常数项全部移到等式右边.转化成标准形式就容易求解了.解:移项,得合并同类项,得方程两边同除以一5,得。

一元一次方程计算题专练(含答案)

一元一次方程计算题专练(含答案)

一元一次方程计算题专练(含答案)1.解方程:212132x x -+=+2.解方程:(1)()104x 32x 1+-=-; (2)14y 2y 1y 25-+=-.3.解方程(1)2x 13x 2x 1124+--=-. (2)x 0.160.1x 80.50.03--=4.解方程.(1)()83520x x -+= (2)1:225%:0.753x =(3) 2940%316x ÷=5.解方程(1)5322x -=; (2)3254x x -=-(2)5(31)2(42)8-=+-x x ; (4)2114135-+=-x x6.解下列方程或方程组(1)2x ﹣1=x+9 (2)x+5=2(x ﹣1)(3)43135x x --=- (4)3717245x x -+-=-7.解方程:(1)()12142x x x ⎛⎫--=- ⎪⎝⎭ (2)132123x x +-+=8.解方程:(1) 2534x x -=+ (2)341125x x -+-=9.解方程(1)2x+5=5x-7; (2)3(x-2)=2-5(x+2);(4)12x + +43x -=2; (4)12311463x x x -++-=+.10.解方程:(1)4(x﹣2)=2﹣x;(2)3121243y y+-=-.11.解方程:21122 323 x xx-++=-12.解方程:(1)2x+3=x+5;(2)2(3y–1)–3(2–4y)=9y+10;(3)3157146y y-+-=;(4)3(1)1126x x++=+.13.解方程25321 68x x+--=14.解方程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x15.解方程x ﹣13x -=36x -﹣116.解方程:(1)3x 158+=; (2)()7x 22x 310--=; (3)x 22x 1146+--=17.解方程 (1)5y ﹣2(y +4)=6 (2)2121136x x -+-=-18.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦19.解方程并在每一步后面写出你的依据.212163+--x x =120.解方程:32384x -=.21.解下列方程:(1)11(32)152x x --=; (2)131122x x +-=--;(3)243148x x --=-; (4)113(1)(21)234x x x ⎡⎤--=+⎢⎥⎣⎦ 参考答案1.14x =【解析】【分析】按照解一元一次方程的步骤,去分母,去括号,移项,合并同类项,系数化为1,即可求出解.【详解】解:去分母得:2(21)3(2)6x x -=++,去括号得:42366x x -=++,移项得:43662x x -=++,合并同类项得:14x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2.(1)1x 2=;(2)y 2=-. 【解析】【分析】 ()1方程去括号,移项合并,把x 系数化为1,即可求出解;()2方程去分母,去括号,移项合并,把y 系数化为1,即可求出解..【详解】解:()1去括号得:104x 122x 1+-=-,移项得:4x 2x 11012-=--+,合并得:2x 1=, 解得:1x 2=; ()2去分母得:()5y 1024y 210y +=--,去括号得:5y 108y 410y +=--,移项得:5y 8y 10y 410-+=--,合并得:7y 14=-,解得:y 2=-.此题考查了解一元一次方程,解题关键在于掌握其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.3.(1)x=1(2)x=52【解析】【分析】(1)先分母,再去括号,合并移项即可求解;(2)先把分母化成整数,再求解方程的解.【详解】(1)2x 13x 2x 1124+--=-()12x 21123(32)x x -+=--12x-2x-1=12-9x+619x=19,x=1(2)x 0.160.1x80.50.03--=1610x283x --=6x-16+10x=2416x=40 x=52此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.4.(1)20x;(2)12x =;(3)1516x = 【解析】【分析】(1)原式去括号,移项然后系数化为1即可得出答案;(2)把原式中的百分数转化为分数的形式,然后比例转化为乘法计算,运用乘法法则计算即可得出答案;(3)把原式中的百分数转化为分数的形式,然后等式两边乘以23,再利用除法法则计算即可得出结果.