概率与统计高考常见题型解题思路及知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考复习概率与统计知识点归纳总结
概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。
高中数学概率与统计题型解答方法
高中数学概率与统计题型解答方法概率与统计是高中数学中的重要内容,也是学生们普遍感觉较为困难的部分。
在这篇文章中,我将为大家介绍一些解答概率与统计题型的方法和技巧,希望能够帮助大家更好地理解和应对这一部分的考试内容。
一、概率题型解答方法概率题型主要涉及到事件的发生可能性以及事件之间的关系。
在解答概率题型时,我们可以按照以下步骤进行:1. 确定样本空间:首先要明确问题中所涉及的所有可能结果,这些结果构成了样本空间。
例如,如果问题是抛一枚硬币,我们可以得到样本空间为{正面,反面}。
2. 确定事件:根据问题的要求,确定我们关注的事件。
例如,如果问题是抛一枚硬币,要求出现正面的概率,那么我们可以将事件定义为“出现正面”。
3. 计算概率:根据事件发生的可能性和样本空间的大小,计算事件发生的概率。
例如,对于抛一枚硬币出现正面的问题,由于样本空间中只有两个结果,所以事件发生的概率为1/2。
除了基本的概率计算,还有一些特殊的概率题型,例如条件概率、独立事件等。
对于这些题型,我们需要根据具体情况使用相应的公式和方法进行计算。
二、统计题型解答方法统计题型主要涉及到数据的收集、整理和分析。
在解答统计题型时,我们可以按照以下步骤进行:1. 收集数据:首先要明确问题中所要求的数据类型和范围,然后进行数据的收集。
例如,如果问题是调查学生的身高,我们可以通过测量学生的身高来收集数据。
2. 整理数据:将收集到的数据进行整理和分类,以便后续的分析。
例如,可以将学生的身高按照一定的范围进行分组,并制作成频数表或直方图。
3. 分析数据:根据问题的要求,对数据进行分析和计算。
例如,可以计算出数据的平均值、中位数、众数等统计量,以及数据的方差和标准差等。
除了基本的数据分析,还有一些特殊的统计题型,例如假设检验、相关性分析等。
对于这些题型,我们需要根据具体情况使用相应的统计方法和检验标准进行分析。
三、举一反三在解答概率与统计题型时,我们可以通过举一反三的方法拓展思路,将相似的题目进行比较和联系,从而更好地理解和解答题目。
数学高考必备概率与统计知识点总结
数学高考必备概率与统计知识点总结数学高考中,概率与统计是一个重要的考点,占据大约10%的考试比重。
掌握好概率与统计的知识点,对于考试取得好成绩至关重要。
本文将对数学高考中必备的概率与统计知识点进行总结,并提供实用的解题方法和技巧。
一、基本概念和概率计算1.1 随机事件和样本空间在概率理论中,随机事件是指实验过程的一个结果,而样本空间则是实验中可能出现的所有结果的集合。
在解题时,我们需要明确随机事件和样本空间的概念,将题目中的问题抽象成适合计算的形式。
1.2 概率的定义和性质了解概率的定义和性质对于解题至关重要。
掌握概率的加法原理、乘法原理、全概率公式和贝叶斯定理能够帮助我们解决复杂的概率计算问题。
1.3 随机变量和概率分布随机变量是指与随机事件相对应的可数的数值,概率分布则定义了随机变量的取值范围和其对应的概率。
掌握随机变量和概率分布的概念和计算方法,能够在解题过程中更好地理解和分析问题。
1.4 用排列组合解决概率问题排列组合是概率计算中常用的方法之一。
理解排列和组合的概念,掌握计算排列和组合的方法,可以帮助我们解决一定范围内的概率计算问题。
二、离散分布2.1 二项分布二项分布是一种重要的离散分布,在高考中经常出现。
掌握二项分布的概念、性质和计算方法,能够解决二项分布相关的问题。
2.2 泊松分布泊松分布是一种常见的离散分布,用于描述单位时间或单位空间内随机事件发生的次数。
了解泊松分布的特点和计算方法,能够解决与泊松分布相关的问题。
三、连续分布3.1 均匀分布均匀分布是一种常见的连续分布,描述了在一定范围内任意取值的概率相等的情况。
掌握均匀分布的概念和计算方法,能够解决与均匀分布相关的问题。
3.2 正态分布正态分布是一种重要的连续分布,具有对称性和钟形曲线的特点。
在高考中,许多问题都可以近似看作正态分布,因此掌握正态分布的概念和计算方法非常重要。
四、统计分析4.1 数据的收集和整理在统计分析中,数据的收集和整理是第一步。
概率论与统计学的重要公式和解题思路
概率论与统计学的重要公式和解题思路⼀、基本概率公式及分布1、概率常⽤公式:P(A+B)=P(A)+P(B)-P(AB) ;P(A-B)=P(A)-P(AB) ; 如A、B独⽴,则P(AB)=P(A)P(B) ; P()=1-P(A) ;B发⽣的前提下A发⽣的概率==条件概率:P(A|B)=;或记:P(AB)=P(A|B)*P(B) ;2、随机变量分布律、分布函数、概率密度分布律:离散型X的取值是x k(k=1,2,3...), 事件X=x k的概率为:P{X=x k}=P k, k=1,2,3...; --- 既X的分布律;X X1 X2 .... xnPk P1 P2 ... pnX的分布律也可以是上⾯的表格形式,⼆者都可以。
