数学必修五同步练习册答案
高中数学必修5第2章2.5.2同步训练及解析
人教A 高中数学必修5同步训练1.设数列{(-1)n -1·n }的前n 项和为S n ,则S 2011等于( )A .-2011B .-1006C .2011D .1006答案:D2.已知数列{1n (n +1)}的前n 项和为S n ,则S 9等于( ) A.910 B.710C.109D.107答案:A3.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数n 为__________. 答案:1204.求数列112,314,518,…,[(2n -1)+12n ]的前n 项和. 解:S n =112+314+518+…+[(2n -1)+12n ] =(1+3+5+…+2n -1)+(12+14+18+…+12n ) =(1+2n -1)·n 2+12[1-(12)n ]1-12=n 2+1-12n .一、选择题1.在等差数列{a n }中,已知a 1=2,a 9=10,则前9项和S 9=( )A .45B .52C .108D .54答案:D2.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15=( )A .-29B .29C .30D .-30解析:选B.S 15=1-5+9-13+…+57=-4×7+57=29.3.数列9,99,999,9999,…,的前n 项和等于( )A .10n -1 B.10(10n -1)9-n C.109(10n -1) D.109(10n -1)+n 解析:选B.a n =10n -1,∴S n =a 1+a 2+…+a n=(10-1)+(102-1)+…+(10n -1)=(10+102+…+10n )-n =10(10n -1)9-n . 4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33C .31D .29解析:选C.设公比为q (q ≠0),则由a 2·a 3=2a 1知a 1q 3=2,∴a 4=2.又a 4+2a 7=52,∴a 7=14.∴a 1=16,q =12. ∴S 5=a 1(1-q 5)1-q =16[1-(12)5]1-12=31. 5.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析:选A.设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值,故选A. 6.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1}前n 项的和为( )A .4(1-1n +1) B .4(12-1n +1) C .1-1n +1D.12-1n +1 解析:选A.∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1). ∴S n =4(1-1n +1). 二、填空题7.已知a n =n +13n ,则数列{a n }的前n 项和S n =__________. 解析:S n =(1+2+…+n )+(13+132+…+13n ) =12(n 2+n +1-13n ). 答案:12(n 2+n +1-13n ) 8.若数列{a n }的通项公式a n =1n 2+3n +2,则数列的前n 项和S n =__________.解析:a n =1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2, S n =(12-13)+(13-14)+…+(1n +1-1n +2) =12-1n +2=n 2n +4. 答案:n 2n +49.已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1 (n 为正奇数),2n -1 (n 为正偶数),则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答).解析:a 9=29-1=256.S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=1-451-4+4×(3+15)2=377. 答案:256 377三、解答题10.已知数列{a n }的通项a n =2·3n ,求由其奇数项所组成的数列的前n 项和S n .解:由a n =2·3n 得a n +1a n =2·3n +12·3n=3,又a 1=6, ∴{a n }是等比数列,其公比为q =3,首项a 1=6,∴{a n }的奇数项也成等比数列,公比为q 2=9,首项为a 1=6,∴S n =6(1-9n )1-9=34(9n -1). 11.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解:(1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2. (2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 12.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由a n +1=2a n +2n ,两边同除以2n ,得a n +12n =a n 2n -1+1.∴a n +12n -a n 2n -1=1,即b n +1-b n =1, ∴{b n }为等差数列.(2)由第(1)问得,a n 2n -1=120+(n -1)×1=n . ∴a n =n ·2n -1,∴S n =20+2×21+3×22+…+n ×2n -1.①∴2S n =21+2×22+…+(n -1)2n -1+n ·2n .②∴①-②得-S n =20+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )·2n -1. ∴S n =(n -1)·2n +1. 关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
最新人教版高中数学(理)必修5(实验班)全册同步练习及答案优秀名师资料
人教版高中数学(理)必修5(实验班)全册同步练习及答案人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题,,,ABCa,101(在中,,,,则 ( ) B,60C,45c,A( B( 103,10(31),C( D(103 10(31),,ABC2.在中,下列关系式中一定成立的是 ( )abA,sinabA,sinA( B(abA,sinabA,sinC( D(abc,,,,ABC,a,133. 在中,已知,,则 ( ) A,60sinsinsinABC,,8323926323A( B( C( D( 33322,ABC中,已知aBbAtantan,,则此三角形是 ( ) 4. 在A(锐角三角形 B(直角三角形C(钝角三角形 D(直角或等腰三角形,,,,,,,,,,,,,,,,,,AC,1AB,4,ABCABAC 5. 在锐角中,已知,,,则的值为( ) S,3,ABC,2,4,22A( B( C( D(,ABCbCa,4bc,,5AB6. 在中,,,分别为角,,的对边,且,, ac,ABCtantan33tantanBCBC,,, ,则的面积为 ( )333333A( B( C( D( 444二、填空题2π,ABCb,1c,37(在中,若,,C,,则a,________( 38(已知a,b,c分别是?ABC的三个内角A,B,C所对的边(若a,1,b,3,A,C,2B,则sinC,________(三、解答题,ABC9(根据下列条件,解.,b,4c,8 (1)已知,,,解此三角形; B,30,,b,2 (2)已知,,,解此三角形. B,45C,75,B25,ABCbCa,210. 在中,,,分别为内角A,B,的对边,若,,,,Caccos,425,ABCS求的面积.1.1.1正弦定理一、选择题D 3.B 4.D 5.B 6.C 1.B 2.二、填空题7(8. 11三、解答题,cBsin8sin309. 解:(1)由正弦定理得 sin1C,,,b4,,,cb,由知,得 30150,,CC,9022,从而, A,60acb,,,43,,(2)由ABC,+=180 得 A,60,abbAsin2sin60, ??a,,,6 ,sinsinABsinsin45B,bCsin2sin75 c,,,,31同理,sinsin45BB432cos2cos1B,,10. 解:由知 cos21B,,,,255420,,B,sin1cosBB,,, 又,得 5?,,,,,sinsin[()]sin()ABCBC,72 ,,,sincoscossinBCBC10acaCsin10,ABC,c,,在中,由知 sinsinACsin7A111048?,,,,,,SacBsin2. 227571.1.2 余弦定理一、选择题,ABC,ABC1(在中,已知,则的最小角为 ( ) a,8,b,43,c,13,,,,A( B( C( D(12344,ABC2(在中,如果,则角等于 ( ) A(a,b,c)(b,c,a),3bc0000A( B( C( D(3060120150,ABC3(在中,若,则其面积等于 ( ) a,7,b,3,c,82128A(12 B( C( D(63 2,ABCsin2sincosABC,,ABC4(在中,若,并有,那么(a,b,c)(b,c,a),3bc 是 ( )A(直角三角形 B(等边三角形C(等腰三角形 D(等腰直角三角形abc,,,,ABCb,1,5.在中,A,60,,,则 ( ) S,3,ABCsinsinsinABC,,8323926339A( B( C( D( 326336(某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为的四个等腰,三角形及其底边构成的正方形所组成,该八边形的面积为 ( )2sin2cos2,,,,sin3cos3,,,,A( B(2sincos1,,,,3sin3cos1,,,,C( D(二、填空题,ABC7(在中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .,ABCbCAB8. 在中,a,,c分别为角,,的对边,若,(3)coscosbcAaC,,cosA,则 .三、解答题0a、B、CS9(在?ABC中,已知,求及面积. b,5,c,53,A,30310(在?ABC中,a,b,c分别为角A,B,C的对边(已知:b,2,c,4,cosA,. 4(1)求边a的值;(2)求cos(A,B)的值(1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A二、填空题37( 238.3三、解答题9. 解由余弦定理,知220222,5,(53),2,5,53sin30,25a,b,c,2bccosA0a,5a,bB,A,30? 又??00C,180,A,B,120?112530sin5(53)sin30S,bcA,,,,22422210. 解:(1)a,b,c,2bccosA322,2,4,2×2×4×,8~?a,22. 437ab(2)?cosA,~?sinA,~,~ 44sinAsinB22214即,.?sinB,. sinB87452又?b<c~?B为锐角(?cosB,. 8?cos(A,B),cosAcosB,sinAsinB 352714112,×,×,. 4848161.1.3 正、余弦定理的综合应用一、选择题,ABCsin:sin:sin5:7:8ABC,1(在中,若,则的大小是 ( ) ,B,5,,2,A( B( C( D(6363 ,,ABCbCC2(在中,,,分别为角,,的对边,如果,,那么角ca,3ABB,30ac等于 ( ),,,,A( B( C( D(12010590751,ABC3(的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为( ) 3 929292A( B( C( D( 9224813,ABCa,7,b,8,cosC,4(在中,若,则最大角的余弦是 ( ) 141111A(, B(, C(, D(, 5867,ABC,ABC,A5( 在中,满足条件,3sinA,cosA,1,AB,2cm,BC,23cm的面积等于( )33323A( B( C( D( 2Acb,2,ABCbC,ABCsin,AB6(在中, (,,分别为角,,的对边),则的形状ac22c 为 ( ) A(正三角形 B(直角三角形C(等腰直角三角形 D(等腰三角形二、填空题02,ABC3x,27x,32,0A,607(已知在中,,最大边和最小边的长是方程的BC两实根,那么边长等于________.222,ABCbCAB8(已知锐角的三边a,,c分别为角,,的对边,且()tanbcaA,,,3bc,则角A的大小_________.三、解答题,ABCbCABac9((2)coscosacBbC,,在中,,,分别为角,,的对边,且满足.B(1)求角的大小;ac,,4,ABC(2)若,,求的面积( b,71,ABCbC10(在中,,,分别为角A,B,的对边,已知. cos2C,,ac4sinC(1)求的值;a,22sinsinAC,b(2)当,时,求及的长( c1.1.3正、余弦定理的综合应用一、选择题A 3.C 4.C 5.C 6.B 1.C 2.二、填空题,7( 78.60三、解答题9. 解:(1)由正弦定理得a,2RsinA~b,2RsinB~c,2RsinC~代入(2a,c)cosB,bcosC~整理,得2sinAcosB,sinBcosC,sinCcosB~即2sinAcosB,sin(B,C),sinA. 又sinA>0~?2cosB,1~π由B?(0~π)~得B,. 3(2)由余弦定理得222b,a,c,2ac?cosB2,(a,c),2ac,2accosB.π将b,7~a,c,4~B,代入整理~得ac,3. 31333??ABC的面积为S,acsinB,sin60?,. 2241210. 解:(1)因为cos2C,1,2sinC,,~ 410所以sinC,?~ 410又0<C<π~所以sinC,. 4ac(2)当a,2,2sinA,sinC时,由正弦定理,~得c,4. sinAsinC162由cos2C,2cosC,1,,~且0<C<π得cosC,?. 442222由余弦定理c,a,b,2abcosC~得b?6b,12,0~解得b,6或26~,,b,6~b,26~所以,或, ,c,4~,c,4.1.2应用举例(二)一、选择题,,1. 在某测量中,设在的南偏东,则在的 ( ) ABBA3427,,,,,,A.北偏西 B. 北偏东 C. 北偏西 D. 南偏西342755335533,, 55332(台风中心从地以20 km/h的速度向东北方向移动,离台风中心30 km内的A 地区为危险区,城市在的正东40 km处,城市处于危险区内的时间为( ) BABA.0.5 hB.1 hC.1.5 hD.2 hCDCa,C3(已知、、三点在地面同一直线上,,从、两点测得的点DBDA仰角分别为、,则A点离地面的高AB等于 ,,,,(),( ),,,,,,,,acoscosacoscosasinsinasinsinA( B( C( D( sin(,,,)cos(,,,)sin( ,,,)cos(,,,)4.有一长为1公里的斜坡,它的倾斜角为20?,现要将倾斜角改为10?,则坡底要伸长( )A(1公里 B(sin10?公里 C(cos10?公里 D(cos20?公里,BAEABE5. 如右图,在某点处测得建筑物的顶端的仰角为,沿方向前进30 CAD米至处测得顶端的仰角为2θ,再继续前进103米至处,测得顶端A的仰角为4θ,则θ的值为 ( )A(15? B(10?C(5? D(20?6(一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60?,另一灯塔在船的南偏西75?西,则这只船的速度是每小时( )33A.5海里 B.5海里 C.10海里 D.10海里? 二、填空题,,12nmile AB5010(我舰在敌岛7南偏西相距的处,发现敌舰正由岛沿北偏西的10nmile h2方向以/的速度航行,我舰要用小时追上敌舰,则需要速度的大小为 .北 20m8(在一座高的观测台顶测得地面一水塔塔顶仰角为,,6045,塔底俯角为,那么这座塔的高为___ ____. A45? 三、解答题B15?C,9nmile 9(如图,甲船在处,乙船在处的南偏东方向,距A有并以AA45,20nmile h28nmile h/的速度沿南偏西方向航行,若甲船以/的速度航行用多15少小时能尽快追上乙船,10.在海岸AA处发现北偏东45?方向,距处(3,BA1)海里的处有一艘走私船,在处北偏西75?方向,CA距处2海里的处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海B里/小时的速度,从处向北偏东30?方向逃窜(问:缉私船应沿什么方向行驶才能最快截获走私船,并求出所需时间(1.2应用举例(二) 一、选择题1.A2.B3.A4.A5.A6.C二、填空题7(14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h,甲船能追上乙船,且在C处相遇。
高中数学必修5同步练习与单元测试课后作业附答案(36份)
(2)灯塔C与D处的距离.
解(1)在△ABD中,∠ADB=60°,∠B=45°,由正弦定理得AD= = =24(nmile).
(2)在△ADC中,由余弦定理得
CD2=AD2+AC2-2AD·AC·cos30°,
解得CD=8 ≈14(nmile).
即A处与D处的距离为24nmile,
则a+b=9,a2+b2-2abcosα=17,
a2+b2-2abcos(180°-α)=65.
解得:a=5,b=4,cosα= 或a=4,b=5,cosα= ,
∴S▱ABCD=absinα=16.
二、填空题
7.甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶,若甲船是乙船速度的 倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.
10.某舰艇在A处测得遇险渔船在北偏东45°,距离为10nmile的C处,此时得知,该渔船沿北偏东105°方向,以每小时9nmile的速度向一小岛靠近,舰艇时速21nmile,则舰艇到达渔船的最短时间是______小时.
答案
解析设舰艇和渔船在B处相遇,则在△ABC中,由已知可得:∠ACB=120°,设舰艇到达渔船的最短时间为t,则AB=21t,BC=9t,AC=10,则(21t)2=(9t)2+100-2×10×9tcos120°,
B1B =A1B +A1B -2A1B1·A1B2·cos 45°
=202+(10 )2-2×20×10 ×
=200.
∴B1B2=10 .
因此,乙船速度的大小为
×60=30 (海里/小时).
答乙船每小时航行30 海里.
