不定积分基本公式表

合集下载

不定积分公式大全 含求积分通用方法及例题

不定积分公式大全 含求积分通用方法及例题

不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C迅捷P DF编辑器(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。

不定积分(重要公式)

不定积分(重要公式)
推导公式:
2.

1
a2 − x2
dx = ∫
dx x a 1− a
2
=∫
x d a x 1− a
2
x = arcsin + C a
3.
1 1 1 (x + a ) − (x − a ) dx = dx ∫ x2 − a2 ∫ (x + a )(x − a ) = 2a ∫ (x + a )⋅ (x − a ) dx
解:
x →0 x →0
∴ f (x ) 在 x = 0 处连续. ∴ f ( x ) 在 (− ∞,+∞ ) 上连续.
∴ 原函数存在.

因为
− cos x + C1 4 f ( x )dx = 3 3 x + C2 4
x>0 x≤0

f ( x )dx可导,所以必连续.
∴ − cos 0 + C1 = C2
例4.1.8求
x ∫ cos 2 dx
2
2
恒等变形
1 1 1 + cos x x = dx + ∫ cos 2 dx = ∫ 2 dx 2 ∫ 2 ∫ cos xdx 1 1 = x + sin x + C 例4.1.9 2 2 sin x x > 0 例5.1.10 设 求 f ( x ) = 3 f (x )dx ∫ x≤0 x 解: Θ f (0 ) = 3 0 = 0 且 lim f ( x ) = lim sin x = 0
∫sin xcos xdx tan sec x xdx ∫
m n
(
)
例5.1.24

13个不定积分公式

13个不定积分公式

13个不定积分公式1. $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ ($n$为常数,$C$为常数)通常情况下,我们将 $n$ 称为幂。

不定积分的公式中,都是求积分后得到一个表达式再加一个常数 $C$。

这个常数是需要加上去的,因为求不定积分并不能得到一个确定的结果。

而这个常数可以是任意常数。

2. $\int \frac{1}{x} dx=\ln|x|+C$这个公式中要注意绝对值符号的使用。

因为在 $x$ 小于等于 $0$ 时分母为负数,所以需要在计算过程中使用绝对值。

3. $\int e^x dx = e^x + C$这是指数函数的积分公式,也是求自然指数的不定积分的公式。

4. $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$ ($a$为常数)这是带有幂的指数函数的积分公式。

5. $\int \sin x dx = -\cos x + C$这是正弦函数的积分公式。

6. $\int \cos x dx = \sin x + C$这是余弦函数的积分公式。

7. $\int \sec^2 x dx = \tan x + C$这是正切函数的积分公式。

8. $\int \csc^2 x dx = -\cot x + C$这是余切函数的积分公式。

9. $\int \tan x dx = -\ln|\cos x| + C$这是正切函数的积分公式,同样也需要注意绝对值符号。

10. $\int \cot x dx = \ln|\sin x| + C$这是余切函数的积分公式,同样也需要注意绝对值符号。

11. $\int \sec x \tan x dx = \sec x + C$这是正切和正割函数的积分公式。

12. $\int \csc x \cot x dx = -\csc x + C$这是余切和余割函数的积分公式。

13. $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a}\arctan \frac{x}{a} +C$ ($a$为常数)这是反正切函数的积分公式,也可以通过代换法将其他函数转化为此类型的积分进行求解。

不定积分常用公式大全

不定积分常用公式大全

不定积分常用公式大全有很多的同学是非常的想知道,不定积分常用公式有哪些,小编整理了相关信息,希望会对大家有所帮助!不定积分常用公式有哪些1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13)∫secxdx=ln|secx+tanx|+c 基本积分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;不定积分解题技巧个人经验首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式;只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常数的导数为0嘛。

下图是书上的公式以验证词步骤。

其次,我们要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。

(用换元法说,就是把f(x)换为t,再换回来)分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

不定积分常用公式大全

不定积分常用公式大全

不定积分常用公式大全
cotx+c
10)∫1/√(1-x ) dx=arcsinx+c
11)∫1/(1+x )dx=arctanx+c
12)∫1/(a -x )dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a +x )dx=1/a*arctan(x/a)+c
15)∫1/√(a -x ) dx=(1/a)*arcsin(x/a)+c
16) ∫sec x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;
1 不定积分解题技巧个人经验
首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式;只不过在后面加上常数C,因为加上C 与不加C 的导数结果一样,毕竟,常
数的导数为0 嘛。

下图是书上的公式以验证词步骤。

其次,我们要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑
利用f’(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把
f(x)看为一个整体,求出最终的结果。

