最新小学六年级数学抽屉原理练习题

合集下载

六年级下册数学 抽屉原理 专题练习

六年级下册数学    抽屉原理    专题练习

六年级下册数学抽屉原理专题练习1、在367个1996年出生的儿童中,至少有( )个人是同一天出生的。

2. 48名学生做游戏,大家围成一个正方形,每边人数相等,四个顶点都有人,每边各有( )名学生。

3. 15个学生要分到6个班,至少有( )个人要分进同一个班。

4. 瓶子里有同样大小的红球和黄球各5个。

要想摸出的球一定有2个同色的,最少要摸出( )个球。

5. 给一个正方体木块的6个面分别涂上红、黄两种颜色,则不论如何涂都有( )个面的颜色相同。

7、一个不透明的盒子里装了红、黑、白玻璃球各2个,要保证取出的玻璃球三种颜色都有,他应保证至少取出( )个;要使取出的玻璃球中至少有两种颜色,至少应取出( )个。

8、9只兔子装入几只笼子,要保证每个笼子中都有,且要保证最多有一个笼子中的兔子数不少于3只,则笼子数最少是( )个,最多是( )个。

9、从1,3,5,7,9中,至少选出( )个数,其中必有两个数的和是10。

10、一幅扑克牌有54张,(已经去掉两个王)最少要抽取( )张牌,方能保证其中至少有3张牌有相同的点数。

11、实验小学的六年级有若干学生,若已知学生中至少有两人的生日是同一天,那么,六年级至少有( )个学生;其中六(1)班有49名学生,那么在六(1)班中至少有( )个人出生在同一月。

12、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出( )个球。

13、9个零件中有1件是次品(次品轻一些),用天平称,至少( )次就一定能找出次品来。

14、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出( )只(拿的时候不许看颜色),才能使拿出的手套中定有两双是同颜色的。

15. 有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)1、礼堂里有253人开会,这253人中至少有多少人的属相相同?2、一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。

问:至少有多少名学生订阅的杂志种类相同?3、把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?5、体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个。

问:至少有几名同学拿球的情况完全一样?5、口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球。

要保证有4人取出的球的颜色完全相同,至少应有多少人取球?6、10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?7、抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿多少枝才能才能保证至少有1枝蓝色铅笔?8、盒子里有5个红球,6个蓝球和7个白球,一次拿出多少个球才能保证至少有1个白球?9、有红、黄、蓝、白四色球各10个,一次摸出5个球,至少有多少个球的颜色是相同的?10、有红、黄、蓝3种颜色的小珠子各4颗混放在口袋里,为了保证一次能取出2颗颜色相同的珠子,一次至少取多少颗?11、一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出多少个球才能保证有2个球的颜色相同?12、某班学生去买语文书、数学书和英语书。

买书的情况是:有买一本的,有买两本的,有买三本的,至少要去多少人才能保证一定有两位同学买到相同的书?(每种书最多买一本)13、某班学生去买数学书、语文书、美术书、自然书,买书的情况是:有买一本的、两本的、三本的和四本的。

至少去多少人才能保证一定有两人买的书是相同的。

(每种书最多买一本)14、学校图书室有历史、文艺、科普三种图书。

每个学生从中任意借两本,至少要多少个同学才能保证一定有两人所借的图书属于同一种?15、学校买来红、黄、蓝、绿四种颜色的球,每个学生最多只能借2个球,至少要有多少个学生借球,才能保证其中必然有两个学生所借的球一样?16、某班学生去买书,A、B、C、D四种,每人可买一本,二本,三本或四本.至少有( )位同学才能保证一定有两位同学买到相同的书?(每种书最多买一本)。

小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题
1、有9个苹果放入4个盘子里,总有一个盘子至少要放()个苹果。

2、有黑色、白色、黄色的小棒各8根,混放在一起,从这些小棒之中至少要取出几根才能保证有4根颜色相同的小棒子?
3、一副扑克牌(大王、小王除外)有四种花色,每种花色有13张,从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?
4、六年级有41名同学,他们做了210只纸鹤,要把这些纸鹤分给全班的学生,是否会有人得到6只纸鹤?
5、把若干盆黄菊花和白菊花摆成前后两排到少要摆多少列才能能保证有两列的摆法相同?至少要摆多少列才能保证有3列的摆法相同?
6、阳光小学有369名同学是1998年出生的学生,这一年里出生的学生里一定有两人的生日相同为什么?其中四(1)有54名同学至少有多少名同学是同一个月出生的?
7、在50米的路段上栽树,至少要栽多少棵树,才能保证至少有两棵树之间的距离小于10米?(两端各栽一棵)
8、学校买来故事书、文艺书、科普书三种图书若干本,每个同学从中任意借两本,那么至少要多少名学生一起来借书,其中才一定有两人所借的图书种类相同?
9、王老师在一次数学课上出了两道题,规定第道题做对得2分,没做得0分,做错得—2分,李老师说:可以肯定全班同学中至少有5名同学各题得分相同,那么这个班最少有多少名同学?。