1.解三角形应用问题的基本思路是:
人教版高二数学必修5等比数列同步训练(带答案)-文档资料
人教版高二数学必修5等比数列同步训练(带答案)为了帮助大家进行课后复习,查字典数学网整理了数学必修5等比数列同步训练,希望大家好好练习。
一、选择题1.数列{an}为等比数列的充要条件是()A.an+1=anq(q为常数)B.a2n+1=anan+20C.an=a1qn-1(q为常数)D.an+1=anan+2解析:各项都为0的常数数列不是等比数列,A、C、D选项都有可能是0的常数列,故选B.答案:B2.已知等比数列{an}的公比q=-13,则a1+a3+a5+a7a2+a4+a6+a8等于()A.-13B.-3C.13D.3解析:a1+a3+a5+a7a2+a4+a6+a8=a1+a3+a5+a7a1+a3+a5+a71q=1q= -3,故选B.答案:B3.若a,b,c成等比数列,其中0A.等比数列B.等差数列C.每项的倒数成等差数列D.第二项与第三项分别是第一项与第二项的n次幂解析:∵a,b,c成等比数列,且0答案:C4.(2019江西文)等比数列{an}中,|a1|=1,a5=-8a2,a5a2,则an=()A.(-2)n-1B.-(-2)n-1C.(-2)nD.-(-2)n分析:本题主要考查等比数列的基本知识.解析:a5=-8a2a2q3=-8a2,q3=-8,q=-2.又a5a2,即a2a2,q3=-8.可得a20,a10.a1=1,q=-2,an=(-2)n-1.故选A.答案:A5.在等比数列{an}中,已知a6a7=6,a3+a10=5,则a28a21=()A.23B.32C.23或32D.732解析:由已知及等比数列性质知a3+a10=5,a3a10=a6a7=6.解得a3=2,a10=3或a3=3,a10=2.q7=a10a3=23或32,a28a21=q7=23或32.故选C.答案:C6.在等比数列{an}中,a5a11=3,a3+a13=4,则a15a5=()A.3B.13C.3或13D.-3或-13解析:在等比数列{an}中,∵a5a11=a3a13=3,a3+a13=4,a3=1,a13=3或a3=3,a13=1,a15a5=a13a3=3或13.故选C. 答案:C7.(2019重庆卷)在等比数列{an}中,a2019=8a2019,则公比q的值为()A.2B.3C.4D.8分析:本题主要考查等比数列的通项公式.解析:由a2019=8a2019,可得a2019q3=8a2019,q3=8,q=2,故选A.答案:A8.数列{an}中, a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,那么a1,a3,a5() A.成等比数列 B.成等差数列C.每项的倒数成等差数列D.每项的倒数成等比数列解析:由题意可得2a2=a1+a3,a23=a2a4,2a4=1a3+1a5a2=a1+a32,①a4=a23a2,②2a4=1a3+1a5.③将①代入②得a4=2a23a1+a3,再代入③得a1+a3a23=a5+a3a3a5,则a5a1+a3a5=a3a5+a23,即a23=a1a5,a1,a3,a5成等比数列,故选A.答案:A9.x是a、b的等差中项,x2是a2,-b2的等差中项,则a与b的关系是()A.a=b=0B.a=-bC.a=3bD.a=-b或a=3b解析:由已知得2x=a+b2x2=a2-b2 ①②故①2-②2得a2-2ab-3b2=0,a=-b或a=3b.答案:D10.(2009广东卷)已知等比数列{an}满足an0,n=1,2,,且a5a2n-5=22n(n3),则当n1时,log2a1+log2a3++log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2解析:设等比数列{an}的首项为a1,公比为q,∵a5a2n-5=22n(n3),a1q4a1q2n-6=22n,即a21q2n-2=22n(a1qn-1)2=22n(an)2=(2n)2,∵an0,an=2n,a2n-1=22n-1,log2a1+log2a3++log2a2n-1=log22+log223++log222n-1=1+ 3++(2n-1)=1+2n-12n=n2,故选C.答案:C二、填空题11.已知等比数列{an}中,a3=6,a10=768,则该数列的通项an=________.解析:由已知得q7=a10a3=128=27,故q=2.an=a3qn-3=32n-2. 答案:32n-212.在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n的数的积为________.解析:利用性质aman=apaq(其中m+n=p+q).设插入的n个数为a1,a2,,an,G=a1a2an,则G2=(a1an)(a2an-1)(a3an-2)(ana1)=(1100)n,G=10n,故填10n.答案:10n13.已知-9,a1,a2,-1四个实数成等差数列,-9,b1,b2,b3,-1五个实数成等比数列,则b2(a2-a1)=________.解析:∵-9,a1,a2,-1成等差数列,a2-a1=-1--94-1=83=d.又∵-9,b1,b2,b3,-1成等比数列,则b22=-9(-1)=9,b2=3.当b2=3时,由于-9与3异号,此时b1不存在,b2=-3,b2(a2-a1)=-8.答案:-814.若a,b,a+b成等差数列,a,b,ab成等比数列,且0 解析:a,b,a+b成等差数列有b=2a,a,b,ab成等比数列有b=a2,则有a=2,所以ab=8,0答案:{n|n8}三、解答题15.(2019全国卷Ⅰ文)记等差数列{an}的前n项和为Sn.设S3=12,且2a1,a2,a3+1成等比数列,求Sn.解析:设数列{an}的公差为d.依题设有2a1a3+1=a22,a1+a2+a3=12,a21+2a1d-d2+2a1=0,a1+d=4. 解得a1=1,d=3,或a1=8,d=-4.因此Sn=12n(3n-1),或Sn=2n(5-n).16.已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d1,且a1=b1,a4=b4,a10=b10.(1)求a1及d的值;(2)b16是不是{an}中的项?解析:(1)由a1=b1,a4=b4,a10=b10a1+3d=a1d3,a1+9d=a1d9. a11-d3=-3d,a11-d9=-9dd6+d3-2=0d1=1(舍去),d2=3-2=-32.所以d=-32,a1=-d=32,b1=32.(2)因为b16=b1d15=-32a1,如果b16是{an}中的项,则有-32a1=a1+(k-1)d.所以(k-1)d=-33a1=33d.所以k=34,即b16是{an}中的第34项.17.已知四个数成等比数列,其积为1,第二项与第三项之和为-32,求这四个数.解析:设这四个数分别为a,aq,aq2,aq3.则a4q6=1,①aq1+q=-32 ②由①得a2q3=1,即a2q2=由②得a2q2(1+q)2=94,③把a2q2=1q代入③得q2-14q+1=0,此方程无解.把a2q2=-1q代入③得q2+174q+1=0,解得q=-4或q=-14.当q=-4时,a=-18或a=18(舍);当q=-14时,a=8或a=-8(舍).这四个数分别是8,-2,12,-18或-18,12,-2,8.18.在各项均为负数的数列{an}中,已知2an=3an+1,且a2a5=827.(1)求证:{an}是等比数列,并求出通项公式.(2)试问-1681是否为该数列的项?若是,是第几项;若不是,请说明理由.解析:(1)∵2an=3an+1,an+1an=23,故数列{an}是公比q=23的等比数列.又a2a5=827,则a1qa1q4=827,即a21(23)5=(23)3,由于数列各项均为负数,则a1=-32,an=-32(23)n-1=-(23)n-2.(2)设an=-1681,由等比数列的通项公式得-1681=-(23)n-2,即(23)4=(23)n-2.根据指数的性质有4=n-2,n=6.因此-1681是这个数列的第6项.以上是数学必修5等比数列同步训练及答案的所有内容,请同学们好好利用,提高自己。
高中数学必修5第1章1.2.1同步训练及解析
人教A 高中数学必修5同步训练1.某次测量中,若A 在B 的南偏东40°,则B 在A 的( )A .北偏西40°B .北偏东50°C .北偏西50°D .南偏西50°答案:A2.已知A 、B 两地间的距离为10 km ,B 、C 两地间的距离为20 km ,现测得∠ABC =120°,则A 、C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D.由余弦定理可知:AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC .又∵AB =10,BC =20,∠ABC =120°,∴AC 2=102+202-2×10×20×cos 120°=700.∴AC =107.3.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3) m.答案:20(1+3)4.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =AC sin ∠ABC, 且∠BAC =30°,AC =60,∠ABC =180°-30°-105°=45°.∴BC =30 2.即船与灯塔间的距离为30 2 km.一、选择题1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A .10°B .50°C .120°D .130°解析:选D.如图,∠BAC 等于A 观察B 点的仰角与观察C 点的俯角和,即60°+70°=130°.2.一艘船以4 km/h 的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h ,则经过 3 h ,该船的实际航程为( )A .215 kmB .6 kmC .221 kmD .8 km解析:选B.v 实=22+42-2×4×2×cos 60°=2 3.∴实际航程=23×3=6(km).故选B.3. 如图所示,D ,C ,B 在同一地平面的同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高度AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m解析:选D.在△ADC 中,AD =10·sin 135°sin 15°=10(3+1)(m). 在Rt △ABD 中,AB =AD ·sin 30°=5(3+1)(m).4.我舰在敌岛A 处南偏西50°的B 处,且AB 距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .14 2 海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784,∴BC =28海里,∴v =14海里/小时.5.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B.设t 小时后,B 市处于危险区内,则由余弦定理得:(20t)2+402-2×20t×40cos 45°≤302.化简得:4t2-82t+7≤0,∴t1+t2=22,t1·t2=74.从而|t1-t2|=(t1+t2)2-4t1t2=1.6.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是() A.1002米B.400米C.2003米D.500米解析:选D.由题意画出示意图,设高AB=h,在Rt△ABC中,由已知BC=h,在Rt△ABD中,由已知BD=3h,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD·cos∠BCD,得3h2=h2+5002+h·500,解之得h=500(米),故选D.二、填空题7.一树干被台风吹断,折断部分与残存树干成30°角,树干底部与树尖着地处相距5米,则树干原来的高度为________米.答案:10+5 38.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的__________.解析:由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC,∴∠CAB=∠CBA=50°,从而所求为北偏西10°.答案:北偏西10°9.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A、B、C处,20分钟后,海盗船到达D处,在△ADC中,AC=107,AD=20,CD=30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12. ∴∠ACD =60°,在△ABD 中由已知得∠ABD =30°.∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:403三、解答题10.如图,A 、B 两点都在河的对岸(不可到达),在河岸边选定两点C 、D ,测得CD =1000米,∠ACB =30°,∠BCD =30°,∠BDA =30°,∠ADC =60°,求AB 的长.解:由题意知△ACD 为正三角形,所以AC =CD =1000米.在△BCD 中,∠BDC =90°,所以BC =CD cos ∠BCD=1000cos 30°=200033米. 在△ACB 中,AB 2=AC 2+BC 2-2AC ·BC ·cos 30°=10002+200023-2×1000×200033×32=10002×13,所以AB =100033米. 11.如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB=20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P 的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h ,由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OP tan 30°=3h . 在Rt △BOP 中,OB =OP tan 45°=h . 在△AOB 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h2=4004-3≈176.4.∴h≈13(m).∴旗杆的高度约为13 m.12.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A处获悉后,即测出该商船在方位角为45°距离10海里的C 处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.求“黄山”舰靠近商船所需要的最少时间及所经过的路程.解:如图所示,若“黄山”舰以最少时间在B处追上商船,则A,B,C构成一个三角形.设所需时间为t小时,则AB=21t,BC=9t.又已知AC=10,依题意知,∠ACB=120°,根据余弦定理,AB2=AC2+BC2-2·AC·BC cos∠ACB.∴(21t)2=102+(9t)2-2×10×9t cos 120°,∴(21t)2=100+81t2+90t,即360t2-90t-100=0.∴t=23或t=-512(舍).∴AB=21×23=14(海里).即“黄山”舰需要用23小时靠近商船,共航行14海里.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
高中数学必修5第3章3.2.1同步训练及解析
人教A 高中数学必修5同步训练1.若16-x 2≥0,则( )A .0≤x ≤4B .-4≤x ≤0C .-4≤x ≤4D .x ≤-4或x ≥4答案:C2.不等式(x -2)(2x +1)>0的解集是( )A .(-12,2)B .(-2,12) C .(-∞,-2)∪(12,+∞) D .(-∞,-12)∪(2,+∞) 答案:D3.二次函数y =x 2-4x +3在y <0时x 的取值范围是__________.答案:{x |1<x <3}4.解不等式0≤x 2-x -2≤4.解:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2≥0,x 2-x -2≤4, 解x 2-x -2≥0,得x ≤-1或x ≥2;解x 2-x -2≤4,得-2≤x ≤3.所以原不等式的解集为{x |x ≤-1或x ≥2}∩{x |-2≤x ≤3}={x |-2≤x ≤-1或2≤x ≤3}.一、选择题1.下面所给关于x 的几个不等式:①3x +4<0;②x 2+mx -1>0;③ax 2+4x -7>0;④x 2<0.其中一定为一元二次不等式的有( )A .1个B .2个C .3个D .4个答案:B2.不等式x (2-x )>3的解集是( )A .{x |-1<x <3}B .{x |-3<x <1}C .{x |x <-3或x >1}D .∅解析:选D.将不等式化为标准形式x 2-2x +3<0,由于对应方程的判别式Δ<0,所以不等式x (2-x )>3的解集为∅.3.若集合A ={x |(2x +1)(x -3)<0},B ={x |x ∈N *,x ≤5},则A ∩B 是( )A .{1,2,3}B .{1,2}C .{4,5}D .{1,2,3,4,5}解析:选B.A ={x |-12<x <3},B ={1,2,3,4,5}, ∴A ∩B ={1,2},故选B.4.不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集是( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C.原不等式组等价于: ⎩⎨⎧ x 2<1x (x -3)<0⇔⎩⎨⎧-1<x <10<x <3⇒0<x <1. 5.二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( )A .{x |x >3或x <-2}B .{x |x >2或x <-3}C .{x |-2<x <3}D .{x |-3< x <2}解析:选C.二次函数的图象开口向下,故不等式ax 2+bx +c >0的解集为{x |-2<x <3}. 6.若0<t <1,则不等式(x -t )(x -1t )<0的解集为( )A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t }解析:选D.∵0<t <1,∴1t >1,∴t <1t∴(x -t )(x -1t )<0⇔t <x <1t .二、填空题7.函数y =x 2-2x -8的定义域为__________.解析:由题意知x 2-2x -8≥0,∴x ≥4或x ≤-2,∴定义域为{x |x ≥4或x ≤-2}.答案:{x |x ≥4或x ≤-2}8.当a <0时,关于x 的不等式(x -5a )(x +a )>0的解集是________.解析:∵a <0,∴5a <-a ,由(x -5a )(x +a )>0得x <5a 或x >-a .答案:{x |x <5a 或x >-a }9.已知x =1是不等式k 2x 2-6kx +8≥0(k ≠0)的解,则k 的取值范围是________. 解析:由题意,k 2-6k +8≥0,解得k ≥4或k ≤2.又k ≠0,∴k 的取值范围是k ≥4或k ≤2且k ≠0.答案:(-∞,0)∪(0,2]∪[4,+∞)三、解答题10. 求下列关于x 的不等式的解集:(1)-x 2+7x >6;(2)x 2-(2m +1)x +m 2+m <0.解:(1)∵-x 2+7x >6,∴-x 2+7x -6>0,∴x 2-7x +6<0,∴(x -1)(x -6)<0.∴1<x <6,即不等式的解集是{x |1<x <6}.(2)x 2-(2m +1)x +m 2+m <0,因式分解得(x -m )[x -(m +1)]<0.∵m <m +1,∴m <x <m +1.即不等式的解集为{x |m <x <m +1}.11.已知方程ax 2+bx +2=0的两根为-12和2. (1)求a 、b 的值;(2)解不等式ax 2+bx -1>0.解:(1)∵方程ax 2+bx +2=0的两根为-12和2, 由根与系数的关系,得⎩⎨⎧-12+2=-b a -12×2=2a , 解得a =-2,b =3.(2)由(1)知,ax 2+bx -1>0变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1. ∴不等式ax 2+bx -1>0的解集为{x |12<x <1}. 12.求不等式ax +1<a 2+x (a ∈R )的解集.解:将原不等式化为(a -1)x <a 2-1.①当a -1>0,即a >1时,x <a +1.②当a -1<0,即a <1时,x >a +1.③当a -1=0,即a =1时,不等式无解.综上所述,当a >1时,不等式的解集为{x |x <a +1};当a <1时,不等式的解集为{x |x >a +1};当a =1时,不等式的解集为∅.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
数学必修五同步练习册答案
槡 (34") %*#34")34"* -"#$)"#$* #*)). 槡 槡槡 槡 +!&!&- )). !!&&# **!