【详解】(1)解:83520x x --= 20x(2)解:1120.7543x ⨯=⨯ 12x = (3)解:2925163x =⨯ 1516x = 【点睛】本题主要考查解一元一次方程,根据等式的性质进行解答即可.5.(1)5x =;(2)1x =;(3)17x =;(4)72x =.【分析】(1)(2)依次移项,合并同类项,系数化为1即可得解;(3)依次去括号、移项,合并同类项,系数化为1即可得解;(4)依次去分母、去括号、移项,合并同类项,系数化为1即可得解【详解】解:(1)移项得5223x =+,合并同类项得525x =系数化为1得5x =;(2)移项得3524x x -=-合并同类项得22x -=-系数化为1得1x =;(3)去括号得155848x x -=+-移项得158485x x -=+-+合并同类项得71x =系数化为1得17x =;(4)去分母得5(21)3(14)15x x -=+-去括号得10531215x x -=+-移项得10123515x x -=+-合并同类项得27x -=-系数化为1得72x =.本题考查解一元一次方程,需注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.6.(1)10x = (2)7x = (3) 5.5x = (4)13x =【解析】【分析】解:(1)对移项合并2x ﹣1=x+9即可得到答案;(2)先去括号得x+5=2x ﹣2,移项合并,再系数化为1即可得到答案;(3)去分母得20﹣5x =3x ﹣9﹣15,移项合并,再系数化为1即可得到答案;(4)去分母得40﹣15x+35=﹣4x ﹣68,移项合并,再系数化为1即可得到答案.【详解】解:(1)对2x ﹣1=x+9移项合并得:x =10;(2)去括号得:x+5=2x ﹣2,移项合并得:﹣x =﹣7,系数化为1得:x =7;(3)去分母得:20﹣5x =3x ﹣9﹣15,移项合并得:﹣8x =﹣44,系数化为1得:x =5.5;(4)去分母得:40﹣15x+35=﹣4x ﹣68,移项合并得:﹣11x =﹣143,系数化为1得:x =13.本题考查解一元一次方程,解题的关键是掌握解一元一次方程的基本解题步骤.7.(1)1x =;(2)3x =【解析】【分析】利用等式的性质解一元一次方程即可解答.【详解】(1)()12142x x x ⎛⎫--=- ⎪⎝⎭解:去括号得:2142x x x -+=-移项合并同类项得:33x -=-系数化为1得:1x =(2)132123x x +-+= 解:去分母得:3(1)2(32)6x x ++-=去括号得:33646x x ++-=移项合并同类项得:3x -=-系数化为1得:3x =【点睛】本题考查了解一元一次方程,难度较低,熟练掌握等式的性质以及解一元一次方程是解题关键. 8.(1)x=14-(2)x=-9【分析】(1)根据一元一次方程移项合并即可求解;(2)去分母后,再根据一元一次方程的解法即可求解.【详解】(1) 2534x x -=+-8x=2 x=14- (2)341125x x -+-= 5(x-3)-2(4x+1)=105x-15-8x-2=10-3x=27x=-9【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.9.(1)x=4;(2)14x =-;(3)751x =;(4)5x =-. 【解析】【分析】(1)通过移项、合并同类项、系数化为1即可得解;(2)通过去括号、移项、合并同类项、系数化为1即可得解;(3)(4)都是通过去分母去括号、移项、合并同类项、系数化为1即可得解.【详解】(1)2x+5=5x−7移项得:2x−5x=−7−5合并同类项得:−3x=−12系数化为1得:x=4.(2)3(x−2)=2−5(x+2)去括号得:3x−6=2−5x -10移项得:3x+5x=2-10+6合并同类项得:8x=-2系数化为1得:x=14- .(3)12x + +43x -=2;去分母得: 3(1)2(4)12x x ++-=去括号得: 332812x x ++-=移项得: 321283x x +=+-合并同类项得: 517x =.系数化为1得751x =.(4)12311463x x x-++-=+去分母得: 3(1)122(23)4(1)x x x --=+++去括号得: 33124644x x x --=+++移项得: 34464312x x x --=+++合并同类项得: 525x -=系数化为1得: 5x =-.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:(1)去分母(即在方程两边都乘以各分母的最小公倍数,去各项中的分母);(2)去括号(即按先去小括号,再去中括号,最后去大括号的顺序,逐层把括号去掉);(3)移项(即把含有未知数的项都移到方程的一边,其它项都移到方程的另一边。

