材料性能 第7章 材料在高温下的力学性能

合集下载

1_第07章 材料性能学-课后习题-7-学生-答案

1_第07章 材料性能学-课后习题-7-学生-答案

第七章材料的高温力学性能1、解释下列名词[1]蠕变:材料在长时间的恒温、恒应力作用下,即使应力小于屈服强度,也会缓慢地产生塑性变形的现象称为蠕变。

[2]蠕变曲线:通过应力、温度、时间、蠕变变形量和变形速率等参量描述蠕变变形规律的曲线。

[3]蠕变速度:通常指恒速(稳定)蠕变阶段的速度。

[4]持久塑性:持久塑性是指材料在一定温度及恒定试验力作用下的塑性变形。

用蠕变断裂后试样的延伸率和断面收缩率表示。

[5]持久强度:在给定温度T下,恰好使材料经过规定的时间发生断裂的应力值。

[6]蠕变脆性:由于蠕变而导致材料塑性降低以及在蠕变过程中发生的低应力蠕变断裂的现象。

[7]高温应力松弛:恒定应变下,材料内部的应力随时间降低的现象。

[8]等强温度:使晶粒与晶界两者强度相等的温度。

[9]蠕变极限:高温长期载荷作用下材料对塑性变形抗力的指标。

[10]应力松弛:零件或材料在总应变保持不变时,其中的应力随着时间延长而自行降低的现象。

[11]应力松弛曲线:给定温度和总应变条件下,应力随着时间的变化曲线。

[12]松弛稳定性:金属材料抵抗应力松弛的性能。

[13]高温疲劳:高于再结晶温度所发生的疲劳。

[14]热暴露(高温浸润):材料在高温下即使不受力,长时间处于高温条件下也可使其力学性能发生变化,通常导致室温和高温强度下降,脆性增加。

原因是材料的组织发生变化、环境中的氧化和腐蚀导致力学性能发生变化。

2、问答题[1]简述材料在高温下的力学性能的特点。

答:材料在高温下不仅强度降低,而且塑性也降低:载荷作用时间越长,引起变形的抗力越小;应变速率越低,作用时间越长,塑性降低越显著,甚至出现脆性断裂;变形速度的增加而等强温度升高。

[2]与常温下力学性能相比,金属材料在高温下的力学行为有哪些特点? 造成这种差别的原因何在?答:1 首先,材料在高温和恒定应力的持续作用下将发生蠕变现象;2材料在高温下不仅强度降低,而且塑性先增加后降低。

3 应变速率越低,载荷作用时间越长,塑性降低得越显著。

材料科学基础第七章(1)

材料科学基础第七章(1)
• 7.1.2.3 内应力的变化:在回复阶段可部分消除,在再结晶阶段全部消除。
• 7.2 回复
• 7.2.1 回复过程中微观结构的变化机制:回复指冷变形金属加热时尚未发生 微米量级的组织变化前的微观结构及性能的变化过程,分低温回复,中温回 复和高温回复三种。
• 7.2.1.1 低温回复:冷变形金属在0.1Tm~0.3Tm温度范围内所产生回复称为低 温回复。低温时原子活动能量有限,主要局限于点缺陷运动。通过空位迁移 至晶界、位错或与间隙原子结合而消失,空位浓度显著下降。
• 冷变形金属开始发生再结晶的最低温度称为再结晶温度。可用金相法、硬度 法和X射线衍射法测定。
• 金相法:以显微镜观察到第一个新晶粒或晶界凸出形核而出现锯齿状边缘的 退火温度为再结晶温度。
• 硬度法:以硬度-退火温度曲线上硬度开始显著降低或软化50%的温度为再结 晶温度。
• 为了便于比较和使用,通常规定冷变形量大于70%的金属在1小时内能够完成 再结晶(体积分数>0.95)的最低温度为再结晶温度。
(7-3)
• 如果将同样的冷变形金属的性能在不同温度下回复到同样程度,则有:
• c0t1exp(-Q/RT1)= ln(x0/x)=c0t2exp(-Q/RT2)
• 即: t1/t2=exp[-Q(1/T2-1/T1)/R]
(7-4)
• 此式为用实验数据导出工艺参数的依据。
• 7.2.3 去应力退火:冷变形金属在回复阶段能消除大部分内应力,又能保持 冷变形的硬化效果,因此回复也称为去应力退火。
• 图7-11是经98%强冷轧的纯铜在不同温度下的等温 再结晶动力学曲线。等温下的再结晶速度开始很
小,随再结晶体积分数φV的增大而增加,并在 0.5处达到最大,然后又逐渐减小。具有典型的形

超高温材料力学

超高温材料力学

这本书的理论部分做得非常出色。作者深入浅出地介绍了材料力学的基本原理, 以及这些原理在超高温环境下的变化和扩展。对于非唯象理论表征模型的缺乏, 作者也进行了深入的探讨,提出了一些可能的解决方案。这让我对材料力学的 理解更加深入,也让我对超高温环境下材料性能的变化有了更加清晰的认识。
实验部分是这本书的另一大亮点。作者详细介绍了他们在超高温环境下对材料 进行的各种实验,包括材料的制备、力学测试、数值分析等。这些实验结果不 仅验证了作者的理论预测,也为材料的实际应用提供了宝贵的依据。
以上只是《超高温材料力学》这本书的部分精彩摘录。这本书的深度和广度都 使得它成为材料科学和工程领域的宝贵资源。无论是科研人员、工程师还是技 术人员,都能从这本书中获得新的视角和思路,从而推动材料科学和工程的发 展。
阅读感受
在我阅读《超高温材料力学》这本书的过程中,我深深地被作者对于材料超高 温力学性能的深入理解和精湛的分析所吸引。这本书不仅为我揭示了材料在超 高温环境下的诸多特性,更让我领略到了科研工作的严谨、细致与勇气。
超高温材料力学
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
失效
力学
高温
韧性
实验
强度
疲劳
超高温
材料
环境 重要
特性
材料力学
影响
材料力学
介绍
内容摘要
《超高温材料力学》是一本关于高温环境下材料力学行为的著作,其内容涵盖了高温材料的基本 特性、高温力学实验技术、高温材料的强度与韧性、高温蠕变与疲劳、高温材料失效分析等方面 的知识。 本书介绍了高温材料的基本特性,包括材料的热膨胀、热传导、热力学特性等。这些特性在高温 环境下对材料的力学行为有着重要的影响,对于理解高温环境下材料的性能具有重要意义。 本书详细介绍了高温力学实验技术,包括高温拉伸、高温压缩、高温弯曲等实验方法。这些实验 方法可以用来测定高温环境下材料的力学性能,为设计和应用高温材料提供了重要的依据。 接着,本书对高温材料的强度与韧性进行了深入的探讨。在高温环境下,材料的强度和韧性会受 到明显的影响。本书详细讨论了影响高温材料强度和韧性的因素,以及如何通过改变材料的成分 和结构来提高高温材料的强度和韧性。

高温及环境下的材料力学性能

高温及环境下的材料力学性能

需要加强跨学科合作,将材 料科学、物理学、化学等多 学科理论和方法结合起来, 深入研究材料在高温及环境 下的力学性能,推动相关领 域的发展。
需要加强实验研究和理论分 析的结合,通过建立更为精 准的力学模型和理论框架, 更好地解释和预测材料在高 温及环境下的力学行为,为 工程应用提供更为可靠的依 据。
探讨温度、湿度、气氛等环境因素对材料力学性能的影响机制。
材料失效与可靠性评估
分析高温及环境下材料的失效模式和机理,评估材料的可靠性和使 用寿命。
研究目的和意义
揭示高温及环境因素对材料力学性能的作用机制
通过深入研究高温及环境因素对材料力学性能的影响,有助于深入理解材料在不同环境 下的行为和变化规律。
疲劳性能的降低可能与裂纹扩展速率增加 、应力集中等因素有关。
03
02
材料在高温和环境下的力学性能变化主要受 微观结构、相变、热膨胀等因素影响。
04 结论
材料在高温和环境下的力学性能表现出明 显的变化,需要特别关注其应用安全性。
05
06
对材料的微观结构和相变行为进行深入研 究有助于理解其高温力学性能。
材料需具备足够的强度 和韧性,以承受高温下
的各种应力。
环境因素下材料的优化设计
环境适应性
根据使用环境的特点,如温度、湿度、压力 等,对材料进行优化设计。
耐腐蚀性
通过表面处理、合金化等方法提高材料的耐 腐蚀性能。
疲劳性能
提高材料的抗疲劳性能,以适应周期性变化 的应力或应变。
轻量化设计
在满足性能要求的前提下,尽量减轻材料的 重量。
温度对材料硬度和韧性的影响
硬度
随着温度升高,材料硬度通常会降低 ,因为高温会导致原子或分子的振动 增加,使得材料变软。