*&&# ")% "*#( ")% "*# (
槡 ("'#+(("#$'# **! 由 得槡 槡 槡即 "#"$)#"#$$*#"#+$' )"# !&$# *+ " 槡 槡 # *$+# )$! 又 槡 即槡 槡 &"-$# *,! *$-$# *,!($#!" 槡 槡 # *+# )!
&
")#!&)'&"#$!"&)'#"#$+*&'("
& & & &
)!+
*+!!
" "#$)
#"#$$*
! "#$%
#
槡 槡 槡又 或 # +-!
& & &
"#$+*("#$*# *+! &$$"(*#+ *+!
当 时 槡 解 为锐角 槡 "'#!+)'
")#!)'&"#$"!)'#"#$+*&'("#
人教版高中数学(理)必修5(实验班)全册同步练习及答案
人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题1.在ABC ∆中,10a =,60B =,45C =,则c = ( )A .10B .1)C .1)D .2.在ABC ∆中,下列关系式中一定成立的是 ( ) A .sin a b A > B .sin a b A = C .sin a b A <D .sin a b A ≥3. 在ABC ∆中,已知60A =,a =sin sin sin a b cA B C++=++ ( )A B D .4. 在ABC ∆中,已知22tan tan a B b A =,则此三角形是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .直角或等腰三角形5. 在锐角ABC ∆中,已知4AB = ,1AC = ,ABC S ∆=,则AB AC的值为( )A .2-B .2C .4±D .2±6. 在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且4a =,5b c +=,tan tan tan B C B C += ,则ABC ∆的面积为 ( )A ..34二、填空题7.在ABC ∆中,若1b =,c =C =2π3,则a =________.8.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.三、解答题9.根据下列条件,解ABC ∆.(1)已知4b =,8c =,30B =,解此三角形; (2)已知45B =,75C =,2b =,解此三角形.10. 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,若2a =,4C π=,cos25B =, 求ABC ∆的面积S .1.1.1正弦定理一、选择题1.B2.D3.B4.D5.B6.C 二、填空题 7.1 8. 1三、解答题9. 解:(1)由正弦定理得sin 8sin30sin 14c B C b ===由c b >知30150C << ,得90C =从而60A = ,a ==(2)由180+=A B C + 得60A =∵sin sin a b A B = ∴sin 2sin 60sin sin 45b A a B ===同理sin 2sin 751sin sin 45b C c B ===10. 解:由2cos 2cos12B B =-知43cos 2155B =⨯-=又0B π<<,得4sin 5B ==sin sin[()]sin()A B C B C π∴=-+=+sin cos cos sin 10B C B C =+= 在ABC ∆中,由sin sin a c A C =知sin 10sin 7a C c A == 111048sin 222757S ac B ∴==⨯⨯⨯=.1.1.2 余弦定理一、选择题1.在ABC ∆中,已知13,34,8===c b a ,则ABC ∆的最小角为 ( ) A .3π B .4π C .4π D .12π 2.在ABC ∆中,如果bc a c b c b a 3))((=-+++,则角A 等于 ( )A .030B .060C .0120D .01503.在ABC ∆中,若8,3,7===c b a ,则其面积等于 ( ) A .12 B .221C .28D .36 4.在ABC ∆中,若bc a c b c b a 3))((=-+++,并有sin 2sin cos A B C =,那么ABC ∆是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形5.在ABC ∆中,60A = ,1b =,ABC S ∆,则sin sin sin a b cA B C++=++ ( )A B D 6.某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为α的四个等腰三角形及其底边构成的正方形所组成,该八边形的面积为 ( )A .2sin 2cos 2αα-+B .sin 3αα+C .3sin 1αα+D .2sin cos 1αα-+ 二、填空题7.在ABC ∆中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .8. 在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若)cos cos c A a C -=,则cos A = .三、解答题9.在△ABC 中,已知030,35,5===A c b ,求C B a 、、及面积S .10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知:b =2,c =4,cos A =34.(1)求边a 的值;(2)求cos(A -B )的值.1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A 二、填空题 7.8.三、解答题9. 解 由余弦定理,知A bc c b a cos 2222-+=2530sin 3552)35(5022=⨯⨯-+= ∴5=a 又∵b a =∴030==A B ∴00120180=--=B A C432530sin )35(521sin 210=⨯⨯==A bc S10. 解:(1)a 2=b 2+c 2-2bc cos A=22+42-2×2×4×34=8,∴a =2 2.(2)∵cos A =34,∴sin A =74,a sin A =bsin B , 即2274=2sin B .∴sin B =148.又∵b <c ,∴B 为锐角.∴cos B =528. ∴cos(A -B )=cos A cos B +sin A sin B =34×528+74×148=11216.1.1.3 正、余弦定理的综合应用一、选择题1.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是 ( )A .6π B .56π C .3πD .23π2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,如果c =,30B =,那么角C等于 ( ) A .120B .105C .90D .753.ABC ∆的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D . 4.在ABC ∆中,若1413cos ,8,7===C b a ,则最大角的余弦是 ( ) A .51- B .61- C .71- D .81-5. 在ABC ∆中,A ∠满足条件cm BC cm AB A A 32,2,1cos sin 3===+,ABC ∆的面积等于 ( )A .3B .CD 6.在ABC ∆中,2sin22A c b c-= (a ,b ,c 分别为角A ,B ,C 的对边),则ABC ∆的形状为 ( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 二、填空题7.已知在ABC ∆中,060A =,最大边和最小边的长是方程0322732=+-x x 的两实根,那么BC 边长等于________.8.已知锐角ABC ∆的三边a ,b ,c 分别为角A ,B ,C 的对边,且222()tan b c a A +-,则角A 的大小_________.三、解答题9.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且满足(2)cos cos a c B b C -=.(1)求角B 的大小;(2)若b =4a c +=,求ABC ∆的面积.10.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知1cos 24C =-. (1)求sin C 的值;(2)当2a =,2sin sin A C =时,求b 及c 的长.1.1.3正、余弦定理的综合应用一、选择题1.C2.A3.C4.C5.C6.B 二、填空题 7.78.60三、解答题9. 解:(1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入(2a -c )cos B =b cos C ,整理,得2sin A cos B =sin B cos C +sin C cos B , 即2sin A cos B =sin(B +C )=sin A . 又sin A >0,∴2cos B =1,由B ∈(0,π),得B =π3. (2)由余弦定理得 b 2=a 2+c 2-2ac ·cos B =(a +c )2-2ac -2ac cos B .将b =7,a +c =4,B =π3代入整理,得ac =3.∴△ABC 的面积为S =12ac sin B =32sin60°=334.10. 解:(1)因为cos2C =1-2sin 2C =-14,所以sin C =±104, 又0<C <π,所以sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14,且0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0, 解得b =6或26,所以⎩⎨⎧ b =6,c =4,或⎩⎨⎧b =26,c =4.1.2应用举例(二)一、选择题1. 在某测量中,设A 在B 的南偏东3427' ,则B 在A 的 ( ) A.北偏西3427'B. 北偏东5533'C. 北偏西5533'D. 南偏西5533'2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为( )A.0.5 hB.1 hC.1.5 hD.2 h3.已知D 、C 、B 三点在地面同一直线上,DC a =,从C 、D 两点测得A 的点仰角分别为α、()βαβ>,则A 点离地面的高AB 等于 ( ) A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D . )cos(cos cos βαβα-a4.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 ( )A .1公里B .sin10°公里C .cos10°公里D .cos20°公里5. 如右图,在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30米至C 处测得顶端A 的仰角为2θ,再继续前进103米至D 处,测得顶端A 的仰角为4θ,则θ的值为 ( )A .15°B .10°C .5°D .20°6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°西,则这只船的速度是每小时( )A.5海里B.53海里C.10海里D.103海里° 二、填空题7.我舰在敌岛A 南偏西50 相距12n mile 的B 处,发现敌舰正由岛沿北偏西10 的方向以10n mile /h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 .8.在一座20m 高的观测台顶测得地面一水塔塔顶仰角为60 ,塔底俯角为45 ,那么这座塔的高为___ ____.三、解答题°9.如图,甲船在A处,乙船在A处的南偏东45 方向,距A有9n mile并以/h的速度航行用多20n mile/h的速度沿南偏西15 方向航行,若甲船以28n mile少小时能尽快追上乙船?10.在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B处向北偏东30°方向逃窜.问:缉私船应沿什么方向行驶才能最快截获走私船?并求出所需时间.1.2应用举例(二)一、选择题1.A2.B3.A4.A5.A6.C 二、填空题 7.14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h ,甲船能追上乙船,且在C 处相遇。
人教B版高中数学必修5同步练习题及答案全册汇编最新
人B版高中数学必修5同步习题目录第1章1.1.1第一课时同步练习第1章1.1.1第二课时同步练习第1章1.1.2第一课时同步练习第1章1.1.2第二课时同步练习第1章1.2同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1第一课时同步练习第2章2.2.1第二课时同步练习第2章2.2.2第一课时同步练习第2章2.2.2第二课时同步练习第2章2.3.1第一课时同步练习第2章2.3.1第二课时同步练习第2章2.3.2第一课时同步练习第2章2.3.2第二课时同步练习第2章章末综合检测第3章3.1.1同步练习第3章3.1.2第一课时同步练习第3章3.1.2第二课时同步练习第3章3.2第一课时同步练习第3章3.2第二课时同步练习第3章3.3第一课时同步练习第3章3.3第二课时同步练习第3章3.4同步练习第3章3.5.1同步练习第3章3.5.2第一课时同步练习第3章3.5.2第二课时同步练习第3章章末综合检测人教B 版必修5同步练习1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.2.在△ABC 中,A =60°,a =13,则a +b +csin A +sin B +sin C等于( )A.8381B.2393C.393D .27 解析:选B.由比例的运算性质知a +b +c sin A +sin B +sin C =a sin A =b sin B =c sin C ,故a sin A =1332=2393. 3.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.4.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形5.在△ABC 中,已知b =16,A =30°,B =120°,求边a 及S △ABC .解:由正弦定理,得a =b sin A sin B =16×sin30°sin120°=1633.又C =180°-(A +B )=180°-(30°+120°)=30°,∴S △ABC =12ab sin C =12×1633×16×12=6433.1.在△ABC 中,若AB =3,∠ABC =75°,∠ACB =60°,则BC 等于( ) A.3 B .2 C. 5 D. 6解析:选D.∠BAC =180°-75°-60°=45°,由正弦定理得BC sin ∠BAC =ABsin ∠ACB,∴BC =AB sin ∠BAC sin ∠ACB=3×sin 45°sin 60°= 6.2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.3.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.4.三角形的两边长为3 cm 、5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是( )A .6 cm 2B .152cm 2C .8 cm 2D .10 cm 2 解析:选A.设其夹角为θ,由方程得cos θ=-35,∴sin θ=45,∴S =12×3×5×45=6(cm 2).5.在△ABC 中,sin A ∶sin B ∶sin C =m ∶(m +1)∶2m ,则m 的取值范围是( ) A .m >2 B .m <0C .m >-12D .m >12解析:选D.由已知和正弦定理可得:a ∶b ∶c =m ∶(m +1)∶2m .令a =mk ,b =(m +1)k ,c =2mk (k >0),则a ,b ,c 满足三角形的三边关系,即⎩⎪⎨⎪⎧a +b >c ,a +c >b ,b +c >a .得m >12.6.△ABC 中,若sin A a =cos B b =cos Cc,则△ABC 中最长的边是( )A .aB .bC .cD .b 或c解析:选A.cos B b =cos Cc,∴tan B =tan C ,∴B =C , sin A a =cos B b =cos B a sin B sin A=sin A ·cos Ba sin B,∴tan B =1,∴B =4=π4,A =π2,故a 最长.7.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 68.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R (sin A -2sin B +sin C )sin A -2sin B +sin C =2R =2. 答案:29.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 310.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.11.已知△ABC 中,A 、B 、C 分别是三个内角,a 、b 、c 分别是A 、B 、C 的对边,△ABC 的外接圆半径为12,且C =π3,求△ABC 面积S 的最大值.解:S △ABC =12ab sin C =12·2R sin A ·2R sin B ·sin C =3R 2sin A sin B =32R 2[cos(A -B )-cos(A +B )]=32R 2[cos(A -B )+12]. 当cos(A -B )=1,即A =B 时,(S △ABC )max =334R 2=334×144=108 3.12.在平面四边形OAPB 中,∠AOB =120°,OA ⊥AP ,OB ⊥BP ,且AB =23,求OP 的长.解:如图,在平面四边形OAPB 中,∵OA ⊥AP ,OB ⊥BP ,∴O 、A 、B 、P 四点共圆.∴OP 的长就是四边形OAPB 外接圆的直径.∵a sin A =b sin B =c sin C=2R , 在△AOB 中,∠AOB =120°,AB =23,∴2R =AB sin ∠AOB =23sin 120°=4,∴△AOB 外接圆的直径为4, 即OP 的长为4.人教B 版必修5同步练习1.(2011年开封高二检测)在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,∠B =45°,c =22,b =433,则∠A 的大小为( )A .15°B .75°C .105°D .75°或15°解析:选D.∵∠B 为锐角,又c sin B <b <c ,∴三角形有两解.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A=________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π65.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.1.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a sin B =b sin A C .a cos A =b cos B D .a cos B =b cos A解析:选B.由正弦定理得:a sin A =b sin B,故a sin B =b sin A . 2.(2009年高考广东卷)已知△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c .若a =c =6+2,且∠A =75°,则b =( )A .2 B.6- 2 C .4-2 3 D .4+2 3解析:选A.sin A =sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12,由正弦定理得b =asin A ·sin B =2+62+64×12=2,故选A. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.4.(2011年青岛高二检测)在△ABC 中,∠A =π3,BC =3,则△ABC 的两边AC +AB的取值范围是( )A .[33,6]B .(2,43)C .(33,43]D .(3,6]解析:选D.在△ABC 中,AC =BC ·sin B sin A =3·sin Bsin π3=23sin B ,AB =23sin C ,∴AC +AB =23sin B +23sin C =23(sin B +sin C )=23[sin B +sin(2π3-B )]=23(sin B +sin 2π3cos B -cos 2π3sin B )=23(32sin B +32cos B )=23×3(32sin B +12cos B )=6sin(B +π6),∵0<B <2π3,∴π6<B +π6<5π6,∴sin(B +π6)∈(12,1],∴AC +AB =6sin(B +π6)∈(3,6].5.在△ABC 中,∠B =30°,∠C =60°,a =1,则最短边的边长是( )A.63B.62C.12D.32解析:选C.由a sin A =b sin B 得,b =a sin B sin A =12,∵∠B 最小,∴最小边是b .6.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2D.14解析:选A.C =180°-105°-45°=30°,由b sin B =csin C 得c =2×sin 30°sin45°=1.7.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:328.