9.1.1不等式及其解集(4)

合集下载

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
本节目标
了解不等式概念,理解不等式的解集,能正确表示
1 不等式的解集 .
2 培养数感,渗透数形结合的思想. .
3 培养自主学习的能力,合作交流意识与探究精神 .
预习反馈
1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,
其中不等式有(B )
A.2个 B.3个 C.4个 D.5个
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
一般地,一个含有未知数的不等式的 所有的解,组成这个不等式的 解集.求不等式的 解集 的过程叫做解不等式.
典例精析
4.不等式的解集的表示方法 第一种:用式子(如x>3),即用最简形式的不等式(如x>a或x<a)来表示.
第二种:利用数轴表示不等式的解集.

9.1.1不等式及其解集 教学设计

9.1.1不等式及其解集 教学设计

课题:9.1.1不等式及其解集教学设计课题:不等式及其解集课型:新授教材分析:不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础。

它是学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用。

本节是不等式的第一课时,主要学习四个概念:不等式、不等式的解、解集。

同时渗透建模、类比的思想方法。

学习目标:1、了解不等式概念和不等式的解;2、理解不等式的解集,能正确表示不等式的解集;3、培养数感,渗透数形结合的思想.学习重点:不等式的解集的表示;学习难点:不等式解集的确定。

新知探究:(一)探究一:不等式的概念(预习P114,完成下列问题:)问题1:泸州市公交车儿童购票标准:1米1以下儿童免票,1.1(含1.1米)米以上购票。

设儿童身高为x米,如何表示它们?x 1.1 x 1.1问题2:小明的身高为155cm,小聪的身高为156cm。

用“>”“<”或“≠”来表示他们身高之间的关系.156 155 155 156 155 156通过上面两个问题,学生们切实经历了不等式的产生过程,体验到不等式是由于表示不等关系的需要而产生的数学模型。

贴近生活的实例有助于学生感受到数学源于生活。

接着师生进行互动:观察下列式子,x<1.1; x≥1.1; 155<156; 156>155; 155≠156;它们有何特征?你能归纳出不等式的概念吗?(引导学生通过等式的概念类比得出不等式的概念)教师板书归纳:像上面这样用">"或"<"等不等号表示的式子,叫做不等式.同时告诉学生:常见的不等号有: 、、、、教师顺势引出本节课题:9.1.1不等式及其解集练习:1.判断下列各式是不是不等式。

(1)2﹤5;② x+3≠0;③ 4x-2y≤0 ;④ 7n-5≥2;⑤3x+2>0 ; ⑥ 5m+3=8 .2、用不等式表示:①a是正数;② a与5的和大于7;③a 是负数;④a与2的差大于-1;⑤a的4倍不大于8;⑥a的一半小于3.然后启发学生归纳出:列不等式的基本步骤1、确定不等式两边的代数式2、根据所给条件中的关系,选择合适的不等号。

9.1.1 不等式及其解集

9.1.1 不等式及其解集

9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。

“≤”读作“小于等于”. 表示小于或等于,也就是不大于。

例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。

9.1.1不等式及其解集教学设计及教学反思

9.1.1不等式及其解集教学设计及教学反思

((2)m 的倒数小于n 的一半;的一半;(3)a 与b 和的和的 12是非正数; (5)m 除以4的商不大于n 与2的积 完成下列填空:完成下列填空:像这样用“>”或“<”表示像这样用“>”或“<”表示像这样用“>”或“<”表示 的式子,的式子,叫做不等式。

不等式中常见的不等号有五种: 、 、 、 、 。

9.1.1 不 等 式 及 其 解 集 说 课贤儒中学 王枝梅教学目标:知识与技能: 理解理解不等式不等式及其解集的有关概念; 过程与方法:会检验一组数中哪些是不等式的解,会在会检验一组数中哪些是不等式的解,会在数轴数轴上表示不等式的解集。