(用换元法说,就是把f(x)换为t,再换回来)
分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函。

不定积分基本公式

不定积分基本公式

不定积分基本公式不定积分是微积分中的一个重要概念,它是函数的定义域上的一族原函数。

在计算不定积分时,我们使用的是不定积分的基本公式,也叫做不定积分的运算法则,下面是一些常用的不定积分基本公式。

1.一次幂函数的不定积分公式:∫x^n dx = 1/(n+1) * x^(n+1) + C,其中n不等于-12.常数函数的不定积分公式:∫a dx = ax + C,其中a是常数。

3.幂函数的不定积分公式:∫(a^x) dx = 1/(lna) * a^x + C,其中a是正常数且不等于14.指数函数的不定积分公式:∫e^x dx = e^x + C。

5.对数函数的不定积分公式:∫(1/x) dx = ln,x, + C,其中x不等于0。

6.三角函数的不定积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫tan(x) dx = -ln,cos(x), + C∫cot(x) dx = ln,sin(x), + C∫sec(x) dx = ln,sec(x) + tan(x), + C∫csc(x) dx = ln,csc(x) - cot(x), + C7.反三角函数的不定积分公式:∫arcsin(x) dx = x*arcsin(x) + sqrt(1-x^2) + C∫arccos(x) dx = x*arccos(x) - sqrt(1-x^2) + C∫arctan(x) dx = x*arctan(x) - 1/2ln(1+x^2) + C∫arccot(x) dx = x*arccot(x) + 1/2ln(1+x^2) + C∫arcsec(x) dx = x*arcsec(x) + ln,sec(x)+tan(x), + C∫arccsc(x) dx = x*arccsc(x) - ln,csc(x)+cot(x), + C8.双曲函数的不定积分公式:∫sinh(x) dx = cosh(x) + C∫cosh(x) dx = sinh(x) + C∫tanh(x) dx = ln,cosh(x), + C∫coth(x) dx = ln,sinh(x), + C∫sech(x) dx = arcsin(e^x) + C∫csch(x) dx = ln,tanh(x/2), + C以上是一些常用的不定积分基本公式,但请注意,不定积分是一个广义的概念,有很多特殊函数的不定积分无法用基本公式表示,需要通过其他的方法进行求解,比如换元法、分部积分法、特殊函数等。

高数不定积分24个基本公式

高数不定积分24个基本公式

高数不定积分24个基本公式高数不定积分24个基本公式是数学学科中的重要内容。

这些基本公式涉及到多种函数的不定积分,如多项式函数、指数函数、对数函数、三角函数等。

这些公式可以方便地帮助我们求得复杂函数的不定积分。

其中一些基本公式包括:1.$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$2.$\int\frac{1}{x}dx=\ln|x|+C$3.$\int e^x dx=e^x+C$4.$\int\frac{1}{1+x^2}dx=\arctan x+C$5.$\int\cos x dx=\sin x+C$6.$\int\sin x dx=-\cos x+C$7.$\int\sec^2x dx=\tan x+C$8.$\int\csc^2x dx=-\cot x+C$9.$\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$10.$\int\frac{1}{\sqrt{x^2+1}}dx=\ln|x+\sqrt{x^2+1}|+C$11.$\int\ln x dx=x\ln x-x+C$12.$\int e^{ax}\cos bx dx=\frac{e^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)+C$13.$\int e^{ax}\sin bx dx=\frac{e^{ax}}{a^2+b^2}(a\sin bx-b\cos bx)+C$14.$\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C$15.$\int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C$16.$\int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C$17.$\int\frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$18.$\int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$19.$\int\frac{1}{\cos^2x}dx=\tan x+C$20.$\int\frac{1}{\sin^2x}dx=-\cot x+C$21.$\int\frac{x}{\sqrt{a^2+x^2}}dx=\sqrt{a^2+x^2}-a\ln\left|x+\sqrt{a^2+x^2}\right|+C$22.$\int x\sin ax dx=-\frac{1}{a}x\cosax+\frac{1}{a^2}\sin ax+C$23.$\int x\cos ax dx=\frac{1}{a}x\sinax+\frac{1}{a^2}\cos ax+C$24.$\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln|x+\sqrt{x^2+a^2}|+C$这24个基本公式对于高数学科的学习非常重要,我们可以通过多次练习和应用,熟练地掌握这些公式,提高自己在高数学科中的成绩和水平。

常见的不定积分(公式大全)

常见的不定积分(公式大全)