(2011年盐城高二检测)在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =bsin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 39.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:010.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sinB sinC =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.11.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.12.在△ABC 中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,已知2B =A +C ,a +2b =2c ,求sin C 的值.解:因为2B =A +C ,A +B +C =180°, 所以B =60°,A +C =120°. 所以0°<A <120°,0°<C <120°.又因为a +2b =2c ,所以sin A +2sin B =2sin C , 所以sin(120°-C )+2sin60°=2sin C ,所以3sin C -cos C =2,即sin(C -30°)=22.又因为0°<C <120°且sin(C -30°)>0, 所以0°<C -30°<90°. 所以C -30°=45°,C =75°.所以sin C =sin75°=6+24.人教B 版必修5同步练习1.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若c 2-a 2-b22ab>0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析:选C.∵cos C =a 2+b 2-c22ab<0,∴C 为钝角,∴△ABC 是钝角三角形. 2.如果满足∠ABC =60°,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是( ) A .k =8 3 B .0<k ≤12 C .k ≥12 D .0<k ≤12或k =8 3 解析:选D.设AB =x ,由余弦定理得 122=x 2+k 2-2kx cos60°,化简得x 2-kx +k 2-144=0,因为方程的两根之和x 1+x 2=k >0,故方程有且只有一个根,等价于k 2-4(k 2-144)=0或k 2-144≤0,解得0<k ≤12或k =8 3.3.在△ABC 中,若a cos 2C 2+c cos 2A 2=32b ,那么a 、b 、c 的关系是( )A .a +b =cB .a +c =2bC .b +c =2aD .a =b =c解析:选B.cos 2C 2=1+cos C 2,cos 2A 2=1+cos A2,代入已知条件等式,得a +c +a cos C +c cos A =3b ,a +c +a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc=3b ,整理,得a +c =2b .4.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A,得AB =sin Csin ABC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.1.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.2.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c .3.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.4.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.5.已知△ABC 的三个内角∠A ,∠B ,∠C 所对的三边分别为a ,b ,c ,若△ABC 的面积S =c 2-(a -b )2,则tan C2等于( )A.12B.14C.18D .1 解析:选B.依题意知S =c 2-(a -b )2=c 2-a 2-b 2+2ab =2ab -2ab cos C =12ab sin C ,得sin C +4cos C =4,即2sin C 2cos C 2+4(2cos 2C2-1)=4,即2sin C 2cos C 2+8cos 2C 2sin 2C 2+cos 2C 2=8,得2tan C 2+8tan 2C 2+1=8.解得tan C 2=14或tan C2=0(舍去).6.边长为5、7、8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°解析:选B.设中间角为θ,则cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°即为所求.7.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或618.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =(2k )2+(4k )2-(3k )22×2k ×4k=1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)9.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43, ∴b =2 3. 答案:2 310.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =cb.由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a22bc,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2, 所以b =c ,所以a =b =c , 因此△ABC 为等边三角形.11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60°,c =3b .求: (1)ac的值; (2)cot B +cot C 的值.解:(1)由余弦定理得a 2=b 2+c 2-2bc cos A =(13c )2+c 2-2·13c ·c ·12=79c 2,故a c =73.(2)cot B +cot C =cos B sin C +cos C sin B sin B sin C =sin (B +C )sin B sin C =sin Asin B sin C,由正弦定理和(1)的结论得sin A sin B sin C =1sin A ·a 2bc=23·79c 213c ·c =1433=1439,故cot B +cot C =1439.12.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a 2-b 2c 2=sin (A -B )sin C.证明:法一:右边=sin A cos B -cos A sin Bsin C=a ·cos B -cos A ·b c=a ·a 2+c 2-b 22ac -b 2+c 2-a 22bc·bc=a 2+c 2-b 2-b 2-c 2+a 22c c =a 2-b 2c 2=左边.法二:左边=sin 2A -sin 2Bsin 2C=1-cos 2A 2-1-cos 2B2sin 2C=cos 2B -cos 2A 2sin 2C=-2sin (B +A )sin (B -A )2sin 2C=sin C ·sin (A -B )sin 2C =sin (A -B )sin C=右边.人教B 版必修5同步练习1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) A. 3 B. 2 C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3.答案: 35.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°.1.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12解析:选B.易知c 最小,cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵0<C <π,∴C =π6.2.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)解析:选C.因为a 是最大的边,所以A >π3.又a 2<b 2+c 2,由余弦定理cos A =b 2+c 2-a 22bc>0,所以A <π2,故π3<A <π2.3.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A. 3 B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.4.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 等于( ) A .30° B .60° C .45°或135° D .120°解析:选C.由a 4+b 4+c 4=2c 2(a 2+b 2), 得(a 2+b 2-c 2)2=2a 2b 2,所以cos C =a 2+b 2-c 22ab =±22,所以C =45°或135°.5.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选C.由a 2=b 2+bc +c 2得b 2+c 2-a 2=-bc , 即b 2+c 2-a 22bc =-12,联想到余弦定理,∴cos A =-12,∴∠A =2π3.6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.22解析:选B.由b 2=ac ,又c =2a ,所以cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.7.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19. 答案:-198.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧k 2+(k -1)2-(k +1)2<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:789.设△ABC 中,AB →=(1,2),AC →=(-x,2x )(x >0).若△ABC 的周长为65时,则x 的值为________.解析:c =5,b =5x ,∴a =(5-x )5,由余弦定理得cos A =5x -12x ,又cos A =AB →·AC→|AB →||AC →|=35, ∴x =3011.答案:301110.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c 的长. 解:由题意得a +b =5,ab =2,∴a 2+b 2=(a +b )2-2ab =25-4=21, ∴c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =21-2=19. ∴c =19.11.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根, ∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10.12.已知△ABC 的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB , 两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB22AC ·BC=(AC +BC )2-2AC ·BC -AB 22AC ·BC =12,所以C =60°.人教B 版必修5同步练习1.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( )A .a 和cB .c 和bC .c 和βD .b 和α解析:选D.在河的一岸测量河的宽度,关键是选准基线,在本题中AC 即可看作基线,在△ABC 中,能够测量到的边角分别为b 和α.2.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 解析:选B.利用余弦定理解△ABC .易知∠ACB =120°,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×(-12)=3a 2.∴AB =3a .3.在200 m 的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°、60°,则塔高为( )A.4003 mB.40033mC.20033 mD.2003m解析:选A.如图,设塔高为AB ,山顶为C ,在Rt △CDB 中,CD =200,∠BCD =90°-60°=30°,∴BC =200cos30°=40033.在△ABC 中,∠ABC =∠ACB =30°,∴∠BAC =120°,BC sin120°=ABsin30°,∴AB =BC ·sin30°32=4003(m).4.一河两岸有A 、B 两地,为了测出AB 的距离,在河岸上选取一点C ,测得∠CAB =60°,∠ACB =45°,AC =60 m ,则AB ≈________.(精确到1 m).解析:在△ABC 中,先由三角形的内角和定理求出∠B ,再由正弦定理求出AB . 答案:44 m5.已知A 、B 两点的距离为100海里,B 在A 的北偏东30°方向,甲船从A 点以50海里/小时的速度向B 航行,同时乙船从B 点以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?解:如图所示,设航行x 小时以后,甲船到达C 点,乙船到达D 点,在△BCD 中,BC =100-50x (海里)(0≤x ≤2),BD =30x (海里),∠CBD =60°,由余弦定理得: CD 2=(100-50x )2+(30x )2-2(100-50x )·30x ·cos60° =4900x 2-13000x +10000, 作为二次函数考虑,当x =130002×4900=6549(小时)时,CD 2最小,从而得CD 最小.故航行6549小时,两船之间距离最小.1.海面上有A ,B 两个小岛,相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成30°的视角,则B 岛与C 岛之间的距离是( )A .10 3 海里 B.1063海里C .5 2 海里D .5 3 海里解析:选D.在由A ,B ,C 三岛组成的△ABC 中,∠C =180°-∠A -∠B =90°, 所以BC =AB ·sin60°=5 3.2.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析:选B.∠ACB =180°-40°-60°=80°,又∵AC =BC ,∴∠ABC =∠BAC =180°-80°2=50°,又90°-50°-30°=10°, ∴塔A 在塔B 的北偏西10°.3.如图,D 、C 、B 在地平面同一直线上,DC =10 m ,从D 、C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB 等于( )A .10 mB .5 3 mC .5(3-1)mD .5(3+1) m解析:选D.在△ACD 中,由DC sin (45°-30°)=ACsin30°得AC =10×12sin (45°-30°)=56-24=5(6+2).在△ABC 中,AB =AC ·sin45°=5(6+2)×22=5(3+1).4. 如图所示,有一广告气球,直径为6 m ,放在公司大楼的上空,当行人仰望气球的中心的仰角∠BAC =30°时,测得气球的视角θ为2°,若θ的弧度数很小时,可取sin θ为θ的弧度数,由此可估计该气球的高BC 约为( )A .70 mB .86 mC .102 mD .118 m解析:选B.由题意,知∠BAC =30°,所以BC =12AC .又圆的半径为3 m ,sin1°=sinπ180≈π180,所以AC ≈3×180π,即BC =12AC ≈270π≈86 (m).5.(2011年温州质检)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示).旗杆底部与第一排在一个水平面上,若国歌长度为50秒,升旗手应以多少米/秒的速度升旗( )A.15B.35C.35D.65 解析:选B.∠ABC =180°-60°-15°=105°, ∠CAB =180°-105°-45°=30°.∴AB =BC sin ∠CAB ·sin ∠BCA =106sin 30°·sin 45°=20 3.在Rt △OAB 中,OA =AB sin ∠ABO =203·sin 60°=30.∴v =3050=35(米/秒).故选B.6.在某个位置测得某山峰的仰角为θ,对着山峰在地面上前进600 m 后,测得仰角为原来的2倍,继续在地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度为( )A .200 mB .300 mC .400 mD .100 m解析:选B.如图所示,在三角形ABC 中,BC =AC =600.在三角形ADC 中,DC =AD =2003,所以AD sin2θ=AC sin (180°-4θ)=ACsin4θ,所以2003sin2θ=6002sin2θcos2θ,所以cos2θ=32,2θ=30°,所以在三角形ADE 中,AE =AD sin4θ=2003×32=300(m).7.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________.解析:如图所示,AB =60 km ,∠MAB =30°,∠AMB =180°-30°-105°=45°.由MB sin30°=AB sin45°,得MB =30 2 km. 答案:30 2 km8.某观测站C 在城A 的南偏西20°的方向(如图),由城A 出发的一条公路,走向是南偏东40°.在C 处测得距C 为31里的公路上有一人正沿公路向A 城走去,走了20里之后,到达D 处,此时CD 间的距离为21里,问此人还要走__________里路可到达A 城.解析:在△CDB 中,由余弦定理得cos ∠DBC =DB 2+BC 2-CD 22·DB ·BC =2331,∴sin ∠DBC =12331,∴sin ∠ACB =sin[π-(∠DBC +∠DAC )]=sin(∠DBC +π3)=35362,在△CAB 中,由正弦定理得AB =BC ·sin ∠ACBsin ∠CAB=35,∴AD =35-20=15. 答案:159.如图所示的是曲柄连杆结构示意图,当曲柄OA 在水平位置时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针旋转α角时,P 和Q 之间的距离为x ,已知OA =25 cm ,AP =125 cm ,若OA ⊥AP ,则x =________(精确到0.1 cm).解析:x =PQ =OA +AP -OP =25+125-252+1252 ≈22.5(cm). 答案:22.5 cm10.在2008年北京奥运会垒球比赛前,C 国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出.由经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问游击手在这种布置下能否接着球?解:假设游击手能接着球,接球点为B ,游击手从A 点跑出,本垒为O 点,球速为v ,如图所示,则∠AOB =15°,OB =v t ,AB ≤v t4.在△AOB 中,由正弦定理,得OB sin ∠OAB =ABsin15°,所以sin ∠OAB =OB sin15°AB≥v t v t 4·6-24=6- 2. 因为(6-2)2=8-43>8-4×1.73>1, 即sin ∠OAB >1,所以∠OAB 不存在,即游击手不能接着球. 11.甲船在A 处发现乙船在北偏东60°的B 处,乙船正以a n mile/h 的速度向北行驶.已知甲船的速度是 3a n mile/h ,问甲船应沿着什么方向前进,才能最快与乙船相遇?解:如图,设经过t h 两船在C 点相遇, 则在△ABC 中,BC =at ,AC =3at ,B =90°+30°=120°,由BC sin ∠CAB =AC sin B, 得sin ∠CAB =BC sin BAC=at ·sin120°3at =323=12.∵0°<∠CAB <90°, ∴∠CAB =30°, ∴∠DAC =60°-30°=30°. 即甲船应沿北偏东30°的方向前进,才能最快与乙船相遇.12.(2011年济南调研)A ,B ,C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,在A 处看见塔在东北方向,在B 处看见塔在正东方向,在C 处看见塔在南偏东60°方向,求塔到直路的距离.解:如图所示,设BN =x,则PQ =x ,P A =2x ,∵AB =BC ,∴CM =2BN =2x ,PC =2PQ =2x . 在△P AC 中,由余弦定理,得: AC 2=P A 2+PC 2-2P A ·PC ·cos 75°,即4=2x 2+4x 2-42x 2·6-24,解得x 2=2(4+3)13.过P 作PD ⊥AC ,垂足为D ,则线段PD 的长即为塔到直路的距离.在△P AC 中,由12AC ·PD =12P A ·PC sin 75°,得PD =P A ·PC ·sin 75°AC =22x 2·sin 75°2=2·2(4+3)13 ·6+24=7+5313.故塔到直路的距离为7+5313km.人教B 版必修5第1章章末综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011年福州高二检测)在△ABC 中,a =1,∠A =30°,∠B =60°,则b 等于( )A.32B.12C. 3 D .2解析:选C.