小学数学 抽屉原理 完整版题型训练+详细答案

小学数学 抽屉原理 完整版题型训练+详细答案

抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。

2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。

17÷8=2……1,2+1=3名。

3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。

六位数可以截取出5个两位数,所以必有重复。

4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。

详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。

5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。

选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。

必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。

六年级的抽屉原理练习题

六年级的抽屉原理练习题

六年级的抽屉原理练习题第一题:小明有一个抽屉,里面装着红、黄、蓝、绿四种颜色的贴纸。

红色贴纸有3张,黄色贴纸有5张,蓝色贴纸有2张,绿色贴纸有4张。

小明从抽屉中随机取出一张贴纸,请回答以下问题:1. 小明取到红色贴纸的概率是多少?解答:红色贴纸的数量为3张,总共的贴纸数量为3+5+2+4=14张,所以小明取到红色贴纸的概率为3/14。

第二题:小红有一个抽屉,里面有10个苹果,6个橘子,8个香蕉和4个梨。

她从抽屉中随机取出一件水果,请回答以下问题:1. 小红取出的是水果的概率是多少?解答:水果的数量为10+6+8+4=28个,抽屉中共有28件物品,所以小红取出的是水果的概率为28/28=1。

第三题:小华有一个抽屉,里面装着26个字母卡片,其中有5个元音字母和21个辅音字母。

小华从抽屉中随机取出一个字母卡片,请回答以下问题:1. 小华取到元音字母的概率是多少?解答:元音字母的数量为5个,总共的字母卡片数量为5+21=26个,所以小华取到元音字母的概率为5/26。

第四题:小李有一个抽屉,里面有10支铅笔,5个笔记本,3个橡皮和2个尺子。

他从抽屉中随机取出一项文具,请回答以下问题:1. 小李取出的是笔记本的概率是多少?解答:笔记本的数量为5个,总共的文具数量为10+5+3+2=20个,所以小李取出的是笔记本的概率为5/20=1/4。

第五题:小明有一个抽屉,里面装着红、黄、蓝三种颜色的小球。

红色小球有8个,黄色小球有4个,蓝色小球有6个。

他从抽屉中随机取出一颗小球,请回答以下问题:1. 小明取出的是红色或黄色小球的概率是多少?解答:红色和黄色小球的数量分别为8个和4个,总共的小球数量为8+4+6=18个,所以小明取出的是红色或黄色小球的概率为(8+4)/18=12/18=2/3。

以上就是六年级的抽屉原理练习题的题目和解答。

通过这些题目,可以帮助同学们理解和应用抽屉原理,提高他们的概率计算能力。

希望同学们通过反复练习和思考,能够熟练掌握这个重要的数学原理。

抽屉原理练习题

抽屉原理练习题

抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。

以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。

5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。

6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。

三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。

请证明至少有一个兴趣小组有6名或更多的学生参加。

解答:设有7个兴趣小组,每个小组最多可以有5名学生。

如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。

但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。

8. 一个图书馆有10个书架,每个书架最多可以放100本书。

如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。

但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。

9. 一个学校有365名学生,他们的生日分布在一年中的不同天。

六年级数学抽屉原理试卷

六年级数学抽屉原理试卷

一、选择题(每题5分,共25分)1. 抽屉原理中,当把5个苹果放入3个抽屉时,至少会有一个抽屉中放入的苹果数量是:A. 1个B. 2个C. 3个D. 4个2. 下列关于抽屉原理的说法正确的是:A. 抽屉原理只能应用于整数B. 抽屉原理只能应用于自然数C. 抽屉原理适用于所有非负整数D. 抽屉原理只适用于有限的整数集合3. 从1到10这10个数中,随机选取6个数,其中一定有2个数的和是:A. 11B. 12C. 13D. 144. 抽屉原理中的“抽屉”指的是:A. 容器B. 间隔C. 分组D. 元素5. 抽屉原理中,若将n个物体放入m个抽屉中,那么至少有一个抽屉中包含的物体数量是:A. n/mB. [n/m]C. n/m+1D. [n/m]+1二、填空题(每题5分,共25分)1. 抽屉原理中的“抽屉”指的是_______。

2. 抽屉原理中的“元素”指的是_______。

3. 抽屉原理中的“余数”指的是_______。

4. 抽屉原理中的“和”指的是_______。

5. 抽屉原理中的“倍数”指的是_______。

三、解答题(每题10分,共40分)1. 请用抽屉原理解释为什么在任意5个自然数中,必定存在两个数的和能被3整除。

2. 将1到100这100个数分为50组,每组包含两个数,使得每组中的两个数的和为101。

请说明如何构造这样的分组。

3. 抽屉原理在生活中的应用举例:请你举一个生活中运用抽屉原理的例子,并解释其原理。

四、应用题(每题10分,共20分)1. 将7个苹果放入3个抽屉中,请说明至少有一个抽屉中放入的苹果数量是多少。

2. 将20个糖果放入5个盒子中,请说明至少有一个盒子中放入的糖果数量是多少。

答案:一、选择题1. B2. C3. A4. C5. B二、填空题1. 元素2. 物体3. 除以某个数的余数4. 数字的加和5. 能被某个数整除的数三、解答题1. 由于5个自然数除以3的余数只能是0、1、2,因此这5个数可以分别看作3个抽屉,每个抽屉包含一个余数。

《抽屉原理练习题》#(精选.)