常见的不定积分(公式大全)一、基本积分公式1. $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $,其中 $ n \neq 1 $。

2. $ \int dx = x + C $。

3. $ \int a dx = ax + C $,其中 $ a $ 为常数。

4. $ \int e^x dx = e^x + C $。

5. $ \int \ln x dx = x \ln x x + C $。

6. $ \int \frac{1}{x} dx = \ln |x| + C $。

7. $ \int \sin x dx = \cos x + C $。

8. $ \int \cos x dx = \sin x + C $。

9. $ \int \tan x dx = \ln |\cos x| + C $。

10. $ \int \cot x dx = \ln |\sin x| + C $。

二、换元积分法1. $ \int f(ax + b) dx = \frac{1}{a} \int f(ax + b) d(ax + b) $。

2. $ \int f(x^n) dx = \frac{1}{n} \int f(x^n) d(x^n) $。

3. $ \int f(\sqrt{ax^2 + bx + c}) dx = \frac{1}{a} \int f(\sqrt{ax^2 + bx + c}) d(\sqrt{ax^2 + bx + c}) $。

4. $ \int f(\sqrt{a^2 x^2}) dx = \frac{1}{a} \intf(\sqrt{a^2 x^2}) d(\sqrt{a^2 x^2}) $。

5. $ \int f(\sqrt{x^2 a^2}) dx = \frac{1}{a} \intf(\sqrt{x^2 a^2}) d(\sqrt{x^2 a^2}) $。

三、分部积分法1. $ \int u dv = uv \int v du $。

高等数学常用不定积分公式

高等数学常用不定积分公式

高等数学常用不定积分公式一、基本不定积分公式:1. 常数函数的不定积分:∫k dx = kx + C,其中k为常数,C为任意常数。

2. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为任意常数。

3. 对数函数的不定积分:∫1/x dx = ln,x, + C,其中C为任意常数。

4. 指数函数的不定积分:∫e^x dx = e^x + C,其中C为任意常数。

5.三角函数的不定积分:a) ∫sinx dx = -cosx + C,其中C为任意常数。

b) ∫cosx dx = sinx + C,其中C为任意常数。

c) ∫sec^2(x) dx = tanx + C,其中C为任意常数。

d) ∫cosec^2(x) dx = -cotx + C,其中C为任意常数。

e) ∫sec(x)tan(x) dx = secx + C,其中C为任意常数。

f) ∫cosec(x)cot(x) dx = -cosecx + C,其中C为任意常数。

6.反三角函数的不定积分:a) ∫1/√(1-x^2) dx = arcsinx + C,其中C为任意常数。

b) ∫1/√(1+x^2) dx = arctanx + C,其中C为任意常数。

c) ∫1/(x^2+1) dx = arctanx + C,其中C为任意常数。

二、常用不定积分公式:1. ∫sin^2x dx = (1/2)(x - sinx cosx) + C,其中C为任意常数。

2. ∫cos^2x dx = (1/2)(x + sinx cosx) + C,其中C为任意常数。

3. ∫tan^2x dx = tanx - x + C,其中C为任意常数。

4. ∫cot^2x dx = -cotx - x + C,其中C为任意常数。

5. ∫sec^3(x) dx = (1/2)(secx tanx + ln,secx + tanx,) + C,其中C为任意常数。

不定积分基本公式表 ppt课件

不定积分基本公式表  ppt课件
(4) axdx ax C; l na
当 ae时 , exd xexC ;
ppt课件
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
f(x )d x g (x )d x
f(x)g(x).
法则1 可推广到有限多个函数代数和的情况, 即
f1 (x ) f2 (x ) fn (x )d x
f1 (x ) d x f2 (x ) d x fn (x )d x .
ppt课件
11
法则 2 被积函数中的不为零的常数因子可以 提到积分号前面,即
x2(x21)
x2(x21)
dx 1 dx x2 x2 1
1arctaxnC. x
ppt课件
16
例 7 求
x4 dx.
x2 1

x 4 dx x2 1
x4 11 dx
x2 1
(x21)x (21)
dx
1 dx
x21
x21
(x21)dx 1 dx 1x2
x3 xarctxanC.
ppt课件
5
(1)1 dx arcxsC in arcxc C o; s 1x2
( 1)2 d x arc x tC a n ac rc o x tC . 1 x 2
ppt课件
6
例1
求不定积分
1 x
dx.
解 被积函 1的 数定义x域 0.为 x
当 x > 0 时,因为(lnx)1, 所以 x

