同济大学 材料力学练习册答案
同济大学 材料力学 习题解答4(练习册P75-P82)
P81 43-3
D C A F FA l l F B FB z y
I20 a
mA = 0 Fy = 0
l
1 FB = F 3 1 FA = F 3
1 Fl 3
M图
1 Fl 3
查表 :导学篇 附录B-3 P380中 I 20a Wz = 236.9 cm3
M│max
smax =
M│max
FS1 = 10 kN 剪力方向
Sz*A = 450 cm3 FS1· Sz*A = 0.469 MPa tA = Iz· b
h S z yc A 2
tB = 0 t 分布
Sz*B = 0
P82 44-2
t y
21.15 MPa
t
负面积法 A1y1 + A2y2 yC = = 85 mm A1 + A2
1 = Fl 3
Wz
≤ [s ]
F ≤ 56.9 kN
则 [ F ]= 57 kN
P81 43-4
q
A
1 ql2 2 l B
M图
M│max
2 b= h 3 2 3 bh h z Wz = = 6 9 y b M│max ≤ [s ] smax = Wz
h
1 2 = ql 判定 2 = 80 kN· m
C FC 1.5l
1 1
h 4 D FD
P80 43-1 反力 指定截面 F
l 1.5l
形心主轴
z h
A
y
b
B
mD = 0 Fy = 0
FC = 10 kN
M1 = FC×1.5 = 15 kN· m bh3 Iz = = 8×103 cm4 12 yB = 10 cm yA = - 5 cm M1· yA sA = Iz = - 9.375 MPa M1· yB sB = Iz = 18.75 MPa
最新同济大学 材料力学 习题解答2(练习册P65-P70)
满足强度条件
WP
FC1 FC1 ∵ FC = 2FC1
t < 2t1
d
3
3 挤压
∴剪切校核主板
t1 t
2 1
b
2
1
FC
FC =
F 4
AC = dt
FS =
FC 2
=
F 8
AS =
pd2 4
F
F
FsC =
FC AC
≤
[sC
]
t = FS ≤ [t ]
AS
主板: 拉压
F ≤ 100 kN
F ≤ 62.83 kN
1-1截面:FN1 2-2截面:FN2
= =
F
3 4
A1 F
=( b–d )t
A2=( b–2d F ≤ 224 kN
s1
)t
=
FN1 A1
s2 =
则
≤[s ] F≤180kN FN2 ≤[s ]
A2 [ F ]= 62.83 kN
P69 38-1
T4
T3
A
B
T2
T1
C
D
1.0kN·m
0.2kN·m 基线
0.2kN·m
0.4kN·m
Mn图
A pd2
a
C
FCx
a
FCy
B
D
a
F
(2) 令 s = sb
F=
pd2 8
sb
= 62.8 kN
(1) 令 s = sS
F=
pd2 8
sS
=
37.7
kN
若 s = sP ( ≈ se )
F=
pd2 8
《材料力学》练习册答案
《材料力学》练习册答案习题一一、填空题1.对于长度远大于横向尺寸的构件称为(杆件)。
2.强度是指构件(抵抗破坏)的能力。
3.刚度是指构件(抵抗变形)的能力。
二、简答题1.试叙述材料力学中,对可变形固体所作的几个基本假设。
答:(1)均匀连续假设:组成物体的物质充满整个物体豪无空隙,且物体各点处力学性质相同(2)各向同性假设:即认为材料沿不同的方向具有相同的力学性质。
(3)小变形假设:由于大多数工程构件变形微小,所以杆件受力变形后平衡时,可略去力作用点位置及有关尺寸的微小改变,而来用原始尺寸静力平衡方程求反力和内力。
2.杆件的基本变形形式有哪几种?答:1)轴向拉伸与压缩;2)剪切;3)扭转;4)弯曲3.试说明材料力学中所说“内力”的含义。
答:材料力学中所说的内力是杆件在外力作用下所引起的“附加内力”。
4.什么是弹性变形?什么是塑性变形?答:杆件在外力作用下产生变形,当撤掉引起变形的因素后,如果杆件的变形完全消失而恢复到原来状态,这种变形称为是完全弹性的即弹性变形。
而撤掉引起变形的因素后,如果杆件的变形没有完全恢复而保留了一部分,被保留的这部分变形称为弹性变形又叫永久变形。
三、判断题1.材料单元体是无限微小的长方体(X )习题二一、填空题1.通过一点的所有截面上(应力情况的总和),称为该点的应力状态。
45的条纹,条纹是材料沿(最2.材料屈服时,在试件表面上可看到与轴线大致成ο大剪应力面)发生滑移而产生的,通常称为滑移线。