情感态度价值观:经历由具体实例建立不等经历由具体实例建立不等模型模型的过程;经历学习不等式解与解集的不同意义的过程,渗透数形结合思想,体会学习数学的乐趣。

结合思想,体会学习数学的乐趣。

教学重点:1.理解不等式及其解集的有关概念; 2.会在数轴上表示不等式的解集。

会在数轴上表示不等式的解集。

教学难点:经历由具体实例建立不等模型的过程;经历学习不等式解与解集的不同意义的过程,渗透数形结合思想。

教学过程: 一:课 前 游 戏 ( 猜 谜 语 )二:自 主 预 习预习教材课题 P114-115内容。

(一)用不等式表示下列关系:用不等式表示下列关系:(1)a 与3的和是的和是正数正数; ((4)x 与5的差的3倍不是倍不是负数负数; ((6)a的)a的相反数相反数至少为1 。

练习:下列式子哪些是不等式?练习:下列式子哪些是不等式?① --1﹤3 3 ②② -x+2=4 x+2=4 ③③ 3x 3x ≠≠ 4y 4y ④④ 6 6 ﹥﹥ 2 2 ⑤⑤ 2x 2x --3 3 ⑥⑥ 2m 2m ﹤﹤ n(二)问题:一辆匀速行驶的汽车在1111::20距离A 地50千米,要在1212::00之前驶过A 地,车速应满足什么条件?分析:设车速是x 千米千米//时,时,从时间上看,汽车要在1212::00之前驶过A 地,则以这个则以这个速度速度行驶50千米所用的时间不到2/3小时,即 ;;从路程上看,汽车要在1212::00之前驶过A 地,则以这个速度行驶2/3小时的路程要超过50千米,即在下表中是32x >50的解的下面写“是”,不是的写“不是”。

9.1.1不等式及其解集

9.1.1不等式及其解集
9.1.1 不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2020·重庆模拟) 若关于x的不等式组所有整数解的和为2,且关于y的分式方程=1的解是正数,则符合条件的所有整数k的和是()A . 10B . 13C . 15D . 172. (2分)(2019·福田模拟) 对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A . 4B . 5C . 6D . 73. (2分) (2020七上·滨海月考) 如果a+b 0,并且ab 0,那么()A . a 0,b 0B . a 0,b 0C . a 0,b 0D . a 0,b 04. (2分) (2020七下·门头沟期末) 把不等式x ≤1 的解集表示在数轴上,正确的是()A .B .C .D .5. (2分)若a>b,则下列式子中一定成立的是()A . a﹣2<b﹣2B . >C . 2a>bD . 3﹣a>3﹣b6. (2分) (2017八下·宝安期中) 若x>y,则下列式子中错误的是()A . x-3>y-3B . x+3>y+3C . -3x>-3yD .7. (2分) (2020八上·哈尔滨月考) 若,则下列各式中一定不成立的是()A .B .C .D .8. (2分)下列不等关系中,正确的是()A . a不是负数可表示为a>0B . x不大于5可表示为x>5C . x与1的和是非负数可表示为x+1>0D . m与4的差是负数可表示为m-4<09. (2分)(2017·乐清模拟) 若a>b,则下列各式中一定成立的是()A . a+2<b+2B . a﹣2<b﹣2C . >D . ﹣2a>﹣2b10. (2分) (2020八上·下城期末) 设m,n是实数,a,b是正整数,若,则()A .B .C .D .11. (2分) (2020七下·许昌期末) 若是关于的一元一次不等式,则该不等式的解集是()A .B .C .D .12. (2分)下列不等式中,是一元一次不等式的是()A . 2x-1>0B . -1<2C . 3x-2y≤-1D . y2+3>513. (2分) (2018八上·宁波期中) 一元一次不等式x+1>2的解在数轴上表示为()A .B .C .D .14. (2分) (2020八下·西安月考) 下列不等式中,属于一元一次不等式的是()A . x(x-1)+2≤0B . 2(1-y)+y>2C . <1D . x-2y≥015. (2分) (2019七下·唐山期末) 如果不等式组无解,则b的取值范围是A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2017八上·秀洲月考) 用不等式表示“x与1的和为正数”:________。

2023~2024学年 9.1.1 不等式及其解集(19页)

2023~2024学年 9.1.1 不等式及其解集(19页)