由a sin A =b sin B 得,b =a sin B sin A =1·sin60°sin30°= 3.2.在△ABC 中,a =80,b =100,∠A =45°,则此三角形解的情况是( ) A .一解 B .两解 C .一解或两解 D .无解解析:选B.由a sin A =bsin B得sin B =100×sin45°80=528<1,又∵a <b , ∴B 有两解.故三角形有两解.3.(2011年临沂高二检测)在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( )A .-15B .-16C .-17D .-18解析:选C.c 2=72+82-2×7×8×1314=9,∴c =3,∴B 最大.cos B =72+32-822×7×3=-17.4.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4 D.π3解析:选A.由余弦定理cos ∠BAC =AB 2+AC 2-BC 22×AB ×AC =52+32-722×5×3=-12,所以∠BAC =2π3.5.在△ABC 中,∠B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°解析:选 C.设最大角为∠A ,最小角为∠C .由∠B =60°得∠A +∠C =120°.根据正弦定理,得a c =sin A sin C =sin (120°-C )sin C =3+12,所以2sin(120°-C )=(3+1)·sin C ,即3cos C +sin C=3sin C +sin C ,所以tan C =1,又0°<∠C <180°,所以∠C =45°,所以∠A =75°.6.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形解析:选B.由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin 60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0, 即a =2b 或b =2a .当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2; 当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2. 故△ABC 为直角三角形. 7.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 m B.1523 mC .15 3 mD .45 m 解析:选B.在△ABC 中,由余弦定理,得cos ∠ACB =AC 2+BC 2-AB 22AC ·BC=152+102-(519)22×15×10=-12,∴∠ACB =120°,∴∠ACD =180°-120°=60°.∴AD =AC ·sin60°=1532(m).8.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A. 152B.15C .2D .3解析:选A.∵b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0.∵b +c ≠0,∴b -2c =0.∴b =2c .∴6=c 2+4c 2-2c ·2c ×78,∴c =2,b =4.∴S =12bc sin A =12×2×4×1-4964=152.9.锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3 B .1<a < 5 C.3<a < 5 D .不确定 解析:选C.因为△ABC 为锐角三角形, 所以cos A >0,cos B >0,cos C >0, 所以b 2+c 2-a 2>0,a 2+c 2-b 2>0, a 2+b 2-c 2>0,所以1+4-a 2>0, a 2+4-1>0,a 2+1-4>0,即3<a 2<5,所以3<a < 5. 又c -b <a <b +c ,即1<a <3.由⎩⎨⎧3<a <5,1<a <3.得3<a < 5.10.△ABC 中,a ,b ,c 分别是A 、B 、C 的对边,且满足2b =a +c ,B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3解析:选C.2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,∴b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33.11.在△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( ) A .1 B .2 C .3 D .4解析:选A.①a 2>b 2+c 2⇒b 2+c 2-a 2<0⇒b 2+c 2-a 22bc<0⇒cos A <0⇒A 为钝角⇒△ABC为钝角三角形;②a 2=b 2+c 2+bc ⇒b 2+c 2-a 2=-bc ⇒b 2+c 2-a 22bc =-12⇒cos A =-12⇒A =120°;③与①同理知cos C >0,∴C 是锐角,但△ABC 不一定是锐角三角形. ④A ∶B ∶C =1∶2∶3⇒A =30°,B =60°,C =90° ⇒a ∶b ∶c =1∶3∶2.12.锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设B =2A ,则ba的取值范围是( )A .(-2,2)B .(0,2)C .(2,2)D .(2,3)解析:选D.∵b a =sin B sin A =sin2Asin A=2cos A ,又∵△ABC 是锐角三角形,∴⎩⎪⎨⎪⎧B =2A <90°A +2A >90°,∴30°<A <45°,则ba=2cos A ∈(2,3).二、填空题(本大题共4小题,把答案填在题中横线上) 13.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________.解析:在△ABC 中,由余弦定理,得cos A =cos120°=AB 2+AC 2-BC 22×AB ×AC ,即25+AC 2-492×5×AC=-12.解得AC =-8(舍去)或AC =3. 答案:3。
新人教版高中数学必修5全册同步课时作业含解析答案
新人教版高中数学必修5全册同步课时作业(含解析答案)目录课时作业1 正弦定理第1课时课时作业2 正弦定理第2课时课时作业3 余弦定理课时作业4 正、余弦定理习题课课时作业5 应用举例第1课时课时作业6 应用举例第2课时)正、余弦定理的综合应用课时作业7 数列的概念与简单表示法课时作业8 数列的性质和递推公式课时作业9 等差数列第1课时课时作业10 等差数列第2课时课时作业11 等差数列第3课时课时作业12 等差数列的前n项和第1课时课时作业13 等差数列的前n项和第2课时课时作业14 等差数列的前n项和第3课时课时作业15 等比数列第1课时课时作业16 等比数列第2课时课时作业17 等比数列的前n项和第1课时课时作业18 等比数列的前n项和第2课时课时作业19 专题研究一数列通项的求法课时作业20 专题研究二特殊数列求和方法课时作业21 专题研究三数列的实际应用课时作业22 不等关系与不等式课时作业23 一元二次不等式及其解法第1课时课时作业24 一元二次不等式及其解法第2课时课时作业25 二元一次不等式组)表示的平面区域课时作业26 简单的线性规划问题第1课时课时作业27 简单的线性规划问题第2课时课时作业28 简单的线性规划问题课时作业29 基本不等式 ab≤a+b2 第1课时课时作业30 基本不等式 ab≤a+b2 第2课时课时作业31 基本不等式1课时作业32 基本不等式2课时作业1 正弦定理(第1课时)1.在△ABC 中,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .ab sin C =bc sin A答案 D2.在△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3答案 C3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形答案 A4.在△ABC 中,若sin A a =cos Bb,则∠B 的值为( )A .30°B .45°C .60°D .90°答案 B解析 ∵sin A a =sin B b ,∴cos B b =sin B b,∴cos B =sin B ,从而tan B =1,又0°<B <180°,∴B =45°.5.(2013·湖南)在△ABC 中,若3a =2b sin A ,则B 为( ) A.π3B.π6C.π3或23π D.π6或56π 答案 C解析 由3a =2b sin A ,得3sin A =2sin B ·sin A . ∴sin B =32.∴B =π3或2π3. 6.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 为( ) A .3∶1∶1 B .2∶1∶1 C.2∶1∶1 D.3∶1∶1答案 D解析 由已知得A =120°,B =C =30°,根据正弦定理的变形形式,得a ∶b ∶c =sin A ∶sin B ∶sin C =3∶1∶1. 7.以下关于正弦定理的叙述或变形中错误..的是( ) A .在△ABC 中,a ∶b ∶c =sin A ∶sin B ∶sin C B .在△ABC 中,a =b ⇔sin2A =sin2BC .在△ABC 中,a sin A =b +c sin B +sin CD .在△ABC 中,正弦值较大的角所对的边也较大 答案 B解析 对于B 项,当a =b 时,sin A =sin B 且cos A =cos B ,∴sin2A =sin2B ,但是反过来若sin2A =sin2B .2A =2B 或2A =π-2B ,即A =B 或A +B =π2.不一定a =b ,∴B 选项错误.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°答案 A9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案π6解析 由sin B +cos B =2sin(B +π4)=2,得sin(B +π4)=1,所以B =π4.由正弦定理a sin A =b sin B ,得sin A =a sin B b =2·si nπ42=12,所以A =π6或5π6(舍去). 10.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A =________.答案 12解析 由A +C =2B ,且A +B +C =180°,得B =60°,由正弦定理,得3sin60°=1sin A ,∴sin A =12.11.(2012·福建)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________.答案 2解析如图所示,由正弦定理,得AC sin B =BC sin A ,即AC sin45°=3sin60°,即AC22=332,故AC = 2. 12.(2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案π2解析 由正弦定理,得a sin ∠A =bsin ∠B .从而332=3sin ∠B,即sin ∠B =12.∴∠B =30°或∠B =150°.由a >b 可知∠B =150°不合题意,∴∠B =30°. ∴∠C =180°-60°-30°=90°.13.已知三角形的两角分别是45°、60°,它们夹边的长是1,则最小边长为________. 答案3-114.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案10215.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,则a (sin C -sin B )+b (sin A -sin C )+c (sin B -sin A )=________.答案 0解析 ∵a sin A =bsin B ,∴a sin B =b sin A .同理可得a sin C =c sin A 且b sin C =c sin B .∴原式=0.16.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B . 答案 a =10 2 b =5(6+2) B =105°17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2,b =6,B =120°,求a 的值.答案2解析 由正弦定理,得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°. ∴△ABC 为等腰三角形,a =c = 2.18.已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形. 解析 由正弦定理a sin A =csin C ,得 sin C =62sin45°=62×22=32. 因为∠A =45°,c >a ,所以∠C =60°或120°. 所以∠B =180°-60°-45°=75° 或∠B =180°-120°-45°=15°. 又因为b =a sin Bsin A,所以b =3+1或3-1. 综上,∠C =60°,∠B =75°,b =3+1 或∠C =120°,∠B =15°,b =3-1. ►重点班·选作题19.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解答案 D20.△ABC 的外接圆半径为R ,C =60°,则a +bR的取值范围是( ) A .[3,23] B .[3,23) C .(3,23] D .(3,23)答案 C课时作业2 正弦定理(第2课时)1.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形答案 A2.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3 D.34或32 答案 D3.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223B.223 C .-63D.63答案 D解析 依题意得0°<B <60°,a sin A =b sin B ,sin B =b sin A a =33,cos B =1-sin 2B =63,选D.4.(2013·山东)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .1答案 B解析 由正弦定理a sin A =b sin B ,得1sin A =3sin B.又∵B =2A ,∴1sin A =3sin2A =32sin A cos A .∴cos A =32,∴∠A =30°,∴∠B =60°,∠C =90°. ∴c =12+32=2.5.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又∵sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3答案 B7.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120° 答案 D8.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4 答案 A9.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C10.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 答案 211.△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 的形状是________.答案 等边三角形12.在△ABC 中,lg(sin A +sin C )=2lgsin B -lg(sin C -sin A ),则该三角形的形状是________.答案 直角三角形 解析 由已知条件lg(sin A +sin C )+lg(sin C -sin A )=lgsin 2B , ∴sin 2C -sin 2A =sin 2B ,由正弦定理,可得c 2=a 2+b 2. 故三角形为直角三角形.13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积.答案 (1)3+4310 (2)36+935014.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cosC ,试判断三角形的形状. 解析 由正弦定理asin A=bsin B=csin C=2R (R 为△ABC 外接圆半径).将原等式化为8R 2sin 2B sin 2C =8R 2sin B sin C cos B cos C .∵sin B ·sin C ≠0,∴sin B sin C =cos B cos C . 即cos(B +C )=0.∴B +C =90°,即A =90°. 故△ABC 为直角三角形.15.在△ABC 中,求证:cos2A a 2-cos2B b 2=1a 2-1b2.证明 ∵左边=1-2sin 2A a 2-1-2sin 2Bb2=1a 2-1b 2-2(sin 2A a 2-sin 2B b2), 由正弦定理,得a sin A =bsin B ,∴sin 2A a 2-sin 2Bb2=0.∴原式成立. ►重点班·选作题16.在△ABC 中,sin A =34,a =10,边长c 的取值范围是( )A .(152,+∞)B .(10,+∞)C .(0,10)D .(0,403]答案 D17.(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B=5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解析 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.1.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.答案 1解析 在△ABC 中,由正弦定理,得1sin B=3sin2π3,解得sin B =12,因为b <c ,故角B 为锐角,所以B =π6,则A =π6.再由正弦定理或等腰三角形性质可得a =1.课时作业3 余弦定理1.在△ABC 中,sin 2A =sin 2B +sin B sinC +sin 2C ,则A 等于( ) A .30° B .60° C .120°D .150°答案 C解析 由正弦定理,得a 2=b 2+bc +c 2,由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.∴A =120°.2.若a ,b ,c 是△ABC 的三边,且c a 2+b2>1,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .锐角三角形 D .钝角三角形答案 D 解析 ∵c a 2+b2>1,即a 2+b 2<c 2,a 2+b 2-c 2<0,于是cos C =a 2+b 2-c 22ab<0.∴∠C 为钝角,即得△ABC 为钝角三角形.3.边长5、7、8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°答案 B解析 设中间的角大小为B ,由余弦定理,求得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.而0<B <π,∴B =π3.∴最大角与最小角的和是π-π3=2π3=120°.4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2答案 D5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°答案 A解析 由sin C =23sin B ,可得c =23b ,由余弦定理,得cos A =b 2+c 2-a 22bc=-3bc +c 22bc =32,于是A =30°,故选A.6.在△ABC 中,已知a ∶b ∶c =3∶5∶7,则这个三角形最大角的外角是( ) A .30° B .60° C .90° D .120°答案 B解析 ∵a ∶b ∶c =3∶5∶7,∴可令a =3x ,b =5x ,c =7x (x >0),显然c 边最大.∴cos C =a 2+b 2-c 22ab =9x 2+25x 2-49x 22·3x ·5x =-12.∴C =120°,∴其外角为60°.7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3 C.π6或5π6D.π3或2π3答案 D解析 本题考查边角关系中余弦定理的应用.解斜三角形问题的关键是充分挖掘题中边角特征,选择合理的定理求解.因此(a 2+c 2-b 2)tan B =3ac ,所以由余弦定理cos B =a 2+c 2-b 22ac ,得sin B =32,选D. 8.在△ABC 中,已知a cos A +b cos B =c cos C ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 B解析 由a cos A +b cos B =c cos C ,得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·b 2+a 2-c 22ab,化简得a 4+2a 2b 2+b 4=c 4,即(a 2+b 2)2=c 4.∴a 2+b 2=c 2或a 2+b 2=-c 2(舍去). 故△ABC 是直角三角形.9.若将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度确定答案 A10.在△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°11.