3.低碳钢的静拉伸试验中,相同尺寸的不同试件“颈缩”的部位不同,是因为(不同试件的薄弱部位不同)4.对于没有明显屈服阶段的塑性材料,通常规定以产生塑性应变(εs=0.2% 时的应用定为名义屈服极限,用δρ2表示)5.拉,压杆的横截面上的内力只有(轴力)。
6.工程中,如不作特殊申明,延伸率δ是指(L=10 d)标准试件的延伸率二、简答题1.试叙述低碳钢的静拉伸试验分几个阶段?各处于什么样的变形阶段。
材料力学习题册参考答案
材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
同济大学材料力学练习册答案
3点:70.3MPa , 0 MPa , -10.3MPa ;4点:120MPa , 0 MPa , 0MPa。
4.略
5.(a)19.14MPa , -9.14 MPa , 31.70
(b)1.18MPa , -21.8 MPa , -58.30
(d)x=0, Q=16;x=2, Q=-4;x=4-,Q=-4;x=4+,Q=-24;x=5, Q=-24
(单位:kN)
x=0, M=0;x=1.6, M=12.8;x=2, M=12;x=3-, M=8;x=3+, M=28;x=4, M=24;x=5, M=0 (单位:kN-m)
3.(a)x=0, Q=P;x=l/3(左), Q=P;x=l/3(右), Q=0;x=2/3l(左), Q=0;x=2/3l(右), Q=P;x=l, Q=P
9.(1) º
(2)
10.E =70GPa ,
11.1Βιβλιοθήκη . ,<[, <13. , ,
, ,
14. ,
15. (压), (压), ,
16. ,
17.[P]=12.24kN
18.q=1.55MPa, ,
第三章剪切
1.
2. , ,
3.n=10只(每边5只)
4.n= 4
5.d=12mm
6.a= 60mm,b=12mm,d= 40mm
5. KN•m /m3
4.(a)x=0, Q=0;x=a, Q=-qa;x=2a-, Q=-qa;x=2a+, Q=qa;x=3a, Q=qa
x=0, M=qa2/2;x=0, M=0;x=2a, M=qa2;x=3a, M=0
《材料力学》习题册附答案
F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材力习题册参考答案1
材力习题册参考答案(1第一章绪论一、选择题1.根据均匀性假设,可认为构件的在各处相同。
A.应力B.应变 C.材料的弹性系数D.位移2.构件的强度是指,刚度是指,稳定性是指。
A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) ,图(b),图(c) 。
A.0 B.2r C.r D. 4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等。
A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指。
A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。
2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件- 1 -提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。
4.度量一点处变形程度的两个基本量是应变ε和切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
2.外力就是构件所承受的载荷。
3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
4.应力是横截面上的平均内力。
5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
6.材料力学只限于研究等截面杆。
四、计算题1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。
材料力学练习册答案
第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
材料力学习题册答案
材料力学习题册答案第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=PQ时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=PQ时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为( C ) ;;;7、在横截面积等其它条件均相同的条件下,压杆采用图所示截面形状,其稳定性最好。