材料在高温下的力学性能(蠕变、松弛)

材料在高温下的力学性能(蠕变、松弛)

第7章 材料在高温下的力学性能7.1 材料在高温下力学性能的特点有许多机件是在高温下工作的,如高压锅炉,蒸汽轮机、燃气轮机、以及化工厂的反应容器等,对于这些机件的性能要求,就不能以常温下的力学性能来衡量。

材料在高温下的力学性能明显地不同于室温。

首先,材料在高温将发生蠕变现象。

即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。

这样,材料在高温下的强度便与载荷作用的时间有关了。

载荷作用的时间越长,引起一定变形速率(如)或变形量的形变抗力(蠕变极限)以及断裂抗力(持久强度)就越低。

粗略地说,发生蠕变现象的温度,对金属材料约为T>0.3-0.4TM ;(TM为材料的熔点以绝对温度K计);对陶瓷约为T>0.4-0.5TM ;对高分子材料为T>Tg,Tg为玻璃化温度,多数高分子材料在室温下就发生蠕变。

由于蠕变的产生,我们就不能笼统地说材料在某一高温下其强度是多少,因为高温强度与时间这一因素有关。

而材料在常温下的强度是不考虑时间因素的。

除非试验时加载的应变速率非常高。

材料在高温下不仅强度降低,而且塑性也降低。

应变速率越低,载荷作用时间越长,塑性降低得越显著。

和蠕变现象相伴随的还有高温应力松驰。

一个紧固螺栓在高温长时间作用下,其初始预紧力逐渐下降,这种现象也是由蠕变造成的。

另外,蠕变还会产生疲劳损伤,使高温疲劳强度下降,为此,必须研究蠕变和疲劳的交互作用。

材料在高温下的力学性能特点都是和蠕变过程紧密相连的。

第一,材料在变形时首先总是引起形变强化,蠕变之所以能发生,必然还伴随着一个变形的软化过程,这个软化过程就是高温回复。

第二,蠕变的变形机制必然与在常温下的不同。

材料在常温下的变形可通过位错的滑动产生滑移和孪晶两种变形型式。

而在高温下位错还可通过攀移,使位错遇到障碍时作垂直于滑移面的运动,如图7-0所示。

这样位错便不会阻塞在障碍面前,而使得变形能继续下去,这就是一个变形的软化过程。

可以粗略地说,蠕变就是位错的滑移和攀移交替进行的结果。

材料在高温条件下的力学性能

材料在高温条件下的力学性能
7
蠕变变形机制及断裂机理
高温下的位错热激活主要是刃型位错的攀移,模型见下图:
8
蠕变变形机制及断裂机理 (2)扩散蠕变
认为蠕变是高温下大量原子
与空位定向移动造成的:
承受拉应力(A、B晶界)的晶界, 空位浓度增加; 承受压应力(C、D晶界)的晶界, 空位浓度减小。 晶体内空位从受拉晶界向受压晶 界迁移,原子朝相反方向运动, 使得晶体伸长--扩散蠕变。
分子运动
宏观力学性能 强烈地依赖于温度和外力作用时间
29
聚合物的黏弹性与蠕变
虎克定律 Hooke’s law
E
弹性模量 E
Elastic modulus
应变在外力的 瞬时达到平衡 值,除去应力 时,应变瞬时 回复。
形变对时间不存在依赖性
Ideal elastic solid 理想弹性体
30
持久强度极限表示方法:

3
t
--在规定温度(t)下,达到规定的持续时间τ抵抗断裂 的最大应力。
若σ>300 MPa或τ>1000 h,试件均发生断裂。
1700 300Mpa 10
表示材料在700℃经1000小时后发生断裂的应力(即持久强度极 限)为300MPa。
金属高温力学性能指标 (3)持松弛稳定性
材料力学性能
第 7章 材料在高温条件下的力学性能
材料与机电学院 艾建平 E-mail: ai861027@
内容提纲
7.1 材料在高温下力学性能特点
7.2 蠕变的宏观规律及蠕变机制
7.3 金属高温力学性能指标
7.4 影响金属高温力学性能的主要因素
7.5 金属蠕变与疲劳的交互作用
聚合物的黏弹性与蠕变
牛顿定律 Newton’s law

材料力学性能习题及解答库

材料力学性能习题及解答库

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。

4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。

5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。

6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。

韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。

9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。

10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。

穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。

11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。

二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。

2、σr、σ0.2、σs: σr :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

σ0.2:表示规定残余伸长率为0.2%时的应力。

σs:表征材料的屈服点。

3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。

4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。

材料性能学全部复习资料

材料性能学全部复习资料

第一章材料单向静拉伸的力学性能1、各种材料的拉伸曲线:曲线1:淬火、高温回火后的高碳钢曲线2:低碳钢、低合金钢曲线3:黄铜曲线4:陶瓷、玻璃等脆性材料曲线5:橡胶类高弹性材料曲线6:工程塑性2、拉伸曲线的变形过程:拉伸开始后试样的伸长随力的增加而增大。

在P点以下拉伸力F合伸长量ΔL呈直线关系。

当拉伸力超过F p后,曲线开始偏离直线。

拉伸力小于F e时,试样的变形在卸除拉力后可以完全恢复,因此e点以内的变形为弹性变形。

当拉伸力达到F A后,试样便产生不可恢复的永久变形,即出现塑性变形。

在这一阶段的变形过程中,最初试样局部区域产生不均匀的屈服塑性变形,曲线上出现平台式锯齿,直至C点结束。

接着进入均匀塑性变形阶段。

达到最大拉伸力F b时,试样再次出现不均匀塑性变形,并在局部区域产生缩颈。

最后在拉伸力Fk处,试样断裂。

在整个拉伸过程中变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀塑性变形四个阶段。

3、金属、陶瓷及高分子材料性能的差异及机制1)、弹性变形:a、金属、陶瓷或结晶态的高分子聚合物:在弹性变形范围内,应力和应变之间可以看成具有单值线性关系,且弹性变性量都较小。