(2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理可得,a 2+b 2-c 2=-ab ,∴cos C =a 2+b 2-c 22ab=-ab 2ab =-12,∴C =2π3. 12.已知△ABC 的三个内角A ,B ,C ,B =π3且AB =1,BC =4,则边BC 上的中线AD 的长为________.答案3解析 在△ABD 中,B =π3,BD =2,AB =1,则AD 2=AB 2+BD 2-2AB ·BD cos π3=3.所以AD = 3.13.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为________.答案612解析 由余弦定理可得bc cos A +ca cos B +ab cos C =b 2+c 2-a 22+c 2+a 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.14.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=ac ,且a 2-c 2=ac -bc ,求∠A 的大小及b sin Bc的值. 解析 ∵b 2=ac ,又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.在△ABC 中,由正弦定理,得sin B =b sin Aa. ∵b 2=ac ,∠A =60°,∴b sin B c =b 2sin60°ca =sin60°=32.故∠A =60°,b sin Bc 的值为32. 15.已知锐角三角形ABC 中,边a 、b 是方程x 2-23x +2=0的两根,角A 、B 满足2sin(A +B )-3=0,求角C 的度数,边c 的长度及△ABC 的面积.解析 由2sin(A +B )-3=0,得sin(A +B )=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴C =60°. ∵a 、b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =12-6=6. ∴c =6,S △ABC =12ab sin C =12·2·32=32.►重点班·选作题16.设△ABC 三边长分别为15,19,23,现将三边长各减去x 后,得一钝角三角形,则x 的范围为________.答案 (3,11)解析 由两边之和大于第三边,得 15-x +19-x >23-x ,∴x <11. ① 又因得到的三角形为钝角三角形, ∴(15-x )2+(19-x )2<(23-x )2.即x 2-22x +57<0,(x -3)(x -19)<0,3<x <19.② 由①、②可得3<x <11.17.在△ABC 中,已知c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,求角C . 解析 ∵c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0, ∴[c 2-(a 2+b 2)]2-a 2b 2=0,∴c 2-(a 2+b 2)=±ab .∴cos C =a 2+b 2-c 22ab =±12,∴C =120°或C =60°.1.已知△ABC 的三个内角为A 、B 、C ,所对的三边分别为a 、b 、c ,若三角形ABC 的面积为S =a 2-(b -c )2,则tan A2等于________.答案 14解析 本题考查余弦定理和解三角形等.由S =12bc sin A ,又S =a 2-b 2-c 2+2bc ,由余弦定理知a 2-b 2-c 2=-2bc ·cos A ⇒12bc sin A =-2bc cos A +2bc ⇒sin A =4(1-cos A )⇒2sin A 2cos A 2=4×2sin 2A 2⇒tan A 2=14. 2.在△ABC 中,A 、B 、C 满足A +C =2B ,且最大角与最小角的对边之比为(3+1)∶2,求A 、B 、C 的度数.解析 ∵⎩⎪⎨⎪⎧A +C =2B ,A +B +C =180°,∴B =60°.不妨设最大角为A ,则最小角为C . 由b 2=a 2+c 2-2ac cos B ,得 (b c)2=(a c)2+1-2·a c·cos B . 将a c =3+12及cos B =12代入,得b c =62. ∴sin B sin C =62,∴sin C =22.∵c <b ,∴C =45°,∴A =75°. 3.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2. (1)若f (1)=0且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.解析 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0. ∴b 2=4c 2,∴b =2c .∴sin B =2sin C . 又B -C =π3,∴sin(C +π3)=2sin C .∴sin C ·cos π3+cos C ·sin π3=2sin C .∴32sin C -32cos C =0,∴sin(C -π6)=0. 又-π6<C -π6<5π6,∴C =π6.(2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0.∴a 2+b 2=2c 2,∴cos C =a 2+b 2-c 22ab =c 22ab.又a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab . 即2c 2=a 2+b 2≥2ab ,∴ab ≤c 2. ∴cos C ≥12,∴0<C ≤π3.课时作业4 正、余弦定理习题课1.在△ABC 中,若a =18,b =24,A =44°,则此三角形的情况为( ) A .无解 B .两解C .一解D .解的个数不确定答案 B2.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( ) A.154 B.34 C.31516D.1116 答案 D3.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 C解析 方法一 在△ABC 中,A +B +C =180°. ∴C =180°-(A +B ),∴sin C =sin(A +B ). ∴已知条件可化为2sin A cos B =sin C =sin(A +B ). ∴sin(A -B )=0.又-π<A -B <π,∴A -B =0,∴A =B .∴△ABC 为等腰三角形.方法二 运用正、余弦定理将角的三角函数式化为边的等式.2·a 2+c 2-b 22ac ·a 2R =c 2R.整理,得a 2-b 2=0,∴a =b .∴△ABC 为等腰三角形.4.在三角形ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且a >b >c ,若a 2<b 2+c 2,则∠A 的取值范围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)答案 C解析 ∵a 2<b 2+c 2,∴b 2+c 2-a 2>0.∴cos A =b 2+c 2-a 22bc>0.∴A <90°.又∵a 边最大,∴A 角最大.∵A +B +C =180°,∴3A >180°. ∴A >60°,∴60°<A <90°.5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 设b +c =4k ,c +a =5k ,a +b =6k (k >0),从而解出a =72k ,b =52k ,c =32k ,∴a ∶b ∶c =7∶5∶3.由正弦定理,得sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.在△ABC 中,A ∶B =1∶2,C 的平分线CD 把三角形面积分为3∶2两部分,则cos A =( )A.13 B.12 C.34 D .0答案 C 解析∵CD 是∠C 的平分线,∴S △ACD S △BCD =12AC ·CD sinC 212BC ·CD sin C 2=AC BC =sin B sin A =32. ∵B =2A ,∴sin B sin A =sin2A sin A =2cos A =32.∴cos A =34.7.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( ) A .1<c <3B .2<c<3C.5<c <3 D .22<c <3答案 C8.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°9.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________. 答案310.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 1211.已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为________. 答案8155解析 cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-cos 2A =158. ∴2R =asin A ,R =a 2sin A =8155. 12.已知△ABC 中,∠A =60°,最大边和最小边的长是方程3x 2-27x +32=0的两实根,那么BC 边长等于________.答案 7解析 ∵A =60°,所求为BC 边的长,而BC 即为角A 的对边,∴BC 边既非最大边也非最小边.不妨设最大边长为x 1,最小边长为x 2, 由题意得:x 1+x 2=9,x 1x 2=323. 由余弦定理,得BC 2=x 21+x 22-2x 1x 2cos A =(x 1+x 2)2-2x 1x 2-2x 1x 2cos A =92-2×323-2×323×cos60°=49.∴BC =7.13.在△ABC 中,已知BC =8,AC =5,三角形面积为12,则cos2C =________. 答案725解析 由题意得S △ABC =12·AC ·BC ·sin C =12,即12×8×5×sin C =12,则sin C =35. cos2C =1-2sin 2C =1-2×(35)2=725.14.在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若b =a cos C 且△ABC 的最大边长为12,最小角的正弦值为13.(1)判断△ABC 的形状; (2)求△ABC 的面积. 解析 (1)∵b =a cos C ,由正弦定理,得sin B =sin A cos C . 由A +B +C =π,得sin B =sin[π-(A +C )]=sin(A +C ). ∴sin(A +C )=sin A cos C .∴sin A cos C +cos A sin C =sin A cos C . ∴cos A sin C =0.∵0<A <π,0<C <π,∴sin C >0. ∴cos A =0,∴A =π2.∴△ABC 为直角三角形. (2)∵△ABC 的最大边长为12, 由第(1)问知,斜边a =12. 又∵△ABC 的最小角的正弦值为13,∴Rt △ABC 中最短直角边长为12×13=4.另一直角边长为122-42=8 2. ∴S △ABC =12×4×82=16 2.15.(2013·天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b sin A =3c sin B ,a =3,cos B =23.(1)求b 的值;(2)求sin(2B -π3)的值.解析 (1)在△ABC 中,由a sin A =bsin B,可得b sin A =a sin B .又由b sin A =3c sin B ,可得a =3c ,又a =3,故c =1. 由b 2=a 2+c 2-2ac cos B ,cos B =23,可得b = 6.(2)由cos B =23,得sin B =53,进而得cos2B =2cos 2B -1=-19,sin2B =2sin B cos B =459.所以sin(2B -π3)=sin2B cos π3-cos2B sin π3=45+318.课时作业5 应用举例(第1课时)1.若P在Q的北偏东44°50′,则Q在P的( )A.东偏北45°10′B.东偏北45°50′C.南偏西44°50′ D.西偏南45°50′答案 C2.在某次测量中,在A处测得同一方向的B点的仰角为60°,C点的俯角为70°,则∠BAC等于( )A.10° B.50°C.120° D.130°答案 D3.一只船速为2 3 米/秒的小船在水流速度为2米/秒的河水中行驶,假设两岸平行,要想使过河时间最短,则实际行驶方向与水流方向的夹角为( )A.120° B.90°C.60° D.30°答案 B4.江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A.10 3 m B.100 3 mC.2030 m D.30 m答案 D解析设炮台顶部为A,两条船分别为B、C,炮台底部为D,可知∠BAD=45°,∠CAD =60°,∠BDC=30°,AD=30.分别在Rt△ADB,Rt△ADC中,求得DB=30,DC=30 3.在△DBC中,由余弦定理,得BC2=DB2+DC2-2DB·DC cos30°,解得BC=30.5.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为( )A. 3 B.2 3C.23或 3 D.3答案 C6.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )A.a km B.3a kmC.2a km D.2a km答案 B7.海上有A、B、C三个小岛,已知A、B相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C的距离是( )A.10 3 海里 B.1063海里C.5 2 海里D.5 6 海里答案 D8.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC 的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( ) A.50 2 m B.50 3 mC.25 2 m D.2522m答案 A9.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( )A.5 海里B.5 3 海里C.10 海里D.10 3 海里答案 D10.已知船A在灯塔C北偏东85°且到C的距离为2 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为( )A.2 3 km B.3 2 kmC.15 kmD.13 km答案 D11.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东65°方向上,则船在点B 时与灯塔S 的距离是________km.(精确到0.1 km)答案 5.212.如图,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度是________m.答案 6013.已知船在A 处测得它的南偏东30°的海面上有一灯塔C ,船以每小时30海里的速度向东南方向航行半小时后到达B 点,在B 处看到灯塔在船的正西方向,问这时船和灯塔相距________海里.答案563-1214.A 、B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD .解析如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此,只需在△ABD 中求出AD 即可.在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=ADsin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1)≈2 186(m). 答:山高CD 为2 186 m.15.如图所示,海中小岛A 周围38海里内有暗礁,一船正向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后,在C 处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?思路分析 船继续向南航行,有无触礁的危险,取决于A 到直线BC 的距离与38海里的大小,于是我们只要先求出AC 或AB 的大小,再计算出A 到BC 的距离,将它与38海里比较大小即可.解析 在△ABC 中,BC =30,B =30°,∠ACB =135°, ∴∠BAC =15°.由正弦定理BC sin A =AC sin B ,即30sin15°=AC sin30°.∴AC =60cos15°=60cos(45°-30°)=60(cos45°cos30°+sin45°sin30°)=15(6+2). ∴A 到BC 的距离d =AC sin45°=15(3+1)≈40.98海里>38海里,所以继续向南航行,没有触礁危险.1.一船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过 3 h 后,该船实际航行为( )A .215 kmB .6 km C.84 km D .8 km答案 B 2.如图,为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离1千米的两个观察点C 、D ,在某天10∶00观察到该航船在A 处,此时测得∠ADC =30°,2分钟后该船行驶至B 处,此时测得∠ACB =60°,∠BCD =45°,∠ADB =60°,则船速为________(千米/分钟).答案64解析 在△BCD 中,∠BDC =30°+60°=90°,CD =1,∠BCD =45°, ∴BC = 2.在△ACD 中,∠CAD =180°-(60°+45°+30°)=45°, ∴CDsin45°=AC sin30°,AC =22.在△ABC 中,AB 2=AC 2+BC 2-2AC ×BC ×cos60°=32,∴AB =62,∴船速为622=64 千米/分钟.3.如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?答案 救船到达D 点需要1小时.解析 由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得DB sin ∠DAB =ABsin ∠ADB.∴DB =AB ·sin∠DAB sin ∠ADB =53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里), 在△DBC 中,由余弦定理,得CD 2=BD 2+BC 2-2BD ·BC ·cos∠DBC=300+1 200-2×103×203×12=900.∴CD =30(海里),则需要的时间t =3030=1(小时).答:救援船到达D 点需要1小时. 4.如图所示,a是海面上一条南北向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当时的气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线a的距离.(结果精确到0.01 km)答案(1)PB=x-12 km,PC=18+x km 132 7(2)17.71 km课时作业6 应用举例(第2课时)正、余弦定理的综合应用1.已知方程x 2sin A +2x sin B +sin C =0有重根,则△ABC 的三边a 、b 、c 满足关系式( ) A .b =ac B .b 2=ac C .a =b =c D .c =ab答案 B解析 由Δ=0,得4sin 2B -4sin A sinC =0,结合正弦定理得b 2=ac . 2.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8 D .无解答案 C解析 由3a =3b =12,得a =4,b =43,利用正弦定理可得B 为60°或120°,从而解出c 的值.3.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为( ) A. 3 B .3 C.7 D .7答案 A 解析 由S △ABC =32,得12AB ·AC sin A =32. 即12×2AC ×32=32,∴AC =1,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×12=3.∴BC = 3.4.在△ABC 中,2a cos B =c ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 A解析 方法一 由余弦定理,得2a a 2+c 2-b 22ac=c .所以a 2+c 2-b 2=c 2.则a =b .则△ABC是等腰三角形.方法二 由正弦定理,得2×2R sin A cos B =2R sin C ,即2sin A cos B =sin C .又sin(A +B )+sin(A -B )=2sin A cos B ,所以sin(A +B )+sin(A -B )=sin C .又A +B +C =π,所以sin(A +B )=sin C .所以sin(A -B )=0.又0<A <π,0<B <π,则-π<A -B <π.所以有A =B ,则△ABC 是等腰三角形.讲评 方法一是转化为三角形的边的关系,利用代数运算获得三角形的关系式;方法二是转化为三角形的角的关系,利用三角函数知识获得了三角形的角的关系.方法二中,如果没有想到等式sin(A +B )+sin(A -B )=2sin A cos B ,那么就会陷入困境.由于受三角函数知识的限制,提倡将已知条件等式转化为边的关系来判断三角形的形状.5.(2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3 B.2π3 C.3π4D.5π6答案 B解析 ∵3sin A =5sin B ,∴3a =5b .