分布函数:F(x)=P(X), -; 是概率的累积!P(x1离散型rv X; F(x)= P{X;(把X性质:F(; F(;⼆、常⽤概率分布:①离散:⼆项分布:事件发⽣的概率为p,重复实验n次,发⽣k 次的概率(如打靶、投篮等),记为B(n,p) P{X=k}=,k=0,1,2,...n; E(X)=np, D(X)=np(1-p);②离散:泊松分布:X~Π(λ)P{X=k}=,k=0,1,2,...; E(X)=λ, D(X)=λ;③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b),则:密度函数:f(x)=分布函数F(x)==④连续型:指数分布,参数为,f(x)=⑤连续型:正态分布:X~N(most importment!密度函数f(x),表达式不⽤记!⼀定要记住对称轴x=µ, E(X)=µ,⽅差D(X)=; 当µ=0,时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的⾯积。
当X~N(0,1),F(x)=Φ(x)(换个叫法), 由对称性有Φ(-a)=1-Φ(a);看到X~N(,求概率的题,⼀定要变成标准正态N(0,1);既把X变成;则~N(0,1);例题:已知X~N(;求P(-1解:(思路:µ=1,σ=2;变换式:)P(-1P()= Φ(1)- Φ(-1)= Φ(1)-[1-Φ(1)]=2Φ(1)-1;查表正态性质:如X~N(N(;则Z=aX+bY也是正态;Z~N(,其中µz=aµ1+bµ2 ;σz2=a2σ12+b2σ22;三、⼆维随机变量:离散型:(X,Y)可能取值(xi,yj)(i,j=1,2,...).联合分布律:P{X=xi,Y=yj)=pij, (i,j=1,2,3,..)联合分布律的表格形式:XYY1 Y2 Y3 P(X=I)X1 P11 P12 P13 P11+P12+P13X2 P21 P22 P23 P21+P22+P23X3 P31 P32 P33 P31+P32+P33P(Y= J) P11+P21+P31P12+P22+PP13+P23+P33边缘分布:P(X=1)=P11+P12+P13(横排相加); P(X=2),P(X=3)同样计算P(Y=1)=P11+P21+P31(竖排相加); P(Y=2) ,P(Y=3)类似计算;条件概率:X=X1条件下Y的分布律:P{Y=yj|X=x1}==; P{Y=y1|X=x1}=; P{Y=y2|X=x1}=; P{Y=y3|X=x1}=连续型:设f(x,y)是联合概率密度;(注意x,y常常有取值范围D的)则:F(x,y)=P(X如XY独⽴,则f(X,Y)=fx(X)*fy(Y); 反之也成⽴;X,Y⼆维正态密度中的参数则X,Y独⽴;题型:1、f(x)有未知常数,求未知常数;思路:注意x的定义域,利⽤F(∞)=求出参数;2、求P(X1)类,先画出x=y,x+y=1的图,确定积分上下限,并求积分;3、求Z=X+Y的分布:密度公式四、数学期望、⽅差数学期望E(X), ⽅差D(X) :离散:E(X)=; E(g(X))=;连续:E(X)=E(g(X))=性质:E(C)=C, E(CX)=CE(X);E(X+Y)=E(X)+E(Y)如X,Y独⽴,则E(XY)=E(X)*E(Y);D(X)=E(X; D(C)=0,D(CX)=C2X如X,Y独⽴,D(X五、样本及抽样分布中⼼极限定理:E(X)=µ,D(X)=σ2的独⽴同分布的X1,X2,X3...Xn,当n充分⼤时,有:~N(0,1);是Xi的和;样本及抽样分布:从总体X中抽取⼀个个体,独⽴抽n次,记为X1,X2,...Xn, 它们组成独⽴、同分布的随机变量,叫随机样本,n 是样本容量,X1,X2,..Xn的观测值x1,x2,x3...xn叫样本值。
高考概率与统计常见题型与解法
高考概率与统计常见题型与解法题型一 几类根本概型之间的综合在高考解答题中,常常是将等可能事件、互斥事件、相互独立事件等多种事件交汇在一起进展考察,主要考察综合计算方法和能力.此类问题一般都同时涉及几类事件,它们相互交织在一起,难度较大,因此在解答此类题时,在透彻理解各类事件的根底上,准确把题中所涉及的事件进展分解,明确所求问题所包含的所属的事件类型.特别是要注意挖掘题目中的隐含条件.1、等可能事件的概率在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。
如果事件A 包含的结果有m 个,那么P 〔A 〕=nm。
这就是等可能事件的判断方法及其概率的计算公式。
高考常借助不同背景的材料考察等可能事件概率的计算方法以及分析和解决实际问题的能力。
例题1〔2010〕为了对某课题进展研究,用分层抽样方法从三所高校A,B,C 的相关人员中,抽取假设干人组成研究小组、有关数据见下表〔单位:人〕(Ⅰ)求x,y ; 〔Ⅱ〕假设从高校B 、C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率。
解 (Ⅰ)由题意可得2183654x y ==所以1,3x y ==, 〔Ⅱ〕记从高校B 中抽取的2人为12,b b ,从高校C 中抽取的3人为123,,C C C 那么从高校B 、C 抽取的5人中选2人作专题发言的根本领件有〔12,b b 〕,〔11,b c 〕,〔12,b c 〕,〔23,b c 〕,〔21,b c 〕,〔22,b c 〕,〔23,b c 〕,12(,)C C ,13(,)C C ,23(,)C C 共10种,设选中的2人都来自高校C 的事件为X ,那么X 包含的根本领件有12(,)C C ,13(,)C C ,23(,)C C 共3种,因此3()10p X =应选中的2人都来自高校C 的概率为310变式1〔2010〕某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。