分析:若刚好在8:00到学校,则所用时间为40分钟,此时 可列出方程: 2000 40 . ①
x
但为了避免迟到,小明要在8:00之前赶到学校,故所用时 间要少于40分钟,于是可得:2000 40 . ②
x
1.不等式的概念
(1)像②这样,用符号“<”或“>”表示大小关系的式子,叫做不等式. (2)像a+1≠a-1这样,用符号“≠”表示不等关系的式子也是不等式.
新知小结
一个式子是不等式,要把握两点: (1)含有不等号; (2)表示不等关系,而与不等式是否成立无关.
例1 下列式子是不等式的有( C ) ① 2x=20;② 3>2;③ x≠4-3;④ 5a+6b;
⑤ x>2y;⑥
;⑦ >3.
A.2个 B.3个 C.4个
D.5个
解:判断一个式子是否为不等式的关键在于式子中是 否含有“≠”“>”“<”,由此可知②③⑤⑦是不等式.
x 60 73 74.9 75.1 76 79 80 90
2 x 50 3
不 是
不 是Biblioteka 不 是是是 是是是
(1)你发现哪些数是这个不等式的解? (2)你从表格中发现了什么规律?
结合以上内容,我们可以探究出:
1.不等式的解 使不等式成立的未知数的值,叫做不等式的解. 不等式的解是一个具体的值.
2.不等式的解集与解不等式 (1)一个含有未知数的不等式的所有解,组成这个
第九章 不等式与不等式组 9.1.1 不等式及其解集
学习目标
1.掌握不等式、不等式的解、不等式的解集等相关的概念. 2.会判断一个式子是不是不等式. 3.会用数轴表示不等式的解集.
合作探究
问题:小明早上7:20从家出发,赶往离家2 000米的学校上课, 若学校8:00开始上课,问: 小明的速度应该具备什么条件,才能不迟到?若设小明的 速度为每分钟x米,你能用一个式子表示吗?

人教版初中数学七年级下册9.1.1《不等式及其解集》教案

人教版初中数学七年级下册9.1.1《不等式及其解集》教案
学生列出不等式,教师注意纠正错误
明确验证解的方法,引入不等式的解集概念
解析:解集是个范围
例3 下列说法中正确的是( )
A.x=3是不是不等式2x>1的解
B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解;
D.x=3是不等式2x>1的解集
注意:1.实心点表示包括这个点,空心点表示不包括这个点
例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?
-3,-1,0,1,1.5,2.5,3,3.5
解:略.
练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个.
2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?
情境导入
导出新知
一.问题探知
两个体重相同的孩子正在跷跷板上做游戏.现在换了一个胖子上去,跷跷板发生了倾斜,这个游戏还能继续下去吗?
某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植 树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
分析不等关系,渗透不等式的列法
2.不等式解集的表示方法
例4 在数轴上表示下列不等式的解集
(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1
分析:按画数轴,定界点,走方向的步骤答
解:
学生交流后,师生归纳:两者的条件和结论正好相反:

张微 9.1.1不等式及其解集教案

张微 9.1.1不等式及其解集教案
《不等式及其解集》教案
合江县城关中学 教学目标:
1、了解不等式的定义、不等式的解及其解集的含义。. 2、会列简单的不等式。 3、会检验一组数中哪些是不等式的解,会用两种方法表示不等式的解集。
张微
教学重点:
1、了解不等式定义、不等式及其解、解集的含义。 2、会检验一组数中哪些是不等式的解,会利用数轴表示不等式解集。
0
2、写出下列数轴所表示的不等式的解集
三、小结、布置作业 说说你的收获和体会 注意: (1)不等式解集包含不等式所有的解 (2)用数轴表示解集要关注圆点与圆圈的问题
四、教学反思
师生活动:让学 生感知文字语言 到符号语言的符 号化过程。
探究不等式的解、解集 把 x=60 代入方程 3X=180 中,方程左右两边相等,所以 x=60 是方程 3X=180 的解。 当不等式中也含有未知数时,不等式也像方程一样有解吗?下 面我们就通过一个视频来学习。 X=62、60、55 是否是不等式 3x>180 的解? 能使不等式成立的未知数的值叫不等式的解.
教学难点:
不等式解集含义的理解,用数轴表示不等式解集,列不等式。 教学环节 设计意图 情感教育
教学过程: 一、 情感教育
教师活动一 教师活动二
向学生介绍一本书《青少年最想问的 66 个人生不等式》 二、情境引入
利用多媒体展示“跷跷板”图片,向学生阐述其工作原理:不断改变两 端的重量使其不等。 展示“舂米” 、 “深井打水”都是利用这个原理,产生不等关系,从而引 出新知识《不等式》的学习。 数学来源于生 活、同时服务于 生活
告诉学生各个符号的读法。 例1、 下列式子中哪些是不等式? ① a+b=b+a,②-3>-5,③x≠1,④x+3>6,