① 又b +c =2a ,②∴由①②可得,a =53b ,c =73b .∴cos C =b 2+a 2-c 22ab=b 2+53b 2-73b 22×53b 2=-12.∴C =23π.6.已知锐角三角形的边长分别是3,5,x ,则x 的取值范围是( ) A .1<x < 5 B .4<x <30 C .1<x <4 D .4<x <34答案 D解析 若5最大,则32+x 2-52>0,得x >4. 若x 最大,则32+52-x 2>0,得0<x <34. 又2<x <8,则4<x <34.7.在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A 、B 、C 的度数依次是________.答案 45°、30°、105°解析 ∵a =2b ,a 2=b 2+c 2-2bc cos A . ∴2b 2=b 2+c 2-2bc cos A ,又∵c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°.8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =______.答案33解析 由正弦定理,得(3sin B -sin C )cos A =sin A cos C . 化简得3sin B cos A =sin(A +C ). ∵0<sin B ≤1,∴cos A =33. 9.设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b .解析 (1)由a =2b sin A ,得sin A =2sin B sin A ,所以sin B =12.由△ABC 为锐角三角形,得B =π6.(2)根据余弦定理,得b 2=a 2+c 2-2a cos B =27+25-45=7,所以b =7.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,得a 2=b 2+c 2-2bc cos A . 故cos A =-12,又A ∈(0,π),故A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,得sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.11.在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解析 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理,得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12.∴∠ADC =120°,∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理,得AB sin ∠ADB =ADsin B. ∴AB =AD ·sin∠ADB sin B =10sin60°sin45°=10×3222=5 6.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.解析 (1)由题意可知12ab sin C =34·2ab cos C ,所以tan C = 3.因为0<C <π,所以C =π3.(2)由已知sin A +sin B =sin A +sin(π-C -A ) =sin A +sin(2π3-A )=sin A +32cos A +12sin A=3sin(A +π6)≤ 3.当△ABC 为正三角形时取等号, 所以sin A +sin B 的最大值是 3.13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)求sin B +sin C 的最大值.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A .故cos A =-12,A =120°.(2)由(1),得sin B +sin C =sin B +sin(60°-B ) =32cos B +12sin B =sin(60°+B ). 故当B =30°时,sin B +sin C 取得最大值1. ►重点班·选作题14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解析 (1)因为cos2C =1-2sin 2C =-14,及0<C <π,所以sin C =104.(2)当a =2,2sin A =sin C 时, 由正弦定理a sin A =csin C,得c =4.由cos2C =2cos 2C -1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或2 6.所以⎩⎨⎧b =6,c =4.或⎩⎨⎧b =26,c =4.1.(2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ) A.π6 B.π3 C.2π3D.5π6答案 A解析 根据正弦定理,得a sin B cos C +c sin B cos A =12b 等价于sin A cos C +sin C cos A =12,即sin(A +C )=12.又a >b ,∴∠A +∠C =5π6,∴∠B =π6.故选A 项.2.(2012·北京)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.答案 4解析 由余弦定理,得cos B =a 2+c 2-b 22ac =4+7-b 2-b 22×2×7-b =-14,解得b =4.3.(2011·湖北)设△ABC 的内角,A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理,可得a 2+b 2-c 2=-ab .∴cos C =a 2+b 2-c 22ab =-ab 2ab =-12,∴C =2π3.4.(2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)若c 的值.解析 (1)因为a =3,b =26,∠B =2∠A , 所以在△ABC 中,由正弦定理,得3sin A =26sin2A. 所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知,cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.5.(2013·江西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解析 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0.因为sin A ≠0,所以sin B -3cos B =0.又cos B ≠0,所以tan B =3,又0<B <π,所以B =π3.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,cos B =12,所以b 2=3(a -12)2+14.又0<a <1,于是有14≤b 2<1,即12≤b <1.6.(2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解析 (1)由2cos2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45.由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4. 根据余弦定理,有(42)2=52+c 2-2×5c ×(-35),解得c =1或c =-7(舍去).。
2020年高中数学 人教A版 必修5 同步作业本《简单线性规划的应用》(含答案解析)
2020年高中数学 人教A 版 必修5 同步作业本《简单线性规划的应用》一、选择题1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( )A .z=6x +4yB .z=5x +4yC .z=x +yD .z=4x +5y2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈N z=20x +40yB.⎩⎪⎨⎪⎧x +y≥10,2x +y≥10,x +y≤6,x ,y ∈Nz=20x +40yC.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,z=20x +40y D.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈Nz=40x +20y3.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y≥0,则z=y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,505.某学校用800元购买A 、B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少, A 、B 两种用品应各买的件数为( ) A .2,4 B .3,3 C .4,2 D .不确定6.某厂生产甲、乙两种产品每吨所需的煤、电和产值如表所示:但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,则该厂最大日产值为( )A .120万元B .124万元C .130万元D .135万元二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z=x +y 的最大值为________.8.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.9.满足|x|+|y|≤2的点(x ,y)中整点(横纵坐标都是整数)有________个.三、解答题10.某研究所计划利用“神十一”宇宙飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?11.某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min,生产一个骑兵需7 min,生产一个伞兵需4 min,已知总生产时间不超过10 h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?答案解析1.答案为:A ;解析:设需x 辆6吨汽车,y 辆4吨汽车.则运输货物的吨数为z=6x +4y ,即目标函数z=6x +4y.2.答案为:A ;解析:由题意可知选A.3.答案为:D ;解析:作出可行域,如图所示,y -1x的几何意义是点(x ,y)与点(0,1)连线l 的斜率,当直线l 过B(1,0)时k 1最小,最小为-1.又直线l 不能与直线x -y=0平行,所以k l <1. 综上,k ∈[-1,1).4.答案为:B ;解析:设黄瓜、韭菜的种植面积分别为x ,y 亩,则总利润z=4×0.55x +6×0.3y-1.2x -0.9y=x +0.9y. 此时x ,y 满足条件 ⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,画出可行域如图,得最优解为A(30,20),故选B.5.答案为:B ;解析:设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y≤800,x ≥1,y ≥1,x ,y ∈N *.求z=800-100x -160y 取得最小值时的整数解(x ,y),用图解法求得整数解为(3,3).6.答案为:B ;解析:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值z=8x +12y ,线性约束条件为⎩⎪⎨⎪⎧7x +3y≤56,20x +50y≤450,x ≥0,y ≥0,作出可行域如图所示,把z=8x +12y 变形为一簇平行直线系l :y=-812x +z12,由图可知,当直线l 经过可行域上的点M 时,截距z12最大,即z 取最大值,解方程组⎩⎪⎨⎪⎧7x +3y =56,20x +50y =450,得M(5,7),z max =8×5+12×7=124,所以,该厂每天安排生产甲产品5吨,乙产品7吨时该厂日产值最大,最大日产值为124万元.7.答案为:32;解析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z=x +y 经过点A ⎝ ⎛⎭⎪⎫1,12时取得最大值,即z max =1+12=32.8.答案为:216 000;解析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么 ⎩⎪⎨⎪⎧1.5x +0.5y≤150,x +0.3y≤90,5x+3y≤600,x ≥0,y ≥0① 目标函数z=2 100x +900y.二元一次不等式组①等价于⎩⎪⎨⎪⎧3x +y≤30010x+3y≤900,5x +3y≤600,x ≥0,y ≥0.②作出二元一次不等式组②表示的平面区域(如图),即可行域.将z=2 100x +900y 变形,得y=-73x +z 900,平行直线y=-73x ,当直线y=-73x +z900经过点M 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600得M 的坐标(60,100).所以当x=60,y=100时,z max =2 100×60+900×100=216 000. 故生产产品A 、产品B 的利润之和的最大值为216 000元.9.答案为:13;解析:|x|+|y|≤2可化为⎩⎪⎨⎪⎧x +y≤2(x≥0,y ≥0),x -y≤2(x≥,y<0),-x +y≤2(x<0,y ≥0),-x -y≤2(x<0,y<0),作出可行域,为如图所示的正方形内部(包括边界),容易得到整点个数为13个.10.解:设“神十一”宇宙飞船搭载产品A ,B 的件数分别为x ,y ,最大收益为z ,则目标函数为z=80x +60y ,根据题意可知,约束条件为⎩⎪⎨⎪⎧20x +30y≤300,10x +5y≤110,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧2x +3y≤30,2x +y≤22,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,作出直线l :80x +60y=0,并平移直线l ,由图可知,当直线过点M 时,z 取得最大值,解⎩⎪⎨⎪⎧2x +3y =30,2x +y =22,得M(9,4),所以z max =80×9+60×4=960,即搭载A 产品9件,B 产品4件,可使得总预计收益最大,为960万元.11.解:设空调和冰箱的月供应量分别为x ,y 台,月总利润为z 元,则⎩⎪⎨⎪⎧3 000x +2 000y≤30 000,500x +1 000y≤11 000,x ,y ∈N *,z=600x +800y ,作出可行域(如图所示).因为y=-34x +z 800,表示纵截距为z 800,斜率为k=- 34的直线,当z 最大时z 800最大,此时,直线y=-34x +z800必过四边形区域的顶点.由⎩⎪⎨⎪⎧3 000x +2 000y =30 000,500x +1 000y =11 000,得交点(4,9), 所以x ,y 分别为4,9时,z=600x +800y=9 600(元).所以空调和冰箱的月供应量分别为 4台、9台时,月总利润最大,最大值为9 600元.12.解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W=5x +6y +3(100-x -y)=2x +3y +300. (2)约束条件为:⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y≥0,x ∈N ,y ∈N ,整理得⎩⎪⎨⎪⎧x +3y≤200,x +y≤100,x ∈N ,y ∈N.目标函数为W=2x +3y +300,如图所示,作出可行域,初始直线l 0:2x +3y=0,平移初始直线经过点A 时,W 有最大值, 由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50. 最优解为A(50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.。
2020年高中数学 人教A版 必修5 同步作业本《等差、等比数列的综合应用》(含答案解析)
2020年高中数学 人教A 版 必修5 同步作业本《等差、等比数列的综合应用》一、选择题1.数列a n =1n (n +1),其前n 项之和为910,则项数n 为( ) A .12 B .11 C .10 D .92.数列{a n }、{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( )A.13B.512C.12D.7123.数列{a n }的通项公式a n =1n +n +1,则该数列的前________项之和等于9.( ) A .99 B .98 C .97 D .964.数列12×5,15×8,18×11,…,1(3n -1)·(3n +2),…的前n 项和为( ) A.n 3n +2 B.n 6n +4 C.3n 6n +4 D.n +1n +25.已知数列{a n }的通项公式a n =log 2n +1n +2(n∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的正整数n( )A .有最大值63B .有最小值63C .有最大值31D .有最小值316.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln nC .2+nln nD .1+n +ln n二、填空题7.已知数列{a n }的通项公式为a n =log 2(n 2+3)-2,那么log 23是这个数列的第________项.8.下列命题中正确命题为________(填序号).①常数列一定是等比数列;②等比数列前n 项和S n =a 1(1-q n )1-q(其中a 1为首项,q 为公比); ③前n 项和S n 为n 的二次函数的数列一定是等差数列;④0不可能是任何等比数列的一项.9.数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1(n 为正奇数)2n -1(n 为正偶数),则它的前n 项和S n =________.10.在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+|a 3|+…+|a n |=________.三、解答题11.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3-1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n∈N *),求{b n }的通项公式b n .12.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧6n -5(n 为奇数),4n (n 为偶数),求S n .13.已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .答案解析1.答案为:D ;2.答案为:B ;解析:因为a n =(n +1)(n +2),所以b n =1a n =1(n +1)(n +2)=1n +1-1n +2, 所以S 10=⎝ ⎛⎭⎪⎫12×3+13×4+…+111×12=12-112=512.3.答案为:A ;解析:a n =1n +n +1=n +1-n (n +1-n )(n +1+n )=n +1-n , 所以S n =a 1+a 2+a 3+…+a n =(2-1)+(3-2)+…+(n +1-n)=n +1-1. 令n +1-1=9⇒n +1=100,所以n=99.4.答案为:B ;解析:因为1(3n -1)·(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2,得前n 项和 S n =13(12-15+15-18+18-111+…+13n -1-13n +2)=13⎝ ⎛⎭⎪⎫12-13n +2=n 6n +4.5.答案为:B ; 解析:a n =log 2n +1n +2,所以S n =a 1+…+a n =log 223+log 234+…+log 2n +1n +2 =log 2⎝ ⎛⎭⎪⎫23·34·…·n +1n +2=log 22n +2,令S n <-5,则log 22n +2<-5, 所以n +2>26=64,所以n>62,故n 的最小值为63.6.答案为:A ;解析:因为a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,所以a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n =ln(n +1)-ln n. 又a 1=2,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =2+[ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1)] =2+ln n -ln 1=2+ln n.7.答案为:3;解析:令a n =log 23⇒log 2(n 2+3)-2=log 23⇒n 2+3=12,所以n 2=9,n=3.8.答案为:④;9.答案为:⎩⎪⎨⎪⎧2n +1-13+n 2-n 2(n 为奇数),2n -13+n 2+n 2(n 为偶数);解析:易知数列{a n }的奇数项为以1为首项,4为公比的等比数列,偶数项是以3为首项,4为公差的等差数列.(1)当n 为奇数时,奇数项有n +12项,偶数项有n -12项, 所以S n =1-4n +121-4+(n -1)×32+n -12·⎝ ⎛⎭⎪⎫n -12-12·4=2n +1-13+n 2-n 2; (2)当n 为偶数时,奇数项、偶数项各有n 2项, 所以S n =1-4n 21-4+n 2×3+n 2⎝ ⎛⎭⎪⎫n 2-12×4=2n -13+n 2+n 2.10.答案为:2n -12; 解析:因为{a n }为等比数列,且a 1=12,a 4=-4, 所以q 3=a 4a 1=-8,所以q=-2,所以a n =12(-2)n -1, 所以|a n |=2n -2,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1-2n )1-2=2n -12.11.解:(1)由题意,得2a 2=a 1+a 3-1,即2a 1q=a 1+a 1q 2-1,整理得2q=q 2.又q≠0,解得q=2,所以a n =2n -1.(2)当n=1时,b 1=a 1=1;当n≥2时,nb n =a n -a n -1=2n -2,即b n =2n -2n ,所以b n =⎩⎪⎨⎪⎧1,n =1,2n -2n,n ≥2.12.解:①当n 为奇数时,S n =[1+13+…+(6n -5)]+(42+44+…+4n -1)=(1+6n -5)2·n +12+42(4n -1-1)42-1= (n +1)(6n -4)4+4n +1-1615=(n +1)(3n -2)2+4n +1-1615. ②当n 为偶数时,S n =[1+13+…+(6n -11)]+(42+44+…+4n -1+4n )=n (3n -5)2+4n +2-1615.13.解:(1)由题意知当n≥2时,a n =S n -S n -1=6n +5,当n=1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d=3,所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+c 3+…+c n ,得T n =3×[2×22+3×23+4×24+…+(n +1)×2n +1],2T n =3×[2×23+3×24+4×25+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(2n -1)2-1-(n +1)×2n +2=-3n·2n +2 所以T n =3n·2n +2。