橡胶态的高分子聚合物:在弹性变形范围内,应力和应变之间不呈线性关系,且变性量较大。

b、材料产生弹性变性的本质:构成材料的原子(离子)或分子自平衡位置产生可逆位移的反映。

金属、陶瓷类晶体材料:处于晶格结点的离子在力的作用下在其平衡位置附近产生的微小位移。

橡胶类材料:呈卷曲状的分子链在力的作用下通过链段的运动沿受力方向产生的伸展。

2)、塑性变形:a、金属材料的塑性变形机理:晶体的滑移和孪生i、滑移:金属晶体在切应力作用下,沿滑移面和滑移方向进行的切变过程。

滑移面和滑移反向的组成成为滑移系。

滑移系越多,金属的塑性越好,但滑移系的多少不是决定塑性好坏的唯一因素。

金属晶体的滑移面除原子最密排面外,还受到温度、成分和预先变形程度等的影响。

塑变宏观特征:单晶体的滑移塑变微观特征: 原子面在滑移面上滑移,并非某原子面的整体运动,而是借助位移运动来实现,结果出现滑移台阶。

材料性能学课后习题与解答

材料性能学课后习题与解答

绪论1、简答题什么是材料的性能包括哪些方面提示材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现;包括错误!力学性能拉、压、、扭、弯、硬、磨、韧、疲错误!物理性能热、光、电、磁错误!化学性能老化、腐蚀;第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质;塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象;弹性极限:弹性变形过度到弹-塑性变形屈服变形时的应力;弹性比功:弹性变形过程中吸收变形功的能力;包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力弹性极限或屈服强度增加;反向加载,规定残余应力降低的现象;弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力;实质是产生100%弹性变形所需的应力;滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能;内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗;韧性:材料断裂前吸收塑性变形功和断裂功的能力;超塑性:在一定条件下,呈现非常大的伸长率约1000%而不发生缩颈和断裂的现象;韧窝:微孔聚集形断裂后的微观断口;2、简答1 材料的弹性模量有那些影响因素为什么说它是结构不敏感指标解:错误!键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然;错误!晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性;错误!化学成分,错误!微观组织错误!温度,温度升高,E下降错误!加载条件、负载时间;对金属、陶瓷类材料的E没有影响;高聚物的E随负载时间延长而降低,发生松弛;2 金属材料应变硬化的概念和实际意义;解:材料进入塑性变形阶段后,随着变形量增大,形变应力不断提高的现象称为应变硬化;意义错误!加工方面,是金属进行均匀的塑性变形,保证冷变形工艺的顺利实施;错误!应用方面,是金属机件具有一定的抗偶然过载能力,保证机件使用安全;错误!对不能进行热处理强化的金属材料进行强化的重要手段;3 高分子材料的塑性变形机理;解:结晶高分子的塑性变形是由薄晶转变为沿应力方向排列的微纤维束的过程;非晶高分子材料则是在正应力下形成银纹或在切应力下无取向的分子链局部转变为排列的纤维束的过程;4 拉伸断裂包括几种类型什么是拉伸断口三要素如何具体分析实际构件的断裂提示:参考课件的具体分析实例简单作答解:按宏观塑性变形分为脆性断裂和韧性断裂;按裂纹扩展可分为穿晶断裂和沿晶断裂;按微观断裂机理分为解理断裂和剪切断裂;按作用力分为正断和切断;拉升断口的三要素:纤维区、放射区和剪切唇;对实际构件进行断裂分析首先进行错误!宏观检测:目测构件表面外观;低倍酸洗观察;宏观断面分析;错误!扫描电镜分析错误!X射线能谱分析错误!金相分析错误!硬度及有效硬化层测定; 3、计算: 1 已知钢的杨氏模量为210GPa,问直径,长度120mm 的线材承受450N 载荷时变形量是多少 若采用同样长度的铝材来承受同样的载荷,并且变形量要求也相同,问铝丝直径应为多少E Al =70GPa 若用WE=388 GPa 、钢化玻璃E=345MPa 和尼龙线E=呢解:已知:E=210GPa , d= , 1L =120mm , F=450N ;/F S σ=ε/L L ε∴=∆ 164.5L ∴∆=∴ 2.5Al d mm ==∴ 2.5W d mm =∴ 2.5d d mm ==钢化∴ 2.5d d mm ==尼龙 2 ,直径13mm,实验后将试样对接起来后测量标距81mm,伸长率多少若缩颈处最小直径, 断面收缩率是多少解:已知:050L mm = 013d mm = 81K L mm = 6.9K d mm =∴断后伸长率∴断面收缩率 第二章 其它静载下力学性能 1、名词解释: 应力状态软性系数 剪切弹性模量 抗弯强度 缺口敏感度 硬度解:应力状态软性系数:不同加载条件下材料中最大切应力与正应力的比值;剪切弹性模量:材料在扭转过程中,扭矩与切应变的比值;缺口敏感度:常用试样的抗拉强度与缺口试样的抗拉强度的比值;NSR硬度:表征材料软硬程度的一种性能;一般认为一定体积内材料表面抵抗变形或破裂的能力;2、简答 1 简述硬度测试的类型、原理和优缺点至少回答三种解:布氏硬度、洛氏硬度、维氏硬度、肖氏硬度;布氏硬度:原理是用一定大小的载荷,把直径为D的淬火钢球或硬质合金球压入试样表面,保持规定时间后卸载载荷,测量试样表面的残留压痕直径d,求压痕的表面积;将单位压痕面积承受的平均压力规定为布氏硬度;优点是压痕面积大反映较大区域内各组成相的平均性能,适合灰铸铁、轴承合金测量,实验数据稳定,重复性高;缺点是不宜在成品上直接检验,硬度不同要更换压头直径D和载荷F,压痕直径测量较麻烦;洛氏硬度:原理是通过测量压痕深度值来表示硬度;优点是采用不同的标尺,可以测量各种软硬不同和厚薄不一样的材料的硬度,压痕小,可对工件直接进行检验,操作简便迅速;缺点是压痕小,代表性差,重复性差、分散度大,不同标尺的硬度值不能直接进行比较,不能互换;不宜在极薄的工件上直接进行检验;肖氏硬度:原理是将具有一定质量的带有金刚石或合金钢球的重锤从一定高度落向试样表面,用重锤的回落高度来表征材料的硬度;优点是使用方便,便于携带,可测现场大型工件的硬度;缺点是实验结果受人为因素影响较大,测量精度低;2 简述扭转实验、弯曲实验的特点渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是什么解:扭转实验的特点是错误!扭转实验的应力状态软性系数较拉伸的应力状态软性系数高;可对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验; 错误!扭转实验时试样截面的应力分布为表面最大;错误!圆柱试样在扭转时,不产生缩颈现象,塑性变形始终均匀;可用来精确评定拉伸时出现缩颈的高塑性材料的形变能力和变形抗力;错误!扭转时正应力与切应力大致相等,可测定材料的切断强度;弯曲试验的特点是:错误!弯曲加载时受拉的一侧的应力状态基本与静拉伸相同,且不存在试样拉伸时试样偏斜造成对实验结果的影响;可以用来由于太硬而不好加工拉伸试样的脆性材料的断裂强度;错误!