8、细长压杆的,则其临界应力σ越大。
A、弹性模量E越大或柔度λ越小;B、弹性模量E 越大或柔度λ越大;C、弹性模量E越小或柔度λ越大;D、弹性模量E越小或柔度λ越小;9、欧拉公式适用的条件是,压杆的柔度A、λ≤ ?C、λ≥ ?EE B、λ≤??s?PE?P D、λ≥?E?s - 1 - 10、在材料相同的条件下,随着柔度的增大A、细长杆的临界应力是减小的,中长杆不是;B、中长杆的临界应力是减小的,细长杆不是;C、细长杆和中长杆的临界应力均是减小的;D、细长杆和中长杆的临界应力均不是减小的;11、两根材料和柔度都相同的压杆 A. 临界应力一定相等,临界压力不一定相等; B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等; D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe的结论中,是正确的。
材料力学练习册答案
第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b 由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得kN la F N 08.04/21==γ22-截面,取右段如)(b 由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N 59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP 解得: kN P 7.16=杆内的最大正应力:4/4/4/4/)(a )(b )(c 2N1N )(a kNkN图NF cm cmcmMPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
【精品】同济大学材料力学练习册答案
【精品】同济大学材料力学练习册答
案
同济大学材料力学练习册答案
1. 弹性力学
题目:一根悬臂梁,长度为L,截面为矩形,宽度为b,高度为h,杨氏模量为E,悬臂梁一端固定,另一端受到一个集中力F,求悬臂梁在受力端的最大弯矩。
解答:根据悬臂梁的受力情况,可以得到受力端的最大弯矩为M = F * L。
2. 塑性力学
题目:一根钢材的屈服强度为400MPa,抗拉强度为600MPa,断后伸长率为20%,求该钢材的应变硬化指数。
解答:应变硬化指数n = ln(σt/σy) / ln(εt/εy),其中σt为抗拉强度,σy为屈服强度,εt为断后伸长率。
3. 破裂力学
题目:一根圆柱形试样在拉伸过程中发生断裂,断口的直径为10mm,断口的延伸长度为4mm,试样的断裂韧性为40J/m²,求试样的断裂强度。
解答:断裂强度σf = 2 * Gc / (π * df * lf),其中Gc为断裂韧性,df 为断口直径,lf为断口延伸长度。
4. 疲劳力学
题目:一根钢材的疲劳极限为200MPa,应力幅为100MPa,寿命为10^5次,求该钢材的疲劳强度系数。
解答:疲劳强度系数Sf = σf/ σa,其中σf为疲劳极限,σa为应力幅。
5. 断裂力学
题目:一根圆柱形试样在拉伸过程中发生断裂,载荷为1000N,试样的直径为10mm,试样的断裂韧性为40J/m²,求试样的断裂应力。
解答:断裂应力σf = 2 * Gc / (π * df²),其中Gc为断裂韧性,df为试样直径。
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
同济大学 材料力学 习题解答7(练习册P94-P104)
1
0.7
0.5
2m
2
4m
Fcr最大
1
1× 5 p2EI ( 5) 2
0.7×7
p2EI (4.9)2
0.5×9
p2EI (4.5)2
2× 2
p2EI ( 4) 2
1× 4 p2EI ( 4) 2
P101 53-4 细长压杆 p2EI Fcr = ( m l) 2 I圆 Fcr圆 = I方 Fcr方 p 2 2 d =a 4
习题解答(七)
P94 50-2
(线应变) 正应变
A
T0
a
m Mn = - T0 = - 2.5kN·
A
tx
单元体 而 sz = 0
pD3 WP = = 42.41cm3 16 Mn tx = = - 58.95MPa WP sx = 0 = sy a = 30º