《抽屉原理练习题》#(精选.)

抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。

共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。

如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。

以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。

抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。

A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。

7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。

8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。

9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。

10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。

摸到红球的概率为%。

三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。

13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。

2023年六年级数学下册《抽屉原理》练习题

2023年六年级数学下册《抽屉原理》练习题

《抽屉原理》练习题1、跳绳练习中,1分钟至少跳几次时,必在某1秒内,至少跳了三次?2、任意取几个自然数,才能保证至少有两个数的差是7的倍数?3、五(1)班有40名学生,班里有个小书架,要保证至少有一两个同学能借到两本或两本以上的书,书架上至少要有几本书。

4、在自然数1、2、3……100中,至少要取几个数,才能保证当中必有两个数的差小于5?5、袋子里有红色球80个、黄色球70个、兰色球60个、白色球50个,它们的大小和质量都一样,要保证摸出10对球(颜色相同的为一对),至少应取几个球?6、一副扑克牌(去掉两张王牌),每人随意抽取两张牌,那么至少要有几个人才能保证他们当中一定有两个所抽取的两张牌的花色是相同的?7、黑暗中有红、黄、黑、白4种颜色的筷子分别有1只、3只、5只和7只混在一起,要保证得到两双颜色不同的筷子,一次至少应摸出多少只?8、库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少要几人搬运,才能保证有5人搬运的球完全一样?9、夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人最少去一处,最多去两处,那么至少有几个人游览的地方完全相同/?10、在一个口袋中有10个黑球、6个白球、4个红球,若要保证取到白球,则至少应从中取出几个球?11、六(1)班有49名学生,数学期中考试中(满分为100分)除3人外均在86分以上(每人的成绩均为整数),那么该班同学至少有几人的成绩相同?12、口袋里有足够多的红、蓝、白三种颜色的球,现有31人轮流从袋子中取球,每人取3个,至多有多少人所拿的球,相互颜色不完全相同?13、一个袋子中有100只红袜子,80只绿袜子,40只白袜子,让你闭上眼睛从袋子中摸袜子,每次只许摸一只,至少要摸出多少只?才能保证摸出的这几只袜子中至少有一双颜色一样。

14、100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能选举1人,得票最多的人当选,开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票,在尚未统计的选票中,甲至少再得多少票就一定当选?15、把红、蓝、黄、白四种颜色的筷子各三根混在一起。

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。

小学六年级数学下册第五单元抽屉原理基础练习

小学六年级数学下册第五单元抽屉原理基础练习

小学六年级数学下册第五单元抽屉原理基础练习由于与运算机技术的结合,数学已渗透到人类社会的一切领域。

接下来,让我们一起练习六年级数学下册第五单元抽屉原理基础练习。

小学六年级数学下册第五单元抽屉原理基础练习一、我会填1、6只鸡放进5个鸡笼,至少有( )只鸡要放进同一个鸡笼里。

2、3枝铅笔放进2个文具盒里,至少有( )枝铅笔要放进同一个文具盒里。

3、7本书放进2个抽屉里,总有一个抽屉里至少放进( )本书。

4、15个学生要分到6个班,至少有( )个人要分进同一个班。

二、我会选1、10个小孩分进4个班,则至少有一个班分到的学生人数许多于( )个。

A.1B.2C.3D.42、7只鸽子飞回5个鸽舍,至少有( )只鸽子飞进同一个鸽舍。

A.1B.2C.3D.4那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?3、在367个2021年出生的儿童中,至少有( )个人是同一天出生的。

A.1B.2C.3D.4与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

”因此看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

4、把16本书放进3个抽屉中,至少有一个抽屉放( )本书?“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题1.木箱里有3个红球、5个黄球和7个蓝球。

如果要取出至少两个颜色相同的球,最少需要取出4个小球。

2.一副扑克牌有54张。

取出15张牌中没有两张点数相同的牌。

再取出1张牌,必定有两张点数相同的牌。

3.11名学生到老师家借书,老师的书房有A、B、C、D四类书。

每名学生最多可借两本不同类的书,最少借一本。

根据抽屉原理,至少有两个学生所借的书的类型相同。

4.50名运动员进行某个项目的单循环赛,没有平局,也没有全胜。

设每胜一局得一分,得分情况只有1、2、3……49,以这49种得分情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.50名同学从体育用品仓库里拿球,每个人至少拿1个球,至多拿2个球。