弯曲试验时,截面上应力分布表面最大;可以比较和评定材料表面处理的质量;错误!塑性材料的F—fmax 曲线最后部分可任意伸长;渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是扭转实验;3 有下述材料需要测量硬度,试说明选用何种硬度实验方法为什么a. 渗碳层的硬度分布,b. 淬火钢,c. 灰口铸铁,d. 硬质合金,e. 仪表小黄铜齿轮,f. 高速工具钢,g. 双相钢中的铁素体和马氏体,h. Ni基高温合金,i. Al合金中的析出强化相,j. 5吨重的大型铸件,k. 野外矿物解:a、e、g、i使用维氏硬度;b、c、d、f、h可使用洛氏硬度;b、c可使用布氏硬度;j使用肖氏硬度;k使用莫氏硬度;第三章冲击韧性和低温脆性1、名词解释:冲击韧度冲击吸收功低温脆性韧脆转变温度迟屈服解:冲击韧度:一次冲断时,冲击功与缺口处截面积的比值;冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功;低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态;韧脆转变温度:材料在某一温度t下由韧变脆,冲击功明显下降;该温度即韧脆转变温度;迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬间并不屈服,需在该应力下保持一段时间后才屈服的现象;2、简答1 缺口冲击韧性实验能评定哪些材料的低温脆性哪些材料不能用此方法检验和评定提示:低中强度的体心立方金属、Zn等对温度敏感的材料,高强度钢、铝合金以及面心立方金属、陶瓷材料等不能解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性;面心立方金属及合金如氏体钢和铝合金不能用此方法检验和评定;2 影响材料低温脆性的因素有哪些解:错误!晶体结构,体心立方存在低温脆性,面心立方及其合金一般不存在低温脆性;错误!化学成分,间隙溶质原子含量增加,韧脆转变温度提高;错误!显微组织,细化晶粒课是材料韧性增加;金相组织也有影响,低强度水平时,组织不同的刚,索氏体最佳;错误!温度,在某一范围内碳钢和某些合金可能出现蓝脆;错误!加载速率,提高加载速率韧脆转变温度提高;错误!试样形状和尺寸,缺口曲率半径越小,韧脆转变温度越高; 3、计算: 某低碳钢的摆锤系列冲击实验列于下表,a. 绘制冲击功-温度关系曲线;b. 试确定韧脆转变温度; 解:有K A —t 图知,20NDT =-℃ FTP=40℃c. 要为汽车减震器选择一种钢,它在-10℃时所需的最小冲击功为10J,问此种钢适合此项应用么 解:c:此种钢不适合;第四章 断裂韧性1、名词解释: 应力场强度因子 断裂韧度 低应力脆断 解:应力场强度因子:反映裂纹尖端应力场强度的参量;断裂韧度:当应力场强度因子增大到一临界值,带裂纹的材料发生断裂,该临界值称为断裂韧性;低应力脆断:在材料存在宏观裂纹时,在应力水平不高,甚至低于屈服极限时材料发生脆性断裂的现象; 2、简答 a. 格里菲斯公式计算的断裂强度和理论断裂强度解:理论强度m σ=格里菲斯断裂强度g σ= b. Kl 和KlC 的异同解:I K 是力学度量,它不仅随外加应力和裂纹长度的变化而变化,也和裂纹的形状类型,以及加载方式有关,但它和材料本身的固有性能无关;而断裂韧性IC K 则是反映材料阻止裂纹扩展的能力,因此是材料本身的特性;c. 断裂韧性的影响因素有哪些如何提高材料的断裂韧性解:错误!外因,材料的厚度不同,厚度增大断裂韧性增大,当厚度增大到一定程度后断裂韧性稳定;温度下降断裂韧性下降,应变速率上升,断裂韧性下降;错误!内因;金属材料,能细化晶粒的元素提高断裂韧性;形成金属化合物和析出第二相降低断裂韧性;晶粒尺寸和相结构,面心立方断裂韧性高,奥氏体大于铁素体和马氏体钢;细化晶粒,断裂韧性提高;夹杂和第二相,脆性夹杂和第二相降低断裂韧性,韧性第二相提高断裂韧性;提高材料的断裂韧性可以通过错误!亚温淬火错误!超高温淬火错误!形变热处理等方法实现; 3、计算: a. 有一材料,模量E =200GPa, 单位面积的表面能γS =8 J/m 2, 试计算在70MPa 的拉应力作用下,该裂纹的临界裂纹长度若该材料裂纹尖端的变形塑性功γP =400 J/m 2,该裂纹的临界裂纹长度又为多少利用格里菲斯公式和奥罗万修正公式计算解:由格里菲斯公式得由奥罗万修正公式得 b. 已知α-Fe 的100晶面是解理面,其表面能是2 J/m 2,杨氏模量E =200 GPa,晶格常数a 0=,试计算其理解:m σ==c. 断裂韧度66MPa ·m 1/2,用这种材料制造飞机起落架,最大设计应力为屈服强度的70%,若可检测到的裂纹长度为,试计算其应力强度因子,判断材料的使用安全性;提示:假设存在的是小的边缘裂纹,采用有限宽板单边直裂纹模型,2b>>a; 若存在的是穿透裂纹,则应用无限大板穿透解:错误!^61/21.12 1.120.7210010145.9I K MPa m ==⨯⨯⨯=⋅第五章疲劳性能1、名词解释:循环应力贝纹线疲劳条带疲劳强度过载持久值热疲劳解:循环应力:周期性变化的应力;贝文线:疲劳裂纹扩展区留下的海滩状条纹;疲劳条带:略呈弯曲并相互平行的沟槽状花样,与裂纹扩展方向垂直,疲劳断裂时留下的微观痕迹;疲劳强度:指定疲劳寿命下,材料能够承受的上限循环应力;过载持久值:材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次;热疲劳:机件在由温度循环变化产生的循环热应力及热应变作用下,发生的疲劳;2、简答a. 比较金属材料、陶瓷材料、高分子材料和复合材料疲劳断裂的特点解:金属材料的裂纹扩展分两个阶段错误!沿切应力最大方向向内扩展错误!沿垂直拉应力方向向前扩展;疲劳断口一般由疲劳源、疲劳区、瞬断区组成;有贝文线宏观和疲劳条带微观;陶瓷材料裂纹尖端不存在循环应力的疲劳效应,裂纹同样经历萌生、扩展和瞬断过程;对材料的表面缺陷十分敏感,强烈依赖于K、环境、成分、组织结构,不易观察到疲劳贝文线和条带, I没有明显的疲劳区和瞬断区;高分子材料在高循环应力作用下出现银纹,银纹转变为裂纹并扩展,导致疲劳破坏;低应力条件下,疲劳应变软化;分子链间剪切滑移产生微孔洞,随后产生宏观裂纹;循环应力作用下温度升高,产生热疲劳失效;复合材料有多种损伤形式,如界面脱落、分层、纤维断裂等,不会发生瞬时的疲劳破坏,较大应变会使纤维基体变形不协调引起开裂,形成疲劳源;疲劳性能和纤维取向有关;b. 疲劳断口宏观断口和微观断口分别有什么特征解:宏观断口有三个特征区:疲劳源、疲劳裂纹扩展区、瞬断区;错误!疲劳源是疲劳裂纹萌生的策源地,多在机件表面常和缺口、裂纹等缺陷及内部冶金缺陷有关,比较光亮,表面硬度有所提高,可以是一个也可以是多个;错误!疲劳裂纹扩展区断口较光滑并分布有贝文线,有时还有裂纹扩展台阶,断口光滑是疲劳源区的连续,程度随裂纹向前扩展而逐渐减弱,贝文线是最典型的特征;错误!瞬断区断口粗糙,脆性断口呈结晶状,韧性断裂在心部平面应变区呈放射状或人字纹,边缘应力区有剪切唇存在;一般在疲劳源对侧; c. 列出至少四条提高金属疲劳性能的措施解:错误!喷丸处理错误!表面热处理错误!复合强化错误!次载锻炼3、计算: a. 