概率与统计高考常见题型解题思路及知识点总结
概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。
高考《概率与统计初步》知识点和高考题、配套练习题(很全面)
专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。
② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
② 理解样本数据标准差的意义和作用,会计算数据标准差。
③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。
④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。
①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
②假设检验了解假设检验的基本思想、方法及其简单应用。
③回归分析了解回归的基本思想、方法及其简单应用。
2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
② 了解两个互斥事件的概率加法公式。
(2)古典概型① 理解古典概型及其概率计算公式。
② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。
2023年高考数学复习----概率与统计的综合运用方法技巧与总结
2023年高考数学复习----概率与统计的综合运用方法技巧与总结(一)涉及的概率知识层面主要考查随机变量的概率分布与数学期望,一定要根据有关概念,判断是等可能事件、互斥事件、相互独立事件还是独立重复试验,以便选择正确的计算方法,进行概率计算及离散型随机变量的分布列和数学期望的计算,也要掌握几种常见常考的概率分布模型:离散型有二项分布、超几何分布,连续型有正态分布.考查运用概率知识解决简单实际问题的能力,1、离散型随机变量的期望与方差一般地,若离散型随机变量X 的分布列为称1122()n n E X x p x p x p =+++为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. 称()21()()ni i i D X x E X p ==−∑为随机变量X 的方差,它刻画了随机变量X 与其均值()E XX 的标准差.(1)离散型随机变量的分布列的性质①0(1,2,,)i p i n =…;②121n p p p +++=.(2)均值与方差的性质若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且2()();()()E aX b aE X b D aX b a D X +=++=(3)分布列的求法①与排列、组合有关分布列的求法.由排列、组合、概率知识求出概率,再求出分布列.②与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.③与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.④与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.(4)常见的离散型随机变量的概率分布模型①二项分布;②超儿何分布.2、常见的连续型概率分布模型正态分布.(二)概率分布与不同知识背景结合考查对实际问题的解决能力1、与数列结合的实际问题2、与函数导数结合的实际问题3、与分段函数求最值、解不等式结合的实际问题4、与统计结合的实际问题5、与其他背景结合的实际问题6、本课结束。
高考复习概率与统计知识点归纳总结
高考复习概率与统计知识点归纳总结概率与统计是高中数学中的一大重点和难点。
在高考中,这一部分的知识点占有相当大的比重,因此学生需要在复习阶段集中精力,深入理解和掌握相关的知识点。
本文将对高考概率与统计的知识点进行归纳总结,以帮助学生们更好地复习和备考。
一、概率基本概念1. 随机事件与样本空间:随机事件是对某一随机试验的结果的一种描述,样本空间是一个随机试验中可能出现的所有结果的集合。
2. 事件的概率:事件A发生的概率用P(A)表示,其计算公式为P(A) = 事件A的可能结果数 / 样本空间的结果总数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件中一个必然发生,另一个必然不发生。
4. 事件的独立性:两个事件相互独立指的是一个事件的发生不受另一个事件的影响,它们的概率计算是相互独立的。
二、排列与组合1. 排列:排列是从n个不同元素中取出m(m≤n)个元素,按一定的顺序排列成一列。
公式为An^m = n(n-1)(n-2)...(n-m+1)。
2. 组合:组合是从n个不同元素中取出m(m≤n)个元素,不考虑排列顺序。
公式为Cn^m = n! / (m!(n-m)!)。
三、事件概率的计算1. 加法定理:对于两个事件A和B,其和事件A∪B的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 乘法定理:对于两个独立事件A和B,其积事件A∩B的概率为P(A∩B) = P(A) × P(B)。