一元一次方程的解法基础巩固练习

一元一次方程的解法基础巩固练习

一元一次方程的解法基础巩固练习一、选择题1.(2020春•唐河县期末)方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ).A .方程2x+6=-3变形为2x =-3+6B .方程2x-6=-3变形为2x =-3+6C .方程3x =4-x 变形为3x+x =4D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x = 4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=15.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=26.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-57.解方程21101136x x ++-=时,去分母,去括号后,正确结果是( ). A .4x+1-10x+1=1 B .4x+2-10x-1=1 C .4x+2-10x-1=6D .4x+2-10x+1=68. (2011山东日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________.(2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______.11.(2020秋•铜陵期末)如果|a+3|=1,那么a= .12.将方程1111124396x x x x +++=去分母后得到方程________. 13.(黔东南州)在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s .三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x);(2)12323x x x ---=-; (3)0.10.2130.020.5x x -+-= . 16.(2020春•宜阳县期中)当k 取何值时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x ++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【答案与解析】一、选择题1.【答案】C.【解析】由题意,2x ﹣1=2,或2x ﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A 中移项未改变符号.3. 【答案】C【解析】系数化为1,两边同乘以4即可.4. 【答案】D【解析】A 中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B 中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号.5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2.6.【答案】A【解析】-3x-12与13-互为倒数,所以3x-12=-3,x =3. 7. 【答案】C【解析】两边同乘以6得:2(21)(101)6x x +-+=,再去括号得:421016x x +--=.8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1, 移项; (2)等式性质2, 除以-3, 53- 10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-.11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4.12.【答案】43x =6【解析】将方程两边乘以36,得18x+9x+12x+4x =6.13.【答案】x =3【解析】根据规则得:x-2-1=0,x =3.14.【答案】50 【解析】6001505015+=(秒) . 三、解答题15.【解析】解:(1)8x-4-15x-6=6-3x8x-15x+3x =6+4+6-4x =16x =-4(2)12323x x x ---=- 6x-3(1-x)=18-2(x-2)11x =252511x = (3)原方程可化为:10201010325x x -+-=,约分得:5x-10-(2x+2)=3,去括号得5x-10-2x-2=3,移项及合并,得3x =15,系数化为1,得x =5.16.【解析】解2(2x ﹣3)=1﹣2x ,得x=,把x=代入8﹣k=2(x+),得8﹣k=2(+),解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同.17.【解析】 解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=.所以被污染的数字为3。