共有9种拿球的配组方式,以这9种配组方式制造9个抽屉,将50个同学看作苹果。

根据抽屉原理2,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛。

将参赛人任意分成四组,则必有一组的女生多于2人。

又知任何10人中必有男生,则参赛男生的人数至少为11人。

7.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100.将50个奇数按照和为100的两个数放进25个抽屉中,即(1,99),(3,97),(5,95),……,(49,51)。

根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100.8.某旅游车上有47名乘客,每位乘客都只带有一种水果。

如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有46人带苹果。

由题意,不带XXX的乘客不多于一名,但又确实有不带苹果的乘客,所以不带XXX的乘客恰有一名,所以带XXX的就有46人。

9.一些苹果和梨混放在一个筐里,XXX把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,XXX和梨的个数是偶数,那么XXX至少把这些水果分成了5堆。

小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题

抽屉道理演习题1.木箱里装有红色球3个.黄色球5个.蓝色球7个,若蒙眼去摸,为包管掏出的球中有两个球的色彩雷同,则起码要掏出若干个球?解:把3种色彩看作3个抽屉,若要相符题意,则小球的数量必须大于3,故至少掏出4个小球才干相符请求.2.一幅扑克牌有54张,起码要抽取几张牌,方能包管个中至少有2张牌有雷同的点数?解:点数为1(A).2.3.4.5.6.7.8.9.10.11(J).12(Q).13(K)的牌各取1张,再取大王.小王各1张,一共15张,这15张牌中,没有两张的点数雷同.如许,假如随便率性再取1张的话,它的点数必为1~13中的一个,于是有2张点数雷同.3.11逻辑学生到先生家借书,先生是书房中有A.B.C.D四类书,每逻辑学生最多可借两本不合类的书,起码借一本.试证实:必有两个学生所借的书的类型雷同.证实:若学生只借一本书,则不合的类型有A.B.C.D四种,若学生借两本不合类型的书,则不合的类型有AB.AC.AD.BC.BD.CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.假如谁借哪种类型的书,就进入哪个抽屉,由抽屉道理,至少有两个学生,他们所借的书的类型雷同.4.有50名运发动进行某个项目标单轮回赛,假如没有平手,也没有全胜,试证实:必定有两个运发动积分雷同.证实:设每胜一局得一分,因为没有平手,也没有全胜,则得分情形只有1.2.3……49,只有49种可能,以这49种可能得分的情形为49个抽屉,现有50名运发动得分,则必定有两名运发动得分雷同.5.体育用品仓库里有很多足球.排球和篮球,某班50名同窗来仓库拿球,划定每小我至少拿1个球,至多拿2个球,问至少有几名同窗所拿的球种类是一致的?解题症结:运用抽屉道理2.解:依据划定,多有同窗拿球的配组方法共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方法制作9个抽屉,将这50个同窗看作苹果50÷9 =5 (5)由抽屉道理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完整一致的.6.某校有55个同窗介入数学比赛,已知将参赛人随便率性分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人.解:因为随便率性分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为随便率性10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)7. 证实:从1,3,5,……,99中任选26个数,个中必有两个数的和是100.解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51).依据抽屉道理,从中选出26个数,则确定有两个数来自统一个抽屉,那么这两个数的和即为100.8. 某旅游车上有47名乘客,每位乘客都只带有一种生果.假如乘客中有人带梨,并且个中任何两位乘客中至少有一小我带苹果,那么乘客中有______人带苹果.解析:由题意,不带苹果的乘客不久不多于一名,但又确切有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人.9. 一些苹果和梨混放在一个筐里,小明把这筐生果分成了若干堆,后来发明无论怎么分,总能从这若干堆里找到两堆,把这两堆生果归并在一路后,苹果和梨的个数是偶数,那么小明至少把这些生果分成了_______堆.解析:请求把个中两堆归并在一路后,苹果和梨的个数必定是偶数,那么这两堆生果中,苹果和梨的奇偶性必须雷同.对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以依据抽屉道理可知起码分了4+1=5筐.10. 有黑色.白色.蓝色手套各5只(不分阁下手),至少要拿出_____只(拿的时刻不准看色彩),才干使拿出的手套中必定有两双是同色彩的.解析:斟酌最坏情形,假设拿了3只黑色.1只白色和1只蓝色,则只有一双同色彩的,但是再多拿一只,不管什么色彩,则必定会有两双同色彩的,所以至少要那6只.11.从前25个天然数中随便率性掏出7个数,证实:掏出的数中必定有两个数,这两个数中大数不超出小数的1.5倍.证实:把前25个天然数分成下面6组:1; ①2,3; ②4,5,6; ③7,8,9,10; ④11,12,13,14,15,16; ⑤17,18,19,20,21,22,23, ⑥因为从前25个天然数中随便率性掏出7个数,所以至少有两个数取自上面第②组到第⑥组中的某统一组,这两个数中大数就不超出小数的1.5倍.12.一副扑克牌有四莳花色,每莳花色各有13张,如今从中随便率性抽牌.问起码抽几张牌,才干包管有4张牌是统一莳花色的?解析:依据抽屉道理,当每次掏出4张牌时,则至少可以包管每莳花色一样一张,按此类推,当掏出12张牌时,则至少可以包管每莳花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少包管有4张牌是统一莳花色,选B.13.