3. 全概率公式:对于一组互斥事件A1、A2、...、An,其和事件A的概率为P(A) = P(A1) + P(A2) + ... +P(An)。
4. 条件概率公式:对于两个事件A和B,已知事件B发生的条件下事件A发生的概率为P(A|B) = P(A∩B) / P(B)。
四、随机变量与概率分布1. 随机变量:随机变量是随机试验结果的函数,它的取值是随机的。
如何应对高考数学中的概率与数列与数学归纳法的综合题目
如何应对高考数学中的概率与数列与数学归纳法的综合题目高考数学中的概率、数列和数学归纳法是常见的题型,也是考生们较为头疼的内容。
这些综合题目要求考生具备综合分析、运算和推理的能力。
本文将针对这些题型,给出应对策略和解题思路,帮助考生提高解题效率与准确性。
一、概率与数列综合题目的解题思路在解决概率与数列综合题目时,我们需要先理解题意,然后运用合适的概率知识和数列性质进行分析。
1.理解题意首先,我们需要读懂题目,并准确理解题目所给的条件和要求。
特别要注意关键词或关键信息,如“概率”、“数列”、“前n项和”、“事件发生次数”等。
2.概率知识的运用在解决概率问题时,我们需要根据题目的要求来计算概率。
常见的概率计算方法包括:排列组合、条件概率、事件的互斥和独立性等。
根据题目的特点,选择合适的概率计算方法,并运用数学公式进行计算。
3.数列性质的应用数列问题一般需要考生根据给定的条件求解数列的通项公式、前n 项和等。
在解题时,我们应用数列的性质和求和公式,列方程并解方程,以推导求解所需的结果。
二、数学归纳法在高考数学中的应用数学归纳法常用于证明或计算某一命题在正整数集合中的成立性。
在解决数学归纳法综合题目时,我们一般按照以下步骤进行:1.基本情况的验证首先,我们需要验证数学命题在最小的情况下是否成立,通常为n=1或n=2的情况。
通过计算或替换,判断命题的成立性。
2.归纳假设的假设与证明接下来,我们假设数学命题在n=k的情况下成立,即成立的前提是n=k-1成立。
对于一些需要递推的问题,我们可以根据归纳假设进行推导和计算。
3.递推步骤的证明最后,通过使用归纳假设,我们可以证明数学命题在n=k+1的情况下成立。
我们可以利用之前的结论进行递推,或根据题目特点进行具体的推导和计算。
三、综合题的解题技巧与注意事项在解答综合题时,考生需要考虑以下技巧和注意事项,以提高解题效率和准确性。
1.合理安排时间综合题通常包含多个小问,考生需要根据每个小问的难度和所占分值,合理安排时间。
高中数学概率与统计(理科)常考题型归纳
高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081, P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4)=C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题4个人中参加甲游戏的人数服从二项分布,由独立重复试验,4人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14, P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827, ∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E(X)=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11.②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i=720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80,l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b^=l xy l xx=2480=0.3, a^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱. (2)求线性回归方程的关键是正确运用b^,a ^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ).解 (1)完成2×2列联表如下:K 2=100×(40×25-15×60×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25. 由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。
高考数学2024概率与统计历年题目全解
高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。
为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。
1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。
以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。
求事件A发生且事件B不发生的概率。
解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。
因此,事件A发生且事件B不发生的概率为0.42。
题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。