一元一次方程练习

一元一次方程练习

一元一次方程一.解一元一次方程(共1小题)1.小明在解方程去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()二.由实际问题抽象出一元一次方程(共10小题)2.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为( )3.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()4.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?则据题意列出的方程是()5.小林从学校出发去石博园游玩,早上去时以每小时5千米速度行进,中午以每小时4千米速度沿原路返校,结果回校所用的时间比去时所用的时间多20分钟,问小林学校与石博园之间的路程是多少?设小林学校离石博园x千米,那么所列方程是()6.我国明代数学家程大位在他六十岁时终于完成了《算法统宗》的编撰.这是﹣﹣木简明实用的数学书,书中列出了许多应用题的数字计算请从A,B两题中任选一题作答.A.有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差半斤,设所分银子共x两.根据题意列出的方程是.(注:明代时1斤=16两.故有“半斤八两”这个成语)B.用九百九十九文钱共买了一千个甜果和苦果.其中四文钱可以买甜果七个,十一文钱可以买苦果九个,设买了x个甜果,根据题意列出的方程是.7.若甲班有26人,乙班有34人,现从甲班抽x人到乙班,使乙班的人数是甲班人数的2倍,则可列方程.8.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?设去时上坡用了x小时,由此,可以列出方程.9.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为,这个两位数是,根据题意得:(请完成后面的解答过程)10.有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?如果设调往甲处x人,那么调往乙出的人数是人,根据题意得方程,解得x=.11.根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?三.一元一次方程的应用(共2小题)12.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行时风的速度.13.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片?四.一元一次方程的应用(共17小题)14.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2018次相遇在边.15.如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点间的距离是指圆上这两点间的较短部分展直后的线段长).动点P从A点出发,以7cm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B点出发,以3cm/s的速度按同样的方向运动,设运动时间为t(s),在P、Q第二次相遇前,当动点P、Q在轨道上相距12cm时,则t=s.16.某同学晚上6点多开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针与分针的夹角还是120°,此同学做作业用了分钟.17.已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为秒时,P、Q两点到点B的距离相等.18.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?19.在某市第四次党代会上,提出了建设美丽城市决胜全面小康的奋斗目标,为策应市委号召,学校决定改造校园内的一小广场,如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?20.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?21.某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?22.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?23.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?24.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?25.已知甲沿周长为300米的环形跑道上按逆时针方向跑步,速度为a米/秒,与此同时在甲后面100米的乙也沿该环形跑道按逆时针方向跑步,速度为3米/秒.设运动时间为t秒.(1)若a=5,求甲、乙两人第1次相遇的时间;(2)当t=50时,甲、乙两人第1次相遇.①求a的值;②若a>3时,甲、乙两人第1次相遇前,当两人相距120米时,求t的值.26.如图为一块在电脑屏幕上出现的色块图,由6个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为1,求所拼成的长方形的面积.27.A、B两地相距3千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,20分钟后相遇,半小时后,甲所余路程为乙所余路程的2倍,求两人的速度.28.某公司销售一种进价21元的电子产品,按标价的九折销售,仍可获利20%,则该公司销售这种电子产品时的标价是多少元?29.一车间原有80人,二车间原有372人,现因工作需要,要从三车间调4人到一车间,则还需从二车间调多少人去一车间,才能使二车间的人数是一车间的两倍?(列方程解应用题)30.某水果商贩买进水果若干筐,每筐进价3元,如果按照每筐4元的价钱卖出,那么卖出全部水果的一半又10筐时,已收回全部成本,一共买进水果多少筐?一元一次方程参考答案与试题解析一.解一元一次方程(共1小题)1.小明在解方程去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.二.由实际问题抽象出一元一次方程(共10小题)2.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.B.C.D.【分析】关系式为:零件任务÷原计划每天生产的零件个数﹣(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解.【解答】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:=3,故选:C.【点评】根据时间得到相应的等量关系是解决本题的关键,注意应先得到实际的工作总量和工作效率.3.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.【分析】首先要理解题意,找出题中存在的等量关系:竹竿放入池塘后的长度=竹竿原来的长度,根据此等式列方程即可.【解答】解:设竹竿的长度为x米,则插入池塘淤泥中的部分长米,水中部分长()米.因此可列方程为,故选:B.【点评】做此类题的关键是找出题中存在的等量关系.4.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.【分析】先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.【解答】解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选:A.【点评】本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.5.小林从学校出发去石博园游玩,早上去时以每小时5千米速度行进,中午以每小时4千米速度沿原路返校,结果回校所用的时间比去时所用的时间多20分钟,问小林学校与石博园之间的路程是多少?设小林学校离石博园x千米,那么所列方程是()A.5x=4x+20B.C.D.【分析】设小林学校离石博园x千米,那么小林早晨上学所用的时间为小时,回家所用的时间为小时,根据“回家所用的时间比上学所用的时间多20分钟”得出等量关系:回家所用的时间=上学所用的时间+小时,由此列出方程即可.【解答】解:设小林学校离石博园x千米,根据题意得故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,进而找到等量关系是解题的关键.6.我国明代数学家程大位在他六十岁时终于完成了《算法统宗》的编撰.这是﹣﹣木简明实用的数学书,书中列出了许多应用题的数字计算请从A,B两题中任选一题作答.A.有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差半斤,设所分银子共x两.根据题意列出的方程是.(注:明代时1斤=16两.故有“半斤八两”这个成语)B.用九百九十九文钱共买了一千个甜果和苦果.