从1.2.3.4…….12这12个天然数中,至少任选几个,就可以包管个中必定包含两个数,他们的差是7?【解析】在这12个天然数中,差是7的天然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}.别的,还有2个不克不及配对的数是{6}{7}.可结构抽屉道理,共结构了7个抽屉.只要有两个数是取自统一个抽屉,那么它们的差就等于7.这7个抽屉可以暗示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则必定可以使有两个数字起源于统一个抽屉,也即作差为7,所以选择D.15.某幼儿班有40名小同伙,现有各类玩具122件,把这些玩具全体分给小同伙,是否会有小同伙得到4件或4件以上的玩具?剖析与解:将40名小同伙算作40个抽屉.今有玩具122件,122=3×40+2.运用抽屉道理2,取n=40,m=3,立刻知道:至少有一个抽屉中放有4件或4件以上的玩具.也就是说,至少会有一个小同伙得到4件或4件以上的玩具.16.一个布袋中有40块雷同的木块,个中编上号码1,2,3,4的各有10块.问:一次至少要掏出若干木块,才干包管个中至少有3块号码雷同的木块?剖析与解:将1,2,3,4四种号码算作4个抽屉.要包管有一个抽屉中至少有3件物品,依据抽屉道理2,至少要有4×2+1=9(件)物品.所以一次至少要掏出9块木块,才干包管个中有3块号码雷同的木块.17.六年级有100逻辑学生,他们都订阅甲.乙.丙三种杂志中的一种.二种或三种.问:至少有若干逻辑学生订阅的杂志种类雷同?剖析与解:起首应该弄清订阅杂志的种类共有若干种不合的情形.订一种杂志有:订甲.订乙.订丙3种情形;订二种杂志有:订甲乙.订乙丙.订丙甲3种情形;订三种杂志有:订甲乙丙1种情形.总共有3+3+1=7(种)订阅办法.我们将这7种订法算作是7个“抽屉”,把100逻辑学生看作100件物品.因为100=14×7+2.依据抽屉道理2,至少有14+1=15(人)所订阅的报刊种类是雷同的.18.篮子里有苹果.梨.桃和桔子,现有81个小同伙,假如每个小同伙都从中随便率性拿两个生果,那么至少有若干个小同伙拿的生果是雷同的?剖析与解:起首应弄清不合的生果搭配有若干种.两个生果是雷同的有4种,两个生果不合有6种:苹果和梨.苹果和桃.苹果和桔子.梨和桃.梨和桔子.桃和桔子.所以不合的生果搭配共有4+6=10(种).将这10种搭配作为10个“抽屉”.81÷10=8……1(个).依据抽屉道理2,至少有8+1=9(个)小同伙拿的生果雷同.19.黉舍创办了语文.数学.美术三个课外进修班,每个学生最多可以介入两个(可以不介入).问:至少有若干逻辑学生,才干包管有很多于5名同窗介入进修班的情形完整雷同?剖析与解:起首要弄清介入进修班有若干种不合情形.不介入进修班有1种情形,只介入一个进修班有3种情形,介入两个进修班有语文和数学.语文和美术.数学和美术3种情形.共有1+3+3=7(种)情形.将这7种情形作为7个“抽屉”,依据抽屉道理2,要包管很多于5名同窗介入进修班的情形雷同,要有学生7×(5-1)+1=29(名).20. 在1,4,7,10,…,100中任选20个数,个中至少有不合的两对数,其和等于104.剖析:解这道题,可以斟酌先将4与100,7与97,49与55……,这些和等于104的两个数构成一组,构成16个抽屉,剩下1和52再构成2个抽屉,如许,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不合的两组数,其和等于104;假如取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组.解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立.21. 随便率性5个天然数中,必可找出3个数,使这三个数的和能被3整除.剖析:解这个问题,留意到一个数被3除的余数只有0,1,2三个,可以用余数来结构抽屉.解:以一个数被3除的余数0.1.2结构抽屉,共有3个抽屉.随便率性五个数放入这三个抽屉中,若每个抽屉内均稀有,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没稀有,那么5个数中必有三个数在统一抽屉内,这三个数的和是3的倍数,结论亦成立.22. 在边长为1的正方形内,随便率性放入9个点,证实在以这些点为极点的三角形中,必有一个三角形的面积不超出1/8.解:分离贯穿连接正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 .把这四个小正方形看作4个抽屉,将9个点随便放入4个抽屉中,据抽屉道理,至少有一个小正方形中有3个点.显然,以这三个点为极点的三角形的面积不超出1/8 .反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而结构出4个抽屉,是解决本题的症结.我们知道.将正方形分成面积均为1/4 的图形的办法不只一种,如可贯穿连接两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但如许结构抽屉不克不及证到结论.可见,若何结构抽屉是运用抽屉原懂得决问题的症结.23.班上有50逻辑学生,将书分给大家,至少要拿若干本,才干包管至少有一个学生能得到两本或两本以上的书.解:把50逻辑学生看作50个抽屉,把书算作苹果 ,依据道理1,书的数量要比学生的人数多,即书至少须要50+1=51本.24.在一条长100米的巷子一旁植树101棵,不管如何种,总有两棵树的距离不超出1米.解:把这条巷子分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树 .25.有50名运发动进行某个项目标单轮回赛,假如没有平手,也没有全胜.试证实:必定有两个运发动积分雷同证实:设每胜一局得一分,因为没有平手,也没有全胜,则得分情形只有1.2.3……49,只有49种可能 ,以这49种可能得分的情形为49个抽屉 ,现有50名运发动得分则必定有两名运发动得分雷同 .26.体育用品仓库里有很多足球.排球和篮球,某班50名同窗来仓库拿球,划定每小我至少拿1个球,至多拿2个球,问至少有几名同窗所拿的球种类是一致的?解题症结:运用抽屉道理2.解:依据划定,多有同窗拿球的配组方法共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方法制作9个抽屉,将这50个同窗看作苹果=5.5 (5)由抽屉道理2k=〔〕+1可得,至少有6人,他们所拿的球类是完整一致的.。