s30º= -t sin(60º ) = 51.05MPa s-60º= -t sin(-120º ) = - 51.05MPa
无量纲
1 (s30º -ns-60º ) = 319×10–6 广义虎克定律: e30º= E
P95 50-3
a
A 60º
F
3 s-30º= + cos(-60º ) = sx A 2 4 2 sx sx 1 sx s60º= + cos(120º ) = sx 2 4 2 而 sz = 0 广义虎克定律: 1 3- n e-30º= (s-30º -ns60º )= sx = 540×10–6 E 4E 4E sx = e-30º= 160 MPa 3- n 则 F = sx· A = 50 kN
M s= W= W T t= WP = WP
(完整版)材料力学习题册答案-附录平面图形几何性质
附录 截面图形的几何性质一、是非判断题⒈ 图形对某一轴的静矩为零,则该轴必定通过图形的形心。
( √ )⒉ 图形在任一点只有一对主惯性轴。
( × )⒊ 有一定面积的图形对任一轴的轴惯性矩必不为零。
( √ )⒋ 图形对过某一点的主轴的惯性矩为图形对过该点所有轴的惯性矩中的极值。
( √ )二、填空题⒈ 组合图形对某一轴的静矩等于 各组成图形对同一轴静矩 的代数和。
⒉ 图形对任意一对正交轴的惯性矩之和,恒等于图形对 两轴交点的极惯性矩 。
⒊ 如果一对正交轴中有一根是图形的对称轴,则这一对轴为图形 主惯性轴 。
⒋ 过图形的形心且 图形对其惯性积等于零 的一对轴为图形的形心主惯性轴。
三、选择题⒈ 图形对于其对称轴的( A )A 静矩为零,惯性矩不为零;B 静矩和惯性矩均为零C 静矩不为零,惯性矩为零;D 静矩和惯性矩均不为零⒉ 直径为d 的圆形对其形心主轴的惯性半径=( C )。
i A d/2 B d/3 C d/4 D d/8⒊ 图示截面图形中阴影部分对形心主轴的惯性矩=( C )。
z Z I A B123234dD D -π63234dD D -π C D 126434dD D -π66434dD D -πz四、计算题1、求图示平面图形中阴影部分对z 轴的静矩。
232.0)2.06.0(4.0bh h h h b S Z =+⋅⋅=()8842422222bh h H B h h b h H h h H B S Z +-=⋅⋅+⎪⎭⎫ ⎝⎛-+⋅-⋅=2、求图示平面图形对z 、y 轴的惯性矩。
4523231023.251040121040251040123010mm I I I II I Z ⨯=⋅⋅+⋅+⋅⋅+⋅=+=由于图形对称,451023.2mm I I Z Y ⨯===3、试求图示平面图形的形心主惯性轴的位置,并求形心主惯性矩。
mm y C 7.5610020201401010020902010=⋅+⋅⋅⋅+⋅⋅=4723231021.17.46200.1012201003.33201401214020mm I I I II I Z ⨯=⋅⋅+⋅+⋅⋅+⋅=+=46331076.112100201220140mm I Y ⨯=⋅+⋅=z zz。
同济大学材料力学习题解答(练习册PP等)
FS1 = FA = 40 kN
M1 = 0
特殊位置截面
FS2 = FA = 40 kN
M2 = FA×2 = 80 kN·m FS3 = FA - 3q×2 = - 20 kN M3 = FA×4 - 3q×2×1
= 100 kN·m
P73 40-1(c)
A FA
12 3 F BC
1 2FB 3
相邻截面
M2 = F×2 = 20 kN·m
C F
FS3 = FS2 = - 10 kN
M3 = M2 = 20 kN·m
P73 40-1(b)
12
33 q
A
B
C
1FFAS1 2
3
FC
A M1
FA
FS2
A FA
M2
3q FS3
A
B
M3
FA
3q
M3
C
FS3
FC
mA = 0 FC = 80 kN
Fy = 0 FA = 40 kN
G·IP p
d ≥ 4 180 × 32 Mnl = 19.8 mm
Gp2 [j]
≤ [q ]
=
1° 2m
取 d = 20 mm
P72 39-3 T0
圆轴:
T0
FC FC
FC FC
FC
FC
FC T0 FC
WP =
pd3 16
FC FC
= 196.3 cm3 tmax =
Mn
令 = 70
MPa
WP
T0 = Mn = WPtmax = 13.74 kN·m
R
zC
O R
z1
z2
Iz = IzC+Ab2
材料力学习题册答案.