不定积分公式总结

不定积分公式总结
dx
2
1
+ C
( 5 ) ∫cos x dx = sin x + C ( 7 ) ∫cot x dx = ln | sin x| + C ( 9 ) ∫csc x dx = ln | csc x - cot x| + C ( 11 ) ∫csc2 x dx = - cot x + C ( 13 ) ∫x 2 +a 2 = ( 15 ) ∫a 2 -x
5
xe
x 2

xe (x e x e x e 1
x x x x
(1 x)
dx
( x 1)
2
dx
x 2
1)e (x dx 1 dx 1 C
e
x
dx e
x
e x
2
x
e 1 e x (x
x
x 2
dx e d
x
1)
1)
(x e 1
x
1)
dx 1
dx 1
1 1 x
x
1
x
de
x
x
(三 )特殊函数积分法
1、有理函数的不定积分
2 2
+
1 2

1 √5 + x- x dx
2
dx
= - √5 + x - x +
1 2

√ 21 2 1 √ ( ) - (x - ) 2 2 2 1 2x - 1 2 √ = - 5 + x - x + arcsin( )+ C 2 21 √ 3 x 例 2: ∫ 4 dx x + x2 + 1 与例 1 类似,我们有: 1 1 3 ( ) 4x + 2x x x 4 2 ∫ 4 dx = ∫ dx 2 4 2 x + x + 1 x + x + 1 1 2 4 2 d (x + 1 d( x + x + 1) 1 2) = ∫ 4 ∫ 2 后面套公式就好啦 2 4 x + x2 + 1 4 1 3 √ (x 2 + ) + ( ) 2 2

不定积分的基本公式

不定积分的基本公式

不定积分的基本公式
如果对不定积分式子∫f(x)dx进行求导,那么得到的当然还是f(x),而如果是∫f(x-t)dx这样的式子,就还要先转换积分变量,再进行求导。

求导是微积分的基础,同时也是微积分计算的一个重要的支柱。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。

如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

导数公式:
1.c'=0(c为常数);
2.(xn)'=nx(n-1) (n∈r);
3.(sinx)'=cosx;
4.(cosx)'=-sinx;
5.(ax)'=axina (ln为自然对数);
6.(logax)'=(1/x)logae=1/(xlna) (a\ue0,且a≠1);
7.(tanx)'=1/(cosx)2=(secx)2
8.(cotx)'=-1/(sinx)2=-(cscx)2
9.(secx)'=tanx secx;
10.(cscx)'=-cotx cscx;。

高数不定积分公式

高数不定积分公式

高数不定积分公式
高等数学中常用的不定积分公式包括:
1.基本积分公式:
o∫x^n dx = (1/(n+1))x^(n+1) + C,其中n ≠ -1
o∫1/x dx = ln|x| + C
o∫e^x dx = e^x + C
o∫a^x dx = (1/lna) a^x + C,其中a > 0且a ≠ 1
o∫sinx dx = -cosx + C
o∫cosx dx = sinx + C
o∫sec^2x dx = tanx + C
o∫csc^2x dx = -cotx + C
o∫secx tanx dx = secx + C
o∫cscx cotx dx = -cscx + C
2.特殊积分公式:
o∫e^(kx) dx = (1/k) e^(kx) + C,其中k为常数
o∫sin(kx) dx = (-1/k) cos(kx) + C
o∫cos(kx) dx = (1/k) sin(kx) + C
o∫sec^2(kx) dx = (1/k) tan(kx) + C
o∫csc^2(kx) dx = (-1/k) cot(kx) + C
这只是一部分常见的不定积分公式,还有许多其他的公式和特殊情况需要考虑。