小学数学《抽屉原理(一)》练习题

小学数学《抽屉原理(一)》练习题

抽屉原理(一)【知识要点】如果把m个元素放在n个“抽屉”中,那么至少有一个“抽屉”里放有两个或更多的物体。

抽屉原理理解起来并不难,在用抽屉原理解题时,关键是弄清什么是物体,什么是抽屉。

【例题选讲】例1.某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?例2.某班学生去买语文书、数学书、外语书。

买书的情况是:有买一本的、二本的,也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)。

例3.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出多少只手套才能保证有3付同色的?例4.任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?例5.能否在5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对象线AD、BC上的各个数的和互不相同?【课内练习】1.某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2.某校有30名学生是2月份出生的。

能否至少有两个学生的生日是在同一天?3.15个小朋友中,至少有几个小朋友在同一个月出生?4.某班学生去买数学书、语文书、美术书、自然书。

买书的情况是:有买一本、二本、三本或四本的。

问至少去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?5.学校图书室有历史、文艺、科普三种图书。

每个学生从中任意借两本,那么至少要几个学生才能保证一定有两人所借的图书属于同一种?(每种书最多买一本)6.一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有2个同色的?7.一只布袋中装有大小相同、颜色不同的手套。

颜色有黑、红、蓝、黄四种。

问:最少要摸出多少只手套才能保证有4付同色的?8.布袋中有同样规格但颜色不同的袜子若干只。

颜色有白、黑、蓝三种。

问:最少要摸出多少只袜子,才能保证有3双同色的?9.一个布袋里有红、黄、蓝色袜子各8只。

小学六年级数学下数学广角抽屉原理练习题

小学六年级数学下数学广角抽屉原理练习题

数学广角——《抽屉原理》练习姓名成绩1、你所在的班中,起码多少人中,必定有2个人的6、张叔叔参加飞镖比赛,投了5镖,成绩是42环。

诞辰在同一个月?张叔叔起码有一镖不低于9环。

为何?2、你所在的班中,起码有多少人的诞辰在同一个月?7、少儿园买来许多猴、狗、马塑料玩具,每个小朋友随意选择两件,那么起码几个小朋友中才能保证有两人选的玩具同样。

3、32只鸽子飞回7个鸽舍,起码有几个鸽子要飞进同个鸽舍?4、在街上随意找来50个人,能够确立,这50人中8、有一个布袋里有红色、黄色、蓝色袜子各10只,起码有多少个人的属相同样?问最少要拿多少只才能保证此中起码有2双颜色不相同的袜子。

5、飞英学校五、六年级共有学生370人,在这些学生中,起码两个人在同一天过诞辰,为何?9、有红、黄、蓝三种颜色的球各6个,混淆后放在一个布袋里,一次起码摸出几个,才能保证有两不过同色的?10、抽屉理有4支红铅笔和3支蓝铅笔,假如闭着眼睛摸,一次一定拿几支,才能保证起码有1支蓝铅笔?4、一些孩子在沙岸上嬉戏,他们把石子堆成很多堆,此中有一个孩子发现,从石子堆中随意选出五堆,其中起码有两堆石子数之差是对吗?为何?4的倍数,你说他的结论加分题:每题20分1、要取出25个苹果,最多从几个抽屉中拿,才能保证从此中一个抽屉里起码拿了7个苹果5、从2、4、6、、30这15个偶数中,任取9个数,证明此中必定有两个数之和是34。