某材料的应力幅和失效循环周次如下:最少疲劳寿命105次,则许用的最大循环应力是多少 解:由图知,疲劳极限=250MPa设计寿命最少^510时,最大需用循环应力为275MPa; b. 某压力容器受到升压降压交变应力△σ=120MPa 作用,计算得知该容器允许的临界裂纹长度2ac =125mm,检查发现该容器有一长度2a =42mm 的周向穿透裂纹,假设疲劳裂纹扩展符合Paris 公式,假设疲劳扩展系数C =2×10-10,n =3,试计算该容器的疲劳寿命和循环10万次后的疲劳裂纹长度是多少 解:设裂纹为无线大板穿透裂纹,则由Paris 公式()nIda C K dN =∆得解得N=3016当N=10万次时2a=第六章磨损性能1、名词解释:磨损接触疲劳解:磨损:物体表面相互摩擦时,材料自表面逐渐减少时的过程;接触疲劳:两材料作滚动或滚动加滑动摩擦时,交变接触压应力长期作用使得材料表面疲劳磨损,局部区域出现小片或者小块材料剥落而产生的疲劳;2、简答a. 简述常见的磨损类型和特点如何提高材料的耐磨粒磨损抗力解:常见的磨损类型和特点有错误!粘着磨损,特点是机件表面有大小不等的结疤;错误!磨粒磨损,摩擦面上有擦伤或明显犁皱纹;错误!腐蚀磨损,氧化磨损,磨损产物为氧化物如红褐色的三氧化二铁;错误!接触疲劳磨损,出现许多豆状、贝壳状或不规则形状的凹坑;提高磨粒磨损的抗力可以选用高硬度韧性好的材料或使用表面硬化的材料;b. 试从提高材料疲劳强度、接触疲劳、耐磨性观点出发,分析化学热处理时应注意的事项;解:化学热处理过程中采用球化退火处理和高温回火,减小碳化物粒度并使之分布均匀;采取适当的去应力退火工艺使材料在一定范围内保持残余应力,提高疲劳强度和耐磨性;c.述非金属材料陶瓷、高分子材料的磨损特点解:陶瓷材料对表面状态极为敏感,当气氛压力下降时,磨损率加大;高分子材料硬度虽然较低,但具有较大柔顺性,在不少场合下显示较高的抗划伤能力;对磨粒磨损具有良好的适应性、就范性和埋嵌性;第七章高温性能1、名词解释:蠕变蠕变极限持久强度应力松弛解:蠕变:金属在恒温、恒载荷下缓慢产生塑性变形的现象;蠕变极限:金属材料在高温长期载荷作用下对塑性变形抗力指标;持久强度:在规定温度下,达到规定实验时间而不发生断裂的应力值;应力松弛:在规定温度和初始应力条件下,金属材料中的应力随时间增加而减少的现象;2、简答a. 列出至少四个提高金属蠕变性能的措施解:错误!加入合金元素,形成固溶强化错误!采用正火加高温回火工艺进行热处理;错误!控制晶粒尺寸错误!控制应力水平b. 高温蠕变变形的机理有哪几种解:主要有位错滑移蠕变机理、扩散蠕变机理、晶界滑动蠕变机理、粘弹性机理;3、计算:稳态蠕变即蠕变第二阶段的本构方程ε=A·σn·exp-Q/RT,某耐热钢538℃下的蠕变系数A=×10-24,n=8,激活能Q=100kcal/mol,R为摩尔气体常数mol·K,试计算该钢在500℃时应力150MPa下的蠕变速率;解:由ε=A·σn·exp-Q/RT得=第八章耐腐蚀性能1、名词解释:电化学腐蚀缝隙腐蚀电偶腐蚀钝化解:电化学腐蚀:金属表面与电解质溶液发生电化学反应而引起的破坏;缝隙腐蚀:金属部件在腐蚀介质中,结合部位的缝隙内腐蚀加剧的现象;电偶腐蚀:异种金属在同一种介质中,由于腐蚀电位不同而产生电偶电流的流动使电极电位较低的金属溶解增加造成的局部腐蚀;钝化:电化学腐蚀的阳极过程在某些情况下受到强烈阻滞,使腐蚀速率急剧下降的现象;2、简答a. 为什么说材料的腐蚀是一个自发过程解:因为腐蚀是物质由高能态向低能态转变的过程,所以腐蚀是一个自发的过程;b. 原电池和腐蚀原电池的区别是什么解:原电池可以是化学能转化为电能,有电流通过并能对外做功;腐蚀原电池是能进行氧化还原反应,但并不能对外做功的短路原电池;c. 应力腐蚀断裂的条件和特征是什么解:应力腐蚀具有以下特点:错误!应力;必须有拉应力存在才能一起应力腐蚀,压应力一般不发生应力腐蚀;错误!介质;一定的材料必须和一定的介质的相互组合,才会发生腐蚀断裂;错误!速度;应力腐蚀断裂的速度远大于没有应力时的腐蚀速度;错误!腐蚀断裂形态;应力腐蚀断裂时仅在局部区域出现从表及里的裂纹;d. 简述材料氧化腐蚀的测量方法和仪器;解:测量方法有:错误!质量法错误!容量法测量仪器:质量法采用热重分析仪;容量法采用量气管及及其他装置;e. 列出至少四种防止金属材料腐蚀的措施;解:错误!金属电化学保护法错误!介质处理错误!缓蚀剂保护法错误!表面覆盖法错误!合理选材第九章电性能1、名词解释:电介质、极化强度、铁电体、压电效应、热释电效应、热电效应解:电介质:电场下能极化的材料;极化强度:电介质材料在电场作用下的极化程度,单位体积内的感生电偶极矩;铁电体:就有铁电性的晶体;热释电效应:晶体因温度均匀变化而发生极化强度改变的现象称为晶体的热释电效应;热电效应:温度作用改变材料的电性能参数;贝塞克效应、帕尔帖效应、汤姆逊效应;压电效应:没有电场作用,有机械应力作用而使电介质晶体产生极化并形成晶体表面电荷的现象;2、填空题a. 从极化的质点类型看,电介质的总极化一般包括三部分:__位移极化__、__松弛极化__、__转向极化__ ;从是否消耗能量的角度看,电介质的极化分为____弹性极化____和____非弹性极化____两类,其中___位移极化___是弹性的、瞬时完成的极化,不消耗能量;而___松弛极化___的完成需要一定的时间,是非弹性的,消耗一定的能量;b. 电介质在电场作用下产生损耗的形式主要有__电导损耗____和____电离损耗___两种;当外界条件一定时,介质损耗只与tg有关,而tg仅由___δ____决定,称为____介质损耗角____;c. 电介质材料在电场强度超过某一临界值时会发生介质的击穿,通常击穿类型可分为___电击穿____、__化学击穿___、___热击穿___三类;d. 铁电体具有__电滞回线__、居里点和__临界特性___三大特征;e. 测量电阻常用的方法有双电桥法、电位差计法、安培—伏特计法和直流四探针法;f. 金属的热电现象包括贝塞克效应、帕帖效应和汤姆逊效应三个基本热电效应;3、简答题:a. 简述电介质、压电体、热释电体、铁电体之间的关系;解:电解质包括压电体、热释电体、铁电体;压电体和热释电体都是不具有对称中心的晶体;热释电体和铁电体都能在一定的温度范围内自发极化;b. 为什么金属的电阻随温度升高而增大,半导体的电阻随温度升高减小解:金属属于电子到电机制,温度升高,电子运动自由程减小,散射几率增大导致电阻增大;半导体导电取决于电子-空穴对数量多少,温度升高,电子-空穴对数增多,导电阻减小;c. 表征超导体性能的三个主要指标是什么目前氧化物高温超导体应用的主要弱点是什么解:三个指标是:错误!临界转变温度T错误!临界磁场C H错误!临界C电流密度目前氧化物高温超导体应用的主要弱点是错误!超导体材料的氧化物制备困难错误!材料加工困难错误!临界温度难以维持e. 一般来说金属的电导率要高于陶瓷和聚合物,请举例说明这个规律并不绝对正确;解:PAN、第十章磁性能1、名词解释:磁化强度矫顽力饱和磁化强度磁导率和磁化率剩余磁感应强度磁畴趋肤效应解:磁化强度:物质在磁场中被磁化的程度,单位体积内磁矩的大小;矫顽力:去掉剩磁的临界外磁场;饱和磁化强度:磁化强度的饱和值;磁导率:表征磁介质磁性的物理量;磁化率:表征物质本身的磁化特性的物理量;剩余磁感应强度:去掉外加磁场后的磁感应强度;磁畴:磁矩方向相同的小区域;趋肤效应:交变磁化时产生感生电动势,使得磁感应强度和磁场强度沿样品界面严重不均匀,好像材料内部的磁感应强度被。