求事件C或事件D发生的概率。
解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。
因此,事件C或事件D发生的概率为0.9。
2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。
以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。
现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。
解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。
即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。
因此,选出的3名学生全为男生的概率为0.0283。
高考数学中的概率与统计问题解析技巧
高考数学中的概率与统计问题解析技巧在高考数学中,概率与统计是一个重要的考点,涉及到了概率、统计两个方面的知识。
掌握好概率与统计问题的解析技巧,对于高考数学的顺利发挥至关重要。
本文将为大家介绍一些解析概率与统计问题的技巧,帮助大家在高考数学中取得好成绩。
一、概率问题的解析技巧1. 理解概率的定义首先,我们需要明确概率的定义。
概率是指某个事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
在解析概率问题时,我们需要根据情境判断事件的可能性,并将其转化为数值计算。
2. 利用排列组合计算概率在一些概率问题中,我们需要计算不同事件的组合情况。
此时,我们可以运用排列组合的知识来计算概率。
例如,从n个物体中取出m个的组合计算公式是C(n,m) = n! / (m!*(n-m)!),其中n!表示n的阶乘。
3. 运用事件的互斥性和独立性在某些情况下,我们可以利用事件的互斥性和独立性来计算概率。
互斥事件指的是两个事件不会同时发生,例如抛硬币的结果为正面和反面就是互斥事件。
独立事件指的是一个事件的发生不受其他事件的影响。
当事件A和事件B是独立事件时,它们的概率可以通过P(A ∩B) = P(A) * P(B)来计算。
二、统计问题的解析技巧1. 理解统计的基本概念在解析统计问题时,我们需要了解统计的一些基本概念。
例如,总体是指我们研究的对象的全体,样本是从总体中抽取出来的一部分个体。
平均数是一组数据的总和除以个数,中位数是一组数据按照大小排序后位于中间的值,众数是一组数据中出现次数最多的数。
2. 运用抽样调查的方法当我们需要了解总体的情况时,我们可以通过抽样调查的方法来获取样本数据。
在解析统计问题时,我们可以根据样本数据进行分析,从而推断总体的情况。
常用的抽样方法有简单随机抽样、整群抽样、分层抽样等。
3. 利用频数统计和图表分析在统计问题中,频数统计和图表分析是常用的方法。
我们可以通过对数据进行频数统计,找出数据中的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例2:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。
第(2)问是从一箱产品中抽取,产品的总体N=100是明确的,但其中有多少件次品M 是不明确的,有的同学根据样本可认为M=20,但违背了题目中的“用频率估计概率”这一条件,或者说没有理解这句话的含义,本质上就是概率的定义没有理解。
根据概率定义,“用频率估计概率”这一条件应理解为:从这100件产品中任意抽取1件产品,该件产品是次品的概率是0.2,同时抽取3件等同于不放回抽1件3次,由于每次的概率都是0.2,因此,可以看成独立重复实验,该随机变量的分布为二项分布。
第(3)问是从所生产的全部产品中抽取,而全部产品有多少件题目条件没给出,这时总体N 不明确(若总体N 明确,就属于第(2)问情况),其中所含次品件数M 自然也是不明确的。
因此,类似的,在“用频率估计概率”这一条件,该随机变量的分布为二项分布。
解:(1)x 的可能取值为0,1,2,根据题意X ~H(10、2、3),所以x 分布列为:())2,1,0(,210282=⋅==-k C C C k X P k k,()6.01023=⨯=X E(2)Y 的可能取值为0,1,2,3,根据题意Y ~B(3,0.2),所以Y 分布列为:()())3,2,1,0(,2.012.033=-⋅⋅==-k C k Y P kk k,()6.02.03=⨯=Y E(3)Z 的可能取值为0,1,2,3,根据题意Z ~B(3,0.2),所以Z 分布列为:()())3,2,1,0(,2.012.033=-⋅⋅==-k C k Z P kk k,()6.02.03=⨯=Z E以上分析用一个表归纳如下:从该例以看到,当N 保持不变,若N 越大,每次不放回抽取,抽到次品的概率与NM相差越小,因此,当N 很大时,超几何分布可以近似看成二项分布。