80 kN 60 kN 40 kN
FN 4F
x
F FN
F
x F
F FN/kN
60
2F FN
40
x 20
F
x
a
F
FN
a
q=F/a a
4F
Fl F Fl
l 2F
2F
F x
2F FN
3
2-4、已知 q 10 kN m ,试绘出图示杆件的轴力图
5 kN
15 kN
q
5 kN
1m
1.5 m
FN/kN 15
(6)以下结论中正确的是( B ) (A)杆件某截面上的内力是该截面上应力的代数和; (B)应力是内力的集度; (C)杆件某截面上的应力是该截面上内力的平均值; (D)内力必大于应力。
(7)下列结论中是正确的是( B ) (A)若物体产生位移,则必定同时产生变形; (B)若物体各点均无位移,则该物体必定无变形; (C)若物体无变形,则必定物体内各点均无位移; (D)若物体产生变形,则必定物体内各点均有位移。
(10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。(非 )
1-2 填空题
(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设
、
各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
40 kN
55 kN 25 kN
20 kN
2-2 试求图示拉杆截面 1-1,2-2,3-3 上的轴力,并作出轴力图。
解: FN1 2F ; FN2 F ; FN3 2F 。
同济大学 材料力学练习册答案
0xa,M=0; x=2a, M= -qa2/2; x=3a, M=0 (b)x=0, Q= -P;x=a+, Q= -2P; x=2a, Q= -2P x=0, M=0;x=a, M=Pa;x=2a, M=3Pa 2. (a)x=0, Q=3qa /2; x=a+, Q=qa/2; x=3a,Q=-3qa /2;x=4a, Q=-3qa /2 x=0, M=0; x=a, M=1.5qa2; x=1.5a, Mmax=1.625qa2;x=3a-, M=0.5qa2; x=3a+, M=1.5qa2;x=4a, M=0 (b)x=0, Q=0;x=a-, Q=qa; x=a+, Q= -qa/2; x=2a, Q= -3qa / 2 x=0, M=0;x=a, M=qa2/2; x=2a, M=-qa2/2 (c)x=0, Q=0;x=a, Q= -qa; x=2a-, Q= -qa; x=2a+, Q=qa; x=3a, Q=qa x=0, M=0;x=a, M=-qa2/2;x=2a-, M=-3/2qa2;x=2a+, M=qa2;x=3a, M=0 (d)x=0, Q=16;x=2, Q= -4;x=4-, Q= -4;x=4+,Q= -24;x=5, Q= -24 (单位:kN) x=0, M=0;x=1.6, M=12.8; x=2, M=12; x=3-, M=8;x=3+, M=28;x=4, M=24;x=5, M=0 (单位:kN-m) 3. (a) x=0, Q=P; x=l/3(左), Q=P; x=l/3 (右) , Q=0; x=2/3( l 左) , Q=0; x=2/3l (右), Q=P; x=l, Q=P x=0, P(上);x=l/3, P(下) ; x=2l/3, P(上), M=2 Pl /3(逆时针) ; x=l, P (下) (b)x=0, Q= -3; x=1-, Q= -3; x=1+, Q=4.2; x=5, Q= -3.8; x=6, Q= -3.8 x=0, P= -3(下) ; x=1, P=7.2(上) ; 1<x<5, q= -2(下) ; x=5, M=6(顺 时针) ; x=6, P=3.8(上)(单位:kN/m,kN,kN-m) 4. (a)x=0, Q=0; x=a, Q= -qa; x=2a-, Q= -qa; x=2a+, Q=qa; x=3a, Q=qa x=0, M=qa2/2; x=0, M=0;x=2a, M=qa2; x=3a, M=0 (b)x=0, Q=P/2; x=l/2, Q=P/2; x=l-, Q=P/2; x=l+, Q= -P/2; x=3/2l, Q= -P/2 x=0, M= -5/4Pl; x=l-/2, M= -Pl;x=l+/2, M=0;x=l, M=Pl/4;x=3/2l, M=0 5. (a)x=0, M= -qa2/8; x=a/2, M=0; x=a, M= -qa2/8 (b)x=0, M=0; x=a, M= -qa2; x=3/2a, M=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2) 110 MPa , 0 MPa , - 48.8 MPa 8.(1) 2.13 MPa , 24.3 MPa ; (2) 84.9 MPa , 0 MPa , -5 MPa 9. 略 10. 1 2 0.6 MPa , 11.略 12. 45 390 10 6
(2) D 19.4 mm , q max 15.7 kN/m
7. max 12.6 MPa , a 8.6 MPa 8. max 158 MPa , max 24.9 MPa 9. max 6.88 MPa , max 0.75 MPa 10. (1) 右图所示的放置形式合理。
(2) F 7.27 kN
11. A 截面: t max 20 MPa,
c max 40 MPa.