2、有5个小朋友,每人都从装有很多黑白围棋子的布袋中随意摸出3枚棋子.请你证明,这5个人中起码有两个小朋友摸出的棋子的颜色的配组是同样的。

3、五年级有49名学生参加一次数学比赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其他学生的成绩均在75~95分之间,问起码有名学生的成绩同样。

抽屉原理练习题一

抽屉原理练习题一

抽屉原理练习题一1、有黑色、白色、黄色的筷子各8根,混杂放在一起,黑暗中想从这些筷子之中取出颜色不同的两双筷子,至少要取出多少根(11根)才能保证达到要求?至少拿几根(6根),才能保证有两双同色的筷子?2、从任意3个整数中,一定可以找到两个。

使得它们的和是一个偶数,这是为什么?3、某班有49个学生,最大的12岁,最小的9岁,是否一定有两个学生,他们是同年同月出生的?4、一副扑克牌有54张,至少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 165、学校买来历史、文艺、科普三种图书若干本,每个同学从中任意借两本,那么至少要多少名学生一起来借书,其中才一定有两人所借的图书种类相同? 76.11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

7.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

8.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?69.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,则小明至少把这些水果分成了几堆。

10.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。

问:至少有多少名学生订阅的杂志种类相同?1511.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?12.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?913.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。

六年级抽屉原理

六年级抽屉原理

抽屉原理一、最不利的原则:例1、一副扑克牌去掉两张王牌后还有52张牌,共有黑桃、红心、方块及梅花4种花色,每种花色各有13张,问:(1)一次至少要摸出多少张牌,才可以保证摸出的牌中至少有3张是不同花色的牌?(2)一次至少要摸出多少张牌,才可以保证摸出的牌中至少有3张是同花色的牌?(3)一次至少要摸出多少张牌,才可以保证摸出的牌中至少有一张“K”?例2、口袋中有三种颜色的筷子各10根,问:(1)至少取多少要才能保证三种颜色都取到?(2)至少取多少根才能保证有2双颜色不同的筷子?(3)至少取多少根才能保证有2双颜色相同的筷子?同类练习:1、在一副扑克牌中,最少要拿出多少张牌,才能保证拿出的牌中四种花色都有?2、一把钥匙只能开一把锁,现在10把锁的10把钥匙,最多要试验多少次才能使全部的钥匙和锁相匹配?3、一把钥匙只能开一把锁,现在有10把锁和其中的8把钥匙,要保证将这8把钥匙都配上锁,至少要试多少次?4、抽屉里有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿出几支,才能保证至少有1支蓝铅笔?5、将100个苹果分给10个小朋友,第个小朋友分得的苹果个数互不相同,分得苹果个数最多的小朋友至少得到多少个苹果?6、将400本书随意分给若干同学,但每人不得超过11本,问至少有多少同学得到的书的本数相同?二、简单抽屉原理例1、实验小学去年招收学生730人,他们都是同一个出生的,问至少有几名学生同一天出生?例2、班上有49个人,老师至少拿几本书,随意分给大家,才能保证至少有一个同学得到三本书?同类练习:1、2010年新入校的学生中,有31名学生是6月份出生,那么其中至少有多少名学生的生日是同一天?2、32个小朋友聚在一起,那么至少有多少个人属相是相同的?为什么?3、某校一年级有370名学生,问这370名学生中至少有多少人同一天出生?4、五(1)班有40名学生,老师至少要拿多少本本子随意分给大家,才能保证至少有一个学生拿到4本或4本以上的本子?例3、任意取多少个不同的自然数,其中至少有两个自然数的差是7的倍数?例4、25名同学进行跳绳测试,每位同学每分钟的次数均在150~160次之间,那么每分钟跳绳相同的至少有多少人?同类练习:1、任意取多少个不同的自然数,其中至少有两个自然数的差是4的倍数?2、六年级一班共有48个学生参加跳绳比赛在规定时间里,最多的跳175次,最少的跳160次,那么在该班至少挑出多少个学生,从中必能选中3个在规定时间内跳绳次数相同的学生?3、口袋里放着足够多的红、白、蓝三种颜色的球,现在有31人轮流从口供中取球,每人各取3个球,至少有几个人取出的球颜色情况完全相同?4、某班学生去买语文书、数学书、外语书买书情况是:有买一本的,两本的,也有买三本的,那么至少要去几名学生才能保证一定有两位同学买到相同科的书(注:每科书最多买一本)?5、有红、黄、蓝、黑4种颜色的小球各若干个。

小学数学抽屉原理题型训练例题+练习+作业带详细答案

小学数学抽屉原理题型训练例题+练习+作业带详细答案

小学数学抽屉原理题型训练例题+练习+作业带详细答案抽屉问题题型训练【例题1】、在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样.【例题2】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?每个小朋友都借2本有三种可能:数数,英英,数英.第4个小朋友无论借什么书,都可能是这三种情况中的一种,这样就有两个同学借的是同一类书,所以可以保证,至少有2位小朋友,他们所借阅的两本书属于同类.总结:此题如用简单乘法原理的话,有难度,因为涉及到简单加法原理,所以推荐使用列表法。