人教版数学七年级下册:9.1.1 不等式及其解集 同步练习(附答案)

人教版数学七年级下册:9.1.1 不等式及其解集  同步练习(附答案)

9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。

同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。

学具:圆规、三角尺。

教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。

人教版七年级数学下册9.1.1《不等式及其解集》说课稿

人教版七年级数学下册9.1.1《不等式及其解集》说课稿

人教版七年级数学下册9.1.1《不等式及其解集》说课稿一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。

本节内容是学生学习不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

在教材中,不等式的概念是通过具体的例子引入的,让学生感受不等式在实际生活中的应用。

不等式的解集是指满足不等式的所有实数的集合,可以用数轴或区间表示。

教材通过例题和练习题的形式,帮助学生理解和掌握不等式及其解集的概念和表示方法。

二. 学情分析学生在学习本节内容前,已经学习了有理数、一元一次方程等基础知识,对于数学符号和概念有一定的理解。

但学生对于不等式的概念和解集的表示方法可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。

同时,学生可能对于数轴和区间的表示方法有一定的了解,但需要进一步学习和应用到不等式的解集中。

因此,在教学过程中,教师需要注重概念的引入和学生的实际操作,帮助学生建立起不等式和解集的知识体系。

三. 说教学目标1.知识与技能目标:学生能够理解不等式的概念,掌握不等式的解集及其表示方法。

2.过程与方法目标:学生能够通过具体的例子和练习,培养逻辑思维和解决问题的能力。

3.情感态度与价值观目标:学生能够体验数学在实际生活中的应用,激发学习数学的兴趣和积极性。

四. 说教学重难点1.教学重点:不等式的概念及其解集的表示方法。

2.教学难点:理解不等式和解集之间的关系,能够运用解集的表示方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,培养学生的逻辑思维和解决问题的能力。

2.教学手段:利用多媒体课件和黑板,进行图文并茂的讲解和演示,帮助学生直观地理解和掌握不等式及其解集的概念和表示方法。

六. 说教学过程1.导入新课:通过具体的例子,引入不等式的概念,激发学生的兴趣和好奇心。

人教版小学数学六年级下册不等式及其解集教案

人教版小学数学六年级下册不等式及其解集教案

课题:第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集教学目标(一)知识与技能1.了解不等式的概念;2.理解不等式的解集;3.能正确表示不等式的解集。

(二)过程与方法经历把实际问题抽象为不等式的过程,能列出不等关系式;初步体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型,培养学生的建模意识。

(三)情感态度价值观培养学生的知识迁移能力和建模意识,加深同学之间的合作与交流。

教学难点不等式解集的表示教学难点不等式解集的确定教具准备Powerpoint课件课型教学手段教学方法新授课多媒体授课练习——归纳法教学过程(师生活动)设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。

要在12:00以前驶过A地,车速应该满足什么条件?若设车速为每小时x千米,你能用一个式子表示吗?(学生经过讨论从时间、路程两个角度分别列出不等式)通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣.(一)不等式、一元一次不等式的概念1、在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。

(学生联想等式,读背记忆概念)注意:a.不等号开口所对的数较大;b.不等式中可以含有未知数,也可以不含未知数。

引导学生仔细观察并归纳出不等式的意义。

探究新知2、下列式子中哪些是不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)x十3>6 (5) 2m< n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式。