典例6:据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数X 的分布列和数学期望.解:(1)∵抽到持“应该保留”态度的人的概率为0.06,∵,解得x =60,∵持“无所谓”态度的人数为3000−2100−500−120−60=220, ∵应在“无所谓”态度抽取220×3003000=22人.(2)由(1)知持“应该保留”态度的一共有180人,∵在所抽取的6人中,在校学生人数为120180×6=4,社会人士人数为60180×6=2,于是第一组在校学生人数X 的可能取值为1,2,3.P(X =1)=C 41C 22C 63=15,P(X =2)=C 42C 21C 63=35,P(X =3)=C 43C 20C 63=15即X 的分布列为:∵EX =1×15+2×35+3×15=2.典例7(与函数结合):(2018全国1卷理科20)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 解:(1)20件产品中恰有2件不合格品的概率为.因此 .令,得.当时,;当时,.所以的最大值点为. (2)由(1)知,. (i )令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.6.其他离散型随机变量分布列问题(频率估计概率,方案选择,随机变量取值意义,与其他知识结合) 典例8(与函数结合):(2107全国3卷理科18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?解:(1)易知需求量x 可取200,300,500,()21612003035P X +===⨯;()3623003035P X ===⨯;()257425003035P X ++===⨯. 则分布列为:X 200 300 500P1525 25(2)℃当200n ≤时:()642Y n n =-=,此时max 400Y =,当200n =时取到.℃当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=, 此时max 520Y =,当300n =时取到. ℃当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n -= 此时520Y <.℃当500n ≥时,易知Y 一定小于℃的情况. 综上所述当300n =时,Y 取到最大值为520.典例9(与数列结合):(2019全国1卷理科21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解:(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i i i i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.7.连续型随机变量分布问题——正态分布典例10:(2107全国1卷理科19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在()–3,3μσμσ+之外的零件数,求()1P X 及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在()–3,3μσμσ+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (℃)试说明上述监控生产过程方法的合理性;(℃)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ===,其中i x 为抽取的第i 个零件的尺寸,1216i =⋯,,,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈,0.09≈.【解析】(1)由题可知尺寸落在()33μσμσ-+,之内的概率为0.9974,落在()33μσμσ-+,之外的概率为0.0026.()()016160C 10.99740.99740.9592P X ==-≈,()()11010.95920.0408P X P X =-=≈-=,由题可知()~160.0026X B ,,所以()160.00260.0416E X =⨯=. (2)(i )尺寸落在()33μσμσ-+,之外的概率为0.0026,由正态分布知尺寸落在()33μσμσ-+,之外为小概率事件,因此上述监控生产过程的方法合理.(ii )39.9730.2129.334μσ-=-⨯=,39.9730.21210.606μσ+=+⨯=,()()339.33410.606μσμσ-+=,,,因为()9.229.33410.606∉,,所以需对当天的生产过程检查. 因此剔除9.22,剔除数据之后:9.97169.2210.0215μ⨯-==.()()()()()222222[9.9510.0210.1210.029.9610.029.9610.0210.0110.02σ=-+-+-+-+-+()()()()()222229.9210.029.9810.0210.0410.0210.2610.029.9110.02-+-+-+-+-+()()()()()22222110.1310.0210.0210.0210.0410.0210.0510.029.9510.02]0.00815-+-+-+-+-⨯≈所以0.09σ=≈.8.最小二乘法求两个线性变量的回归方程问题典例11:(2016全国3卷理科18)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明.