在进行不定积分时,经常需要运用这些公式并结合适当的代换或分部积分等方法来求解。

在具体的计算中,可以参考高等数学的教材或参考资料,以获取更详细和全面的不定积分公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
ex2coxs4x2C.
其中每一项虽然都应有5 一个积分常数,但是由于
任意常数之和还是任意常数,所 以 只 需 在 最 后
写出一个积分常数 C 即可.
三、直接积分法
求积分时,如果直接用求积分的两个运算法 则和基本公式就能求出结果, 或对被积函数进行 简单的恒等变形 (包括代数和三角的恒等变形) , 在用求不定积分的两个运算法则及基本公式就能 求出结果,这种求不定积分的方法成为直接积分 法.
se2c xdxdx
ta x n x C .
例 11 已知物体以速度 v 2t2+1 (m/s)作直线运动, 当 t=1 s 时, 物体经过的路程为3m, 求物体的运动规律.
解 设所求的运动规律 s = s(t),按题意有
积分得
s(t)v(t)2t21
s(t)(2t21)dt2t3tC 3
当 a e 时 , e x d x e ixn C ; ( 6 ) six d n x co x sC ; ( 7 ) se 2x d cxtax nC ; ( 8 ) c2 sx d c x co x tC ; ( 9 ) se x tc a x d x n se x c C ; ( 1)0cx s cc x o d x t cx s c C ;
( 1) 1 d x arx c sC i n arx c cC ; os 1 x 2
( 1 )2d x ar x c C t a a c rn x o c C t . 1 x 2
例1
求不定积分
1 x
dx.
解 被 积 函 1的数 定 义x域 0. 为 x
当 x > 0 时,因 为 (lnx)1, 所以 1dxl nxC;
5
x2 xdx x2dx
1
51
x2
C
2x3
xC.
5 1
7
(2)
1 dx x
1
x 2dx
2
1
11
x2
11
C
1
2x2 C
2
2 xC.
例 3 求不定积分 2xexdx.

2xexd x(2e)xd x
(2e)x
C
ln(2e)
2xex C. 1ln2
二、不定积分的基本运算法则
法则 1 两个函数的代数和的不定积分等于这 两个函数不定积分的代数和,即
f 1 ( x ) f 2 ( x ) f n ( x ) d x f 1 ( x ) d x f 2 ( x ) d x f n ( x ) d x .
法则 2 被积函数中的不为零的常数因子可以 提到积分号前面,即
k(x f)d xkf(x)d x(k 为不等于零的常数)
将条件 s|t=1 = 3,代入上式中,得 C 4 .
于是物体的运动规律为
3
s(t)2t3t4.
3
3

1
dx co2sxsin 2xdx
co2sxsi2nx
co2sxsin 2x
1 dx 1 dx co 2x s si2n x
1 dx 1 dx co 2x s si2n x
ta x c n x o C .t
例 10 求 tan2 xdx.
解 tan2 xdx se2x c1dx
(x2 1)x2 dx
x2(x2 1)
x21 dx x2 dx
x2(x21)
x2(x21)
dx 1
dx
x2 x21
1arctxanC. x
例 7 求
x4 dx. x2 1

x4 dx x4 11dx
x2 1
x2 1
(x 2 1 )x (2 1 )
d x
1 d x
x 2 1
x 2 1
证 类似性质 1 的证法,有
k f(x)dx k f(x)d xkf(x).
例 4 求不定积分 (ex 2 six n 2 xx)d x .

(ex 2six n 2 xx)d x
e x d x 2sx id x n 2xx d x
e ex x C 2 c 1 2 x o ( c 5 4 sx o x 5 2 C s (C 2) 1 2 2 C 5 2 2 x 5 2 2 C C 3 ) 3
(x21)dx
1 dx
1x2
x3xarctxaC n. 3
例 8 求
co2sx dx. coxssi nx

co2sx dx co2sxsi2nxdx
coxssi nx
c oxss in x
cox ssixn dx
sx i n cx o C .s
例 9 求
1 dx. co2sxsin 2x
第四章 不定积分
第二节 不定积分的基本公式和运 算法则 直接积分法
一、不定积分的基本公式 二、不定积分的基本运算法则 三、直接积分法
不定积分基本公式表
(1) kdxk xC(k为常 ); 数
( 2 )x d x 1x 1 C , ( 1 ) ; 1
(3) 1dxln|x|C; x
(4) axdxax C; ln a
[ f ( x ) g ( x ) d x ] f ( x ) d x g ( x ) d x .
证 根据不定积分定义,只须验证上式右端的 导数等于左端的被积函数.
f(x ) d x g (x ) d x
f(x ) d x g (x ) d x
f(x)g(x). 法则1 可推广到有限多个函数代数和的情况, 即
x
x
当 x < 0 时,因 ln 为 x )(1( 1 )1,
x x
所以
1dxln(x)C. x
综合以上两种情况,当 x 0 时,得
1dxln|x|C. x
例 2 求不定积分.
(1) x2 xdx;
(2) 1 dx. x
解 先把被积函数化为幂函数的形式,再利用基
本积分公式, 得
(1)
例 5 求
(1x)3 dx.
x2

(1x)3 dx x2
13x3x2x3 dx
x2
x123 x3xdx
d x x 2 3 1 xd x3 d xx d x
1 3 ln |x| 3 x 1x 2 C .
x
2
例 6 求
2x2 1 dx.
x2(x2 1)

2x2 1 dx
x2(x2 1)
相关文档
最新文档