与之前不同的是,本题借阅的书只说了两本并没说其他要求,所以可以拿2本同样的书.【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【例题3】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66÷9-7...3,7+1=8,即至少有8名同学所拿球的种类是一样的.【巩固】幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?根据题意列下表:有3个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.【例题4】红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【巩固】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最多有6种不同的涂法,蓝黄红蓝黄红蓝黄红蓝黄红蓝黄红红黄蓝涂到第六列以后,就会跟前面的重复.所以不论如何涂色,其中至少有两列它们的涂色方式相同.【例题5】从2、4、6、8......50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?构造抽屉:(2,50),(4,48),(6,46),(8,44),...,(24,28),(26),共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6......26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【例题6】从1,2,3,4,...100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。

(完整word)小学六年级数学抽屉原理练习题.doc

(完整word)小学六年级数学抽屉原理练习题.doc

抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种色看作3个抽,若要符合意,小球的数目必大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有 54 ,最少要抽取几牌,方能保其中至少有 2 牌有相同的点数?解:点数 1(A) 、2、3、4、5、6、7、8、9、10、11(J) 、12(Q) 、13(K) 的牌各取1 ,再取大王、小王各 1 ,一共 15 , 15 牌中,没有两的点数相同。

,如果任意再取 1的,它的点数必 1~13 中的一个,于是有 2 点数相同。

3 .11 名学生到老家借,老是房中有A、B、C、D四,每名学生最多可借两本不同的,最少借一本。

明:必有两个学生所借的的型相同。

明:若学生只借一本,不同的型有A、B、C、D四种,若学生借两本不同型的,不同的型有 AB、AC、AD、BC、BD、CD六种。

共有 10 种型,把 10 种型看作 10 个“抽”,把 11 个学生看作 11 个“苹果”。

如果借哪种型的,就入哪个抽,由抽原理,至少有两个学生,他所借的的型相同。

4 .有 50 名运行某个目的循,如果没有平局,也没有全,明:一定有两个运分相同。

明:每一局得一分,由于没有平局,也没有全,得分情况只有 1、2、3⋯⋯49,只有 49 种可能,以 49 种可能得分的情况 49 个抽,有 50 名运得分,一定有两名运得分相同。

5 .体育用品里有多足球、排球和球,某班 50 名同学来拿球,定每个人至少拿1个球,至多拿2个球,至少有几名同学所拿的球种是一致的?解关:利用抽原理2。

解:根据定,多有同学拿球的配方式共有以下9种:足排足足排排足排足排。

以9种配方式制造9个抽,将 50 个同学看作苹果 50÷9=5⋯⋯5由抽原理2 k=[ m/n ]+1可得,至少有6人,他所拿的球是完全一致的。

6 .某校有 55 个同学参加数学,已知将参人任意分成四,必有一的女生多于 2 人,又知参者中任何 10 人中必有男生,参男生的人生__________人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求.2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同.3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同.证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同.证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同.5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2.解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的.6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人.解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100.解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51).根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100.8. 某旅游车上有47名乘客,每位乘客都只带有一种水果.如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果.解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人.9. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆.解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同.对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐.10. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的.解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只.11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍.证明:把前25个自然数分成下面6组:1; ①2,3; ②4,5,6; ③7,8,9,10; ④11,12,13,14,15,16; ⑤17,18,19,20,21,22,23, ⑥因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍.12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌.问最少抽几张牌,才能保证有4张牌是同一种花色的?解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B.13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}.另外,还有2个不能配对的数是{6}{7}.可构造抽屉原理,共构造了7个抽屉.只要有两个数是取自同一个抽屉,那么它们的差就等于7.这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D.15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具.也就是说,至少会有一个小朋友得到4件或4件以上的玩具.16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块.问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉.要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品.所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块.17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种.问:至少有多少名学生订阅的杂志种类相同?分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况.订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况.总共有3+3+1=7(种)订阅方法.我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品.因为100=14×7+2.根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的.18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?分析与解:首先应弄清不同的水果搭配有多少种.两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子.所以不同的水果搭配共有4+6=10(种).将这10种搭配作为10个“抽屉”.81÷10=8……1(个).根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同.19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加).问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?分析与解:首先要弄清参加学习班有多少种不同情况.不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况.共有1+3+3=7(种)情况.将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生7×(5-1)+1=29(名).20. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104.分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组.解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立.21. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除.分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉.解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉.任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立.22. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 .把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点.显然,以这三个点为顶点的三角形的面积不超过1/8 .反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键.我们知道.将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但这样构造抽屉不能证到结论.可见,如何构造抽屉是利用抽屉原理解决问题的关键.23.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.24.在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树 .25.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜.试证明:一定有两个运动员积分相同证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 ,以这49种可能得分的情况为49个抽屉 ,现有50名运动员得分则一定有两名运动员得分相同 .26.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2.解:根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉,将这50个同学看作苹果=5.5 (5)由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的.。

相关文档
最新文档