其中四文钱可以买甜果七个,十一文钱可以买苦果九个,设买了x个甜果,根据题意列出的方程是.【分析】A、设所分银子共x两.根据人均所得银子的数量相等列出方程;B、买了x个甜果,根据甜果的花费+苦果的花费=999列出方程.【解答】解:A、由题意,得.B、由题意,得.故答案是:;.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.若甲班有26人,乙班有34人,现从甲班抽x人到乙班,使乙班的人数是甲班人数的2倍,则可列方程34+x=2(26﹣x).【分析】设从甲班抽x人到乙班,则甲班还有(26﹣x)人,乙班有(34+x)人,根据乙班的人数是甲班人数的2倍可得34+x=2(26﹣x).【解答】解:设从甲班抽x人到乙班,由题意得:34+x=2(26﹣x).故答案是:34+x=2(26﹣x).【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系.8.老师驾车从甲地到乙地,先上坡后下坡,到达乙地后马上原路返回,已知去时共用2.5小时,返回时共用2小时,若上坡的速度是60km/h,下坡的速度是80km/h,则老师去时上坡用了多少小时?设去时上坡用了x小时,由此,可以列出方程.【分析】设上坡需要x小时,那么下坡就需要2.5﹣x小时,根据题意可得:来回一次上坡和下坡路程相等,据此可列方程解答.【解答】解:设上坡需要x小时,可得:,故答案为:.【点评】此题考查一元一次方程问题,解答本题的关键是明确来回一次上坡和下坡路程相等,重点是求出上坡需要时间.9.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为2x,这个两位数是20x+x,根据题意得:(请完成后面的解答过程)【分析】设原来两位数的个位数字为x,根据题意列出方程解答即可.【解答】解:设原来两位数的个位数字为x,可得十位数字为2x,这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x;20x+x.【点评】此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.10.有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?如果设调往甲处x人,那么调往乙出的人数是(20﹣x)人,根据题意得方程23+x=2[17+(20﹣x)],解得x=17.【分析】设调往甲处x人,根据现调20人去支援,得出调往乙处的人数是(20﹣x)人,由甲处劳动人数是在乙处劳动的人数的2倍,可得出方程,解出即可.【解答】解:设调往甲处x人,那么调往乙处的人数是(20﹣x)人,由题意得:23+x=2[17+(20﹣x)],解得:x=17.则20﹣x=3.答:应调往甲处17人,乙处3人.故答案为(20﹣x),23+x=2[17+(20﹣x)],17.【点评】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?【分析】(1)设从乙队调x人去甲队,则乙队现在有10﹣x人,甲队有30+x人,根据甲队的人数是乙队人数的7倍列出方程即可;(2)设这个班共有x名同学,则原计划需要船﹣1,或+1,由此联立方程得出答案即可.【解答】解:(1)设从乙队调x人去甲队,则乙队现在有10﹣x人,甲队有30+x人,由题意得30+x=7(10﹣x);(2)设这个班共有x名同学,由题意得﹣1=+1.【点评】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是列方程的关键.三.一元一次方程的应用(共2小题)12.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行时风的速度.【分析】等量关系:两个城市之间的距离不变,即逆风速度×逆风时间=顺风速度×顺风时间.【解答】解:设风的速度是x千米/时.根据题意得:(552﹣x)×6=(552+x)×5.5,解得x=24,答:风的速度24千米/时.【点评】本题需注意:逆风速度=无风速度﹣风速;顺风速度=无风速度+风速.13.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片?【分析】从第一横行看,展示牌的长由5个小长方形的长组成,从第二横行看,展示牌的长由3个小长方形的长和三个小长方形的宽组成的,那么等量关系为:5×小长方形的长=3(小长方形的长+小长方形的宽).【解答】解:设卡片的长度为x厘米,根据图形和题意得:5x=3(x+10),解得:x=15.所以需配正方形图片的边长为15﹣10=5.(厘米)故需要配边长为5厘米的正方形图片.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的关键点在于根据展示牌的长或者宽来得到等量关系.四.一元一次方程的应用(共17小题)14.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2018次相遇在边DC.【分析】此题利用行程问题中的相遇问题,根据乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为8×=2,乙行的路程为8﹣2=6,在AD边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在DC边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在CB边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在AB边相遇;…∵2018=504×4+2,∴甲、乙第2018次相遇在边DC上.故答案是:DC.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.15.如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点间的距离是指圆上这两点间的较短部分展直后的线段长).动点P从A点出发,以7cm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B点出发,以3cm/s的速度按同样的方向运动,设运动时间为t(s),在P、Q第二次相遇前,当动点P、Q在轨道上相距12cm时,则t=0.5、2、8或9.5s.【分析】设经过ts,P、Q两点相距12cm,分相遇前和相遇后两种情况建立方程求出其解;分点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.【解答】解:共有4种可能:①7t+10﹣3t=12,解得:t=0.5;②7t+10﹣3t=18,解得:t=2;③7t+10﹣3t=42,解得:t=8;④7t+10﹣3t=48,解得:t=9.5;综上所知,t的值为0.5、2、8或9.5.故答案是:0.5、2、8或9.5.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.16.某同学晚上6点多开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针与分针的夹角还是120°,此同学做作业用了44分钟.【分析】根据分针每分钟转6°,时针每分钟转0.5°,可列方程求解.【解答】解:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故答案是:44.【点评】本题考查一元一次方程的应用,钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.17.已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为或30秒时,P、Q两点到点B的距离相等.【分析】根据(b﹣9)2+|c﹣15|=0,可得B表示的数是9,C表示的数是15,由已知分四种情况讨论:①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30.【解答】解:∵(b﹣9)2+|c﹣15|=0,∴b﹣9=0,c﹣15=0,∴b=9,c=15,∴B表示的数是9,C表示的数是15,①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,P表示的数为t﹣6,Q表示的数是9﹣3(t﹣6),∴P、Q两点到点B的距离相等只需t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,P表示的数为9+2(t﹣15),Q表示的数是﹣(t﹣9),∴P、Q两点到点B的距离相等只需9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30,综上所述,P、Q两点到点B的距离相等,运动时间为秒或30秒,故答案为:或30.【点评】本题考查一元一次方程的应用,涉及数轴上的动点表示的数,两点间的距离等知识,解题的关键是分类讨论.18.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙。