氧化铝陶瓷在高温环境下的力学性能分析

氧化铝陶瓷在高温环境下的力学性能分析

氧化铝陶瓷在高温环境下的力学性能分析1. 引言随着科学技术的不断发展,一些高温环境下的工艺和应用需求也不断涌现。

在这些高温环境下使用的材料必须具备良好的力学性能,以确保其可靠性和稳定性。

氧化铝陶瓷由于其优良的绝缘性、耐磨性和耐腐蚀性,成为了高温应用领域中的理想选择之一。

本文将对氧化铝陶瓷在高温环境下的力学性能进行分析。

2. 氧化铝陶瓷的基本特性氧化铝陶瓷是以氧化铝为主要成分的陶瓷材料,具有高硬度、高抗压强度和耐高温等特点。

其熔点高达2072℃,在接近熔点的高温环境下依然能保持较好的稳定性。

此外,氧化铝陶瓷还具备优异的绝缘性能和低热导率,使其在高温环境中能够有效地隔离热量。

3. 高温环境对氧化铝陶瓷力学性能的影响在高温环境下,氧化铝陶瓷的力学性能会发生一系列变化。

首先,高温会导致材料的晶界扩散和晶粒长大,从而降低材料的韧性。

此外,高温还会使得氧化铝陶瓷的强度和硬度下降,还可能引起材料的蠕变和热应力破坏。

因此,研究氧化铝陶瓷在高温环境下的力学性能变化是非常重要的。

4. 高温环境下氧化铝陶瓷的抗压强度抗压强度是衡量氧化铝陶瓷力学性能的重要指标之一。

研究发现,随着温度的升高,氧化铝陶瓷的抗压强度呈现出先增加后减小的趋势。

在低温环境下,氧化铝陶瓷的晶格结构较为紧密,晶界和晶粒的结合较好,因此抗压强度较高。

但随着温度的升高,氧化铝陶瓷的结构开始发生变化,晶界扩散和晶粒长大导致材料的抗压强度逐渐降低。

5. 高温环境下氧化铝陶瓷的断裂韧性断裂韧性是衡量材料抗拉伸破坏的能力,也是评价氧化铝陶瓷耐高温性能的重要参数之一。

在高温环境下,氧化铝陶瓷的断裂韧性会显著下降。

这主要是由于高温引起晶界扩散和晶粒长大,导致材料的晶粒间的结合更为脆弱。

此外,高温下氧化铝陶瓷的热蠕变也会增大材料应力集中的程度,从而降低了其断裂韧性。

6. 高温环境下氧化铝陶瓷的热蠕变行为热蠕变是指材料在高温条件下由于应力和温度的共同作用而产生的形变。

金属材料在高温下的力学性能

金属材料在高温下的力学性能

金属材料在高温下的力学性能随着科技的不断发展,高温下的金属材料应用越来越广泛。

在航天、能源等领域中,机器和设备都需要承受高温环境带来的极大影响。

因此,研究金属材料在高温下的力学性能至关重要。

本文将从金属材料的高温本质讲起,通过分析金属的结构、组成和变形规律等方面探讨金属在高温下的力学性能,以及解决这些问题的一些方法。

1. 高温环境对金属材料的影响首先,我们需要了解高温环境对金属材料的影响。

高温环境下,金属会受到温度、氧化等外部条件的影响产生变化。

一些金属会因为氧化,产生表面膜,从而影响其力学性能。

另一些金属则可以利用氧化程度较低的方法来保护金属表面。

但是,这些方法都不能完全避免在高温下金属表面的变化,因此,高温下金属材料的力学性能是一个值得研究的问题。

2. 金属材料在高温下的变形规律金属材料在高温下的变形规律实际上是由金属晶体的结构、组成和行为而决定的。

每个晶体需要经历一系列复杂的形变过程,在高温下,本身就带有热能,所以这些过程会变得更加复杂和困难。

随着温度的升高,这些晶体会经历多种形变之后,最终形成微观结构的变化和塑性形变。

这其中涉及到了很多的数学模型和科学方法,为了更好地探讨这些问题,需要发展出更加高效和精确的数学模型和科学方法。

3. 解决高温下金属材料的力学性能问题的方法针对金属材料在高温下的力学性能问题,科学家们进行了大量的研究。

解决这些问题的方法主要有以下几种:(1)利用结晶学的理论研究金属材料的微观结构和组成,从而更好地理解其形变和塑性形变过程,寻找最优化的处理方法,提高金属材料的强度和韧性。

(2)使用先进的计算机模拟方法,模拟金属材料在高温下的变形和变化过程,从而可以更加准确地预测和分析不同金属材料的力学性能。

(3)在工程中应用高强度、高韧性和高温抗性的金属合金材料,通过改变其组成和结构,优化其力学性能,提高其抗损耗性和耐蚀性。

(4)开展一些新的研究工作,寻找新的材料和技术,来解决金属材料在高温下的力学性能问题,包括超高温合金研究等。

材料在高温下的力学性能

材料在高温下的力学性能

材料在高温下的力学性能材料在高温下的力学性能是指材料在高温下的蠕变和松弛行为。

蠕变是指材料在恒定应力作用下,在持续加载下产生的时间依赖性塑性变形,而松弛是指材料在恒定应变下,在持续应力作用下产生的时间依赖性塑性变形。

在高温环境下,材料的力学性能会发生显著的变化,这对工程应用和材料设计具有重要意义。

材料在高温下的蠕变性能是指材料在高温和恒定应力的作用下,产生的时间依赖性塑性变形。

在高温下,材料的晶界和晶间空隙扩张,原子和离子的扩散速率增加,导致蠕变变形的发生。

材料的蠕变行为可以通过蠕变曲线来描述,蠕变曲线通常包括初级蠕变、次级蠕变和稳定蠕变三个阶段。

初级蠕变阶段表现为应变率随时间的变化很大,次级蠕变阶段表现为应变率随时间的变化略微下降,而稳定蠕变阶段表现为应变率基本保持稳定。

材料在高温下的松弛性能是指材料在高温和持续应变的作用下,产生的时间依赖性塑性变形。

材料的松弛行为可以通过松弛曲线来描述,松弛曲线通常包括三个阶段:瞬时松弛、次级松弛和稳定松弛。

瞬时松弛阶段表现为应力随时间的变化很大,次级松弛阶段表现为应力随时间的变化略微下降,而稳定松弛阶段表现为应力基本保持稳定。

材料在高温下的蠕变松弛行为与材料的组织结构和成分密切相关。

晶体粒度较大、晶界清晰的材料通常具有较好的高温蠕变和松弛性能,而晶体粒度较小、晶界扩散明显的材料则容易出现蠕变和松弛失效。

材料中的稀土元素、微量元素等杂质也会对蠕变松弛行为产生影响。

此外,材料的加工工艺和热处理工艺对高温蠕变和松弛性能也具有一定的影响。

在工程应用中,高温下的蠕变和松弛行为对材料的设计和使用有着重要的影响。

在高温环境中使用的材料,需要具有良好的高温蠕变和松弛性能,以确保材料在长期高温应力作用下不发生失效。

蠕变和松弛行为的研究可以帮助工程师和材料科学家确定材料的安全工作温度和使用寿命。

此外,高温蠕变和松弛性能对于材料的制备、热处理和应用过程中的温度控制和合理设计也具有指导意义。

材料的力学性能

材料的力学性能

第一章 材料单向拉伸力学性能
1.引言 2.拉伸试验 3.脆性材料的拉伸曲线与拉伸性能 4. 引言 5.弹性变形 6.弹性极限与弹性比功 7. 弹性不完善性 8.脆性断裂 9.理论断裂强度和脆断强度理论 10.延性断裂
第二章 材料在其他静载下的力学 性能以及硬度
• 1.引言 2.扭转试验 3.弯曲试验 4.压缩试验 5.剪切试验 6.布氏硬度 7.洛氏硬度 8.维氏硬度 9.显微硬度
第七章 金属在高温下的力学行为
• 1 引言 2 金属的高温拉伸性能 3 蠕变极限与持久强度 4 蠕变过程中合金组织的变化及变形和断裂 机制 5 应力松弛 6 金属在高温下的疲劳行为
第八章 应力腐蚀与氢脆
• 1 引言 2 应力腐蚀断裂 3 氢脆 4 腐蚀疲劳
• 第九章 高分子材料的力学行为
1 引言 2 线性非晶态高分子材料的力学行为 3 结晶高分子材料的力学行为 4 高分子材料的粘弹性 5 高分子材料的强度 6 高分子材料的的断裂韧性 7 高分子材料的的疲劳A(2学时)10
1.2 金属材料的弹性变形
• 弹性的定义:是指材料在外力作用下保持 固有形状和尺寸的能力,在外力去除后恢 复固有形状和尺寸的能力。弹性模量E、剪 切模量G、比例极限和弹性极限等。
1.2.1 广义虎克定律
已知在单向应力状态下应力和应变的关系为:
一般应力状态下各向同性材料的广义虎克定 律为:

其中:
第三章 材料的冲击韧性与低温脆 性
• 1.前言 2.切口冲击韧性 3.低温脆性 4.脆性—韧性转变
第四章 断裂韧性
• 1 引言 2 裂纹的应力分析 3 裂纹扩展力或裂纹扩展的能量释放率 4 平面应变断裂韧性 5 裂纹尖端塑性区* 6 平面应变断裂韧性KIC的测定 7 断裂韧性的工程应用