C 截面: t max 32 MPa,
c max 16 MPa.
A 截面: 当 b 上 100 mm 时 , 上 = 0.6 MPa 当 b 下 = 25 mm 时 , 下 = 2.4 MPa 12. 略
第八章 梁的变形
1.略
Pa 2 Pa 2 (3l a ) , B 2.(a) f B 6 EI 2 EI
(b) f B
ma a (l ) , EI 2
2
B
ma EI
1v 3.相对误差为: max 3 l
4. f C
3Pl 3 256 EI
9. n = 8 只 10.d = 82.7 mm 11. max 10.37kN m , 3.58 º
(1)[T] = 10.37 kN-m 12. (2)[T] = 0.142 kN-m
第六章 梁的内力
1. (a)0 a x, Q=0; x=2a, Q= -qa; x=2a+,Q=qa; x=3a,Q=0
材料力学练习册答案
第一章
1.C 2.C 3.A 4.D 5.D 6.D 7. M
3 x a 2
绪论及基本概念
0 ,
M
max
N 11 0 , Q11 P , M 11 8.
Pa Pl , N 2 2 0 , Q2 2 P , M 2 2 , M n 22 Pa 2 2
第二章 轴向拉伸与压缩
1.略 2.º, 75MPa , 43.3MPa
º, 50 MPa , 50 MPa º, 25MPa , 43.3MPa
3. l
b Pl ln 2 Et (b2 b1 ) b1
, N 混 240kN (压) , 钢 15.4MPa , 混 1.54MPa 15. N 钢 60kN (压)
16. 螺栓 100MPa , 铜套 50MPa 17.[P]=12.24kN 18.q =1.55MPa , 钢筒 77.5MPa , 铜套 18.4MPa
第七章 梁的应力
1. I-I 截面: A = -7.41MPa , B = 4.93MPa , D A , C =0.
II-II 截面:
A = 9.26MPa , B = -6.17MPa , D A , C =0.