(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:7i 1=∑ y i =9.32,7i 1=∑ t i y i参考公式:相关系数()()nii tt y y --∑回归方程y a b t =+中斜率和截距的最小二乘估计公式分别为:()()ni i i 1n2ii 1tt y y (tt)b ==--=-∑∑,a=y-b t解:(1)由折线图中的数据和附注中参考数据得()()()72i i 177ii i iii 1i 1i 1t 4,t t 0.55.tt y y t yty40.1749.32 2.89,2.89所以r 0.99.0.552 2.646=====-==--=-=-⨯=≈≈⨯⨯∑∑∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由9.32y 7==1.331及(1)得()()()7ii i 172ii 1tt y y 2.8928tt b ==--==-∑∑≈0.103, a=y-b t ≈1.331-0.103×4≈0.92.所以,y 关于t 的回归方程为y =0.92+0.10t.将2016年对应的t=9代入回归方程得:y =0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.9.两个变量通过换元可转化为线性相关问题典例12:(2015全国1卷理科19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x ̅ y ̅ w ̅ 8888表中w i =√x i ,w ̅=18∑i=1w i .(1)根据散点图判断,y=a+bx 与y=c+d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x,y 的关系为z=0.2y -x.根据(2)的结果回答下列问题: ℃年宣传费x=49时,年销售量及年利润的预报值是多少? ℃年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=∑i=1n(u i −u̅)(v i −v ̅)∑i=1n (u i −u̅)2,=v ̅-u ̅.解:(1)由散点图的变化趋势可以判断,y=c+d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w=√x ,先建立y 关于w 的线性回归方程.由于()().ˆ.()iii ii w w y y dw w 8=182=1--1088===6816-∑∑ =y ̅-w ̅=563-68×6.8=100.6,所以y 关于w 的线性回归方程为=100.6+68w,因此y 关于x的回归方程为=100.6+68√x .(3)℃由(2)知,当x=49时,年销售量y 的预报值=100.6+68√49=576.6,年利润z 的预报值=576.6×0.2-49=66.32. ℃根据(2)的结果知,年利润z 的预报值,=0.2(100.6+68√x )-x=-x+13.6√x +20.12.所以当√x =13.62=6.8,即x=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.10.两个分类变量是否有关的独立性检验问题典例13:(2018全国3卷理科18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工 超过 不超过 ()根据()中的列联表,能否有的把握认为两种生产方式的效率有差异?附:,解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.二、知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征 (1)样本本均值:nx x x x n+++=21(2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数 ①众数:最高小矩形中点值; ②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率. 3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A℃B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A℃B)= P(A)+ P(B);若事件A 与B 为对立事件,则A℃B 为必然事件,所以P(A℃B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A .6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示. 7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:℃ p i ≥0, i =1,2, … ; ℃ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差. 14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线; (2)基本性质:℃曲线在x 轴的上方,与x 轴不相交;℃曲线关于直线x=对称,且在x=时位于最高点;℃当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;℃正态曲线下的总面积等于1. 15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。