(学生联想一元一次方程,读背记忆概念)3、小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言。

人教版数学七年级下册9.1.1《不等式及其解集》教案

人教版数学七年级下册9.1.1《不等式及其解集》教案

新人教版七年级下9.1.1 不等式及其解集教学内容解析:本节知识属于《义务教育课程标准实验教科书·数学》(人教版)七年级下册第九章不等式与不等式组,教材第114-115页。

本章内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的学习,是进一步探究现实生活中的数量关系,培养学生用数学知识解决实际问题的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式的基础。

本节课的内容主要介绍不等式及不等式的解的概念以及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用。

相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部分,它在解决各类实际问题中有着广泛的应用。

同时,本节知识涉及到建模、转化、数形结合等思想方法。

教学目标1.知识与技能:(1)感受生活中存在大量的不等关系,了解不等式的意义,能将简单的文字问题转化为不等式;(2)理解不等式的解及解集,会找出一个不等式的几个解并且能检验一个数是否是不等式的解;(3)灵活掌握用数轴表示不等式的解集。

2.过程与方法:(1)经历将生活问题转化为数学问题,渗入建模思想,体会到数学源于生活;(2)经历探究不等式的解与解集的不同涵义的过程,渗入数形结合思想,体会到数学服务于生活;(3)通过观察、操作、类比、概括等活动,体会在解决问题的过程中与他人合作的重要性与必要性。

3.情感态度与价值观:通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识和梳理学好数学的自信心。

让学生充分体会到数学源于生活,同时又服务于生活。

学情分析中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。

9.1.1不等式及其解集教学案

9.1.1不等式及其解集教学案

(1) a+ b=b+a (2)—3>—5 (3) l(4) x 十3>6 (5) 2m v n ( 6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。

类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。

注意:像(1 )中分母含有未知数的不等式不是一元一次不等式,这一点与一兀一次方程类似。

(投影)判断下列数中哪些能使不等式2/3x > 50成立:76, 73, 79, 80, 74. 9, 75.1, 90, 6076, 79, 80, 75.1, 90 能使不等式2/3x > 50 成立。

我们把能使不等式成立的未知数的值,叫不等式的解•我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。

如所有大于75的数组成不等式2/3x > 50的解集,与作x >7 5,这个解集可以用数轴来表示。

------ 1 ---------- b--------------------------- k0 75求不等式的解集的过程叫做解不等式.((投影)在数轴上表示下列不等式的解集:(1)x>-1;(2)x > -1;(3)x v -1;(4)x w -1解:------- b----- ■ --------- *■ ------- i ------- 1- --------- 4'1 0 -1 0(1) (2)------ i ------------------ > ------ 1----- 1---------- >0”1Q ( 4)(3)( 4)注意:1.实心点表示包括这个点,空心点表示不包括这个点;2。

步骤:画数轴,定界点,走方向。

人教版初一数学下册9.1.1不等式及其解集在数轴上的表示

人教版初一数学下册9.1.1不等式及其解集在数轴上的表示

9.1.1 不等式及其解集[ 教学目标]知识与技能:感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;能力与方法:经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;情感、态度与价值观:通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

[教学重点与难点]重点: 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

.难点:不等式解集的确定,不等式的解集正确地表示到数轴上。

.[教学设计]一.问题探知展示多媒体图片,让学生从中发现不等式。

以及生活中的不等关系,引导同学们感受不等式和不等关系。

二、探究新知(一)不等式的概念1、用数学式子表示出来,由学生充分发表自己意见的基础上,师生共同归纳得出:用或表示大小关系的式子叫做不等式;用“看表示不等关系的式子也是不等式。