专题 解一元一方程计算题(50题)(解析版)

专题  解一元一方程计算题(50题)(解析版)

七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。

《一元一次方程》解法练习题1

《一元一次方程》解法练习题1

6. x 3 是方程 2( x k ) 5 的解,则 k (A) 0.5 (B) 0.5 7 .解是 x 2 的方程是 (A) 2( x 1) 6 (B) (C) 0
x x 10 12 2
D.-2 或 7
(C)
x 1 x 2
(D) )
2x 1 1 x 3
(2) 5x+1=3x-2 (4) 2 x 3 5 x 7 9 x
1
(5) 3 6( x ) 16.解方程.
2 3
2 3
(6) 2x-3=3x-(x-2)
3x 1 5x 7 1 4 6 x 1 4x 1 (3) 2 3 1 y y2 y 3 (5) 3 4
ห้องสมุดไป่ตู้
注意事项
1.不要漏乘不含分母的项 2.分子是 一个整体,去分母后应加上括号 1.不要漏乘括号里的项 2.不要弄错符号 1.移项要变号 2.不要丢项 字母及其指数不变
移项
合并
系数化为 1
不要把分子、分母搞颠倒 看好未知数的系数是整数还是分数
2
解一元一次方程练习题
姓名_____________班级____________分数_____________ 一、选择题
1、解方程 1 (A) 1 (C) 6
x3 x 6 2
,去分母,得( (B) 6 (D) 1

x 3 3x; x 3 3x;
x 3 3x;
8.已知关于 x 的方程 4 x 3m 2 的解是 x=m,则 m 的值是( A.2 B.-2 C.2 或 7
二、填空题 25 x 1 的解是__________. 9.方程 0. 10.方程 3x-1=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档