2019学年人教版高中数学 必修五同步练习及答案1.1.1 正弦定理
(人教版)精品数学教学资料1.1.1 正弦定理一、选择题1.在ABC ∆中,10a =,60B =o ,45C =o ,则c =( )A .103+B .10(31)-C .10(31)+D .103 2.在ABC ∆中,下列关系式中一定成立的是 ( )A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥3. 在ABC ∆中,已知60A =o ,13a =,则sin sin sin a b c A B C++=++ ( ) A .833 B .2393 C .2633D .23 4. 在ABC ∆中,已知22tan tan a B b A =,则此三角形是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .直角或等腰三角形5. 在锐角ABC ∆中,已知4AB =u u u u r ,1AC =u u u u r ,3ABC S ∆=,则AB AC u u u r u u u r g 的值为( )A .2-B .2C .4±D .2±6. 在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且4a =,5b c +=, tan tan 33tan tan B C B C ++=g ,则ABC ∆的面积为 ( )A .34B .33C .334D .34二、填空题7.在ABC ∆中,若1b =,3c =,C =2π3,则a =________.8.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.三、解答题9.根据下列条件,解ABC ∆.(1)已知4b =,8c =,30B =o ,解此三角形;(2)已知45B =o ,75C =o ,2b =,解此三角形.10. 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,若2a =,4C π=,25cos 25B =, 求ABC ∆的面积S .1.1.1正弦定理 一、选择题1.B2.D3.B4.D5.B6.C二、填空题7.1 8. 1三、解答题9. 解:(1)由正弦定理得sin 8sin 30sin 14c B C b ===o由c b >知30150C <<o o ,得90C =o 从而60A =o ,2243a c b =-=(2)由180+=A B C +o 得60A =o ∵sin sin a b A B= ∴sin 2sin 606sin sin 45b A a B ===o o 同理sin 2sin 7531sin sin 45b Cc B ===+oo 10. 解:由2cos 2cos 12B B =-知43cos 2155B =⨯-= 又0B π<<,得24sin 1cos 5B B =-= sin sin[()]sin()A BC B C π∴=-+=+ 72sin cos cos sin 10B C B C =+=在ABC ∆中,由sin sin a c A C =知sin 10sin 7a C c A == 111048sin 222757S ac B ∴==⨯⨯⨯=.。
人教B版高中数学必修5同步章节训练题及答案全册汇编
人教B版高中数学必修5同步章节训练题及答案全册汇编高中数学人教B版必修5同步练习目录1.1.1《正弦定理》测试题 1.1.2《余弦定理》测试题 1.2《正余弦定理的应用》测试2.1《数列》同步练习 2.2.1《等差数列》例题解析2.2.2《等差数列前n项和》例题解析 2.3.1《等比数列》例题解析 2.3.1《等比数列》测试3.1.1《不等关系与不等式》测试题 3.1.2《不等式的性质》测试题 3.2《均值不等式》测试题 3.2《均值不等式》测试题3.3《一元二次不等式的解法》测试题 3.3《一元二次不等式的解法》测试题3.4《不等式的实际应用》测试题3.4《不等式的实际应用》测试题〔人教B版必修5〕 3.5.1《二元一次不等式〔组〕所表示的平面区域》测试题3.5.2《简单线性规划》测试题高中数学人教B版必修5同步练习1.1.1正弦定理测试题【能力达标】一、选择题1. 不解三角形,以下判断正确的选项是〔〕ooA. a=7,b=14,A=30,有两解.B. a=30,b=25,A=150,有一解.ooC. a=6,b=9,A=45,有两解.D. a=9,b=10,A=60,无解. 2.在?ABC中acosA=bcosB,那么?ABC是( ) A.等腰三角形 B.直角三角形C.等边三角形D.等腰或直角三角形3.在?ABC中,a=52,c=10,∠A=30,那么∠B等于〔〕oA.105B. 60C. 15D.105或154.在?ABC中,a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)的值是〔〕oo o oo1 B.0 C.1 D.? 25. 在?ABC中以下等式总成立的是〔〕A.A. a cosC=c cosAB. bsinC=c sinAC. absinC=bc sinBD. asinC=c sinA 6. 在ΔABC中,∠A=45,∠B=60,a=2,那么b=( ) A.6 B.26 C.36 D.46 7.在ΔABC中,∠A=45, a=2,b=2,那么∠B=〔〕00A.300 B.300或1500 C.600 D.600或1200 二、填空题8.在ΔABC中,a=8,B=1050,C=150,那么此三角形的最大边的长为。
高中数学练习册必修五答案
高中数学练习册必修五答案【练习一:函数的基本概念】1. 判断下列函数的定义域:- 函数 \( f(x) = \sqrt{x} \) 的定义域是 \( x \geq 0 \)。
- 函数 \( g(x) = \frac{1}{x} \) 的定义域是 \( x \neq 0 \)。
2. 确定下列函数的值域:- 函数 \( f(x) = x^2 \) 的值域是 \( [0, +\infty) \)。
- 函数 \( g(x) = 2x + 3 \) 的值域是 \( (-\infty, +\infty) \)。
【练习二:指数函数与对数函数】1. 计算下列指数函数的值:- \( 2^3 = 8 \)- \( 3^2 = 9 \)2. 求解下列对数函数的值:- \( \log_{10} 100 = 2 \)- \( \log_{2} 8 = 3 \)【练习三:三角函数】1. 根据给定角度求三角函数值:- \( \sin 30^\circ = \frac{1}{2} \)- \( \cos 45^\circ = \frac{\sqrt{2}}{2} \)2. 利用三角恒等式简化表达式:- \( \sin^2 x + \cos^2 x = 1 \)【练习四:不等式的解法】1. 解下列一元二次不等式:- \( x^2 - 4x + 3 > 0 \) 的解集是 \( x < 1 \) 或 \( x > 3 \)。
2. 解下列绝对值不等式:- \( |x - 2| < 1 \) 的解集是 \( 1 < x < 3 \)。
【练习五:数列】1. 根据数列的前几项求通项公式:- 数列 2, 4, 6, 8, ... 的通项公式是 \( a_n = 2n \)。
2. 计算等差数列的前 \( n \) 项和:- 等差数列 \( a_1 = 3, d = 2 \) 的前 5 项和是 \( 3 + 5 + 7 + 9 + 11 = 35 \)。
2020年高中数学 人教A版 必修5 同步作业本《基本不等式》(含答案解析)
2020年高中数学 人教A 版 必修5 同步作业本《基本不等式》一、选择题1.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x)B .x 2+1>2x C.≤1 D .x +≥21x2+11x2.若a≥0,b ≥0且a +b=2,则( )A .ab ≤B .ab ≥C .a 2+b 2≥2D .a 2+b 2≤312123.四个不相等的正数a ,b ,c ,d 成等差数列,则( )A.>B.<C.=D.≤a +d 2bc a +d 2bc a +d 2bc a +d 2bc 4.a ,b ∈R ,则a 2+b 2与2|ab|的大小关系是( )A .a 2+b 2≥2|ab|B .a 2+b 2=2|ab|C .a 2+b 2≤2|ab|D .a 2+b 2>2|ab|5.设f(x)=ln x ,0<a<b ,若p=f(),q=f ,r=(f(a)+f(b)),则下列关系式中正确的ab (a +b 2)12是( )A .q=r<pB .q=r>pC .p=r<qD .p=r>q6.若a >b >0,则下列不等式中总成立的是( )A.<<B.≥≥2ab a +b a +b 2ab a +b 22ab a +bab C.>> D.<<a +b 2ab 2ab a +b ab 2ab a +b a +b 2二、填空题7.设正数a ,使a 2+a -2>0成立,若t>0,则log a t____log a (填“>”“≥”“≤”或12t +12“<”).8.已知a ,b ∈R ,如果ab=1,那么a +b 最小值为_____;如果a +b=1,那么ab 最大值为_____.9.若0<a <b 且a +b=1,试判断,a 、b 、2ab 、a 2+b 2的大小顺序________.1210.已知a 、b 都是正实数,函数y=2ae x +b 的图象过点(0,1),则+的最小值是________.1a 1b三、解答题11.已知a ,b ,c 为正数,证明:++≥3.2b +3c -a a a +3c -2b 2b a +2b -3c 3c12.已知a ,b ,c 为不全相等的正实数,则abc=1.求证:++<++.a b c 1a 1b 1c13.设a ,b ,c 均为正数,且a +b +c=1.证明:(1)ab +bc +ac≤; (2)++≥1.13a2b b2c c2a答案解析1.答案为:C ;解析:对于A ,当x≤0时,无意义,故A 不恒成立;对于B ,当x=1时,x 2+1=2x ,故B不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,所以≤1成立,故选C.1x2+12.答案为:C ;解析:因为a 2+b 2≥2ab ,所以(a 2+b 2)+(a 2+b 2)≥(a 2+b 2)+2ab ,即2(a 2+b 2)≥(a+b)2=4,所以a 2+b 2≥2.3.答案为:A ;解析:因为a ,b ,c ,d 成等差数列,则a +d=b +c ,又因为a ,b ,c ,d >0且不相等,所以b +c >2,故>.bc a +d 2bc 4.答案为:A ;解析:因为a 2+b 2-2|ab|=(|a|-|b|)2≥0,所以a 2+b 2≥2|ab|(当且仅当|a|=|b|时,等号成立).5.答案为:C ;解析:因为0<a<b ,所以>,a +b 2ab 又因为f(x)=ln x 在(0,+∞)上为增函数,故f >f(),即q>p.(a +b 2)ab 又r=(f(a)+(b))=(ln a +ln b)=ln a + ln b=ln(ab)=f()=p.故p=r<q.选C.1212121212ab 6.答案为:C ;解析:a >b >0,>,<=.从而>>.a +b 2ab 2ab a +b 2ab 2ab ab a +b 2ab 2ab a +b7.答案为:≤;解析:因为a 2+a -2>0,所以a>1或a<-2(舍),所以y=log a x 是增函数,又≥,所以log a ≥log a =log a t.t +12t t +12t 128.答案为:2,;14解析:因为a ,b ∈R ,所以≥,所以a +b≥2=2.a +b 2ab ab 故当ab=1时,a +b 取最小值2,此时a=b=1.又当a +b=1时,≤=.所以ab≤.ab a +b 212149.答案为:a <2ab <<a 2+b 2<b ;12解析:因为0<a <b ,a +b=1,所以a <<b ①;2ab <a 2+b 2 ②12下面寻找②中数值在①中的位置.因为a 2+b 2>2()2=,a +b 212a 2+b 2=a·a +b 2<a·b +b 2=(1-b)b +b 2=b ,所以<a 2+b 2<b.12又2ab <2()2=,2ab >2×a=a ,a +b 21212所以a <2ab <.所以a <2ab <<a 2+b 2<b.121210.答案为:3+2;2解析:依题意得2ae x +b=2a +b=1,+=(2a +b)=3+≥3+2=3+2,1a 1b (1a +1b )(b a +2a b )b a ·2a b 2当且仅当=,即a=1-,b=-1时取等号,因此+的最小值是3+2.b a 2a b 2221a 1b 211.证明:左式=++=++-3(2b a +3c a -1)(a 2b +3c 2b -1)(a 3c +2b 3c -1)(2b a +a 2b )(3c a +a 3c )(3c 2b +2b 3c )≥2+2+2-3=3,2b a ·a 2b 3c a ·a 3c 3c 2b ·2b 3c当且仅当a 2=4b 2=9c 2,即a=2b=3c 时,等号成立.12.证明:因为 a ,b ,c 都是正实数,且abc=1,所以+≥2=2,1a 1b 1abc +≥2=2,1b 1c 1bca +≥2=2,1a 1c 1acb 以上三个不等式相加,得2≥2(++),(1a +1b +1c)a b c 即++<++.a b c 1a 1b 1c 13.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca.得a 2+b 2+c 2≥ab +bc +ca.由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca=1.所以3(ab +bc +ca)≤1,即ab +bc +ca≤.13(2)因为+b≥2a,+c≥2b,+a≥2c.a2b b2c c2a故+++(a +b +c)≥2(a+b +c),即++≥a +b +c.a2b b2c c2a a2b b2c c2a所以++≥1.a2b b2c c2a。
高二数学必修同步训练题必修5
高二数学必修同步训练题必修5
C.52 n mile
D.56 n mile
答案 D
解析在△ABC中,C=180-60-75=45.
由正弦定理得:BCsin A=ABsin B
BCsin 60=10sin 45
解得BC=56.
4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,ACB=45,CAB=105后,就可以计算A、B两点的距离为() A.502 m B.503 m
C.252 m
D.2522 m
答案 A
解析由题意知ABC=30,由正弦定理ACsinABC=ABsinACB,AB=ACsinACBsinABC=502212=502 (m).
5.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15,与灯塔S相距20海里,随后货轮按北偏西30的方向航行3 0分钟后到达N处,又测得灯塔在货轮的东北方向,则货轮的速度为()
A.20(6+2) 海里/小时
B.20(6-2) 海里/小时
C.20(6+3) 海里/小时
D.20(6-3) 海里/小时
答案 B
要多练习,知道自己的不足,对大家的学习有所帮助,以下是查字典数学网为大家总结的2019年高二数学必修同步训练题,希望大家喜欢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)#5&'
!
&
槡槡 解析设 则 由正&
(!**+!! ")## "*#*#! &
弦定理得"#)$'*##"*#$'#*"#$)#'34"##"*#$'#
& & &
由 为锐角三角形得 *3)4'"##"*#$'#"#$##*'#!*3)4"'##*!
& & &
%)*'
&'#*##5&'*&'##
+!
为正三角形 &%10/
( ")/1#!6&'-%&'- &
基础达标 5&'-!#+&'%!")1/#!*&'-!!
设 则 槡 在 中由正弦 解析由 得 '/#2 )/# +,2 %)1/
&
& &
!./.
& *!/.!
)5*5'#!9*9+ )#+&'
定理得 槡 由正弦定理得 "#1$+/&'#"#$!+*,&'2-! 在 中 槡 %0/' 2#0/"#$!#1/"#$!
$*#"*%+*-*"+34"*!
&
又 要点突破 $*#"+("*%+*-"+#"+
& &
教材导学 ("-+*#&("#+!
&
% 6!). 6!)#!!!%!
(!
!
*
又& "*#%&'( ")#%&'! 拓展训练
当 即 时 取最大 34"*##-! ##5&' 7!8* %7!9*
值 !+
& &
解 由 且 %!
!
"'-
")
#
*
"'% ") #-
& &
当 即 或 时 &
"*()#
(
-**
& &
取最小值 &
槡 ("#$)#"#$ (-**
#
* *
34"**
-"#$**
槡 槡 槡 (1/#
+
#
+!
槡 槡 解析 槡 *"#$!% +34"! 2"#$!%"
& &
*#%&''#5&'!
"5$5+#"#$)
& & &
5"#$*5"#$'#
! *
5
*+5!:!9
+9*!
& & +!/.!
&
&4# !*$+"#$)#
+* (
! *
.*0
+0
槡其中 槡 槡 或 (1/'
解析由正弦定理得 设 *!/.!
%"#($#++ "#*&&
槡 槡 !,
! (
*
#
!) (
槡!)
槡 ("#$)#""+#$'#
( *
#
6!)!
故 为锐角 &"#+(")#"' ")
槡 槡槡 (34")# !,"#$*)# !,
!) 6
*
#
2 6
(34")
-'#34")34"'%"#$)"#$'#
得到 "#$*'
"* ,*
%$,**
#+,**
("*
%$*
#+*(
%)*'
& & &
!
数解学由探已究知得 设 或 舍去
"' #5&'") #+&'"* #%&'
& &
( "'# %
&
)%
则 槡 "/0'#! "0/'#5&'-!!
& &
($#
*
(4%)*'
#
!*"+#*
&
槡 (34") %*#34")34"* -"#$)"#$* #*)). 槡 槡槡 槡 +!&!&- )). !!&&# **!
*&&# ")% "*#( ")% "*# (
槡 ("'#+(("#$'# **! 由 得槡 槡 槡即 "#"$)#"#$$*#"#+$' )"# !&$# *+ " 槡 槡 # *$+# )$! 又 槡 即槡 槡 &"-$# *,! *$-$# *,!($#!" 槡 槡 # *+# )!
& &
&
解析由正弦定理得 +!()'!!
"#$ * #$"#"$) #
& &
槡槡槡槡又 (
*0
+ *#
(+
**!
$#"(*#)(*#()'!
& & & & &
证明设 则 &
(!
"#"$)#"#$$*#"#+$'#,,$&
"#$)#
& &
代入 "
,
"#$*#
$ ,
"#$'
#
+ ,
!
& "#$*) %"#$** # &
Hale Waihona Puke -!+"#*$
"# *+$
*$* "*
-!:
*$* (5$*
-!:
2 *
!
+!;.!
$34"'%+34"*#""#$)
*!
正弦定理可得"#$*34"'%"#$'34"*#"#$)"#$) &
故 故三角形为直角三角形 *"#$*%'#"#$*)*"#$)#"#$*)*"#$)
#!
& &
! "3*4"#"$**#$3*4"#"$)) "#*3"#$)$#*3"#$*3
& &
-")-"*#5&'("#$'#"#$5&'#!!
& )!
"#$) % "#$* #
& & &
"#$)3"#4$"))%"#$*3"#4$"**#34")%34"*
& &
("#$)-34")#34"*-"#$*
解由题意得 即 槡 槡注意
!-3"#4$"*)#*""##$$*'
"#$)34"*%34")"#$* 34")"#$*
34"*
到 是锐角三角形故 #*""##$$*'34""#)$"'#$*#*""##$$*'(34")#!*!
又 解析由正弦定理知 ")(&(
")#
+
!
又 又知 所以 故 "#"$)#"#+$'
参考答案及解题思路
第一章!解三角形
!! 正 弦 定 理 和 余 弦 定 理
第!课时!正弦定理!
自学导引 略! 要点突破
教材导学
& 为直角三角形!
& &
拓展训练
& & & & &