2、师生一起归纳出五种常见的不等号,注意书写和读法。

(1)坠”读作不等号”(2)读作大于号”(3)读作小于号”(4)读作大于或等于”即不小于”(5)迂”读作小于或等于”即不大于”总结:N”、 \”、鼻”、“w”、 都是不等号3、巩固练习,下列式子中哪些是不等式?①一1 < 3②一x+2=4 上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元 次方程,含有一个未知数且未知数的次数是 1 的不等式,叫做一元一次不等式.4、用不等式表示 :⑴a 是正数;⑵a 与5的和不超过7;⑶y 的4倍不小于8⑷a+2不等于b-2.(二) 不等式的解、不等式的解集 能使不等式成立的未知数的值叫不等式的解(1) x=-2, -1, 0能使不等式X +1 V 2成立吗?(2) 你还能找出一些使不等式 X+1 V 2成立的值吗?(3) 使不等式 X +1V 2 成立的未知数的值有多少个 ? 你能找出这个不等 式其他的解吗?它到底有多少个解?你从中发现了什么规律?由不等式的所有解组成的集合,我们把它叫做不等式的解集 . 注:(1)解集中包括了每一个解 (2)解集是一个范围(三) 不等式解集的表示方法 在数轴上表示不等式的解集 你能用什么办 法把不等式x > 1的解集表示在数轴上?注:大于向右,小于向左; 有等实心,无等空心 .画一画: 利用数轴来表示下列不等式的解集 .(1) x >-1 (2)x <2一元一次不等式的解集一般来说有以下四种情况:(1) X > a (2) X < a (3) X > a ⑷ X < a2、直接想出不等式的解集,并在数轴上表示出来:⑴ x>3;⑵ x < — 2四、总结归纳③ 3x 工4y⑤ 2x -3④ 6 > 2 ⑥ 2m < n收获和体会(1)不等式的定义(2)一元一次不等式(3)不等式的解(4)不等式的解集(5)不等式解集的表示方法五、布置作业1、完成蓝色作业本9.1.1不等式及其解集2、完成数学书P11A 116练习1.2.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章不等式与不等式组
9.1 不等式 9.1.1不等式及其解集
式子也是不等式
预习练习1-1 下列式子中是不等式的有 ______________ . 2 2
① 3<4;② 2x-3>0 :③ 5y -8 :④ 2x+3=7 :⑤ 3x+1<7.
1
1-2
“ b 的一与c 的和是负数”用不等式表示为 ___________ 2
要点感知
2 使不等式
的未知数的
叫做不等式的解.
预习练习 2-1 以下所给的数值
中,
是不等式 -2x+3 V 0 的解的是(

A.-2
B.-1
3
c.-
2
D.2
2-2 不等式 3x<9的解的个数有(
)
A.1个
B.3个
C.5个
D.无数多个
要点感知3 一个含有未知数的不等式的 ______________ ,组成这个不等式的解集•求不等式的解
集的过程叫做 ___________ .
预习练习3-1
(2013 •宿迁)如图,数轴所表示的不等式的解集是 ____________
知识点1 不等式
1. 数学表达式:①-5<7 :②3y-6>0 :③a=6;④x-2x :⑤2;⑥7y-6>5y+2中,是不等式的 有() A.
2个 B.3个
C.4个
D.5个
2. “数x 不小于2 ”是指( )
A.
x < 2
B.x > 2
C.x v 2
D.x >2
3. 用不等式表示:
(1)x 的2倍与5的差不大于1 ;
(2)x 的一与x 的一的和是非负数;
3 2
表示大小关系的式子 ,叫做不等式,用 __________ 表示不等关系的
要点感知1用
⑶a与3的和不小于5;
⑷a的20%与a的和大于a的3倍.
知识点2不等式的解集
4.下列说法中,错误的是()
A.x=1是不等式XV 2的解
B.-2是不等式2x-1 V 0的一个解
C.不等式-3x > 9的解集是x=-3
D.不等式x V 10的整数解有无数个
5.用不等式表示如图所示的解集,其中正确的是
()
-2 0 2
A.x>-2
B.x<-2
C.x > -2
D.x w -2
6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的"0 cm”和"15
cm”分别对应数轴上的-3.6和x,则()
-3.6 0 x
0cm I 2 3 4 5 6 7 8 9 10 II 12 H 14 15
A.9 V x V 10
B.10 V x V 11
C.11 V x V 12
D.12 V X V 13
2 2
7.在下列各数:-2, -2.5 , 0, 1, 6中,不等式一x>1的解有;不等式-—x>1的
3 3
解有___________ .
1
8.由于小于6的每一个数都是不等式一x-1<6的解,所以这个不等式的解集是x V 6.这种说法
2
对不对?
用不等式表示为 ( )
1
B. x+3<0
2
1
D. —(x+3)>0
9.x 与3的和的一半是负数, 1
A. x+3>0
2 C. £ (x+3)<0
10. 下面给出5个式子:①3x > 5 :②x+1 :③1-2y < 0 :④x-2丰0;⑤3x-2 = 0.其中是不
等式 的个数有( )
A.2个
B.3个
C.4个
D.5个
11. 下列说法正确的是( )
A.2是不等式x-3<5的解集
B.x>1是不等式x+1>0的解集
C.
x>3是不等式x+3 > 6的解集 D .x<5是不等式
2x<10的解集 12.
下列不等式中,4,5,6都是它的解的不等式是(