2. max 250 MPa 3. (1) No25a 工字钢
3
0xa,M=0; x=2a, M= -qa2/2; x=3a, M=0 (b)x=0, Q= -P;x=a+, Q= -2P; x=2a, Q= -2P x=0, M=0;x=a, M=Pa;x=2a, M=3Pa 2. (a)x=0, Q=3qa /2; x=a+, Q=qa/2; x=3a,Q=-3qa /2;x=4a, Q=-3qa /2 x=0, M=0; x=a, M=1.5qa2; x=1.5a, Mmax=1.625qa2;x=3a-, M=0.5qa2; x=3a+, M=1.5qa2;x=4a, M=0 (b)x=0, Q=0;x=a-, Q=qa; x=a+, Q= -qa/2; x=2a, Q= -3qa / 2 x=0, M=0;x=a, M=qa2/2; x=2a, M=-qa2/2 (c)x=0, Q=0;x=a, Q= -qa; x=2a-, Q= -qa; x=2a+, Q=qa; x=3a, Q=qa x=0, M=0;x=a, M=-qa2/2;x=2a-, M=-3/2qa2;x=2a+, M=qa2;x=3a, M=0 (d)x=0, Q=16;x=2, Q= -4;x=4-, Q= -4;x=4+,Q= -24;x=5, Q= -24 (单位:kN) x=0, M=0;x=1.6, M=12.8; x=2, M=12; x=3-, M=8;x=3+, M=28;x=4, M=24;x=5, M=0 (单位:kN-m) 3. (a) x=0, Q=P; x=l/3(左), Q=P; x=l/3 (右) , Q=0; x=2/3( l 左) , Q=0; x=2/3l (右), Q=P; x=l, Q=P x=0, P(上);x=l/3, P(下) ; x=2l/3, P(上), M=2 Pl /3(逆时针) ; x=l, P (下) (b)x=0, Q= -3; x=1-, Q= -3; x=1+, Q=4.2; x=5, Q= -3.8; x=6, Q= -3.8 x=0, P= -3(下) ; x=1, P=7.2(上) ; 1<x<5, q= -2(下) ; x=5, M=6(顺 时针) ; x=6, P=3.8(上)(单位:kN/m,kN,kN-m) 4. (a)x=0, Q=0; x=a, Q= -qa; x=2a-, Q= -qa; x=2a+, Q=qa; x=3a, Q=qa x=0, M=qa2/2; x=0, M=0;x=2a, M=qa2; x=3a, M=0 (b)x=0, Q=P/2; x=l/2, Q=P/2; x=l-, Q=P/2; x=l+, Q= -P/2; x=3/2l, Q= -P/2 x=0, M= -5/4Pl; x=l-/2, M= -Pl;x=l+/2, M=0;x=l, M=Pl/4;x=3/2l, M=0 5. (a)x=0, M= -qa2/8; x=a/2, M=0; x=a, M= -qa2/8 (b)x=0, M=0; x=a, M= -qa2; x=3/2a, M=0
Pa P (3l 2 16al 16a 2 ) , (24a 2 16al 3l 2 ) 48EI 48EI qal 2 ql 2 (5l 6a) , (5l 12a) 24 EI 24 EI
5. (a) f (b) f
5
(c) f (d) f
4.
A空 0.51 A实
5.d =111mm 6.强度满足 7.AC 段: max 49.4 MPa , max 1.77 º/m DB 段: max 21.2 MPa , max 0.434 º/m
∴强度和刚度满足。 8. (1)D =102 mm (2) D A 0.163 º
3 10 MPa
13.m = 125.7 KN•m
第五章 扭转
1.略 2.略 3. (1)略
(2) DC 段: max 2.41MPa , CB 段: max 4.83MPa , BA 段: max 12.1MPa (3) DA 0.646 º (4)最大剪应力变小
CE 96.5MPa <[, BD 161MPa <
13. N 1 35.4kN , N 2 8.94kN , N 3 7.74kN
1 177 MPa , 2 29.8MPa , 3 19.4 MPa
14. N 1 N 2 N 3 0.278P , N 4 N 5 0.417 P
5qa 4 qa 3 , 24 EI 4 EI
qa q (3a 3 4a 2 l l 3 ) , ( 4a 3 4a 2 l l 3 ) 24 EI 24 EI
3 Pl1l 2 Pl12 Pl l P l13 l 2 6. f ( ) (l1 l 2 ) , 2 ( 2 l1 ) 3E I 1 I 2 2 EI 1 EI 2 2 EI 2
(2) 两个 No22a 槽钢
4. (1) M 2.03 kN·m ,
(2)
M 5.38 kN·m.
A 10 MPa , M 4.09 kN·m.
5. (1) 24 mm
(2)
c max 84.7 MPa