材料性能学课件第七章 材料的高温力学性能

材料性能学课件第七章 材料的高温力学性能

蠕变极限,记作
T /t
,其中T表示测试温度,
ε/t 表示在给定的时间t内产生的蠕变应变为ε。
在蠕变时间短而蠕变速率又较大的情况下,
一般采用这种定义方法。
2.持久强度
某些在高温下工作的机件,蠕变变形很小或对 变形要求不严格,只要求机件在使用期内不发生断 裂。在这种情况下,要用持久强度作为评价材料、 设计机件的主要依据。
⑷ 粘弹性机理 高分子材料在恒定应力作用下,分子链由卷
曲状态逐渐伸展,发生蠕变变形,这是体系熵值 减小的过程。当外力减小或去除后,体系自发地 趋向熵值增大的状态,分子链由伸展状态向卷曲 状态回复,表现为高分子材料的蠕变回复特性。
2.蠕变断裂机理
蠕变断裂有两种情况: 一种情况是对于那些不含裂纹的高温机件,
低温下由空位扩散导致的这种断裂过程 十分缓慢,实际上观察不到断裂的发生。
金属材料蠕变断裂断口的宏观特征为: 一是在断口附近产生塑性变形,有很多裂纹,使断 裂机件表面出现龟裂现象; 另一个特征是由于高温氧化,一层氧化膜所覆盖。
微观特征主要是冰糖状花样的沿晶断裂。
三、蠕变性能指标
蠕变极限、持久强度、松弛稳定性等 1.蠕变极限
在高应力高应变速率下,温度低时,金属材 料通常发生滑移引起的解理断裂或晶间断裂,这 属于一种脆性断裂方式,其断裂应变小。温度高 于韧脆转变温度时,断裂方式从脆性解理和晶间 断裂转变为韧性穿晶断裂。
在较低应力和较高温度下,通过在晶界 空位聚集形成空洞和空洞长大的方式发生晶 界蠕变断裂,这种断裂是由扩散控制的。
1. 蠕变变形机理 位错滑移、原子扩散和晶界滑动
高分子材料:分子 链段沿外力的舒展
⑴ 位错滑移蠕变机理
材料的塑性变形主要是由于位错的滑移引起 的。在一定的载荷作用下,滑移面上的位错运动 到一定程度后,位错运动受阻发生塞积,就不能 继续滑移,也就是只能产生一定的塑性变形。

材料性能学复习资料

材料性能学复习资料

第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。

P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。

P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。

P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。

P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。

P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。

P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。

P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。

P2三、选择题1、表示金属材料刚度的性能指标是(B )。

P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。

A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。

A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。

弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。

因为它是原子间结合力的反映和度量。

P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。

P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。

P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。

材料性能学复习

材料性能学复习

材料性能学复习(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《材料性能学》复习第一章 材料单向静拉伸的力学性能一、力-伸长曲线(拉伸图) 1、曲线上变形三阶段 (1)、弹性变形(2)、塑性变形 (屈服现象)(3)、不均匀变形(颈缩阶段)及断裂阶段(会画) 2、拉伸图的种类曲线1 为淬火、高温回火后的高碳钢 曲线2 为低合金结构钢 曲线3 为黄铜 曲线4 为陶瓷、玻璃 曲线5 为橡胶类(会画)二、应力一应变曲线(σ-ε曲线)1、应力: 应变:2、 应力-应变曲线(工程应力-应变曲线)0A F =σ0L L ∆=ε3、各种性能指标(1)、强度指标①弹性极限:σe=Fe / S0②比例极限:σp=Fp / S0③屈服极限:σs=Fs / S0 ;屈服强度σ= / S0④强度极限:σb=Fb / S0⑤断裂强度: Sk=Fk / Sk(2)、塑性指标①延伸率:δk=(Lk-L0) / L0 X 100 %②断面收缩率:ψk=( S0- Sk)/ S0 X 100 %4、真应力-真应变曲线(S-e曲线)真应力:其中, F -瞬时载荷, A-瞬时面积真应变:则:两曲线比较0 0ln)LLLdLdee e LL⎰⎰===)1(ψσ-=SAFS=三、弹性变形及其实质(一)、弹性变形的特点•1、可逆性;•2、单值线性关系;•3、弹性变形量较小(ε<~1%)(二)、双原子模型解释弹性变形引力四、弹性的不完整性与内耗(一)、滞弹性(弹性后效)1.正弹性后效 2.反弹性后效3.产生原因4、危害(二)、包申格效应包申格(Bauschinger)效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载规定残余伸长应力(或弹性极限)增加,反向加载,规定残余伸长应力(或弹性极限)降低的现象.原因:包申格(Bauschinger)效应可能与第二类内应力有关;危害:包申格(Bauschinger)效应可弱化材料,因而应予以消除;消除办法五、断裂1、断裂概念2、断裂的类型及断口特征3、韧性断裂与脆性断裂概念韧性断裂的特点;脆性断裂的特点4、穿晶断裂与沿晶断裂剪切断裂;解理断裂;准解理断裂5、断裂强度(1).理论断裂强度(会推导)理论断裂强度和实际强度说(2).断裂强度的裂纹理论( Griffith强度理论)Griffith强度理论此公式说明的问题金属材料γs=γe+γp Griffith强度理论212⎪⎭⎫⎝⎛=aEscπγσ22σγπscEa=21(2⎪⎪⎭⎫⎝⎛+=aEpecπγγσ2)(2σγγπpecEa+=第二章材料在其他静载下的力学性能主要讲了硬度试验一、布氏硬度(HB)(1)测定原理(2)、优缺点•优点:压痕面积较大,其硬度值能反映材料在较大区域内各组成相的平均性能,试验数据稳定,重复性强。

高温环境下建筑材料的力学行为研究

高温环境下建筑材料的力学行为研究

高温环境下建筑材料的力学行为研究在当今的建筑领域,随着建筑物的高度和规模不断增加,以及特殊工业环境的需求,建筑材料在高温环境下的力学行为成为了一个至关重要的研究课题。

高温可能来自火灾、工业生产过程中的高温环境,或者是极端气候条件。

了解建筑材料在高温下的力学性能变化,对于保障建筑物的结构安全和稳定性具有重要意义。

一、常见建筑材料及其在常温下的力学性能在我们日常生活和建筑工程中,常见的建筑材料包括钢材、混凝土、木材、砖石等。

这些材料在常温下具有各自独特的力学性能。

钢材具有高强度和良好的延展性,能够承受较大的拉力和压力。

混凝土则是一种抗压强度较高,但抗拉强度相对较弱的材料。

木材具有一定的强度和韧性,但其性能受到木材种类、纹理方向等因素的影响。

砖石材料通常具有较好的抗压性能,但在抗拉和抗剪方面表现较弱。

然而,当环境温度升高时,这些材料的力学性能会发生显著变化。

二、高温对钢材力学行为的影响钢材在高温下的力学性能变化较为复杂。

随着温度的升高,钢材的强度会逐渐下降。

一般来说,当温度超过 200℃时,钢材的屈服强度和抗拉强度就会开始明显降低。

这是因为高温导致钢材内部的晶体结构发生变化,原子间的结合力减弱。

此外,高温还会使钢材的延展性发生改变。

在较低温度下,钢材在断裂前会发生明显的塑性变形,具有较好的延展性。

但在高温环境中,钢材可能会在没有明显塑性变形的情况下突然断裂,这增加了结构失效的风险。

三、高温对混凝土力学行为的影响混凝土在高温下的力学性能变化同样不容忽视。

高温会使混凝土内部的水分蒸发,导致混凝土产生裂缝和孔隙。

这不仅会降低混凝土的强度,还会影响其耐久性。

当温度升高到一定程度时,混凝土中的水泥浆体可能会发生相变,从而进一步削弱混凝土的力学性能。

同时,高温还会使混凝土与钢筋之间的粘结力下降,影响结构的整体性。

四、高温对木材力学行为的影响木材在高温下的力学性能也会受到显著影响。

随着温度的升高,木材中的水分逐渐蒸发,导致木材收缩和开裂。

第7章 高分子材料的热学性能

第7章 高分子材料的热学性能
材料科学与工程学院
3
平均比热容:单位质量的材料从温度T1到T2所吸 收的热量的平均值
Q 1 C均 T2 T1 m
T1~T2范围愈大,精度愈差 T2无限接近T1时
Q 1 C真 T m
4
材料科学与工程学院
Cp和Cv
比定压热容(Cp)
Q 1 H 1 cp T p m T p m
材料科学与工程学院
27
R V m ,u 1 1 0 (1 112 ) Tm Tm H u Vm ,l
玻璃化转变温度Tg 1.膨胀计法
比 容 υ
比容 υ
自由体积υf
占有体积υ0
Tg 温度 度
图7-4 膨胀计示意图
图7-5典型的比容-温度曲线
材料科学与工程学院
28
2.示差扫描量热(DSC)法
材料科学与工程学院
24
7.4 高聚物的形变-温度曲线
形 变
玻璃态 高弹态
粘流态
Tg
Tf 温 度
图7-2线形非晶态聚合物的形变-温度曲线
材料科学与工程学院
25
log E
tan δ