A.2x+1>10
B.2x+1 > 9
C.x+5 < 10
D.3-x>-2
13. (2013 •长春改编)不等式x v -2的解集在数轴上表示为(

14. (2012 •西宁)某饮料瓶上有这样的字样: Eatable Date 18 mon ths.如果用x (单位:月)表示 Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为 ____________. 15.
比较下面两个算式结果的大小 (在横线上填“ >”“<”或
“=”):
2 2 2 2
3 +
4 ____________ 2 X 3 X 4, 2 +2 _
2 2
1 2 2 2 1 2 (-2) +5 _________ 2 X (-2)X 5, (—)+(—) _______ 2 X — X _ .
2 3
2 3
通过观察归纳,写出能反映这种规律的式子 _______________________ .
16. 下列数值中哪些是不等式 3x-1 > 5的解?哪些不是?
100,98,51,12,2,0,-1,-3,-5.
17.
不等式的解集x<3与x < 3有什么不同?在数轴上表示它们时怎样区别 ?分别在数轴上把这
两个解集表示出来
18. 直接写出下列各不等式的解集:

2
丄o A
A- 2

亠2

o
D

42
2
3 2
2 X 2 X 2
,
1+(
4)
3 2 X 1X
4
(1)x+1 > 0;
(2)3x v 6;
(3)x-1 > 5.
挑战自我佃.阅读下列材料,并完成填空•
你能比较2 0132 014和2 0142 013的大小吗?
为了解决这个问题,先把问题一般化,比较n n+1和(n +1)n(n》1,且n为整数)的大小•然后从分析
n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.
(1)通过计算(可用计算器)比较下列①〜
⑦组两数的大小:(在横线上填上“ >” “=”或
“ <”)
① 12__________ 21;② 23____________32;③ 34____________ 43;④ 45____________ 54;⑤
6 5
5 ____________
6 ;
⑥67___________ 76;⑦ T5_____________87;
⑵归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;
(3)根据以上结论,可以得出2 0132 014和2 0142 013的大小关系
参考答案
课前预习
要点感知1 “v”或“〉” “工
预习练习1-1①②⑤
1
1- 2 b+c<0
2
要点感知2成立值
预习练习2-1 D
2- 2 D
要点感知3所有的解解不等式
预习练习3-1 xw 3
当堂训练
1.C
2.B
3.(1)2x-5 w 1.
1 1
(2)x+ x> 0.
3 2
(3)a+3 > 5.
⑷ 20%a+a>3a.
4. C
5.C
6.C
7.6-2, -2.5
8.这种说法是错的
课后作业
12. B 13.D 14. xw 18 > a 2
+b
2
>
2ab 16.100,98,51,12,2 是不等式 3x-1 > 5 的解;0,-1,-3,-5 不是不等式 3x-1 > 5 的解. 17.
x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈,不包括
3这个数;而xw 3
9.C 10.B 11.D 15.>
=
>
>
的解集是小于或等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数.把它们表示在数轴上为:
■■■■■ P■
-2-101234
18.(1) x> -1 ;
(2)x v 2 ;
(3)x > 6.
19.(1) < < > > > > >
(2)当n=1 或 2 时,n n+1<(n+1)n;当n>3 时,n n+1>(n+1)n.
2 014 2 013
(3)2 013 >2 014。

相关文档
最新文档