Tg
CH3 n C CH3 O O C O CH2 n
Tm
CH3 C COO n H
图7-3 结晶高分子和非晶高分子的E-T曲线与tanδ-T曲线的典型例子
材料科学与工程学院
16
7.3 热传导
一、材料的热传导 当固体材料一端的温度比另一端高时,热量会 从热端自动地传向冷端,这个现象称为热传导 傅里叶定律:
dT Q A t dx
它只适用于稳定传热的条件,即ΔQ/Δt是常数

金属材料强度与温度的关系

金属材料强度与温度的关系

2.2.2应力与蠕变速度的关系
研究应力与蠕变速度的关系时多采用恒速 蠕变阶段,因为设计时多以第二阶段蠕变 速度作为指标。这样可使研究简化,并有 明确的工程意义。
这方面的关系式主要有Garofalo和Finnie根 据他们的实验结果提出的应力-蠕变速度 关系式:
.
.
.
s B s B' exp( ) s B" (sinh )n
考虑材料的高温强度时,除了温度与力学这二个最基 本的因素之外,还必须考虑时间及介质因素的影响。
在高温条件下材料的变形机制增多,易发生塑性 变形,表现为强度降低,形变强化现象减弱,塑 性变形增加。
强度随温度升高而降低,塑性则随温度升高而增加。
对于大多数碳钢、铬钼钢和奥氏体钢,强度极限 随温度的变化大致上可分为三个阶段:
抗拉强度,MPa 屈服强度,MPa
700 600 500 400 300 200 100
0 0
20钢
15CrMo钢
18-8不锈钢
200
400
600
800
温度,℃
400 350 300 250 200 150 100
50 0 0
15CrMo钢 20钢
18-8不锈钢
100 200 300 400 500 600 700 温度,℃
材料在高温条件下,承受不同的载荷,其断裂所需的时间也不同。
不但断裂所需的时间随着承受的应力增加而缩短,而且断裂的形式也会 发生改变。
晶界强度与晶粒强度随温度增加而下降的趋势不同,在其交点 对应温度TS(称为等强温度)以上,材料由穿晶断裂变为沿晶 断裂。
形变速度愈低则TS愈低
强度
晶界
穿晶断裂
温度影响材料的微观断裂方式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高温应力松弛:紧固螺栓,预紧应力 降低;疲劳损伤。
7.2 蠕变的宏观规律及蠕 变机制



d 按 分成 dt Ⅰ:减速阶段:蠕变 第一阶段,过渡蠕变 阶段。 Ⅱ:恒速阶段:蠕变 第二阶段,稳态蠕变 阶段。 Ⅲ:加速阶段:蠕变 第三阶段,加速蠕变 阶段。

适当的应力和温度范围才可清楚显 示此三个阶段。
应力松弛是蠕变的结果

蠕变现象是指T 0C和σ恒定的情况下, 塑性变形随时间的增加而不断增加 应力松弛现象:是在T 0C和总应变量不 变的情况下,由弹性变形不断的转化为 塑性变形,即逐渐发生蠕变,从而使初 始应力不断下降。

t
dt 因为总变形量不变, dt 0
dt d e d p dt dt dt
弥散硬化的镁合金在不同温度 下最小应变速率和应力关系

450 C 108%/ h
?
测定蠕变极限时的注意事项
在同一温度下,必须至少用四个不同应 力进行蠕变试验,试验时间必须达到第 二阶段,应力所对应的 相差一个数量 级 外推法求的 T ,其 只能比试验点的数 据低一个数量级 , 否则,外推值不可靠, 原因,在高温长时间下会产生组织的不 稳定,如第二相沉淀,长大或溶解。



但此时,多数情况下第2阶段已不存在。
7.3.1 蠕变极限
定义:在高温长时间载荷作用下,机件不 致产生过量塑性变形的拉力指标。 蠕变极限与常温下机件设计选用是相似 的。材料蠕变极限中所指定的温度和时 间,一般由机件的具体服役条件而定。 必须限定应力在一定的温度和时间范围 内不发生过量蠕变。
蠕变极限的表示方法
因此,应力松弛可通过蠕变计算: d p e p e= SS A n E dt
1 d A n E dt
以上所讲持久强度的确定,是在恒定温度下由短时间的 断裂应力外推长时间的断裂应力。想求不同温度和时间的 影响,就需要一系列的断裂应力曲线,这是比较麻烦的。 考虑温度和时间的综合影响,并以一参数表示,亦即 高温短时所产生的蠕变断裂作用在参数值相同的情况下, 可以认为和某一低温长时间所产生的蠕变断裂效果等同, 这样可简便地通过参数值来求不同温度的持久强度,以及 通过高温短时试验来推测低温长时间的持久强度
3
持久强度
断裂时间t 和应力的关系是: t A B
A,B是与试验温度及材料常数有关的常数
log t log A B log
tT外推 恒定温度下,短时间
外推法测持久强度的注意事项
外推数据的时间只能比试验数据
的时间高一个数量级 测断裂时的延伸率即持久塑性, 它是衡量材料蠕变脆化的重要指 标。持久塑性低,对缺口就很敏 感,一般持久塑性不低于3%-5%
第七章 材料在高温下的力 学性能
许多构件在高温下工作的,高压锅 炉,蒸气轮机,燃气轮机,反式、组织)
7.1 材料在高温下力学性能的特点
蠕变现象:在应力恒定的情况下,材料在应力的持续作用下, 不断地发生变形。 高温强度与时间有关:载荷作用时间越长,引起一定的变形速 率和变形量的变形抗力越低。不能笼统地说材料在某一高温下 的强度是多少。 高温下,不仅强度降低,而且塑性降低。应变速率愈低、载 荷作用时间愈长,塑性降低得越显著。 高温下晶界附近是弱化的区域 晶粒尺寸,定向凝固
影响蠕变过程的两个最主要参 数是温度和应力
第1阶段很短,寿命关键取决于第2阶段
蠕变第二阶段的分析

在蠕变曲线中,关键是第二阶段, ,T C 之间 的关系。 n
SS A
其中A,n为常数
纯金属:n=4~5 ; 固溶体合金:n=3 ; 弥散强化和沉淀强化合金:n=30-40 n值是随温度的升高,略有降低 当 T C 高至接近 T熔点 C时, n=1 当 升高时,蠕变速率超过10-3%/h,幂定律蠕变方程 不再适用,这时可表示为: 当 5 10-4 G 时 K exp B
7.3.2 持久强度

定义:指材料在一定温度下和规定的持续 时间内引起断裂的最大应力值, T 2 1700 300MN / mm2 记 t MN / mm 如: 10 T 若对蠕变变形要求不严格,以 t 为设计 依据 若对蠕变变形要求严格,以蠕变极限为 tT , s , b 设计依据,要有
在规定温度下,当蠕变第二阶段的蠕变速率恰 好等于某一规定值时,把对应的应力值定义为 条件蠕变极限。 T 记为 (MN/mm2), 为第二阶段蠕变速率%/h. 在一定温度下,在规定的时间内,恰好产生某 一允许的总变形量,所对应的应力确定为蠕变 T 极限 记为 t
如:
500 1 105
P f TA log t R C
Larson-Miller参数
TA-试验温度
t为时间 C为常数,可由试验确定
7.3.3 应力松弛稳定性
一些高温下工作的紧固零件如紧固螺 栓,原具有初始紧固应力 相应地产 i 生弹性形变为 i / E,经过一段时间后, 紧固应力下降,这种紧固应力随时间 增加不断下降的现象 应力松弛
=100MN/mm2
所以:当蠕变速率大而服役时间短时,可 T T t 用 ,反之,可用
蠕变极限的测定装置及方法


装置见P205,图7-11 方法:蠕变试验时间为几百小时到几千个小时, 甚至1万到10万小时。但是,许多机件要求在 高温长时间下工作,寿命至少在10万小时以上, T T 这样,寿命越长, 和 ↓ t 那么,在一定温度下,怎样才能通过短时蠕变 试验( , )所测定的蠕变极限,来推测 长时间蠕变所确定的蠕变极限呢? 稳态蠕变阶段: 作 log SS - log 图,作一直线,外推法,即求 蠕变极限 SS A n log SS log A n log
相关文档
最新文档